
ISO Doc No: WG21/N0338
ANSI Doc No: X3J16/93-0131

Date: September 23, 1993
Reply To: Erwin Unruh

erwin.unruh@mch.sni.de

Instantiation of Templates

Erwin Unruh

Siemens Nixdorf Informatiossysteme AG
Department of Software Development Systems

C/C++ Front-End Laboratory SU BS2000 SD 224
Otto-Hahn-Ring 6
D{81739 M�unchen

Germany

1 Introduction

A very important point of templates is the determination of the instances. It
must be clear, which instances are generated and where the binding points are,
which are taken for the name lookup.

I will use the word instance to refer to a combination of a template and a
speci�c list of arguments. Two instances are the same, if and only if both the
templates and the argument lists are the same.

The main idea is to incorporate the concept of the lifetime of an instance.
Some instances have a lifetime which is limited to a translation unit. For these
the ODR is needed to prevent di�erent realisations. Others have a lifetime

which does not end (functions). Their lifetime still has a beginning and ends at
the time of linking.

I have divided the possible templates into three groups: class templates
without regarding function bodies, functions including member functions and
static member of class templates.

Further I look at specializations and instantiation requests. The binding
points found must be moved when they do not appear at the global scope.
Instantiation is done only at global scope.

1



I have left some problems to be discussed in San Jose. These are cases where
several possibilities seem reasonable. I have noted my preference but I am open
to change these points. They are marked with OPEN.

2 Class Template Instance

When discussing instantiation, I will separate the class interface from the rest
of the class. The interface of a class consists of all declarations in the class.
It does not contain any de�nition. The instantiation of member functions and
static data member is discussed separately. A nested class is instantiated on its
own.

When looking at a class template instance, the �rst relevant part of the
program is the declaration of its template:

template <class T> class A;

From now on it is possible to create an instance from this template. When
the template name is followed by a speci�c list of arguments, an instance is
refered. A speci�c instance begins its life at the �rst place, where it is mentioned.
As an example, we can declare a pointer to an instance:

A<int> *pa;

This is allowed since no class de�nition is needed to declare a pointer to
a class. Even if the template contains more information, the only information
about the instance A<int> is that it exists. There is no information about its
members. Then the body of the template is supplied:

template <class T> class A {

int a;

T b;

static int s;

inline T mfi (void) { return b; } // mfi = member f inline

int mfo (void); // mfo = member f outline

};

This body constitutes the declaration of three more templates for the mem-
ber A<..>::s, A<..>::mfi and A<..>::mfo. At the point of this de�nition the
only check to be done is the check, whether the parameters to the template cor-
respond to the former declaration. There is no instantiation of A<int>. Even if
at this place the declaration

A<double> *pb;

2



occurs, no member is instantiated. We only know that an instance A<double>

will exist, but do not do any checking. It is only checked, whether the argument
double is a valid argument for the parameter class T.

At some point in the program the de�nition of the instance A<int> is needed.
It is needed when either an object of this type is created or in any other cir-
cumstance where a complete class is needed. It is also generated, when the
instance itself or a pointer to it is subject to any type conversion, whether as
source or target. At this point the interface of the class is instantiated. This
instantiation includes the declaration of all data members, function members,
default arguments of member functions but excludes the bodies of the member
functions.

OPEN: Should an instance be instantiated, if a pointer to it is
subject to type conversion?

John Spicer mentioned the problem (as No 2.7), that a conversion
from a pointer to a derived class to a pointer to one of its bases
needs a fully de�ned class. I have been more general and included
every conversion.

From this point on the instance is fully de�ned and useable. The class tem-
plate instance ends its lifetime at the end of the translation unit. (The instance
will exist in many translation units, but they are handled independently. The
ODR is taken to keep them the same.)

template <class T> class B {

T a;

};

// in the following cases no instantiation is done

B<int> *pb;

B<int> f(int);

void g(B<int>);

// in the following cases do instantiation

B<int> b;

f(42);

g(42);

void h(B<int> =0);

Name binding for classes is done at the point where the interface is instan-
tiated. This is the point, where the de�nition is needed. It must not be done
earlier. Here is an example where this distinction makes a di�erence:

3



class X;

B<X> *pbx; // do NOT instantiate at this point!

class X { ... };

B<X> bx; // now do instantiation

If instantiation is done too early, the class X is not de�ned. Since the de�-
nition is needed to generate the instance, the instantiation will fail. There are
more complex examples, where moving the point of instantiation changes the
semantics of an instance.

