x3j16/93-0055, WG21/N0262
Name Space Management in C++ (revised)

Bjarne Sroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Thisis aproposal for a mechanism for defining name spaces in such away that users can
compose programs from separately developed fragments (libraries) without worrying too
much about names used for different classes or functions in different fragments. The
scheme is based on nanespace declarations for gathering otherwise global declarations
into a separate name space, qualification for explicit access to a namespace, and usi ng
declarations for implicit access to a namespace. Two alternative designs, one without
usi ng and one where a namespace is akind of class, are discussed in appendices. Simi-
larly, the difficult design decision for overloading across namespaces and for name injec-
tion are discussed in appendices.

1 TheProblem

Like C, C++ provides a single global name space into which every name that doesn’t conveniently fit into a
class or afunction must be entered. This makes it (unnecessarily) difficult to write program fragments that
can be linked together without fear of name clashes. For example:

/'l ny.h:
char f(char);
int f(int);
class String { /* ... *[};

/'l your.h:
char f(char);

doubl e f(double);

class String { /* ... *I };

Given these definitions, athird party cannot easily use bothmy. h andyour . h.

Note that some of these names will appear in object code and that some programs will be shipped with-
out source. Thisimpliesthat ‘*macro-like’’ schemes that change the appearance of programs without actu-
ally changing the names presented to a linker are insufficient. Further, | assume that there are too many
linkers and too many object code formats around to make it feasible to change them. For a solution to be
useful for us it must require only facilities provided by almost all current linkers. This implies that disam-
biguation must be compiled into the object code by providers of program fragments. In particular, library
providers will have to use a technique that allows users to disambiguate. | foresee no problems getting
library providers to cooperate — that is, to use a hame space resolution scheme — because they (partly
through their users) are the main sufferersin the current situation.

Workarounds
There are several workarounds. For example:

/'l ny.h:
char ny_f(char);
int ny_f(int);
class ny_String { /* ... */ };

/'l your.h:
char yo_f(char);
doubl e yo_f (doubl e);
class yo_String { /* ... */ };

This approach is not uncommon, but it is quite ugly and — unless the prefix strings are short — quite
unpleasant for the user. Macro hackery can make this approach even nastier (or even nicer, if you happen
to like macros):

/'l ny.h:
#define ny(X) nyprefix_ ##X

char ny(f)(char);

int my(f)(int);
class ny(String) { /* ... *I };

/1 your.h:
#define yo(X) your_ ##X

char yo(f)(char);
doubl e yo(f) (doubl e);
class yo(String) { /* ... */ };

The ideais to allow longer prefixes in the real name used for linkage while leaving the names used in the
program short. As with al macro schemes, this creates a problem for tools: Either the tool keeps track of
the mapping (complicating the tool) or the user will have to do so (complicating programming and mainte-
nance).

An aternative approach — often preferred by people who dislike macros —isto wrap related information
into aclass:

/'l ny.h:
class MWy {
public:
static char f(char);
static int f(int);
class String { /* ... */ };
i
/1 your.h:
cl ass Your {
public:
static char f(char);
static double f(double);
class String { /* ... */ };
s

Unfortunately, this approach suffers from many little inconveniences. Not all global declarations can be
simply transferred into a class and some change their meaning if you do so. For example, global functions
and variables must be specified as st at i ¢ members to avoid semantic changes and the function bodies
and initializers must in general be separated from their declarations:

int f(int) { /* ... */ }

char a[] = "asdfg";

cannot become simply:

class Nice_try {
int f(int) { /* ... */ }
char a[] = "asdfg";

}s

but must be reworked into:

cl ass better_but_not_nice {

public:
static int f(int);
static char a[];
b
int better_but_not_nice::f(int) { /* ... */ }
char better_but_not_nice::a[] = "asdfg";

Furthermore, there is no way of making use of these ‘*wrapped’’ declarations as notationally conveniently
as use of ordinary globals. For example:

void h()

{
int a="f(2);
String s = "asdf"
}

looks noticeably cleaner than

and

voi d h()

{
int a=ny_f(2);
my_String s = "asdf"

}
void h()
{
int a=M::T(2);
My::String s = "asdf"
}

especialy when the prefix has to be repeated hundreds of timesin a source file. There is no way of saying
“*in this program | use the names from the My library.”” For afurther discussion of classes and namespaces,
see Appendix B.

