
X3J16/95-0101
WG21/N0701

Template Issues and Proposed Resolutions
Revision 12

John H. Spicer

Edison Design Group, Inc.

jhs@edg.com

May 28, 1995

Revision History

Version 1 { March 5, 1993: Distributed in Portland and in the post-Portland mailing.

Version 2 { May 28, 1993: Distributed in pre-Munich mailing. Reects tentative decisions

made in Portland and additional issues added after the Portland meeting. In Portland, the

extensions working group reviewed most of the issues from 1.1 to 2.8 and also reviewed 6.3.

Version 3 { September 28, 1993: Distributed in pre-San Jose mailing. Reects decisions made

in Munich. No new issues were added in this revision.

Version 4 { November 24, 1993: Distributed in post-San Jose mailing. Reects decisions made

in San Jose. Note that issues that have been closed as a result of formal motions in San Jose

will be omitted from subsequent versions of this paper. In San Jose the extensions working

group identi�ed a number of issues that required additional work. These issues have not been

addressed in this paper but will be addressed in the next revision.

Version 5 { January 25, 1994: Distributed in the Pre-San Diego mailing. The 41 closed issues

have been removed, 20 have been added, and a few existing ones have been updated.

Version 6 { March 25, 1994: Distributed in the Post-San Diego mailing. Reects decisions

made in San Diego. Note that issues that have been closed as a result of formal motions in

San Diego will be omitted from subsequent versions of this paper. In San Diego the extensions

working group identi�ed a number of issues that required additional work. These issues have

not been addressed in this paper but will be addressed in the next revision.

Version 7 { June 1, 1994: Distributed in the Pre-Waterloo mailing. The 24 issues closed in

version 6 have been removed and 16 new issues have been added.

Version 8 { November 3, 1994: Distributed in Valley Forge and in the post-Valley Forge mailing.

Reects decisions made in Waterloo. This version contains only issues closed in Waterloo.

Version 9 will be distributed at the same time as version 8 and will contain the open issues and

new issues.

Version 9 { November 5, 1994: Distributed in Valley Forge and in the post-Valley Forge mailing.

Issues closed in version 8 have been removed and new issues have been added.

Version 10 { Novermber 25, 1994: Distributed in the post-Valley Forge mailing. Reects

decisions made in Valley Forge. Includes a number of new issues supplied by Erwin Unruh.

Version 11 { January 31, 1995: Distributed in the pre-Austin mailing. Includes a few new

issues.

Version 12 { May 28, 1995: Distributed in the pre-Monterey mailing. Reects decisions made

in Austin. 9 issues have been closed, 12 new issues have been added.

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 2

Introduction

This document attempts to clarify a number of template issues that are currently either unde-

�ned or incompletely speci�ed. In general, this document addresses smaller issues.

Of the issues that are addressed, some are covered in far more detail than others. Some of

the resolutions represent solid proposals while others are more like trial balloons. The more

tentative proposals are so designated in the body of the document.

Even those resolutions that represent fairly solid proposals are only proposals. This doc-

ument is not intended as a formal proposal of any speci�c language changes. Rather, it is

intended as to be used as a framework for discussion of these issues. Hopefully this will ulti-

mately result in formal proposals for language changes.

Organization of the Document

The document is organized in sections. Each section consists of a list of questions. Each

question has an answer, a status, the version number of the �rst version of this document that

included the question, and the version number of the last change in the question. This allows

the reader to skip over questions that have not changed since the last time he or she read the

document.

Acknowledgements

I would like to thank Bjarne Stroustrup who contributed greatly by providing issues, reviewing

and improving upon proposed resolutions, and providing insights into other language changes

that may impact templates. Thank you to Erwin Unruh, who has contributed to many of

the issues, and who also contributed the \Erwin Unruh's Issues" section. Thank you to Mike

Karasick and Lee Nackman (and possibly others) from IBM who contributed issues concerning

name binding and member functions of partial specializations of class templates.

Summary of Issues

Because this is a rather long document this summary is provided to allow the reader to quickly

�nd issues in which he or she may be interested. Note that closed issues have been removed

from the body of the paper. Please refer to a previous version of the paper for additional

information on these issues.

Template Parameters

1.1 Can template parameters have default arguments? (closed in version 4)

1.2 Where can default arguments for template parameters be speci�ed? (closed in

version 4)

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 3

1.3 Can a type parameter be used in the type declaration of a nontype parameter?

(closed in version 4)

1.4 Can a nontype parameter as used above have a default argument? (closed in version

4)

1.5 Should it be possible to redeclare a template parameter name to mean something

else inside a template de�nition? (closed in version 4)

1.6 Can the name of a nontype parameter be omitted? (closed in version 4)

1.7 Can the name of a type parameter be omitted? (closed in version 4)

1.8 Can a typedef appear in a template declaration? (closed in version 4)

1.9 Can a nontype parameter have a reference type? (closed in version 4)

1.10 Are quali�ers allowed on nontype parameters? (closed in version 4)

1.11 May a template parameter have the same name as the class template with which it

is associated? (closed in version 4)

Class Template References

2.1 Can a nontype parameter that is not a reference be used as an lvalue or have its

address taken? (closed in version 4)

2.2 Can the class template name be used as a synonym for the current instantiation

inside a class template? (closed in version 4)

2.3 Can a class template have a template parameter as a base class? (closed in version

4)

2.4 Can a local type be used as a type argument of a class template? (closed in version

4)

2.5 Can a character string be a nontype argument? (closed in version 4)

2.6 Can any conversions be done on nontype actual arguments of class templates?

(closed in version 6)

2.7 What causes a template class to be instantiated? (closed in version 4)

2.8 How can a class template name be used within the de�nition of the template?

(closed in version 6)

2.9 The previous rule makes possible runaway recursive instantiations. How should an

implementation prevent this? (closed in version 5)

2.10 At what point are names injected? (closed in version 6)

2.11 Does an array parameter decay to a pointer type? (closed in version 6)

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 4

2.12 What can be used as an actual argument for a parameter that is a reference? (closed

in version 4)

2.13 Can template parameters be used in elaborated type speci�ers? (closed in version

4)

2.14 Can a class template or function template be declared as a friend of a class? (closed

in version 6)

2.15 Can template arguments be supplied in explicit destructor calls? (closed in version

4)

2.16 What happens if the same name is used for a template parameter of an out-of-class

de�nition of a member of a class template and a member of the class? (closed in

version 6)