3 Function Template Instance

This section also includes Member Functions.
For function templates there is no di�erence between determining the pa-

rameter of the template and the declaration of the interface. Both are done in
a single template declaration. For member functions this is part of the class
de�nition.

template <class T> class A {

int a;

T b;

static int s;

inline T mfi (void) { return b; } // mfi = member f inline

int mfo (void); // mfo = member f outline

};

template <class T> inline T fi (T a, T b) { return a>b?b:a; }

template <class T> T fo (T a, T b =0 );

For normal function templates we have a check at this point. It is checked
whether the arguments to the template can be deduced from the argument types
of the function. This is done for the template per se, no look is done to any
speci�c instance.

OPEN: To which point should we set the start of the lifetime of
a function template instance? It will be somewhere between the
template declaration and the usage of the instance in an expression.

If we take the template declaration, we have an inconsistency to the
classes. On the other hand every possible template function takes
part in overload resolution. So the instances exist, at least virtually.

The next point in the life of an instance is the �rst time, where it is mentioned
directly or indirectly. For member functions this is the time, where the instance
of the class de�nition is created. For the other functions there are several
possibilities. One of them is a declaration of the function instance, as in

4



int fo(int, int); // instance of fo with int

The other possibility is the usage of the function in an expression. It does
not matter whether the use is a call or the taking of its address.

OPEN: Is it conveniend to have a binding point at the place of
declaration?

For classes the binding point is at the point of (real) usage. It
should be the same for functions. But then we have a problem with
the handling of default arguments.

At this point the declaration for the instance is generated. The arguments of
the template are determined from the types of the arguments. Then the default
arguments are instantiated. It does not matter, whether the default arguments
are used or not.

If an inline functions is used in an expression, also its body is instantiated.
It is available only in this translation unit. The call of an inline function needs
its de�nition to be known at the point of the call. Since inline has the same
semantics as static, the same rule applies to static functions.

The body of an extern function is not instantiated at this point. Instead this
point is remembered since it is the point of name binding for the instance. The
decision whether to generate the instance is defered but the binding refers to
this point. De�nitions for extern function template instances are not generated
during the analysis of a single translation unit.

When the program is complete (i.e. at the point of linking) the de�nitions
of function template instances are generated. The name binding is taken from
the remembered point described above. If the binding is di�erent for any two
translation units, the program is ill-formed due to violation of the ODR.

If a function is declared both extern and inline, it is handled like an extern
function. The inline property is ignored, since it does not have any e�ect. (It
is open, whether such a function is allowed; see also 4.4 from John Spicers list).

OPEN: I do not have a coherent concept for default arguments.

There are several possibilities how to handle default arguments.
They may be checked at the �rst declaration, at the binding point
or at demand. In the last case an unused default argument will not
be checked.

3.1 Virtual Member Function

Virtual member functions are a more di�cult problem. Some of their calling
points are determined at run time. So it is not possible for a compiler to
statically check, whether a virtual function is called. The call may be in a

5



di�erent translation unit, where the template is not present. To solve (part of)
the problem I state the following rule:

A virtual function is considered "used" at the point, where its class is in-
stantiated. This is also the point of name binding.

This rule has the drawback, that all names used by virtual functions must
be available at the point of the class instantiation. This is di�erent from the
rules for non-virtual functions.

OPEN: The point of the �rst static use of a virtual function is an
additional binding point. If the name binding is di�erent at this
point, the program is ill-formed due to violation of the ODR.

This rule may help people to keep their programs correct, when they
add or remove the virtual speci�er.