Idealsfor a solution
There are many mechanisms that can be used to provide solutions to namespace problems. Indeed most
languages can claim to have at least the rudiments of one. For example, C hasits static functions, Pascal its
nested scopes, Ct++ its classes, but we need to go to languages such as PL/I, Ada, Modula-2, Modula-3, ML,
and CLOS for more complete solutions.

So what would a good namespace mechanism give usin C++? A lengthy and voluminous discussion on
the x3j16 extensions working group mailing list provided alist:

(1]
(2]

(3]
[4]

(5]
6]

[7]

(8]
(9]

The ability to link two libraries without name clashes.

The ability to introduce names without fear of clashing with someone else’s names (e.g. names
usedin alibrary | haven't heard of, or names| haven't heard of in alibrary | thought | knew).

The ability to add a name to the implementation of alibrary without affecting its users.

The ability to select names from two different libraries even if those two libraries use the same
names.

The ability to resolve name clashes without modifying source code statements (i.e. through decla-
rations manipulating the name space resolution).

The ability to add a name to a namespace without fear of causing a quiet change to code using
other namespaces (we cannot provide such a guarantee for code using the namespace being added
to).

The ability to avoid clashes among name space names (in particular, the ability to have the *‘rea’’
or linkage name longer than the name used in user code).

The ability to use the name space mechanism to deal with the standard libraries.

C and C++ compatibility.

[10] No added cost in link-time or run-time for the users of namespaces.

[11] No added verbosity for the users of hamespaces compared to users of global names.

[12] The ability to indicate explicitly where a name is supposed to come from in code using the name.

In addition, a good solution must be simple. We might define‘*simple’’ as:
[1] A mechanism that can be explained to the degree needed for serious use in less than ten minutes.
(Explaining any mechanism to the satisfaction of language lawyers will take much longer).

[2] Something a C++ compiler writer can implement in less that two weeks.

Naturally, simplicity in this sense cannot be proven rigorously. For example, the time needed to understand
something will vary greatly between people with different backgrounds and different levels of ability.
However, after the first version of this paper was written | have ‘‘tested’’ this proposal for simplicity
according to these criteria. A pilot implementation was completed in five days, and | have explained the
basi cs of namespaces to several people in less than ten minutes using just a couple of foils. Their follow-up
guestions showed understanding and the ability to deduce some of the uses of namespaces that | hadn’t
explained. | am now satisfied that the proposal is*‘simple enough.”’

In addition, there are some properties that have been asked for but that 1 don’'t propose to support
directly with new features:

[1] The ability to take binaries with clashing link names and link them together. (This can be done by

toolsin al systems, but | don’t see a language mechanism that could easily be implemented with-
out significant effort or overhead on all systems). Seealso 81 and §7.

[2] The ability to provide arbitrary synonyms for names used in libraries. (Existing mechanisms, such
as typedef, references, and macros, provide mechanisms for providing synonyms in many cases).
See also Appendix C.

Naturally, it is possible to add criteria to these lists and no two people will agree to the exact importance of
the criteria, but these lists gives an idea of the complexity of the problem and the demands that a solution
must meet.

As | work through the proposed namespace mechanism, its uses, its possible misuses, possible aterna-
tive designs, and details, you will will probably get lost at times. Let me therefore state that the proposed
solution is fundamentally simple. It provides four new mechanisms:

[1] A mechanism for defining a scope that holds what have traditionally been global declarationsin C
and C++: a namespace. Such scopes can be named and a namespace’s members can be named
using the traditional notation for class members: namespace_nane: : nenber _nane. In fact,
a class scope can be seen as a specia case of a namespace scope.

[2] A mechanism for defining alocal synonym for a namespace name.

[3] A mechanism to allow explicitly specified members of a namespace to be accessed without the
explicit nanespace_nane: : qualification: a using-declaration.