2.17 What happens if the name of a template parameter of a class template is also the

name of a member of one of its base classes? (closed in version 6)

2.18 When must a type used within a template be completed? (closed in version 6)

2.19 Must a specialization declaration precede the use of a class template in a context

that requires only an incomplete type? (closed in version 6)

2.20 Proposal to defer error checking for operator ->. (closed in version 6)

2.21 When are names considered known in a template dependent base class? (closed in

version 6)

2.22 Proposed revision to rules for explicit instantiation of all class members. (closed in

version 8)

2.23 How does name injection interact with the semantics of friend declarations? (with-

drawn - last in version 10)

2.24 Class template partial specialization clari�cation.

2.25 May a nested class within a class template be de�ned outside of the template?

2.26 Question: May a class nested within a template be declared as a template friend?

2.27 May a friend function be de�ned in a template friend declaration?

Function Templates

3.1 Can function templates have default function parameters? (closed in version 4)

3.2 Can the parameters with default arguments involve template parameters in their

types? (closed in version 5)

3.3 Can a local type be used as a type argument of a template function? (closed in

version 4)

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 5

3.4 Can any conversions be done when matching arguments to function templates?

(closed in version 5)

3.5 The WP requires that every template parameter be used in an argument type of

a function template. What constitutes a \use" of a template parameter in an

argument type? (closed in version 4)

3.6 Can unnamed types be used as template arguments? (closed in version 4)

3.7 Can template parameters be used in quali�ed names in function template declara-

tions? (closed in version 12)

3.8 Can a noninline function template be instantiated when referenced? (closed in

version 4)

3.9 A proposal to allow conversions in function template calls. (closed in version 6)

3.10 What happens when the explicit speci�cation of function template arguments results

in an invalid type? (closed in version 6)

3.11 How do default arguments work when using new explicit specialization declarations?

(closed in version 6)

3.12 How do old style specialization declarations interact with new style ones? (closed

in version 6)

3.13 Revisiting default arguments. (closed in version 12)

3.14 What are the rules regarding use of the inline keyword in function template decla-

rations? (closed in version 10)

3.15 How may elaborated type speci�ers be used in function template declarations?

(closed in version 8)

3.16 Clari�cation of template parameter deduction rules. (closed in version 8)

3.17 How may an overloaded function name be used as a function template argument in

a context that requires parameter deduction? (closed in version 8)

3.18 Must a function template declaration be visible when an instance of the template is

called? (closed in version 8) item[3.19] What are the rules regarding the deduction

of template template parameters? (closed in version 8)

3.20 How are type/expression ambiguities resolved in explicitly quali�ed function tem-

plate calls? (closed in version 10)

3.21 May template functions with the same signature coexist with one another? May a

template function with a given signature coexist with a nontemplate function with

the same signature. (closed in version 12)

3.22 Proposed rules for selecting between overloaded function templates (closed in ver-

sion 12)

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 6

3.23 Binding of function and array types to template dependent reference parameters.

3.24 Clari�cation regarding nontype parameters deduced from array bounds.

3.25 Can a type parameter be deduced from the type of a nontype parameter?

3.26 What is the type of a constant deduced from an array bound?

3.27 Clari�cation of rules regarding expressions used as nontype arguments.

Member Function Templates

4.1 Are inline member functions that are not used by a given class template instance

instantiated? (closed in version 4)

4.2 Can a noninline member function or a static data member be instantiated when

referenced? (closed in version 4)

4.3 Must the template parameter names in a member function de�nition match the

names used in the class de�nition? (closed in version 4)

4.4 What are the rules regarding use of the inline keyword in member function decla-

rations? (closed in version 6)

4.5 How are default arguments for parameters of member functions of class templates

handled? (closed in version 4)

4.6 Can a class template member function be redeclared outside of the class? (closed

in version 6)

4.7 Can a member function of a class specialization be instantiated from a member

function of the class template? (closed in version 8)

4.8 Can a template member function be declared in a specialization declaration? (closed

in version 8)

4.9 Can a member function de�ned in a class template de�nition be specialized? (closed

in version 8)

4.10 How are members of class templates declared and de�ned?

4.11 How are members functions of a partial specialization of a class template de�ned?

Class Template Speci�c Declarations and De�nitions

5.1 Can you create a speci�c de�nition of a class template for which only a declaration

has been seen? (closed in version 4)

5.2 Can you declare an incompletely de�ned object type that is a speci�c de�nition of

a class template? (closed in version 4)

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 7

5.3 Can the class template name be used as a synonym for the current speci�c de�nition

inside the speci�c de�nition? (closed in version 4)

5.4 Can a speci�c de�nition of a class template be a local class? (closed in version 4)

Other Issues

6.1 Should classes used as template arguments have external linkage? (closed in version

4)

6.2 When must errors in template de�nitions be issued and when must they not be

issued? (closed in version 4)

6.3 What kinds of types may be used in a function template declaration while still being

able to deduce the template argument types? (closed in version 4)

6.4 Can a static data member of a class template be declared with an incomplete array

type? (closed in version 4)

6.5 How should template arguments that contain \>" be parsed? (closed in version 4)

6.6 Can template versions of operator new and operator delete be declared? (closed

in version 4)

6.7 How can a name that is unde�ned at the point of its use in a template declaration

be determined to be a type or nontype? (closed in version 4)

6.8 May template declarations be given a linkage speci�cation other than C++. (closed

in version 6)

6.9 Should there be a translation limit that speci�es a minimum depth of recursive

instantiation that must be supported? (closed in version 6)

6.10 Can a single template declaration declare more than one thing? (closed in version

6)

6.11 Can a storage class be speci�ed in a template parameter declaration? (closed in

version 6)

6.12 Can an incomplete type be used as a template argument? (closed in version 6)

6.13 Can a template nontype parameter have a void type? (closed in version 6)

6.14 Can a nontype parameter be a oating point type? (closed in version 6)

6.15 What kind of expressions may be used as nontype template arguments?

6.16 Can a template parameter be used in an explicit destructor call? (closed in version

6)

6.17 Can pointer to member types be used as nontype parameters? (closed in version 8)

6.18 Issues regarding declarations of specializations. (closed in version 12)

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 8

6.19 Clari�cation of explicit designation of a name as a type. (closed in version 8)

6.20 Template compilation model proposal. (withdrawn - last in version 7)

6.21 How is a dependent name known to be a template? (closed in version 12)

6.22 Interaction of templates and namespaces. (closed in version 10)

6.23 Floating point template parameters revisited. (closed in version 10)

6.24 May function types be used as template parameters? (closed in version 12)

6.25 WP clari�cation: overloaded functions as template arguments (closed in version 10)

6.26 WP clari�cation: access checking an template arguments (closed in version 10)

6.27 Name binding probems (closed in version 12)

6.28 Can a user-specialization be provided for an operator -> that cannot be instanti-

ated?

