
ISO Doc No: WG21/N0826
ANSI Doc No: X3J16/96-0008

Date: January 23, 1996
Reply To: Erwin Unruh

erwin.unruh@mch.sni.de

Recognizing non-standard C++

Erwin Unruh

Siemens Nixdorf Informatiossysteme AG
Department of Software Development Systems

C/C++ Front-End Laboratory LoB BS2000 SD 21
Otto-Hahn-Ring 6
D{81739 M�unchen

Germany

1 Introduction

When trying to write the header �les for our compilers the question came up:

How do I tell whether the compiler runs in Cfront mode or standard

mode?

There was no direct answer since the WP does not support this question.
The macro cplusplus does not �t this question. It is mainly used to

distinguish C mode from C++ mode. It's value is unspeci�ed in the WP so you
cannot rely on it.

Other solutions introduced by some compiler may help on a speci�c platform,
but they do not generalize. Some compilers de�ne a macro for the compiler
version, or a macro indicating the strictness option. Those macros are speci�c
to a compiler and may be di�erent when using another compiler. They may
even di�er whith a new version of the same compiler.

1



What I want to do is write a header �le like

/* header file for C and C++, standard and old version */

#if defined (__cplusplus)

/* C++ mode */

#if /* what do I write here ? */

extern "C" int f(int) throw();

#else

extern "C" int f(int);

#endif

#else

/* C mode */

#if defined(__STDC__) && __STDC__ +0 == 1

int f(int);

#else

int f();

#endif

#endif

2 Problem solved by ISO-C

ISO-C did solve this problem with the macro STDC , which was speci�ed to
have the value 1. There is the problem that non-conforming implementations
had two possibilities, namely not de�ning the macro or de�ning it with the value
0. The rationale reserved the greater numbers for future use.

This was justi�ed since the macro was invented by the committee and had
no previous semantics. Market force prevented any abuse of the macro (like
de�ning it without claiming conformance).

3 Possible solutions

We have several possibilities to tackle this problem. I see the following:

3.1 Ignore

Strictly speaking the behaviour of any non-conforming implementation is not
part of the standard. So we can just say we don't need to do anything.

But ISO-C had tackled this problem. It may be outside the scope of the
standard, but is a topic in real life C++ programming.

I do not think this is a viable option.

2



3.2 Speci�y cplusplus

To solve the problem we can try to re-use the macro cplusplus. We could
specify a distinct value to indicate standard conformance.

The value of 1 is a bad solution since it is used in present compilers. Any
other value may do, but it should have a meaning.

The best meaningfull value I have seen is the date of the standard. For
details see section 3.3.2.

3.3 Specify an additional macro

The cleanest solution would be to specify a new macro which distinguishes stan-
dard C++ from pre-standard C++. The names used here are my suggestion,
they can be changed to more speaking (or more or less obscure) names.

We have two main semantics of such a macro:

3.3.1 STDCplusplus

We could just duplicate STDC by de�ning an additional macro with a name
similar to STDCplusplus which must have the value 1. We would than face
the same problems ISO-C had, but we would know about the problems.

To avoid (part of) the problem, we could add a note or footnote that a non-
conforming implementation should not de�ne this macro. Then the line #ifdef
STDCplusplus would recognize standard C++.

3.3.2 cplusplus version

We could look at the ISO-C amendment. There a macro STDC VERSION

which is de�ned to be the date of the amandment. So we would have a macro
like cplusplus version with the value being the o�cial date of the standard.

This would have the bene�t that a future version of the C++ standard (or
an amendment) would not have to introduce a new version macro. It could
instead rely on this one.

We could also indicate that non-conforming implementations should not de-
�ne this macro or that they should avoid certain values. We could say that the
values from 1 to 99999L may be used by non-conforming implementations.

Conforming implementations would set this value to the year and month of
the �nal adoption of this standard, which is scheduled for July 1997. So the
value would be 199707L.

If the schedule changes, this value should be updated.

3



4 WP changes

I give WP text for the last three options. The �rst option does not need WP
text.

4.1 for version 3.2

Change in 16.8 [cpp.prede�ned] paragraph 1 the entry for cplusplus to:

cplusplus The name cplusplus is de�ned to the value 199707L
when compiling a C++ translation unit.

Footnote: It is intended that future standards will replace the value
of this macro by a greater value. Non-conforming compilers should
use a value with at most �ve decimal digits.

Box: The value is intended to be the date of �nal approval of this
standard. If the schedule slips, the value of this macro should be
adapted.

4.2 for version 3.3.1

Add in 16.8 [cpp.prede�ned] paragraph 1 the following entry:

STDCplusplus The name STDCplusplus is de�ned to the
value 1 when compiling a C++ translation unit.

Footnote: Non-conforming compilers should not de�ne STDCplusplus .

4.3 for version 3.3.2

Add in 16.8 [cpp.prede�ned] paragraph 1 the following entry:

cplusplus version The name cplusplus version is de�ned to
the value 199707L when compiling a C++ translation unit.

Footnote: It is intended that future standards will replace the value
of this macro by a greater value. Non-conforming compilers should
use a value with at most �ve decimal digits.

Box: The value is intended to be the date of �nal approval of this
standard. If the schedule slips, the value of this macro should be
adapted.

4


