
ANSI Doc No: X3J16/93-0098
ISO Doc No: WG21/N0305

Date: July 8, 1993
Project: Prog. Language C++

Reply To: Dag Br�uck
dag@control.lth.se

Proposal for Lifetime of Temporaries

Dag M. Br�uck

Department of Automatic Control
Lund Institute of Technology

Box 118, S-221 00 Lund, Sweden

1. Abstract

The paper proposes a resolution to the lifetime of temporaries in C++. The
main rule is that temporaries are destroyed at the end of a full expression.

The paper also contains a review of the alternatives discussed at meetings
and the mail reectors recently, and a few examples.

2. Proposal

The proposal consists of two rules that cover all temporaries, and one rule
about function parameters.

R1. Temporaries are destroyed at the end of the full expression in which they
are created.

R2. Temporaries, like all C++ objects, are destroyed in reverse order of con-
struction.

R3. The lifetime of a parameter is that of the body of its function, cf. Sec-
tion 5.2.2 of the Working Paper.

The term full expression is de�ned in Section 3.6 of [ISO, 1990] and [ANSI,
1989] as follows:

A full expression is an expression that is not part of another ex-
pression. Each of the following is a full expression: an initializer; the
expression in an expression statement; the controlling expression of
a selection statement (if or switch); the controlling expression of a
while or do statement; each of the three (optional) expressions of a
for statement; the optional expression in a return statement. The
end of a full expression is a sequence point.

See also Section 3.3 of [ISO, 1990] for a discussion of sequence points in ex-
pressions, especially the operators (), &&, || and ?:.

1

X3J16/93-0098 WG21/N0305

Also note that a reference may be bound to a temporary, in which case
the temporary has the lifetime of the enclosing scope, see Section 8.4.3 of the
Working Paper.

3. Discussion

The lifetime of temporaries is one of the most important issues of the standard-
ization committee. It is unde�ned in the base documents, but the committee
has indicated that any resolution is better than the current situation.

The lifetime of a temporary is generally categorized as \short" if there
is a risk that it may be destroyed before use, or \long" if there is a risk of
running out of memory because temporaries are not destroyed in time. Any
resolution will probably break at least a few existing programs.

Alternatives

Many di�erent resolutions may be considered for the destruction of tempo-
raries:

� After �rst use

� At end of statement

� At the next branching point

� At end of block

� At end of function

� After last use (which e�ectively requires garbage collection)

� Leave unde�ned (the current situation).

Conditional expressions (i.e., &&, || and ?:) which generate branching com-
plicate the issue further. There are two possible resolutions:

� Use the same rule for all temporaries, which means that the implementa-
tion may have to generate additional code and variables to keep track of
which temporaries were actually created.

� Add a rule which says that intermediate temporaries created in &&, ||
and ?: are destroyed at the end of the conditional branch, i.e., earlier
than other temporaries.

A few papers have been written on the issue. The most important paper is
[Koenig, 1992], which has the basic discussion and many examples. Turner has
argued in favour of very short-lived temporaries [Turner, 1991], and Pennello
has argued against destruction at end-of-block [Pennello, 1992].

Boston straw vote

A straw vote was conduted at the Boston meeting in November 1992, in order
to determine the committee's preferences. People could indicate which (possi-
bly many) alternatives they were willing to accept, and which they could not
accept. For unconditionally constructed temporaries the alternatives were

1. Destroy at end of statement (EOS)

2. Destroy at end of block (EOB)

For temporaries created in conditional expressions the alternatives were

a. Destroy at the end of the conditional branch (EOCB)

b. Destroy with other temporaries (which may require setting runtime ags)

2

X3J16/93-0098 WG21/N0305

The result of the straw vote was:

Point of destruction Willing to accept Cannot accept
1a EOS + EOCB 38 0
2a EOB + EOCB 25 6
1b EOS + EOS 34 1
2b EOB + EOB 28 8
3 Unspeci�ed 6 32

Leaving the lifetime unspeci�ed is clearly not an acceptable situation. There
is in my view a small but signi�cant preference for destruction at end-of-
statement over destruction at end-of-block.

The case for EOCB (which is not suggested in this paper) is not strong.
EOCB is more di�cult to describe than destroying all temporaries at EOS,
although EOCB seems to be easier to implement.

Mail reector discussion

During subsequent exchanges on the extensions mail reector, it was shown
that the phrase \end of statement" is not quite appropriate, although there
was agreement on what it should mean. The appropriate phrase seems to be
\end of full expression," which is de�ned in Standard C.