6.29 How are names from template dependent base classes to be used?

Erwin Unruh's Issues

7.1 Type deduction for conversion operators (closed in version 12)

7.2 How does type deduction interact with overloading

7.3 How does type deduction interact with conversions

7.4 What is the point of instantiation really?

7.5 Short addition to 3.17

7.6 Type deduction with several results

Nontype Parameters for Function Templates

A proposal for nontype parameters for function templates as required by the Bitset class.

(closed in version 4)

Class Template References

2.24 Class template partial specialization clari�cation.

Status: Open

Answer: As is the case with complete specializations, a class template partial specialization

must be declared before its �rst use in every translation unit in which it is referenced.

Version added: 12

Version updated: 12

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 9

2.25 Question: May a nested class within a class template be de�ned outside of the template?

Status: Open

template <class T> struct A {

class B;

};

template <class T> struct A<T>::B {

// Class definition

};

Answer: Classes that are members of templates may be de�ned outside of the class, but

to maintain semantic equivalence with members de�ned inside the class a number of re-

strictions apply:

� If the nested class is de�ned at all within a translation unit, it must be de�ned before

any instantiations of the enclosing class are performed.

� If the nested class is not de�ned in a translation unit, the only references that may

be made to the nested class are those that are permitted on an incomplete type.

It would be possible to have nested classes obey the same rules as normal class templates

and only instantiate them as needed. This would, however, mean that the validity of a

program could vary depending on whether a class declared within a template is de�ned,

and if so, where it is de�ned.

Version added: 12

Version updated: 12

2.26 Question: May a class nested within a template be declared as a template friend?

Status: Open

template <class T> struct A {

struct B {};

};

class B {

template <class T> struct A<T>::B;

};

Answer: Yes.

Version added: 12

Version updated: 12

2.27 Question: May a friend function be de�ned in a template friend declaration?

Status: Open

class A {

template <class T> friend void f(A, T){}

};

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 10

Answer: Yes.

This was prohibited by the original template friend proposal from an earlier version of this

paper. This was originally done to simplify both the de�nition and implementation of the

feature. However, because the declaration is permitted to make use of names from the

enclosing class, there actually is no such simpli�cation and the rule is an unnecessary and

pointless restriction.

Version added: 12

Version updated: 12

Function Templates

3.7 Question: Can template parameters be used in quali�ed names in function template dec-

larations?

Status: Rejected by the Extensions WG in Austin.

template <class T> struct A {

struct B {

friend B& operator +(const B&, const B&);

};

};

template <class T> A<T>::B& operator +

(const A<T>::B& b1, const A<T>::B& b2){}

template <class T> void f(A<T>, A<T>::B){}

int main()

{

A<int> a;

A<int>::B b1;

A<int>::B b2;

A<int>::B b3;

f(a, b1);

b1 = b2 + b3;

}

There are two issues involved here

1. how does one specify that a name like A<T>::B is a type?

2. can T in A<T>::B be deduced?

The �rst issue is discussed, and a proposal made in 94-0191/N0578 \Major Template Issues,

Revision 0", and will not be discussed here.

The remainder of this discussion focuses on the type deduction issue. This deduction has

deadlocked in the past, partially on the lack of substantial justi�cation for this feature.

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 11

I have discussed this issue with Alex Stepanov who informed me that not only it it impor-

tant for STL, but the current implementation of STL has had to use member functions

where friend operator functions are really needed, because the compiler being used to

develop STL does not support this feature.

The question really boils down to \can nested types be used in function template declara-

tions". The arguments for supporting this kind of usage are the same as the arguments for

providing nested types at all. In my opinion, it should be possible to take just about any

class and convert it into a template. Banning nested types in function template declara-

tions would make it impossible to convert many kinds of classes into template equivalents.

There are at least two compilers (IBM and EDG) that currently support this feature.

Note that now that nontype template parameters may be used in function templates, the

same principle applies to nontype parameters. For example,

template <int I> struct A {

struct B {};

};

template <int I> void f(A<I>, A<I>::B){}

One concern that has been expressed regarding this feature is that in a construct such as

T::A, T is the class in which A is declared and not strictly a type attribute of A. While this

is true, it does not change the fact that what is being deduced is in fact a type (or nontype

in the case of nontype parameters). The question is whether the class of which a type is a

member can be used as information from which type (or nontype) information is deduced.

In other words, we are not adding a new kind of deduction, we are simply expanding the

kind of information that can be used by the deduction process.

Answer: Yes, this kind of deduction is allowed.

Note that the type of the actual argument must be a nested type (class/struct, union, or

enum). A typedef is simply a synonym for another type and cannot be used.

This proposed resolution suggests that a compiler should be able to determine that names

used in this context are types. An alternative would be to require explicit designation as

a type. The current facility for such designation (using typedef) is not well suited for this

kind of construct, so some change to the current facility would probably be required.

template <class T> struct A {

typedef T::X;

T::X x;

T::X f();

friend void g(T::X);

friend void g(T::X2); // Error

template <class U> void h(U::Y); // OK

};

template <class T> T::X A<T>::f(){} // OK

template <class T> void g(T::X); // OK

Version added: 1

Version updated: 7

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 12

3.13 Revisiting default arguments.

Status: Approved in Austin.

I would like to recommend that we revisit the proposed rules for default arguments to

restrict the ways in which default arguments for function templates may be modi�ed.

This is motivated by examples such as the following. If it is possible to add default

arguments to a function template with template parameters that depend on other template

parameters, then the new default argument would need to be type-checked for each of the

instantiations that have already been generated { a process which has the potential of

yielding new errors for the already generated instantiations.

While this is possible to do, I think it would be more confusing to users than a simpler

restriction on how default arguments may be modi�ed once a tempalte is declared. I would

recommend the same for member functions.

template <class T>

void f(T, T, T*); // Default arg information locked here

void g1()

{

int i;

f(i,i,&i);

}

template <class T>

void f(T, T, T* = new T); // Error - default arguments

// modified after the first use

void g2()

{

int i;

f(i,i); // Without this rule, is this legal?

char c;

f(c,c); // How about this?

