Docunment Number: W321/ N0842=X3J16/ 96- 0024

Dat e: 23 Jan 1996
Proj ect: C++ Standard Library
Reply to: Nat han Myers

<ncm@antri p. org>

Exception Safety for |ostream

The iostream library xalloc()/pword() nmechani sm provides an essentia
tool for runtime extension of iostream semantics to support user types.
Wil e this nechanismwrks at a very |low |level, involving casts from
voi d* pointers, its use is nostly easily encapsul ated, and because it
is sinple, it is nostly quite reliable and safe, if used correctly.

The Probl em

| say "nostly", above, because there is one area in which it is not
safe, and not encapsul able. |nagine you have inplenented a type
naned "Date", for which you have inplenmented operators << and >>

I magi ne further that as an optimzation in operator<<, you would
like to cache some data in the istreamargument in storage provided
by pword().

There are two problenms in this scenario. First, if operator<<
stores anything via pword(), somebody needs to del ete that storage
when the istreamitself goes away. Requiring the owner of the
istreamitself to clean up breaks encapsulation in Date. Second,
the owner of the istreamnmay get no opportunity to clean up if an
exception occurs.

Di scussi on

In practice, these problens nmean that |ibrary conponents cannot use
the i ostream xal loc()/pword() facilities safely. Cearly we need sone
way for Date to get control during events that require this kind of

cl eanup. The traditional solution for this kind of problemat runtinme
is to use callbacks. W need to provide a call back nechani smfor

i mportant iostream events.

It is not inmediately obvious in which class the registry bel ongs.

More particularly, in which destructor do the call backs occur? They
could be called from ~i os_base, ~basic_ios<> ~basic_istreank>(), or
even (e.g.) ~basic_istringstream() -- or all of the above. O course
the nore-derived class’s destructors have access to nore of the streanis
resources; by the tinme the ~ios_base() destructor is reached npbst such
resources have al ready been rel eased.

Because the purpose for this is sinply cleanup, the sinplest alternative
seens best: place the registry in ios_base.

The next question is, what are the interesting events? It would be
foolish to add a cal |l back nechanismand fail to hand over control when
it’'s needed. The only other event of significance (for cleanup) in an
i os_base is change of |ocale.

Pr oposed Resol ution

Add to the definition of class ios _base the declarations:

enum event { inbue_event, destruct_event };

typedef void (*event call back)(event, ios_base&, int index);
void register_call back(event _call back fn, int index);

and define register_call back():

Effect: Registers the pair (fn, index) such that during calls to

i mbue() or ~ios_base(), the function *fn* is called wth argunent
index. Functions registered are called when an event occurs,
in opposite order of registration. Functions registered while a
cal back function is active are not called until the next event.
Notes: No attenpt is nade to nerge identical pairs; a function
registered twice is called twi ce per event.

Add to the description of destructor ~i os_base():
Cal | s each registered call back pair (fn, index) as (*fn)(destruct_event,
*this, index) at such a time that any ios_base menber function called
fromwithin fn has well-defined results.

Add to the description of ios_base nmenber inbue(const |ocale& |oc):
Cal I s each registered call back pair (fn, index) as (*fn)(inbue_event,

*this, index) at such a time that a call to i os_base::getloc() from
within *fn* returns the new | ocal e val ue *l oc*.