OPEN: The compiler should be given the option to optimise away
an instance of a virtual function if he can determine that it is never
used. If such an optimisation is done, even the error diagnostics
should not be mandatory. (See section 8)

4 Instance for Static Class Member

Static data member of classes are at most handled like non-inline static mem-
ber functions. The only di�erence is that the body to lay down is the call to
the constructor for that member. The instantiation is delayed until program
completion time.

The binding point for static class members is determined as for member
functions. It is the point of usage in an expression.

OPEN: Their is an additional point of name binding at the point
of instantiation of the class.

We have a problem, when a static member of a class instance is never
used. There is no point of name binding. If it is not instantiated,
its constructor is never called.

For normal classes a de�nition of a static member must be present.
So we should set the same requirement for templates.

5 Moving the Points

It is not recommended that an instantiation occurs in the middle of another
declaration. To avoid that, all usage points mentioned above are moved out of
declarations. They are moved to the point before the �rst global declaration that

mentions it .

6



OPEN: Do we move an instantiation out of a namespace declara-
tion?

The template itself may be inside the namespace. So moving it out
of it may be wrong. The simple rule should be changed to say, out
of which scopes the instantiation is moved really. This can be very
important, since there are possibilities to add names to the global
scope.

The compiler is not obliged to really do the move. The analysis and instan-
tion has do occur as if the usage was just before the declaration.

As one instantiation can cause the instantiation of another template, the
instantiations at any one point (which may be before a global declaration and
subsume the usages from a big function) are ordered. This ordering should
ensure that no instantiation needs an instance which is generated later. This can
result in some instantiation split into two parts: �rst the pure mentioning of its
existence and afterwards instantiating the interface. For inline functions there
may be a third part: the instantiation of its body. To generate the ordering,
the interface of a function can be split. The second part will contain the default
arguments. In the �rst part only the presence of default arguments is given.

If such an ordering is not possible, there is a recursion in instantiation and
the program is ill-formed.

The rules and the wording �nally accepted in the working paper must be
choosen very carefully. I do not know, whether there is a possibility of a program
changing semantics due to a di�erent ordering of instantiations.

OPEN: Maybe there is a problem, when an instance uses another
instance and causes it to be instantiated. Where is the binding
point?

The instantiation of a template function instance is outside of any
translation unit. It is formed somewhere between the translation
of the last unit and the start of running the program. So we have
di�culties to �nd the real binding point for it.

To clarify the description here are two examples:

template <class T> class B;

template <class T> class A {

B<T> b;

};

template <class T> class B {

A<T> *pa;

};

A<int> vara;

7



At this declaration the following instantiations will be done (in this order):

1. The template instance A<int> is set to be existent.

2. The template instance B<int> is instantiated completely.

3. The template instance A<int> is instantiated completely.

4. The variable vara is de�ned.

Here the instance A<int> was split into two parts. This splitting was neces-
sary since there is a circular dependency between A and B. This dependency is
broken with the pointer declaration in B.

template <class T> T g(T, T= f(0) );

template <class T> inline T f(T a) { return a==0 ? 0 : g(a,a); }

int var = g(5);

Here the order of instantiations may be:

1. The prototype of the instance g<int> is generated, excluding the value of
the default argument.

2. The instance f<int> is completely instantiated, including the body.

3. The default argument of g<int> is added.

6 Specialization

A specialization has to occur after the �rst mentioning of the template. It is an
open question (No. 5.2 from J. Spicers list) whether a specialization is allowed
before the interface de�nition of the template.

This is a change to the behavior of most of the present compilers. They
interpret any function, which has the same name as the template and suitable
parameters, as a specializations. My rule requires, that the template declaration
is available in the translation unit in which the specialization is de�ned.

OPEN: A specialization must have been declared at every point it
is used.

This requirement is too strict. One serious use of specialization is
to build a system with templates and replace the critical function
with spezialisations. It may be conveniend to correct false semantics
or to improve a function which is heavily used. It would hinder the
programmer if he has to declare such a function and recompile half
of his program.

8



A specialisation must occur before the instantiation is done. This results in
several regions for the di�erent templates:

� For class templates it must occur before the �rst object declaration of that
class is done.

� For inline function templates it must occur before the function is �rst used
in an expression.