}

In the following example, a default argument is provided that is only valid for certain

instantiations. How would the behavior of this program change if the default argument

declaration (currently declared at point #2) were moved to either #1 or #3?

If the declaration were at point #1, an error would be issued at the call labeled #4 because

the default argument is incompatible with the parameter type.

If the declaration were at point #2, should an error be issued at point #2 because the

default argument is invalid for an existing instantiation? Or, should the error only be

issued if the default argument value is actually used in an invalid call?

Unless we adopt a rule that prohibits changing the default arguments once name binding

has occurred (at the latest), we introduce a situation in which the legality of one call

depends on whether or not a previous call of the same function has been seen. I think this

is undesirable.

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 13

template <class T> void f(T, T);

struct A {};

// template <class T> void f(T, T = 1); // #1

void g1()

{

int i;

A a;

f(i,i);

f(a,a); // #4

}

template <class T> void f(T, T = 1); // #2

void g2()

{

int i;

A a;

f(i);

f(a,a); // Is this an error?

f(a); // Error: default argument has wrong type

}

// template <class T> void f(T, T = 1); // #3

Answer: Default arguments may only be speci�ed in the initial declaration of a template

function. This means that default arguments for member functions of class templates must

be speci�ed in the class de�nition and not on de�nition of members that appear outside

of the class de�nition.

template <class T> void f(T, T);

template <class T>

void f(T, T = 1){} // Error - default not on initial declaration

template <class T> struct A {

void f(int);

void g(int = 0);

};

template <class T> void A<T>::f(int = 0){} // Error

template <class T> void A<T>::g(int){} // OK

Version added: 5

Version updated: 10

3.21 Question: May template functions with the same signature coexist with one another? May

a template function with a given signature coexist with a nontemplate function with the

same signature.

Status: Closed

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 14

file1.c:

template <class T> void f(T); // #1

void f1()

{

int *ip;

f(ip); // attempted call of f(int*) generated from #1

}

file2.c:

template <class T> void f(T*); // #2

void f2()

{

int *ip;

f(ip); // attempted call of f(int*) generated from #2

}

file3.c:

void f(int*); // #3

void f3()

{

int *ip;

f(ip); // attempted call of nontemplate f(int*)

}

Another way to put this is \What is the signature of a template function?" The two most

obvious alternatives are

1. A template function signature includes the function name and function parameter

information, but only includes information about template parameters that cannot

be deduced from the function parameter information. This model would not allow

templates #1 and #2 to coexist. Depending on how it is de�ned, it may or may not

allow template functions and nontemplate functions (#3) to coexist.

Although it is not really clear in the WP, this is probably what most people would

consider the status quo.

2. A template function signature includes the function name, function parameter infor-

mation, and information about all of the the template parameters. This model would

allow all of the functions in the example above to coexist.

One of the characteristics of the newly adopted compilation model (and on of its drawbacks,

in my opinion) is that a processor must be able link a reference to a template function with

the body of the associated function template de�nition at the point at which all of the

translation units are brought together to form a complete program. This requires that we

either select a model in which complete information about both the template and function

parameters is part of the signature, or we disallow the coexistence of function template

de�nitions in cases in which there is any overlap between the sets of functions that could

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 15

be generated by the two functions. The latter solution is most certainly too extreme as

it would outlaw examples such as the following and would, by de�nition, make partial

specialization of function templates impossible.

template <class T> void f(T);

template <class T> void f(T*);

A third alternative would be to require that all template de�nitions be supplied at compile

time. This would allow the �rst model to be used since it would no longer be necessary to

link the reference and de�nition at \link time".

Revisiting the two models described at the beginning of this issue, we can select model #1

and change the compilation model or select model #2.

If model #2 is used, it must be possible to link specialization declarations with the tem-

plates that they specialize. In the following example, the �rst specialization declaration

is ambiguous because it could be linked to either of the templates. The second declar-

tion is legal because by specifying both the template and function parameters only one of

the templates matches the declaration. Likewise, in the third declaration only one of the

templates matches the function parameter list, so the call is legal.

template <class T> void f(T);

template <class T> void f(T*);

void f<>(int*); // #1 - Ambiguous

void f<int>(int*); // #2 - OK

void f<>(int); // #3 - OK

Answer: Resolved by motion #33 in Austin.

Version added: 11

Version updated: 11

3.22 Proposed rules for selecting between overloaded function templates

Status: Approved in Austin { see N0668/95-0068 for the o�cial description.

This is a proposal to permit selection between a set of overloaded function templates in

cases in which the calls are currently considered ambiguous because the functions are

identical as far as overload resolution is concerned.

template <class T> struct A {};

template <class T> void f(T, T){} // #1

template <class T> void f(A<T>, A<T>){} // #2

int main()

{

int i1, i2;

A<int> a1, a2;

f(i1, i2); // calls f(T,T)

f(a1, a2); // currently ambiguous --

// should call f(A<T>, A<T>)

}

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 16

In the above example it is desirable for the call f(a1, a2) to call the function template

that accepts an A<T> parameter instead of the one that simply uses a T parameter. The

call is currently ambiguous, because the two potentially generated functions have the same

signature. What is needed is some additional information in the overload resolution process

that can serve as a tie breaker.

In cases where the tie breaker is needed, the overload resolution process will result in

two or more function templates which, if instantiated, would produce identical function

signatures, but would do so through the use of di�erent templates.

To decide between the members of this set, the function parameter lists are compared. If

one of the parameter lists could be transformed into the other parameter list by providing

the appropriate values to be substituted for its template parameters, then the more speci�c

of the two functions should be used. If the two function parameter lists cannot be made

equivalent by this kind of substitution, then the functions are unordered relative to one

another and the function call is ambiguous.

Put another way, you do template argument deduction using the more speci�c function as

the \actual argument" types. For example, you try use f(T,T) as the function template,

and f(A<T>, A<T>) as the actual argument list from which the type A<T> is deduced as

the type of T. If such deduction is possible, then one call is a special case of the other.

As with overload resolution in general, top level references are removed before this com-

parison is done, as are any type quali�ers immediately under top level references. In other

words, T& and const T& are both transformed to T before this comparison is done.

