
X3J16/96-0035
WG21/N0853

Eliminating Conversions

`wherever necessary'

in Expressions

J. Stephen Adamczyk (jsa@edg.com)

Edison Design Group, Inc.

January 30, 1996

Introduction

Paragraph 9 of [expr] in the Working Paper reads as follows:

User-de�ned conversions of class types to and from fundamental types, pointers,

and so on, can be de�ned (class.conv). If unambiguous (over.match), such con-

versions are applied wherever a class object appears as an operand of an operator

or as a function argument (expr.call).

Approximately the same thing appears in the ARM, and it was necessary there. In the present-

day Working Paper, however, there are detailed descriptions of the circumstances in which

speci�c conversions apply, and this blanket rule is no longer needed. In fact, it's confusing.

This paper discusses the remaining cases where the blanket rule might apply, and proposes

removal of the rule.

The speci�c rules

The important addition to the WP in this area is 13.6 [over.built]. That section de�nes pseudo-

prototypes for the built-in operators. For example, for the two-operand operator \+" there are

pseudo-prototypes for

promoted-arithmetic-type + promoted-arithmetic-type

pointer-to-object-type + promoted-integral-type

promoted-integral-type + pointer-to-object-type

and they compete with any declared operator+ functions in overload resolution on any \+"

operation that has at least one operand of class or enumeration type. That gives meaning to

an example like

struct A {

operator int();

} a;

main () {

int i = a + 2.0;

}

Eliminating conversions `wherever necessary' in expressions (X3J16/96-0035, WG21/N0853) 2

Speci�cally, in that case a is converted to int by calling the conversion function; the result of

that conversion is converted to double; 2.0 is added; and the result is converted to int.

Clause 4 [conv] de�nes implicit conversion in terms of initialization, and 8.5 [dcl.init] and 8.5.3

[dcl.init.ref] give rules about user-de�ned conversions in initializations; those a�ect expression

operators de�ned in terms of initialization, e.g., arguments of a function call and many instances

of static_cast.

Why get rid of the blanket rule?

The blanket rule makes certain cases arguable, e.g.,

struct A {

operator int *();

} a;

main () {

delete a; // Okay?

reinterpret_cast<char *>(a); // Okay?

}

In cases like this, some people will say \of course it's well-formed; the rule says you can do a

conversion wherever you need to," and others will say \no, that's silly; it doesn't mean that

case."

One can argue about those individual issues, and later in this paper I will make speci�c recom-

mendations, but the important point is this: if conversions are supposed to apply in a speci�c

case, it's much clearer to say so explicitly. If we want \delete a" above to be well-formed,

we should indicate what it means in the section on the delete operator. Having a blanket

\wherever needed" rule is just asking for di�erent people to draw di�erent conclusions about

these cases.

So the important part of this proposal is to delete the blanket rule. It's not needed anymore.

If certain operators need additional wording to de�ne allowable conversions, we can deal with

that on a case-by-case basis.

Easy cases

Of the cases where there's still some question about the allowability of user-de�ned conversions,

most are easy. All the following are silly, in my opinion, and shouldn't allow any special

conversions:

struct A {

operator int *();

} a;

struct B {

int i;

};

struct C {

operator B();

} c;

struct D {

Eliminating conversions `wherever necessary' in expressions (X3J16/96-0035, WG21/N0853) 3

operator B*();

} d;

main () {

delete a; // error (no conversion to int*)

reinterpret_cast<char *>(a); // error (no conversion to int*)

const_cast<const int *>(a); // error (no conversion to int*)

int B::*pm = &B::i;

c.*pm; // error (no conversion to B)

dynamic_cast<void *>(d); // error (no conversion to B*)

}

(Note that cfront allows the delete case. I do not know if it is widely used, though I suspect

not since EDG has never gotten a complaint about that.)

For all these cases, I recommend no change to the WP, and therefore after the removal of the

blanket rule these cases would be ill-formed.

The harder case

The only di�cult case is the \?" operator.

struct A {

operator int();

} a;

struct B : public A { } b;

struct C {

C(int);

operator int();

} c(1);

struct E;

struct D {

D();

D(E);

} d;

struct E {

E();

E(D);

} e;

main () {

int x = 1;

x ? a : a; // Definitely okay (same type) (1)

x ? a : b; // Definitely okay (inheritance-related classes) (2)

x ? a : x; // a.operator int() : int ?? (3)

x ? c : x; // c.operator int() : int ?? (4)

// c : C(int) ??

x ? d : e; // E(d) : e ?? (5)

// d : D(e) ??

}

Eliminating conversions `wherever necessary' in expressions (X3J16/96-0035, WG21/N0853) 4

The �rst two cases are covered by existing wording in 5.16 [expr.cond]. The others, if well-

formed, depend on the blanket conversion rule.

Most existing implementations allow case 3, but the consensus breaks down on case 4, where

many implementations �nd the conversion function but not the constructor, one �nds (only) the

constructor, and one �nds both and calls the case ambiguous. Most implementations rejected

any case that involved two operands of unrelated class types, like case 5, even if the ambiguity

is removed by eliminating the conversion in one direction.

I think that the only reasonable choices are to allow no user-de�ned conversions (i.e., disallow

3{5), or to consider all possible user-de�ned conversions (i.e., allow 3, �nd ambiguity on 4{

5). That would rule out the popular existing practice result of accepting case 4 without an

ambiguity (because the solution using the constructor is not considered).

Given that, and given the otherwise divergent existing practice, my recommendation is to allow

no user-de�ned conversions in this case, i.e., make no change to the WP. Cases 3{5 would be

ill-formed. One can always put in an explicit cast if one wants to write something like that.

If the working group chooses to go in the other direction, I believe that should be accommodated

by adding after the following existing wording in 5.16 [expr.cond] paragraph 2

If the second and the third operands are lvalues and have the same type (before

any implicit conversions), the result is an lvalue of that type. Otherwise, if the

second and the third operands are lvalues of inheritance-related class types, the

operands are implicitly converted to a common type (which shall be a cv-quali�ed

or cv-unquali�ed version of the type of either the second or third operand) as if by

a static_cast to a reference to the common type (expr.static.cast). [Note: this

conversion will be ill-formed if the base class is inaccessible or ambiguous.] The

result is an lvalue of the common type.

the following new wording

Otherwise, if at least one of the second and third expressions has a class type,

then if the second expression can be converted to the type of the third expression,

the conversion is done and the result has the type of the third expression; if the third

expression can be converted to the type of the second expression, the conversion is

done and the result has the type of the second expression; if the conversion can be

done in both directions, the program is ill-formed.

Working Paper changes

Delete [expr] paragraph 9, which reads

User-de�ned conversions of class types to and from fundamental types, pointers,

and so on, can be de�ned (class.conv). If unambiguous (over.match), such con-

versions are applied wherever a class object appears as an operand of an operator

or as a function argument (expr.call).

