
Document Numbers: X3J16/95-0174
WG21/N0774

Date: September 26, 1995
Reply To: Bill Gibbons

bgibbons@taligent.com

Definitions of “scalar type” and “fundamental type”

Introduction

The definition of “scalar type” in the working paper should include pointers to members,
but the current wording excludes them. This appears to be an oversight, since pointers to
members behave much more like scalars than like non-scalars. Making them scalars would
be more consistent and simplifies the working paper.

The definition of “fundamental type” currently includes enumeration types. It seems odd
that a user-defined type could be considered fundamental; it would be more appropriate to
make enumeration a compound type. Doing so would be more consistent and simplifies
the working paper.

These are very simple changes, but they affect very basic definitions. So it seems
worthwhile to examine the effects in some detail.

Scalar Types

Data objects in C++ can be categorized as either scalar (e.g. integers and pointers) or non-
scalar (e.g. arrays and classes), where scalars are primitive objects which contain a single
value and are not composed of other C++ objects. Pointers to members appear to be
scalars, but implementations generally represent them with multiple pieces of machine data.
For example, a pointer to member function may contain an offset value and a function
pointer.

Although implementors know that pointers to members usually consist of multiple parts,
there is neither a good reason nor a portable mechanism for examining or modifying the
individual parts. For purposes of understanding a C++ program, it is better to consider
pointers to members to be indivisible primitive objects - that is, scalars.

The only significant impact of such a change is that pointers to members would have to be
bitwise copyable, i.e. they could be copied using memcpy. Since existing implementations
represent pointers to members using pointers and integers (which are bitwise copyable), it
seems reasonable to allow memcpy on pointers to members.

Appendix A contains a complete list of uses of the term “scalar” in the working paper,
together with a discussion of how scalar pointers to members would affect that section of
the working paper. The overall impact is very small, and the net effect is a slight
simplification of the working paper.

X3J16/95-0174 WG21/N0774 Page 1

Fundamental Types

Enumerations are currently classified as fundamental types. But there is a small fixed set
of other fundamental types, each of which is a builtin; and there is an infinite number of
possible enumeration types, each of which is a user-defined type. So enumeration types
do not resemble the other fundamental types very much.

The description of numeric_limits class is complicated by the fact that enumerations are
fundamental, because numeric_limits is supposed to be specialized for all fundamental
types. If enumeration types remain fundamental types, the description of
numeric_limits must explicitly exclude them.

Similarly, under the current definition, the description of limits.h should explicitly
exclude enumerations (obviously that header file cannot give limits for an infinite number
of user-defined types).

There is nothing in the use of the term “fundamental type” in the working paper which
would indicate that enumerations should be fundamental. So it would be simpler to move
them to the “compound type” category.

Of course compound types are supposed to be based on fundamental types; but
enumerations already have the concept of an underlying type; so this is the fundamental
type on which the enumeration is based.

Appendix B contains a complete list of the uses of the term “fundamental type” in the
working paper, together with a discussion of how making enumerations non-fundamental
types would affect that section of the working paper. The overall impact is very small, and
the net effect is a slight simplification of the working paper.

Other Clarifications

While considering these changes, I encountered two uses of the term “scalar” which were
already incorrect or misleading. These should be corrected editorially independently of
whether the other changes are approved.

In the description of numeric_limits, there are two references to “scalar type” which
surely were intended to be “fundamental type”. The editorial changes to correct this
problem are listed with the proposals below.

The description of valarray uses the word “scalar” to mean “non-valarray”. If the non-
valarray parameters can actually have class type, the description is very misleading.
The editorial changes to correct this problem are listed with the proposals below.

Page 2 X3J16/95-0174 WG21/N0774

Proposals

(1) Proposal: Change the definition of “scalar type” to include pointer to
member types.

Working paper changes:

-- In 3.9/9, change

“Arithmetic and enumeration types (3.9.1) and pointer types (3.9.2)
are scalar types.”

to
“Arithmetic and enumeration types (3.9.1), pointer types (3.9.2)
and pointer to member types (3.9.2) are scalar types.”

-- In 8.5/5, 12.8/8 and 12.8/13, remove the phrase “or pointer-to-
member”, which is now redundant.