[4] A mechanism to allow all members of a namespace to be accessed without the explicit
nanespace_nane: : quaification: ausing-directive.

| believe this suffices to meet the criteria above. In addition, it solves along-standing problem with access
to base class members from a derived class scope (see 810) and renders st at i ¢ redundant as used for glo-
bal names (see §9).

The text suggested for addition to the reference manual (811) is about one page and a half and makes

some existing text about classes redundant.

2 Namespaces
Consider alanguage construct specifically providing name spaces:

nanespace A {
void f(int);
void f(char);
class String { /* ... *[};
I
}

The names declared within the namespace braces are in namespace A and do not collide with global names
or names in any other name space. The semantics of declarations (including definitions) in a name space
are exactly that of global declarations except that the scope of their names are restricted to the name space.

To use aname from a namespace A you can either explicitly qualify it
A :String s;
or import it into a scope

using A :String;
String s; /1 meaning A :String

Using Declarations
A using-declaration NS: : mdeclares alocal name mthat can be used to access whatever object, type, func-
tions, etc., isnamed by min NS. One can import either a single name or a set of names from a namespace:

using X :f; [l inport f fromX
using X :(f, g, h); /1 inport f, g, and h fromX
See 811 for agrammar.

Redundant usi ng declarations are allowed just like other redundant declarations.
The usual scope rules apply:

void g(int i)

{
using A::String;
String s = "asdf"; // A :string
if (i) {
extern void h();
using A :f;
/1 we can use h() and A::f() here
el se {
/1 h() and f() are not in scope here
struct String // hides A :String
{1* ... %},
String ss; /1 local String
}
/1 h() and f() are not in scope here
String s2 = "asdf"; // A :string
}

Once a name is declared locally with a using-declaration, ambiguity detection and overload resolution
apply asusual. For example:

extern void f(double);

using A :f;
voi d hh()
f(2.0); /1 ::f(doubl e)
f(1); [A f(int)
A :f(2.0); /1 A :f(int)
N /1 A f(int)
/1 there are three f()s declared in the
/1 gl obal scope (one declared with
/1 ‘“extern,’ two with ‘using’) anbiguity
/1 resol ution choses the f(int)
f('c); /1 A :f(char)
}

Notethat usi ng A: : f bringsinall f sfromA. Seeaso §5.

Itisan error to declare X: : munless X is a namespace and thereisan min X. In X: : m it is known that
X must be a namespace name because it precedes : : Thus, following the rule for class names (ARM 85.1),
X can be found even if it has been hidden by alocal non-namespace name:

namespace X {

int mi;
int ng;

}

int Y,

void f()

{
int X
using X :ni; /1 ok (the local X isn't a nanespace nane)
int ng;
using X :n2; /1 error: two declarations of m2 in f()
using X :nB; /1 error: no n8 in X
using Y::m /1 error: no nanespace Y in scope
using Z::m /1 error: no nanespace Z in scope

}

Using Directives

Mentioning every name from a namespace that one wants to use explicitly in a using-declaration can be
tedious. Long lists of names are also potentially error-prone because they tend to be incomplete and not
resilient to changes in the namespace they refer to. Consequently, a mechanism is provided to make all
names from a namespace available without qualification and without mention of individual names. For
example:

void g(int i)
{
usi ng nanmespace A
String s = "asdf";
}

or equivalently

usi ng namespace A;

void g(int i)
{

}

A using-directive makes the names from the namespace available as if they had been declared without a
namespace at the point where their namespace was declared; it does not define local aliases for the namesin
the namespace. One might think as a using-directive as granting a key that alows a namespace to be
opened when found during a name lookup. For example, a namespace

String s = "asdf";

namespace A {
int a, b;
s
looks like plain
int a, b;
to code for which a
usi ng nanmespace A;
isin scope. In this, ausing-directive differs from a using-declaration of specific names. For example:

namespace X {

int i, j, k;
}
int k;
void f1()
{
int i =0;
usi ng nanespace X; // make names from X accessible
i+, /1 local i
i+ I X
k++; /] error: X :k or global k ?
}
void f2()
{
int i =0;
using X :i; /1 error: i declared twice in f2()
using X :j;
using X :Kk; /1 hides global k
i ++;
j Il X
k++; Xk
}

A using-declaration addsto alocal scope. A using-directive does not; it simply renders names accessible.
For more name resolution details see 85. Note that the meaning of a using-directive doesn't depend on
exactly whereit isplaced aslong asit isin scope. For example,

usi ng namespace X; /1 make names from X accessi bl e
void f1()
{
int i = 0;
i+, /1 local i
i+ I X
k++; /1 error: X :k or global k ?
}

is equivalent to the definition of f 1() above.