Examples:

1. When called with f(const T), T can be replaced with const T | use #2

f(T) // 1

f(const T) // 2

2. When called with f(const T*), T can be replaced with const T | use #2

f(T*) // 1

f(const T*) // 2

3. When called with f(T), ambiguous (top level references are ignored)

f(T) // 1

f(T&) // 2

4. When called with f(A<int>), T can be replaced with A<T> | use #2 (top level

references are ignored)

f(T&) // 1

f(A<T>) // 2

5. When called with f(const A<int>), T can be replaced with A<T> | use #2 (top

level references and associated quali�ers are ignored)

f(const T&) // 1

f(A<T>) // 2

6. When called with f(const A<int>), pick #1, #2 is not callable

f(const T&) // 1

f(A<T>&) // 2

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 17

7. When called with f(A***), T can be replaced with T*, use #2.

f(T*) // 1

f(T**) // 2

8. When called with f(A<B<int>>), use #3 because T in #1 can be replaced with

A<B<T>> and T in #2 can be replaced with B<T>.

f(T) // 1

f(A<T>) // 2

f(A< B<T> >) // 3

9. When called with void(*)(char **, int*), ambiguous

f(void (*)(T, int)) // 1

f(void (*)(int, T)) // 2

Version added: 11

Version updated: 11

3.23 Binding of function and array types to template dependent reference parameters.

Status: Open

WP 14.10.2 [temp.deduct] says that array and function types do not decay when binding

to a parameter that is a reference. The problem with this is it permits array types to be

used in places where the template writer had not intended them to be used. For example,

the HP STL distribution includes a max template that is de�ned as:

template <class T>

inline const T& max(const T& a, const T& b) {

return a < b ? b : a;

}

This works well for most types, but fails for array types such as string literals.

int main()

{

char* x;

x = f("hello", "there");

}

What is intended is that the resulting function parameter type for const T& is const

char*&. What happens with the current WP wording is that the resulting function pa-

rameter is const char (&)[6]. This causes a problem: the length of the two strings

must be identical for type deduction to succeed, and the return type will end up being a

reference to array of the same size.

Answer: The proposed solution is to revise the deduction rules to say that an array or

function type can only bind to a parameter that is declared with a reference to array or

function type, as in the example that appears below.

More speci�cally, assuming P is the parameter type and A is the argument type: If P is a

reference to an array type and A is an array type, or P is a reference to function type and

A is a function type, and if the values of the all of the template parameters referenced by P

can be deduced from A, then the original type of A is used for type deduction. Otherwise,

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 18

� if A is an array type, the result of the array to pointer decay is used in place of A for

type deduction; otherwise,

� if A is a function type, the result of the function to pointer decay is used in place of

A for type deduction.

template <class T, int I1, int I2>

T* f(T (&t1)[I1], T (&t2)[I2]);

int main()

{

char* x;

x = f("hello", "there");

}

This still permits binding of array types, but only in cases where that is explicitly indicated

by the template writer.

Note that this illustrates another clari�cation that needs to be made. Major array bounds

are part of the parameter type when the parameter is a reference. Consequently, nontype

template parameters may be deduced from a major array bound in such cases.

Version added: 12

Version updated: 12

3.24 Clari�cation regarding nontype parameters deduced from array bounds.

Status: Open

A nontype parameter may be deduced from an array bound that is part of the type of

the argument. Typically, the major array component decays into a pointer, and cannot

participate in deduction. When an argument is bound directly to a reference, the decay

does not occur and the template parameter may be deduced from the major bound.

template <int I> void f(int (&t1)[I]); // I can be deduced

template <int I> void g(int t1[I]); // I cannot be deduced

template <int I> void h(int t1[2][I]); // I can be deduced

int main()

{

int n[5];

int m[2][6];

f(n);

g<5>(n); // I can be explicitly specified

h(m);

}

Version added: 12

Version updated: 12

3.25 Question: Can a type parameter be deduced from the type of a nontype parameter?

Status: Open

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 19

Answer: This should go without saying, but just in case... T cannot be deduced in the

following example, but f could still be called by explicitly specifying the value of T.

template <int X> struct A {};

template <class T, T X> void f(A<X>);

Version added: 12

Version updated: 12

3.26 Question: What is the type of a constant deduced from an array bound?

Status: Open

The purpose of this example is to illustrate that the type of a constant as used in a function

argument type must match its declared type in order for the constant to be deduced. A

constant value from an array bound is not considered to have any particular type; it will

match any integral type.

template <int I> struct A {};

template <short S> struct B {};

template <int I> void f(int i[2][I], A<I>); // I can be deduced

template <short S> void g(int i[2][S], B<S>);// S can be deduced

template <short S> void h(A<S>, B<S>); // S cannot be deduced

int main()

{

int n[2][5];

A<5> a5;

B<5> b5;

f(n, a5);

g(n, b5);

h(a5, b5); // Error - S in A<S> has wrong type

h<5>(a5, b5); // OK

}

Version added: 12

Version updated: 12

3.27 Clari�cation of rules regarding expressions used as nontype arguments.

Status: Open

14.10.2 paragraph 9 says \Nontype parameters shall not be used in expressions in the

function declaration". This rule predates explicit speci�cation of function template pa-

rameters. The rule should be revised to say that nontype parameters cannot be deduced

when used in expressions in the function declaration.

As with other cases in template argument deduction, the arguments are processed inde-

pendently of one another, so argument deduction fails on call #1 below. Note that such

a failure does not by itself result in an error. Only if there is no other function that can

satisfy the function parameters is there an error.

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 20

template <int I> struct A {};

template <int I> void f(A<I>, A<I+1>);

int main()

{

A<1> a1;

A<2> a2;

f(a1, a2); // #1 Error - no function matches the call

f<1>(a1, a2); // #2 OK

}

Version added: 12

Version updated: 12

Member Function Templates

4.10 Question: How are members of class templates declared and de�ned?

Status: Open

Answer:

1. A specialization of a member function of a template class (but not a member template)

is declared or de�ned using the normal function member function syntax (i.e., without

use of the <> used in template function specializations). Note that some additional

specialization syntax such as template <> or specialise would be useful in contexts

like this to make specializations easier to spot. Default arguments may be added in

these declarations, but previously declared default arguments may not be modi�ed

or redeclared.

2. A member template is de�ned outside of the class de�nition in much the same way as

a nontemplate member, but the template parameter list of the class is followed by a

second template declaration instead of being followed by a normal function declarator.

Default arguments may not be supplied in these declarations.

3. A member template of a class template may be specialized for a given instance of the

class as indicated in the example below. Default arguments may not be supplied in

these declarations.