(2) Proposal: Make enumeration types “compound”, not “fundamental”.

Working paper changes:

-- Move the description of enumerations from 3.9.1 to 3.9.2.

-- In 8.3.4/2, add “from an enumeration” to the list of types from
which an array can be constructed and remove the footnote.

(3) Suggested Editorial Correction Change numeric_limits to refer to
fundamental types, not scalar types.

Working paper changes:

-- In 18.2.1/3, change “non-scalar” to “non-fundamental”.

-- In 18.2.1.1/1, change “scalar” to “fundamental”.

-- If proposal 2 is not accepted, change 3.9.1/1, 18.2.1/3 and
18.2.1.1/1 to indicate that numeric_limits is not specialized on the
enumeration types; and change 2.8/5 to indicate that <limits.h> does
not describe enumeration types.

(4) Suggested Editorial Correction: Change the description of valarray
to use the term “non-valarray” instead of “scalar”.

Working paper changes:

-- In 26.3.1.6/5, 26.3.2.1/5 and 26.3.2.2/5 change “scalar” to “non-
valarray”.

X3J16/95-0174 WG21/N0774 Page 3

Appendix A - uses of “scalar”

Here are the uses of the term “scalar” in the working paper, together with a discussion of
each use:

Copying via memcpy

3.9/3 “For any scalar type T, if two pointers to T point to distinct T
objects obj1 and obj2, if the value of obj1 is copied into obj2,
using the memcpy library function, obj2 shall subsequently hold
the same value as obj1.”.

This is the only real issue. Since pointers and integers can be copied with memcpy, and
existing implementations represent pointers to members using pointers and integers, it
seems reasonable to allow memcpy on pointers to members.

Definition

3.9/9 “Arithmetic and enumeration types (3.9.1) and pointer types (3.9.2)
are scalar types.”

This is the definition which would have to be changed.

Sequence points

5/4 “Between the previous and next sequence point a scalar object shall
have its stored value modified at most once by the evaluation of an
expression.”

This is reasonable for pointers to members.

Explicit destructor calls

5.2.4/2 “The id-expression shall name a member of that class, except that an
imputed destructor can be explicitly invoked for a scalar type
(12.4).”

12.4/12 “The notation for explicit call of a destructor can be used for any
scalar type name. Using the notation for a type that does not have a
destructor has no effect.”

This is reasonable for pointers to members, and necessary for using them with templates.

Default zero-initialization

8.5/5 “To zero-initialize storage for an object of type T mean: ... if T is a
scalar or pointer-to-member type, the storage is set to the value of
0 (zero) converted to T”

Page 4 X3J16/95-0174 WG21/N0774

There is no effect except simplifying the text.

Direct vs. copy initialization

8.5/12 “If T is a scalar type, then a declaration of the form
T x = { a };

is equivalent to
T x = a;

Surely this is already true for pointers to members.

Generated copy constructor and copy assignment

12.8/8 “Each subobject is copied in the manner appropriate to its type: ... if
the subobject is of scalar or pointer-to-member type, the built-in
assignment operator is used.”

12.8/13 “Each subobject is assigned in the manner appropriate to its type: ...
if the subobject is of scalar or pointer-to-member type, the built-in
assignment operator is used.”

There is no effect except simplifying the text.

numeric_limits template

18.2.1 “[The numeric_limits template for] non-scalar types, such as
complex<T> (26.2.1), shall not have specializations.” and “The
member is_specialized makes it possible to distinguish between
scalar types, which have specializations, and non-scalar types,
which do not.”

This section uses “fundamental type” and “scalar type” as if they were the same. Clearly
the intent is “fundamental type”, and the uses of “scalar type” should be corrected.

There is no effect on pointers to members, since numeric_limits could not be specialized
for all pointer to member types anyway.

valarray template

26.3.1.6/5 “Each of these operators applies the indicated operation to each
element of the array and the scalar argument.”

26.3.2.1/5 “Each element of the returned array is initialized with the result of
applying the indicated operator to the corresponding element of the
array argument and the scalar argument.”

26.3.2.2/5 “Each element of the returned array is initialized with the result of
applying the indicated operator to the corresponding element of the
array and the scalar argument.”