Having namespace-declarations introduce local aliases and namespace-directives not to ensures that
whenever aname is explicitly named in alocal declaration then that declaration determines the meaning of
that namein theloca context without interference from other declarations of that name in other contexts.

Originally, | thought the shorter form

using X;
could be used instead of the more explicit
usi ng nanmespace X;

However, in real use people was confused about the difference between a using-declaration and a using-
directive. Part of the reason was that there was no strong syntactic clue to the difference. The implementa-
tion also proved easier given the (logically redundant) added nanespace.

3 How to Use Namespaces

A supplier, say alibrary vendor, will present an interface to a set of services in the form of a namespace.
For example:

namespace ny_library {
/'l cl asses
/1 typedefs
/1 global variable declarations
/1 tenpl ates
/1 global function declarations
/'l consts
/1 inline functions
/1l etc.
}

Typically, thiswill be placed in aheader file so that a user includes the namespace like this:
#include "ny_library. h"

/1 use ny_library

To access the library facilities, the user has several choices. One can crudely and effectively make all the
names from the library available in the global scope:

#include "ny_library. h"
usi ng namespace ny_library;

Thisisequivaent to atraditional #i ncl ude of aheader file that doesn’'t use name spaces. After
usi ng namespace ny_library;

every name from nmy_I i brary is available without qudlification. If used, a name from ny_l i brary
that clash with a global name cause a compile-time error unless the clash is resolved by the function and
operator overloading rules. Overload resolution applies across namespaces where using-directives or
using-declarations have made names accessible; see Appendix D.

A more selective approach will be taken by users who worry about name clashes, about function name
resolution, or about documenting which facilitiesfromny_| i br ary areused. For example:

#include "ny_library. h"
using ny_library::(String, f); // String and f fromny_library
/! can be used from here on

String s; /1l ny_library::String

void g()

{
f(O); [l ny_library::f
I

}

void h()

{

using ny_library::g; // h() can also use ny_library::g

a(); /1 my_library::g
(), Il nmy library::f
1 ...

Namespace Aliases

If the repetition of the namespace name gets tedious a synonym can be introduced:
#include "ny_library.h"
namespace lib = nmy_library;

using lib::(String, f); // lib::String and lib::f
/1 can be used from here on

String s; /1 lib::String
I

In addition to notational convenience, the use of a synonym also makes it easier to change libraries. For
example, changing the first two lines of my program (only) to:

#i ncl ude "your_library.h"
nanespace |ib = your_library;

will ensure that all of the code uses your | i brary. We considered using t ypedef for introducing
synonyms for namespaces, but a namespace isn't a type. You can introduce as many synonyms for a
namespace as you like, but the real name of the namespace — as known to the linker — is till the original
name (only).

A namespace alias cannot be used to add more members to a namespace:

namespace A {
I
}
nanespace B = A
namespace A { /'l ok, see 85 ‘‘dispersed namespace definitions’’

11
}

namespace B { /1 error: B is a nanespace alias
I
}

-10-

Suppliers

Library suppliers need to provide an implementation for the facilities offered by the interface. Typicaly,
this will involve including the header containing the the namespace declaration (just like users do) and then
use qualification in the definition of types, functions, objects, etc.:

#include "ny_library. h"

void ny_library::f()
{

}

int my_library::a = 7;

I

Alternatively, an implementor can wrap the definitions in a namespace declaration:

#include "ny_library. h"

namespace ny_library {

void f() /1 define nmy_library::f()
{
I
}
int a=7; /1 define ny_library::a

}

Heref () and a are defined inthe scopeof ny_| i brary.
A using-declaration or using-directive gives access to namespace names only when looking for a use of
aname; it does not affect definitions of new types, objects, functions, etc. For example:

