
Exceptions in Libraries

Ulrich W. Eisenecker

Daimler Benz AG

Research Center

Ulm, Germany

eisenecker@dbag.ulm.DaimlerBenz.COM

Doc No: WG21/N0606, X3J16/95-0006
January 17, 1995

Abstract

This article describes a way to introduce a checked and unchecked

version of a library functionality based on a technique which separates

a single class into one class, called BODY, and a familiy of classes,

called BEHAVIOR. A library should at least provide two BEHAVIOR

classes for a BODY class, namely checked and unchecked behavior.

Additionaly special versions of BEHAVIOR classes can be provided by

the programmer. Of course they must cover all necessary functions

for the BEHAVIOR family. The proposed technique could help to

substitute some of the unde�ned behavior places in the C++ Standard

Library, where exceptions could do much better work.

1 Introduction

In chapter 26 "Numerics library" of the current draft I read, that valarray

and associated classes lack any discussion of possible exceptions (box 101).

Furthermore the phrase "if (some condition) : : :, the behavior is unde�ned"

can be found very often. This is unsatisfactory to me because of the following

reasons:

1

2 WG21/N0606, X3J16/95-0006

� C++ supports exceptions (because of many good reasons). The li-

braries included in the standard should therefore use exceptions as

much as sensible.

� At least for developing and testing a safe version of a library is needed.

By a safe version I understand a library which avoids unde�ned be-

havior by throwing exceptions, if not possible otherwise.

� Even if a library serves as a building block for other libraries, I do not

want to write either safe wrapper classes or adopt a sloppy program-

ming style.

2 Discussion

Exceptions were introduced in C++ - among other reasons - because of en-

abling a better design of libraries. With exceptions functions do not need to

return a error/success value which has to be checked in the calling program.

Instead an error is detected in the function being called. Then the error

is thrown as an exception to the calling program which knows more about

possible reasons for this error or how to deal with possible reasons of the

error. The classic example for this is range checking of an array access: the

calling program causes an error which is detected in the access function.

But the reason, if known at all, can be found in the calling program. Some-

times the detection of errors can be time or space consuming. If there are

programs which are believed to be free of wrong assumptions, error checking

and throwing of exceptions may be unwanted. Therefore I prefer libraries

which provide checked functions with exceptions in all those cases where is

no penalty in time or space. Functions, for which error checking and excep-

tions cost time and space, should be available in a safe variant and a variant

without error checking, so that a minimum of time and space is required.

It is now left to the programmer, which functions he/she uses. C and C++

always pursued this philosophy. Admittedly it may be annoying to replace

the checked version of a function by its unchecked alternative and vice a

versa by editor commands. It would be much more comfortable to change

the behavior of a class only at one single point, so that all of their relevant

functions change their behavior to checked or unchecked. This could be

achieved via a compiler option. But, if the programmer should be enabled

WG21/N0606, X3J16/95-0006 3

to provide his own desired mixture of checked and unchecked behavior, the

compiler should not be burdened with something that could be expressed

better in the language directly.

3 Solution

One possibility could be using de�nes and conditional compilation. Another

technique is to separate a single class into one class, called BODY, and a

familiy of classes, called BEHAVIOR. A library should at least provide two

BEHAVIOR classes for a BODY class, namely checked and unchecked be-

havior. Additionaly special versions of BEHAVIOR classes can be provided

by the programmer. Of course they must cover all necessary functions for

the BEHAVIOR family. To realize this idiom with inheritance and polymor-

phism is not free of time and cost when the unchecked behavior is used and

it contradicts the philosophy of the template classes, which are the main

part of the coming C++ Standard Library.

4 The idea

So the idiom should be realized using templates and inline functions. The

following program 1 illustrates this idea. Instead of constructors other inline

member functions (maybe static) could be used of course. Every compiler

should be able to optimize away the call of an empty function.

#include <iostream.h>

template <class T,class Behavior>

class Array

{

public:

Array(int size);

~Array();

T& operator[](int i);

1
compiled and tested with Borland C++ 4.5

4 WG21/N0606, X3J16/95-0006

T sum();

const int& size() const;

private:

T* data;

int mySize;

};

template <class T,class Behavior>

Array<T,Behavior>::Array(int size) : mySize(size)

{

(Behavior(mySize));

data = new T[mySize];

}

template <class T,class Behavior>

Array<T,Behavior>::~Array()

{

delete[] data;

}

template <class T,class Behavior>

T& Array<T,Behavior>::operator[](int i)

{

(Behavior(0,size(),i));

return data[i];

}

template <class T,class Behavior>

T Array<T,Behavior>::sum()

{

(Behavior(size()));

T s = (*this)[0];

for (int i = 1;i < size();i++)

s += data[i];

return s;

}

template <class T,class Behavior>

const int& Array<T,Behavior>::size() const

WG21/N0606, X3J16/95-0006 5

{

return mySize;

}

class Checking

{

public:

Checking(int lowerLimit,int upperLimit,int index);

Checking(int size);

};

class NoChecking

{

public:

NoChecking(int lowerLimit,int upperLimit,int index);

NoChecking(int size);

};

inline

Checking::Checking(int lowerLimit,int upperLimit,int index)

{

if (index < lowerLimit || index > upperLimit)

throw "range error in T& Array<T,Behavior>::operator[](int i)";

}

inline

Checking::Checking(int size)

{

if (size <= 0)

throw "size of Array<T,Behavior> must be positive";

}

inline

NoChecking::NoChecking(int lowerLimit,int upperLimit,int index)

{

};

inline

NoChecking::NoChecking(int size)

6 WG21/N0606, X3J16/95-0006

{

}

void main()

{

try {

Array<int,Checking> myArray(1);

myArray[0] = 5;

myArray[1] = 6;

myArray[2] = 7;

myArray[3] = 8;

myArray[4] = 9;

cout << "Sum of " << myArray.size() << " elements is "

<< myArray.sum() << endl;

}

catch (char* error) {

cout << endl << error << endl;

};

}

5 Problems

There is one problem using this realization: BEHAVIOR classes can not

access any member of the BODY class. Interestingly this problem does not

occur until one tries to instantiate the template for the BODY class. I do

not know if I oversaw something or if perhaps nested templates could help.

6 Conclusion

The BODY BEHAVIOR idiom allows to parameterize template classes with

error detection behavior. Additionaly a programmer can easily provide his

or her own version of error detection on a �ne grained level. In the absence

of error checking no additional code is generated by the compiler.