4. A speci�c instance of a member template may be speci�ed using the normal template

function specialization syntax. The <> is required. Default arguments may not be

supplied in these declarations.

template <class T> struct A {

void f(T);

template <class X> void g(T,X);

};

// Specialization - #1

void A<int>::f(int);

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 21

// Out of class definition - #2

template <class T> template <class X> void A<T>::g(T,X) {}

// Specialization of member template - #3

template <class X> void A<int>::g(int,X);

// Specialization of an instance of a member template

void A<int>::g<>(int, char);

Default argument rationale: It has been tentatively decided that default arguments may

only appear on the initial declaration of a template. This rules out the use of default

arguments on the de�nition or specialization of a member template (#2 and #3 above).

It has further been decided that default arguments are not permitted on specialization of

function templates. This rules out the use of default arguments on the declaration of a

specialization of an instance of a member template (#4 above).

A specialization of a member function of a template class is di�erent from either of these

cases. It doesn't declare a template, nor is a member function of a class template really

a function template (i.e., member functions of class templates do not participate in the

function template matching process and in template argument deduction).

Version added: 11

Version updated: 11

4.11 Question: How are members functions of a partial specialization of a class template de-

�ned?

Status: Open

template <class T, int I> struct A {

void f();

void h();

};

template <class T, int I> void A<T,I>::f(){}

template <class T, int I> void A<T,I>::h(){}

template <class T> struct A<T, 1> {

void g();

void h();

};

template <class T> void A<T>::g(){}

A<int, 0> a0; // Uses primary template

A<int, 1> a1; // Uses partial specialization

void A<int, 0>::f(){} // Specializes member of primary template

void A<int, 1>::g(){} // Specializes member of partial specialization

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 22

int main()

{

a0.f(); // OK

a1.f(); // Error - A<int,1> has no member f

a1.h(); // Error at link - no definition of A<int,1>::h

// provided. The one from the primary template

// is not used.

}

Answer: The de�nition of a member function of a class template partial specialization

uses a template parameter list that matches the template parameter list of the partial

specialization with which it is associated (but, as always, the names of the parameters

are not signi�cant). The template argument used in the declarator must also match the

template argument list in the de�nition of the partial specialization of the class template.

A complete specialization is automatically associated with the appropriate specialization

by the implementation just as any other reference to an instance of the class template.

Version added: 12

Version updated: 12

Other Issues

6.18 Issues regarding declarations of specializations.

Status: Rejected by the Extensions WG in Austin.

The language was recently revised to require that a specialization be declared before it is

used. For example,

template <class T> void f(T){}

void f<>(int); // Declares that a specialization of

// f(int) will be provided

While this usage is clear for normal template functions, it is problematic for members of

template classes. In the nonmember case shown above, the template argument list makes

it clear that the function is a specialization. In the member function, only the argument

list of the class is present, making the purpose of the declaration less clear. For static data

members the problem is even worse because the syntax for the specialization is already

used to mean a de�nition for which no speci�c value is provided.

template <class T> struct A {

void f();

static int i;

};

void A<int>::f(); // Is this a specialization declaration?

int A<int>::i; // This is a definition, not a declaration

I propose that a keyword be added to designate a declaration as a specialization and that

the current syntax for specializations be eliminated. The following are some of the possible

keywords:

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 23

template <class T> struct A {

static int i;

};

specialize int A<int>::i;

specialise int A<int>::i;

specific int A<int>::i;

specialism int A<int>::i; // Yes, specialism is a real word

Of these, I personally prefer specialize because it matches the wording used in the

working paper. If specialize is not acceptable because it is spelled di�erently in some

countries, then specific would probably be my second choice.

Two alternatives have been proposed that do not involve the addition of a keyword:

template <> int A<int>::i;

extern int A<int>::i;

Version added: 7

Version updated: 10

6.21 Question: How is a dependent name known to be a template?

Status: Resolved by motion 36 in Austin.

This issue was raised by Erwin Unruh in c++std-ext-2239.

In the following example from Erwin's posting, the f on the indicated line refers to an

integer data member in A, and to a function template in A<C>.

template <class T> class A : public T {

void foo(){

T t;

f < 1 > (t,t); // critical line

}

};

class B {

int f;

};

int operator> (B, bool);

A ab;

class C {};

template <int I, class T> void f(T, C);

A<C> ac;

In another example from Erwin's posting, a variation of the problem using member tem-

plates is illustrated.

struct A { int x; };

struct B { template<int> void x(int); };

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 24

template <class T> struct C : public T {

void foo(){

x < 1 > (2); // critical line #1

}

};

C<A> ca; // #1 is double comparison

C cb; // #1 is template function

Answer: We currently have a means of designating that a given name is a type for use when

a type will be de�ned in a template dependent base class. I propose a similar mechanism

for templates. A name will be assumed not to be a template unless explicitly designated

as one.

template <class T> class A : public T {

template f; // May be placed here

void foo(){

T t;

template f; // or may be placed here

f < 1 > (t,t);

}

};

The second example would be modi�ed as follows:

struct A { int x; };

struct B { template<int> void x(int); };

template <class T> struct C : public T {

template T::X; // May be placed here

void foo(){

template T::X; // or may be placed here

x < 1 > (2); // critical line #1

}

};

C<A> ca; // #1 is double comparison (now made invalid)

C cb; // #1 is template function

The identi�er following the template keyword must either have no quali�er or have a

quali�er that begins with either a template parameter or a template class name.

If this proposal is adopted, I believe we should modify one of the existing uses of the

keyword template. It is currently used for template declarations and for explicit instanti-

ation requests. I believe that using it for both explicit instantiation requests and for explicit

template designation would be confusing. I propose that a new keyword instantiate be

added for use in explicit instantiation requests and that the keyword template no longer

be supported in that context.

Version added: 7

Version updated: 7

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 25

6.24 Question: May function types be used as template parameters?

Status: Approved in Austin.

The use of function types as template parameters is problematic. It can result in something

that looks like an object changing into a function declaration. Note that it is not possible

to de�ne a member such that it could be instantiated as either an object or a function.

template <class T> struct A {

static T t;

};

A<int()> a1; // Oops! A<int()>::t is now a function!

Likewise, a functiontype inherited from a template dependent base class can create the

same problem.

template <class X> struct A : public X {

typename X::T;

static X::T t;

};

struct B {

typedef int(T)();

};

A a1; // Oops! A::t is now a function!

Answer: Declaring a function or member function with a type that depends on a tempalte

parameter may only be done using the syntactic form of a function declarator.