#include "ny_library. h"
using ny_library;

void f() /1 define ::f(), not nylibrary::f()
{

}

does not define myl i brary: : f() butagloba f (). This could of course be different from what the
programmer expected, but that mistake will lead to an undefined nmyl i brary: : f () which will eventu-
aly be detected. Also, globa functions (not in namespaces) should eventually become far less common
than they are today. Had the opposite decision —that usi ng allowed unqualified functions to define mem-
bers of a namespace — been taken, a programmer would never have been sure whether an apparently global
function really was global. Its definition could have been captured by some unknown declaration in some
namespace.

Typically, only a subset of the declarations in an implementation are part of the header(s) given to users
as the interface(s). The implementor will therefore put additional names into a namespace and will also
gain access to additional information from other name spaces needed by the implementation (only). For
example:

/1

#include "ny_library.h" // interface part of library namespace

namespace ny_library { // inplenentation details
...
}

usi ng nanmespace ny_library; // convenient access to all of ny_library

-11-

#i ncl ude "hel per1”
#i ncl ude "hel per2"

usi ng namespace hel per1; /1 or apply ‘‘using ’ selectively
usi ng nanmespace hel per 2; /1 or apply ‘‘using’’ selectively
I

Thiskind of distributed specification of members of a namespace can be used to supply several header files
for a system (describing different aspects of it) without having to use several different name spaces.
Alternatively, implementors may choose to keep implementation details in their own namespace:

#include "ny_library. h"
namespace ny_library_inmpl { // inplenentation details
usi ng namespace ny_library;

/1
}

usi ng namespace ny_library_inpl; // convenient access to all of my_library

#i ncl ude "hel per1”
#i ncl ude "hel per2"

usi ng namespace hel per1; /1 or apply ‘‘using’’ selectively
usi ng nanmespace hel per 2; /1 or apply ‘‘using’’ selectively
I

This makes the separation between the interface and the implementation clearer and will therefore often be
the better implementation technique.
4 Multiple Namespaces

Consider two namespaces using the same name;

namespace A {

class String { /* ... */ };
1.

}

namespace B {
class String { /* ... *[};
1.

}

usi ng namespace A;
usi ng nanespace B

String s; // error: A :String or B::String
Clearly, the unqualified use of St ri ng isan error. However, should it be an error to say

usi ng namespace A;
usi ng nanespace B

when A and B both have a St ri ng? That is, do we check for inconsistent using-directives or inconsistent
uses? We check for inconsistent uses (only). Thisisin line with other places in the language — for exam-
ple, overloading and name resolution where multiple inheritance is used — where we outlaw actual errors
only, and not potential errors. Also, a user that worries about potential name clashes can minimize such
clashes by being more selective:

-12 -

using A :String;
using B::f;

String s; // ok: A:String
Note that using using-declarations lead to clashes at the point of the using-declarations:

using A :String;
using B::String; /1 error: Two definitions of String
class String { ... }; /1 error: Three definitions of String

One way of thinking of thisisthat ausing-directive
usi ng namespace A,

does not enter anything into the local scope. A more specific using-declaration
using A :(f, Q);

actually entersf and g into the local scope. Naturaly, implementors have a variety of techniques at their
service so this may not actually be the way an implementation really works —it will simply look that way to
auser.

So, how does a user resolve a clash caused by multiple using-directives?:

usi ng namespace A,
usi ng nanespace B;

String s; // error: A :String or B :String
One way would be to modify the code:
A :String s;

but that is not always feasible or convenient. The alternative of changing the using-directives to more spe-
cific using-declarations was mentioned above, but there is athird aternative: Use a using-declaration in an
extra scope to resolve the ambiguity:

usi ng namespace A;
usi ng nanmespace B;

namespace Mne { // namespace introduced to allow declaration of String
using A :String;
String s; // A :String

11
}

Multiple using-directives shouldn’t be overused. They are essential for straight forward conversions of
older code into namespaces and for compatible use of standard libraries. However, in most cases easier to
maintain code can be obtained by minimizing and localizing the use of using-directives.

