ISO Doc No: WG21/N0826
ANSI Doc No: X3J16/96-0008
Date: January 23, 1996
Reply To: Erwin Unruh
erwin.unruh@mch.sni.de

Recognizing non-standard C++

Frwin Unruh

Siemens Nixdorf Informatiossysteme AG
Department of Software Development Systems
C/C++ Front-End Laboratory LoB BS2000 SD 21
Otto-Hahn-Ring 6
D-81739 Minchen

Germany

1 Introduction

When trying to write the header files for our compilers the question came up:

How do 1 tell whether the compiler runs in Cfront mode or standard
mode?

There was no direct answer since the WP does not support this question.

The macro __cplusplus does not fit this question. It is mainly used to
distinguish C mode from C++ mode. It’s value is unspecified in the WP so you
cannot rely on it.

Other solutions introduced by some compiler may help on a specific platform,
but they do not generalize. Some compilers define a macro for the compiler
version, or a macro indicating the strictness option. Those macros are specific
to a compiler and may be different when using another compiler. They may
even differ whith a new version of the same compiler.

What I want to do 1s write a header file like

/* header file for C and C++, standard and old version */

#if defined (__cplusplus)
/* C++ mode */
#if /# what do I write here 7 */
extern "C" int f£(int) throw();
#else
extern "C" int f(int);
#endif
#else
/* C mode */
#if defined(__STDC__) && __STDC__ +0 ==
int £(int);
#else
int £();
#endif
#endif

2 Problem solved by ISO-C

ISO-C did solve this problem with the macro __STDC__, which was specified to
have the value 1. There is the problem that non-conforming implementations
had two possibilities, namely not defining the macro or defining it with the value
0. The rationale reserved the greater numbers for future use.

This was justified since the macro was invented by the committee and had
no previous semantics. Market force prevented any abuse of the macro (like
defining it without claiming conformance).

3 Possible solutions

We have several possibilities to tackle this problem. I see the following:

3.1 Ignore

Strictly speaking the behaviour of any non-conforming implementation is not
part of the standard. So we can just say we don’t need to do anything.

But ISO-C had tackled this problem. It may be outside the scope of the
standard, but is a topic in real life C++ programming.

I do not think this 1s a viable option.

3.2 Specifiy _cplusplus

To solve the problem we can try to re-use the macro __cplusplus. We could
specify a distinct value to indicate standard conformance.

The value of 1 is a bad solution since it is used in present compilers. Any
other value may do, but i1t should have a meaning.

The best meaningfull value I have seen is the date of the standard. For
details see section 3.3.2.

3.3 Specify an additional macro

The cleanest solution would be to specify a new macro which distinguishes stan-
dard C++ from pre-standard C++. The names used here are my suggestion,
they can be changed to more speaking (or more or less obscure) names.

We have two main semantics of such a macro:

3.3.1 __STDCplusplus_

We could just duplicate __STDC__ by defining an additional macro with a name
similar to __STDCplusplus_ which must have the value 1. We would than face
the same problems ISO-C had, but we would know about the problems.

To avoid (part of) the problem, we could add a note or footnote that a non-
conforming implementation should not define this macro. Then the line #ifdef
-STDCplusplus would recognize standard C++.

3.3.2 __cplusplus_version

We could look at the ISO-C amendment. There a macro __STDC_VERSION__
which is defined to be the date of the amandment. So we would have a macro
like __cplusplus_version with the value being the official date of the standard.

This would have the benefit that a future version of the C++ standard (or
an amendment) would not have to introduce a new version macro. It could
instead rely on this one.

We could also indicate that non-conforming implementations should not de-
fine this macro or that they should avoid certain values. We could say that the
values from 1 to 99999L may be used by non-conforming implementations.

Conforming implementations would set this value to the year and month of
the final adoption of this standard, which is scheduled for July 1997. So the
value would be 199707L.

If the schedule changes, this value should be updated.

4 WP changes

I give WP text for the last three options. The first option does not need WP
text.

4.1 for version 3.2

Change in 16.8 [cpp.predefined] paragraph 1 the entry for __cplusplus to:

_—cplusplus The name __cplusplus is defined to the value 199707L
when compiling a C4++4 translation unit.

Footnote: It is intended that future standards will replace the value
of this macro by a greater value. Non-conforming compilers should
use a value with at most five decimal digits.

Box: The value is intended to be the date of final approval of this
standard. If the schedule slips, the value of this macro should be
adapted.

4.2 for version 3.3.1

Add in 16.8 [cpp.predefined] paragraph 1 the following entry:

STDCplusplus The name __STDCplusplus_ is defined to the
value 1 when compiling a C4++4 translation unit.

Footnote: Non-conforming compilers should not define __STDCplusplus_.

4.3 for version 3.3.2
Add in 16.8 [cpp.predefined] paragraph 1 the following entry:

_cplusplus_version The name __cplusplus_version is defined to
the value 199707L when compiling a C++ translation unit.

Footnote: It is intended that future standards will replace the value
of this macro by a greater value. Non-conforming compilers should
use a value with at most five decimal digits.

Box: The value is intended to be the date of final approval of this
standard. If the schedule slips, the value of this macro should be
adapted.

