
WG21/N0831
X3J16/96-0013

Operator->* Proposal

David Dodgson

dsd@tr.unisys.com
UNISYS

In Monterey we accepted a change to iterator that required the -> operator be supported. This allows
iterators to reference members directly. During deliberations of that change the library subgroup
discussing iterators was asked to consider the ->* operator. This became an open issue for Clause 24.
The changes required to implement the -> operator are relatively straightforward. They follow directly
from an application of the operator-> function. The changes needed for the ->* operator are not so
clear cut. The difference is in the differing treatments of the overloading operator functions, operator-
> and operator->* . For the purposes of overloading, operator-> in the expression x->m is treated
as a unary operator. In the expression x->*m, operator->* is treated as a binary operator. The
effect of this difference is shown below.

Consider the following program:

 class X {
 public:
 int i;
 bool b;
 };
 X *p = new X;
 int X::* pmi = &X::i;
 bool X::* pmb = &X::b;

 p -> i = 3; // fine
 p ->* pmb = true; // also fine

Now let's attempt a simple smart pointer approach to get debugging information.:

 X * X::operator->() {
 cout << "X Ref";
 return this;
 };

 p -> i = 3; // Says "X Ref"
 p ->* pmb = true; // Says nothing

If we want to do the same thing for ->* we can't. operator->* is strictly a binary op. We would have
to use:

 int X::operator->*(int X::* p1) {
 cout << "X Ref";
 return (*this).*p1;
 };
 // and similarly for bool, etc .
 bool X::operator->*(bool X::* p1) {
 cout << "X Ref";
 return (*this).*p1;
 };

WG21-N0831 Operator->* Proposal 2 of 3
X3J16/96-0013

We can reduce the effort somewhat by using a template:

template< class T >
 T X::operator->*(T X::* p) {
 cout << "X Ref"; return (*this).*p; }

Unfortunately, this does not work well for pointer-to-member functions.

This mechanism seems to be overly complex for what we would hope to be a relatively simple smart
pointer or iterator class. Because the function behind the ->* operation is so similar to what is needed for
the -> operation it makes sense to compare the two. The ->* operation could be treated similarly to the ->
operation. Examining clause 13.5.6 (Class member access) we see that x->m is defined as
(x.operator->())->m . If we redefine the x->*m operation to be (x.operator->*())->*m , the
use of this operation would be much simpler.

Here is an example from clause 20 with the proposed change:

template<class X> class auto_ptr {
 public:
 // _lib.auto.ptr.cons_ construct/copy/destroy:
 explicit auto_ptr(X* p =0);
 template<class Y> auto_ptr(auto_ptr<Y>&);
 template<class Y> auto_ptr& operator=(auto_ptr<Y>&);
 ~auto_ptr();
 // _lib.auto.ptr.members_ members:
 X& operator*() const;
 X* operator->() const;
 X* operator->*() const; // *** new member function ***
 X* get() const;
 X* release();
 void reset(X p =0);
 };
template<class X> X* operator->*() const {
 return operator->(); };

Most instances of operator->* in smart pointers or iterators with this proposed change would be to
return operator->() . This is obviously much simpler than trying to define a member template to
handle this operation. It is also potentially very useful. It is quite likely that a smart pointer class could
be used in conjuntion with pointers to members.

The disadvantage to this proposal is that it removes the binary operator->* from overloading
considerations. There may be current code which uses this feature. However, I believe that this usage is
probably minimal and the advantage of using the redefined operator in smart pointers and iterators is
substantial.

Proposed Changes

Add a new section after 13.5.6 “Class member access” for “Pointer to member operators”.

operator-> shall be a non-static member function taking no parameters.
 It implements pointer to member access using ->*
 pm-expression ->* cast-expression
An expression x->*m is interpreted as (x.operator->*())->*m for a class
object x of type T if T::operator->*() exists and if the operator is
selected as the best match function by the overload resolution mechanism

WG21-N0831 Operator->* Proposal 3 of 3
X3J16/96-0013

Remove section 13.6 paragraph 12 discussing binary operator->* . [Note: operator-> is not
discussed in 13.6]

References

This issue is discussed in messages c++std-ext-3468 through 3471