Version added: 9

Version updated: 10

6.27 Name binding problems.

Status: Closed.

As the name binding rules are currently written, object and type names are always bound

at template de�nition time. However, this assumes that function names are not visible as

the names of other entities at the time the initial name binding is done.

Example 1 illustrates how this problem can occur if a dependent function name happens

to have the same name as an already declared type. Example 2 illustrates a more serious

problem where a name from the de�ning namespace is used when a dependent name from

the reference namespace is intended to be used.

Example 1:

struct X {};

template <class T> void f(T t)

{

// X(t) is intended to be a dependent function

// call but instead

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 26

// it is interpreted as an object declaration.

X(t);

}

void X(int){}

int main()

{

f(1);

}

Example 2:

int X;

template <class T> void f(T t)

{

// X(t) is intended to be a dependent function

// call but instead

// it is interpreted as a syntax error.

X(t);

}

namespace Y {

void X(int){}

void z()

{

f(1);

}

};

Answer: The Extensions WG acknowledged that the description above is a consequence

of the name binding rules, but does perceive this as a problem that requires any action to

be taken.

Version added: 11

Version updated: 11

6.28 Question: Can a user-specialization be provided for an operator -> that cannot be in-

stantiated?

Status: Open

This is a clari�cation. operator-> can be declared in a class template provided it is not

actually used or instantiated for instances for which the return type is invalid.

This issue clari�es that user specializations are also not permitted.

template <class T> struct A {

T* operator->();

};

int* A<int>::operator->(){} // Error

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 27

Answer: No.

Version added: 12

Version updated: 12

6.29 Question: How are names from template dependent base classes to be used?

Status: Open

The description of dependent and independent names is unclear with regard to names of

members of template dependent base classes.

struct A {

virtual void f();

struct C {};

};

template <class T> struct B : T {

void g();

};

template <class T> void B<T>::g()

{

C c; // Error -- C is not dependent and is undefined

// when the template definition is scanned.

B<T>::C c2; // OK

T::C c3; // OK

f(); // Dependent call (i.e. OK) equivalent to

// this->f()

B<T>::f(); // Definitely dependent, but disables

// virtual mechanism

this->f(); // Definitely dependent, bug ugly.

}

Answer:

1. There are two kinds of base classes: dependent and nondependent. A dependent base

class is one that depends on a template parameter (e.g., T or A<T>). A nondependent

base class is one that does not depend on a template parameter (e.g., X (where X is

nontemplate class name) or A<int>).

2. A name from a nondependent base class is a name from the templates enclosing scope.

3. A name from a dependent base class is a dependent name. This means that members

of the dependent base class, that are not function names, may only be accessed using

quali�ed names that involve a template parameter.

4. Calls to nonstatic member functions of dependent base classes are considered to de-

pend on template parameters because they include the implicit this argument.

Version added: 12

Version updated: 12

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 28

Erwin Unruh's Issues

Many thanks to Erwin Unruh who provided the following issues in �nished Latex form! These

issues were added to this document in version 10.

7.1 Type deduction for conversion operators (ext-2434, Erwin Unruh)

Status: Approved in Austin.

Since we added member templates, implicit type conversions can involve template func-

tions. They can be constructors or type conversions.

Constructors are involved if the target type is a class. Then the source of the conversion is

the argument of the constructor call and the normal rules of type deduction can be used

(including some implicit conversions).

For conversion operators the case is di�erent: Here the source is a class and the conversion

operators of the class (and its bases) are considerd. Non-template conversions build a �nite

list and we can check them all. Template-conversions however must be sorted out before

we can check them.

How do we determine the template arguments for the conversion operator? All we have as

information is the target type of the conversion.

If there is an exact (really exact) match that set of arguments should build one viable

conversion. How about any other (standard) conversions which could be done after the

conversion operator? I consider the conversion allowed for normal type deduction:

� function : : : to pointer to function : : : : This should not happen, since a return type

cannot be a function.

� array of T to pointer of T : This should not happen, since a return type cannot be

an array.

� pointer to more quali�ed pointer : This may follow the same rules as for normal

functions. Unless the added (or removed) quali�cations do not involve the deduced

type, those conversion may be done.

� pointer to derived to pointer to base, restricted form: For normal functions this

conversion is allowed if it leads to an B<something>. This is safe because there is a

�nite set of bases for each class and we start at the derived end. A similar conversion

in this place would be a conversion from a D<something> to a B. This is more di�cult,

since we start at the B and are trying to �nd a derived class. The derived class may

even be forced to be generated by that conversion. Because of this di�erences I would

disallow this sort of conversion.

� pointer to member: As this is inverted from the normal deduction, it would work.

However, it would be easier to teach and understand to stay with the simple rule

stated below.

See the following example:

template<class T> struct B { };

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 29

template<class T> struct D : B<T> {};

template<class T> int foo(int B<T>);

struct A {

template<class T> operator D<T>();

};

A a;

int i = foo(a);

At this call, no instance of D exists. To check whether we can call function foo we must

instantiate some classes to check, which of them will have base B<int>. The obvious

shortcut of chosing the same template arguments won't work.

It is always a bad idea to search for derived classes and this would be such a case. We

should not allow this!

A �rst try of a formulation would be:

In a conversion sequence containing a conversion template, for which the template param-

eters are deduced, the second standard conversion should only contain lvalue conversions,

rvalue conversions or quali�cation conversions.

This excludes promotions and conversions of the category 'standard'. (the categories are

from the new chapter 13, 94-0080)

Version added: 10

Version updated: 10

7.2 How does type deduction interact with overloading (ext-2320, Erwin Unruh)

Status: Open

After determining the candidate functions, for each template function type deduction takes

place. That type deduction can have di�erent results:

1. A single function is chosen.

In this case that function is the candidate replacing the template (It will also be a

viable function).

2. No match is found.

In this case there is no viable function instance.

3. Several functions (�nite number) may be chosen.

template<class T> class A{};

template<class T> int f(A<T>);

class B : public A<char>, public A<int> {};

B b;

int i = f(b);

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 30

In this example, both bases produce each a viable function from the template. The

result is that this call is ambigous.

There may be situations where two viable functions may be generated from a template,

one of them better than the other. (One possibility may be a specialization which

is derived from another specialisation of the same template). Another sensible case

would be where both functions are worse than a non-template function (add f(B) to

the example).

Resolution: All viable functions are considered for overloading.