� For non-inline functions it may occur anywhere. Since those functions are
instantiated at program completion, any de�nition in any translation unit
can serve as a specialization.

� For static class members the specialization can be anywhere in the pro-
gram. These objects are also instantiated at program completion time.

7 Instantiation Request

In my last paper (93-0067=N0274) I have asked for an instantiation request .
Bjarne has also written a short note regarding the usability of such a construct.
Reasons to incorporate such a request can be found there.

The version of request I propose in this paper di�ers from that in my earlier
paper. I have adopted the very moderate version of Bjarne.

The instantiation of an entity can be requested. Requests are resolved for
single instances, so the class interface is requested independently from its mem-
ber functions.

The primary result of an instantiation request is as follows:

� For a class: the interface of the class is instantiated, as if an object of that
class is declared/de�ned.

� For an inline function: interface and body of the function are instantiated.
Both are checked for errors.

� For a non-inline function: the interface of the function is instantiated.
This includes the default arguments. The point of request is noted as one
of the binding points for that instance.

A program may contain several requests for the same instance. A request is
not required for an instance to be generated.

OPEN: If a program contains an instantiation request and a spe-
cialization for the same instance, the program is ill-formed.

This rule would allow the compiler to generate code at the point of
the request. It is still responsible to avoid multiple instantiations,

9



but may do optimisations. So it may inline normal functions, as no
specialization is possible.

It is even a possible feature to the programmer. He also can be sure
that no specilization will take control over his template function.

OPEN: If an instance is requested, the compiler may check it. If
the instantiation is ill-formed it may issue a diagnostic, not regarding
whether a specialization is present in the program or not.

If the former point is not taken, this possibility gives the compiler
the right to check the instantiation and issue the errors occuring. It
also gives the writer of the class the evidence that his template will
work for the disired parameters, whether it is specialized or not.

OPEN: All de�nitions needed to analyse the template instance must
be available at the point of an instantiation request. This includes
the de�niton of the template itself, of all the types used as its pa-
rameters and other classes, if their de�niton is needed.

This point was chosen to allow the compiler a check of the template
without looking at any other translation unit. It is needed to gain
the bene�t of check at translation. If it is not ful�lled, the requested
instance can only be check at the time of linking, where all the
de�nitions are available.

OPEN: The name binding from the point of an instantiation request
takes precedence over normal name binding points. It is no error to
have a conict between them. The binding resolution of two request
must be identical (ODR).

This rule will allow the user to help the compiler. If the binding rules
for a speci�c instance are very weird, the programmer can issue an
instantiation request and be sure of the name binding.

It is also questionable, since the presence of an instantiation request
not only e�ects the validity of a program, it also can change the
semantics. This may be the case when one use-point and one request-
point are present with di�erent name bindings.

Most compilers will generate code for requested instantiations directly. This
code can be used to build libraries and shorten compile time. This possible kind
of usage is not inside the scope of the standard.

It may be convenient to have a syntax which groups some instantiation
requests. As an example a class interface can be grouped with all its inline
member functions. A grouping of all member functions and static members of
a class may be of equal worth.

10



8 Error Checking

Checking is done only at the point of instantiation. If some part of a template or
an instance is ill-formed a diagnostic may not be issued before the instantiation
of that part is done. This is covered as No 6.2 by J. Spicers list and should be
decided there.

If the ODR is not checked by a compiler and an instantiation request is
present for an instance, the compiler must use the name binding from the point
of the request (any one if several are present).

9 Related Work

The following documents have related work in them:

1. Stroustrup, 93-0081=N0288, Major Template Issues, section (I=instanti-
ation)

2. Spicer, 93-0074=N0281, Template Issues and Proposed Resolutions,

major points in sections 2.7, 3.8, 4.1, 4.2, 6.2

minor points in sections 2.9, 4.4, 5.1, 5.2, 5.4

3. Unruh, 93-0067=N0274, Instantiation Request

From this list, the arguments in (1) and (3) are incorporated in this paper,
from (2) the questions in sections 2.9, 4.4, 5.4 and 6.2 remain open.

11