There was also some discussion if sequence points (also de�ned in Stan-
dard C) could be used for de�ning when temporaries are destroyed. Sequence
points cannot be used unconditionally; for example, there is a sequence point
after an argument list has been evaluated but before the function is called.
The phrase \end of full expression" seems to handle all cases.

Examples

Most examples used in the discussion are presented in [Koenig, 1992], and will
not be repeated here. However, a few \new" ones have shown up recently on
the mail reector.

In the examples that follow, I will use a string class which uses operator +

for concatenation, and has a member function cstr() which returns a pointer
to internal storage. The value returned by cstr() is guaranteed to be garbage
when the corresponding string object has been destroyed. The names used in
the examples are:

String s, t, u;

const char* p;

int n;

extern int g(const String &);

extern String f();

extern String operator + (const String &, const String &);

The �rst question is what temporaries we discuss in the case of ?: expressions.
This case presents no problems:

u = reverse ? t + s : s + t;

What must happen is that either t+s or s+t must stay around long enough to
copy its value into the temporary that holds the result of ?:. Then the latter
temporary is yielded as the result. After that the temporaries are destroyed
in reverse order. In other words:

if reverse goto X;

construct leftbranch = 1;

construct temp1 = s + t;

3

X3J16/93-0098 WG21/N0305

construct temp0 = temp1;

goto Y;

X: construct leftbranch = 0;

construct temp2 = t + s;

construct temp0 = temp2;

Y: u = temp0;

destroy temp0;

if leftbranch goto A;

destroy temp2;

goto B;

A: destroy temp1;

B:

Here, temp0 represents the result of ?: and should stay around until end of
full expression as usual. It's temp1 and temp2 that may or may not need
destruction at the end of the full expression, depending on the condition.

Now of course in this example, since temp0, temp1, and temp2 are the
same type, it is possible as an optimization to alias them:

if reverse goto X;

construct temp0 = s + t;

goto Y;

X: construct temp0 = t + s;

Y: u = temp0;

destroy temp0;

but that is perhaps beside the point.
The next two are more interesting. They will both work under the pro-

posed rules, but only the second one will work under the EOCB rule. The �rst
one will not work under EOCB, because cstr() returns a pointer to internal
storage used by the intermediate temporary created for t+s or s+t; this stor-
age has been destroyed when strlen() is called, together with the associated
string object.

n = strlen(reverse ? (t + s).cstr() : (s + t).cstr());

n = strlen((reverse ? t + s : s + t).cstr());

A similar case which will work under the proposed rules but not EOCB is:

puts(s.length() + t.length() ? (char *) s+t : "none");

Reference parameters bound to temporaries exist for the duration of the func-
tion call, so the value returned by f() is available in g():

g(f());

A general observation is that all temporaries created in evaluating the argu-
ments of a function call exist for the duration of the called function; that may
not be true under the EOCB rule.

Besides the issue of \initializer within the full expression" there is also
the issue of \full expression within the initializer:"

const int& y = g(f());

Does the temporary created to initialize the argument of g() last as long as
the reference y? The answer is no, because y is not bound directly to the value
returned by f().

If is also worth noting that left-hand and right-hand parts of a comma-
expression are not full expressions:

e1, e2;

4

X3J16/93-0098 WG21/N0305

Temporaries created in e1 are not destroyed until the end of the statement,
which has been used to implement locking, for example. This behaviour is
di�erent from

e1; e2;

where the temporaries are destroyed at the end of each expression statement.

4. Acknowledgements

Most of this document is directly based on discussion on the extensions mail
reector. I would like to thank David Cok, Bill Gibbons, James Kanze, An-
drew Koenig, Richard Minner, Tom Plum, Martin O'Riordan, Jerry Schwarz,
John Skaller and Mark Terribile, for their contributions.

5. References

ANSI (1989): \Programming Language C, American National Standard
X3.159-1989." Technical Report, American National Standards Institute.

ISO (1990): \Programming languages | C, International standard ISO/IEC
9899." Technical Report, International Standards Organization.

Koenig, A. (1992): \Lifetime of temporaries." Technical Report, AT&T Bell
Laboratories. Document numbers X3J16/92-0020 and WG21/N0098.

Pennello, T. (1992): \Some issues in temporaries destroyed at end of block."
Technical Report, MetaWare, Inc. Document numbers x3J16/92-0126 and
WG21/N0203.

Turner, P. K. (1991): \Proposal for short-lived temporary objects." Techni-
cal Report, Language Processors, Inc. ANSI document number X3J16/91-
0019.

5