X3J16/95-0174 WG21/N0774 Page 5

The meaning of “scalar” in this section is also different from the definition in 3.9. The
three uses of this term should be changed to some other term, such as “non-array” or “non-
valarray”. Since the meaning of scalar is different here, there is no impact on pointers to
members.

iostream formatted input & output

27.6.1.2.1/2 “Some formatted input functions endeavor to obtain the
requested input by parsing characters extracted from the input
sequence, converting the result to a value of some scalar data type,
and storing the converted value in an object of that scalar data
type.”

27.6.1.2.1/6 “If the converted data value cannot be represented as a value of
the specified scalar data type, a scan failure occurs.”

27.6.2.4.1/4 “Some formatted output functions endeavor to generate the
requested output by converting a value from some scalar or NTBS
type to text form and inserting the converted text in the output
sequence.”

The meaning of “scalar” here is not intended to imply that all scalar types can be used.
This can be inferred from the existing text, so there is no change needed.

Appendix B - uses of “fundamental type”

limits.h

2.8/5 “[Note: Certain implementation-defined properties, such as the type
of a sizeof (5.3.3) expression, the ranges of fundamental types
(3.9.1), and the types of the most basic library functions are defined
in the standard headers <limits>, <cstddef>, and <new>
(_lib.support_). —end note]”

Without the proposed change, this section would have to be edited to exclude enumeration
types.

Basic Concepts

3/1 “Finally, this clause presents the fundamental types of the language
and lists the ways of constructing compound types from these.”

3.9/1 “There are two kinds of types: fundamental types and compound
types.”

3.9/2 “There is a conceptually infinite number of compound types
constructed from the fundamental types in the following ways:”

Page 6 X3J16/95-0174 WG21/N0774

3.9/4/1 “[Note: Fundamental and compound types can be given names by
the typedef mechanism (7.1.3), and families of types and
functions can be specified and named by the template mechanism
(14).]”

There is no effect on these uses.

3.9.1/1 “There are several fundamental types. Specializations of the
standard template numeric_limits (18.2) shall specify the largest
and smallest values of each for an implementation.”

Without the proposed change, this section would have to be edited to exclude enumeration
types

3.9/3 “Each cv-unqualified fundamental type (3.9.1) has three
corresponding cv-qualified versions of its type”

There is no effect on this use, but the paragraph is not entirely accurate and needs editorial
work.

User-Defined Conversions

5/9 “User-defined conversions of class types to and from fundamental
types, pointers, and so on, can be defined”

There is no effect; enumerations are now part of the “so on”.

Typedefs

7.1.3/1 “Declarations containing the decl-specifier typedef declare
identifiers that can be used later for naming fundamental (3.9.1) or
compound (3.9.2) types.”

There is no effect.

Type Specifiers

7.1.5.2/1 “The simple-type-specifiers specify either a previously-declared
user-defined type or one of the fundamental types (3.9.1).”

There is no effect, other than making the paragraph slightly more clear. (Enumerations are
user-defined types, and the paragraph already implies that they are not fundamental.)

Declarators

8/2 “The specifiers indicate the fundamental type, storage class, or other
properties of the objects and functions being declared.”

This paragraph already needs work, since it seems to disallow classes and typedefs from
being used as type specifiers. With the proposed change, it would also exclude

X3J16/95-0174 WG21/N0774 Page 7

enumerations so any editorial correction to this paragraph would have to take that into
account.

Arrays

8.3.4/2 “An array can be constructed from one of the fundamental types)
(except void), from a pointer, from a pointer to member, from a
class, or from another array.”
[Footnote: The enumeration types are included in the fundamental
types.]

This paragraph would have to explicitly mention enumeration types, and the footnote
would no longer be needed.

numeric_limits

18.2/1 “Characteristics of implementation-dependent fundamental types
(3.9.1).”

18.2.1/1 “The numeric_limits component provides a C + + program with
information about various properties of the implementation’s
representation of the fundamental types.”

18.2.1/1 “Specializations shall be provided for each fundamental type, both
floating point and integer, including bool.”

Without this change, these paragraphs would have to be changed to exclude enumeration
types.

Page 8 X3J16/95-0174 WG21/N0774