Alternative 1: No function produced from this template is considered for overloading.

Alternative 2: The call is ill-formed.

4. The type deduction fails.

This can be the case when an in�nite number of viable functions is generated, a

template argument cannot be deduced or a conict between deductions arises (3.16).

In theses cases no reasonable function can be chosen from that template. (See also

7.6)

Resolution: The call is ill-formed.

Alternative 1: No function produced from this template is considered for overloading.

After this step of type deduction the normal overload resolution takes place. A template

function should not be in disadvantage at normal overloading (remove box 59 together

with the preference of non-template functions).

Comment from John Spicer: The original template overload resolution rules from the ARM

favored a nontemplate exact match over a template exact match (the only kind of match

allowed for templates in the ARM). When I proposed a revised set of overloading rules that

allow conversions in template function calls I retained the bias for nontemplate functions).

In other words, the bias has always been there and I don't think we should eliminate it

without a good reason to do so.

Version added: 10

Version updated: 10

7.3 How does type deduction interact with conversions (ext-2320, Erwin Unruh)

Status: Open

At the moment I see the following problems, where templates enter the discussion of

conversions.

1. Conversion from pointer to derived to pointer to base:

Both the derived and the base class could be template classes. At this point there

should be no big problem. Both classes must be complete to allow such a conversion.

The base class must be instantiated for the derived class to be de�ned. The derived

class must be instantiated whenever a pointer to it is subject to a conversion. (see

point 2.7)

2. Conversion of pointers to member

When solving the conversion of template arguments we left out member pointer. So

pointer to member conversions cannot interfere with template type deduction. So

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 31

source and target of such a conversion are �xed and it can be checked whether the

types are completely de�ned.

Proposal: When a pointer to a member of a template class may be the target of a

conversion, that class will be instantiated.

3. Constructor templates

This does have a very neat solution after the proposal for the section 13 is accepted

(94-0080). Here the overload reolution goes back to itself whenever a user de�ned

conversion comes into play. So the conversions itself are described using overload

resolution. In this context it is relatively easy to incorporate constructor templates

into that scheme.

4. Conversion templates

The usage of conversion templates is discussed in Point 7.1. There is however an

additional problem in the declaration matching. Consider the following example:

class A {

operator int();

};

class B : public A {

template <class T> operator T ();

};

class C : public B {

operator char ();

};

The question is whether the template hides the conversion in the base class and

whether a declaration in the derived class may hide (an instance of) the template.

The problem arises since the return type of the conversion operator is considered his

name.

Proposal: The template conversion does hide only the conversions which have an

exact match. A program is ill-formed, if a conversion template is potentially hiding

(or being hidden by) a conversion for which the type deduction can not be done.

To elaborate that rule: If there is a potential hiding between a template and a normal

conversion, try type deduction. If that results in a match, �ne. If the result is that

there is de�nitly no match (int visa T*), �ne. Otherwise, there is a problem!

Hiding between two template conversions should be discussed when the topic of partial

specialization is resolved. Is it allowed to have two template conversions in the same

class ?

Version added: 10

Version updated: 10

7.4 What is the point of instantiation really? (ext-2547, Erwin Unruh)

Status: Open

The present rules for the template name binding have a uncomfortable bit. Consider the

following example:

template<class T> void f(T t)

{

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 32

g(t);

}

void h()

{

extern void g(char);

f('a'); // error

}

// \#1

void g(int i)

{

f(i); // error ??

}

With the present rules both instantiations fail. The �rst f<char> should fail, since no g is

in (global) scope at the point of instantiation and the local one is ignored (with very good

reason).

The second however is not so clear cut. The WP says the point of instantiation is #1 and

there is no g in scope. On the other hand one could argue that the function g is known at

the call as it is not local.

This topic is currently (Nov. 1994) still under discussion and should be reviewed in a later

version. It also interacts with the problem of name injection.

Version added: 10

Version updated: 10

7.5 Short addition to 3.17 (ext-2455, Erwin Unruh)

Status: Tentatively approved in Austin. To be revisited to determine whether violation of

this rule should render the program ill-formed, or should simply cause template parameter

deduction to fail.

I want to add a new point to the example: It reads now

template <class T> void f(void (*)(T, int));

void g(int, int); // g1

void g(int, char); // g2

template <class T> void h(int, T);

int main()

{

f(g); // O.k. chooses g1

f(h); // ??

}

The call with g is no problem. The function g2 can be no match, since its second parameter

does not match the second parameter of the function pointer.

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 33

The call with h looks similar. Here is only one function, which can be the argument to

the call. This is the case since the template parameters involve di�erent parameters of the

function pointer. But to solve this problem we have to do type deduction on both f and h

in parallel. This looks very strange.

So I propose to add a new rule (or a variant of the one in spicer's list):

If a template argument is deduced from a function parameter of a pointer to function type,

the function argument must be an expression of a single type, or a name of an overloaded

function which does not contain template functions.

There is a short note in 3.17 which supports this view. It reads: ": : : (i.e., in which no

type deduction is required)."

Version added: 10

Version updated: 10

7.6 Type deduction with several results (ext-2436, Erwin Unruh)

Status: Open

After the adopton of 3.9 (conversion of template arguments) and 3.16 (deducing from

several arguments) we have a strange situation which is not handled by the rules.

See the following example:

template <class T> class B {};

class D : public B<int>, public B<float> {};

template <class T> int f (B<T>);

template <class T> int g (B<T> , B<T>);

D d;

int i = f(d);

int j = g(d,d);

Let's �rst look at f. The argument is a class which does not match. It has two base classes

which can be reached and which would match. So there are two instances of the template

which can be used for overload resolution. (In this case they are ambiguous, but another

parameter could have solved the ambiguity).

The function g gets more interesting. For both parameters we can deduce the argument

type for the template. Counting all tuples they colud be:

1. int and int

2. int and oat

3. oat and int

4. oat and oat

Only the �rst and last possibilities really lead to correct functions.

If we are going to allow several functions, we have to describe a complete algorithm of how

to �nd the viable functions.

95-0101/N0701 - Template Issues and Proposed Resolutions - Revision 12 34

I propose to have a simple rule, which may be di�erent from ordinary functions. The rule

is: Type deduction from a single argument must lead to at most one choice of a template

argument. If two di�erent argument values can be deduced, the call is ill-formed. (See

also 7.2)

I am not very �rm on this conclusion and would like to hear more arguments!

Version added: 10

Version updated: 10

