
Doc Number: X3J16/94-0110
WG21/N0497

Date: March 30, 1994
Project: Programming Language C++

Summary of Revised Clause 4 [conv]: Standard Conversions

Samuel C. Kendall
Sun Microsystems Laboratories, Inc.

sam.kendall@east.sun.com

This document is part of the work of Tom Plum’s subgroup of the Core WG. Mike Cote and I had hoped to have a
revised clause [conv] ready for the mailing. Unfortunately that document is not complete. Instead, this document
summarizes the conversions without the semantics or the standardese.

Table 1 lists the conversions in their revised categories. Note that the conversions are not just from type to type, but

Table 1: Conversions

From To Notes

Lvalue Conversions

lvalue “T” rvalue “T”

lvalue “array of T” rvalue “pointer to T”

rvalue “array of T” rvalue “pointer to T” a

lvalue “F” rvalue “pointer to F” F is a function type.b

Rvalue Conversions

rvalue “T” lvalue “T” Except in the context of intializing
an implied object parameter, T
must be const.

Qualification Conversions

lvalue “T1” lvalue “T2” T2 is T1 with cv-qualifiers added
according to those complicated
rules (not written down here).rvalue “T1” rvalue “T2”

Promotions

cv charc

cv signed char
cv unsigned char
cv short
cv unsigned short

Implementation-defined, one of:
cv int
cv unsigned int

cv wchar_t
cv enum E (any enumera-
tion type)

Implementation-defined, one of:
cv int
cv unsigned int
cv long
cv unsigned long

Page 2 94-0110 / N0497

a. It is odd and perhaps unfortunate that an rvalue array implicitly converts to a pointer, but that’s the way the language
is now. For example:

// ary-rv1.C, fnc-rv1.C
struct A { int a[10]; };
A f();
int* ip = f().a; // ok, rvalue int [10] --> rvalue int*
int (*ap)[10] = &f().a; // ill-formed, explicit address of rvalue

The ARM, cfront 3.0, and Microsoft C++ agree.
b. Only lvalue functions (that is, only non-member functions) can convert to pointer type.

cv bool cv int

cv float cv double

Standardd Conversions

cv int
cv unsigned int
cv long
cv unsigned long
cv double
cv long double

cv A A is any arithmetic type (including
bool). Exclude conversions from a
type to itself.

“cv pointer to T”
“cv pointer to member of
class C of type T”

cv bool

Constant 0 of type:
cv int
cv unsigned int
cv long
cv unsigned long

cv pointer to T
“cv pointer to member of class C
of type T”

cv pointer to F Implementation-defined, one of:
“cv pointer to void”
no conversion

F is a function type.

lvalue “cv D” lvalue “cv B” B is an unambiguous, accessible
base class of D

rvalue “cv D” rvalue “cv B” B is an unambiguous, accessible
base class of D

cv1 pointer tocv2 D cv1 pointer tocv2 B B is an unambiguous, accessible
base class of D.

cv1 pointer tocv2 T cv1 pointer tocv2 void

cv pointer to member of
class B of type T

cv pointer to member of class D
of type T

B is an unambiguous, accessible
base class of D.

Ellipsis Conversions

rvalue “T” ... T cannot be a function or array
type.

Table 1: Conversions (Continued)

From To Notes

94-0110 / N0497 Page 3

also involve lvalue-ness and constant-ness. This has always been the case; I am just making it more explicit.

Each table entry is an rvalue unless otherwise noted (sometimes, for clarity, we redundantly note that an entry is an
rvalue).

Unless noted, each From item can be a constant or a nonconstant (it doesn’t matter). All conversions preserve con-
stant-ness; that is, if the From item is a constant, so is the To item.

We need a better word than “item” to refer to the endpoints of a conversion.

This revised clause omits two items of information in the present version of [conv]. First, [conv.arith], Arithmetic
conversions. Second, under [conv.ptr] paragraph 1, the conversion of a constant 0 to a pointer when used with various
operators. Both of these items belong in clause 5 [expr]. The new [conv] is about implicit conversions in the context
of initialization only

c. Many rules have seemingly gratuitous “cv”s tacked on to the From item. It is there so that cv-qualified rvalues behave
as close to their nonqualified fellows as possible. This is vital. For example, if a “const char” could not be promoted,
then the second initialization below would be ill-formed:

const char SPACE = ' ';
int i = SPACE;

For most of these conversions, I have put a matching “cv” onto the To item; I don’t know whether it should be there.
Does a “const char” promote to a “const int” or an “int”? It doesn’t matter much, but it seemed simpler to put it there, for
two reasons: first, to prevent weird loopholes from appearing that allow cv-qualifiers to be dropped; and second, because
Tom WIlcox’s revised [over.ics.scs] says “standard conversions do not change the ... cv-qualification of the type.”
d. In the absence of a better name I have called this category “standard conversions”. However, the whole clause is titled
“Standard Conversions”, so either this subset of standard conversions, or the clause itself, should get a different name. I
recommend the clause be renamed “Implicit Conversions”.