Old Code

| expect that it will be common to take code that does not use namespaces and convert it to use namespaces.
An old program or an old library will typically consist of a couple of header files containing class declara-
tions, constants, templates, inline functions, etc., and aset of . ¢ files containing the definition of functions,
global variables, etc.

The conversion can be done only by changing the source code and (re)compiling. The first step in the
conversion would be to wrap the header files in namespaces. In doing so, we must exclude i ncl udes of
other headers and declarations referring to functions, types, variables, etc. defined elsewhere. For exam-
ple:

-13-

/1 Mne. h:
/1 not using namespace

#i ncl ude <i ostreans>
#i ncl ude "foob. h"

extern int a;
const int ¢ = 7;

/1
extern g(); // not one of mine; I'mjust using g()
I
void f();
inline int frob() { return c+99; }
becomes
/1 Mne.h:

/1 now nanespace M ne

#i ncl ude <i ostreans>
#i ncl ude "foob. h"

namespace M ne {
extern int a;
const int ¢ = 7,
/..

} // namespace M ne

extern g(); // not one of mine; I'mjust using g()

namespace M ne {

I

void f();

inline int frob() { return c+99; }
} /1 nanmespace M ne

| like the indentation, but realistically, it will often not be done when converting hundreds of lines of decla-
rations. Had distributed specification of members of a namespace not been alowed we would have had to
reorder this header.

Next we need to ensure that the definitions in the . ¢ files match up with the declarations now in the
namespace M ne. This can be done by any of the techniques mentioned in 84. However, someone doing
a conversion that is not part of a significant rewrite will want to minimize the modifications to the code.
This can be done by wrapping the files, excluding declarations of supporting functions, variables, etc., from
elsewhere, in

nanespace M ne {
I
}

This ensures that functions that are not hamed in the header M ne. h don’t escape into the global name
space.

| expect that it will be common to have two versions during a transition period: One for systems that
supports namespaces and one for older systems that don’t. This can be managed either by totally separate
sources or by using #i f def to separate out the namespace and usi ng constructs.

5 Name Resolution

The naming rules associated with this name space proposal are designed to provide a user a choice between
notational convenience and safety in the access to functions in a name space. Consider:

-14 -

/1 nmy old program
voi d f(double);
void g()

{

f(1); /1 calls f(double)
f(1.0); [/ calls f(double)

}
Let us introduce a namespace A into this program:
/1 ny old program /1 now nodi fied

voi d f(double);

namespace A {

void f(int);

}

usi ng nanespace A, // make A’ s nanes avail able

void g()

{
f(1); /1 calls f(double) /1 no, now calls f(int)!
f(1.0); [/ calls f(double) /1 still

A :f(1); // calls f(int)
}

The namespace was not only defined but also made accessible (by the using-directive). This implied a
change of meaning of the program (according to the rules of overload resolution) exactly as would have
been the case if the function f (i nt) had been declared without the name space mechanism. This s cor-
rect and desirable behavior if you consider the functions from A at the same logical level asthe global func-
tions. Thiswill typically be the case when all of the global functions are in fact imported from some name
space or other or if the global functions are intended to supplement the functions supplied by alibrary.

Prefer Global Names

However, the names from a namespace will often be the interface to a library and simply included by some
#i ncl ude directive by a user that never actually looked carefully at the contents of the included file. In
that case, the user might want to give priority to global functions and then it makes sense to use functions
from aname space only in their qualified form:

/1 ny old program // now nodified
voi d f(double);

namespace A {
void f(int);
}

/1 no ‘‘using nanespace A '’
void g()
{

f(1); /1 calls f(double) [/ still
f(1.0); [/l calls f(double) // still
A f(1); [/l calls f(int);

}

This can be useful where a minor modification is made to an existing program and preservation of behavior
is essential. However, being explicit for some calls only can lead to surprises because the overload

-15-

resolution mechanism has been effectively disabled.

Prefer “*Own’’ Names
Another approach involves wrapping the ‘‘local’’ code into a hamespace to ensure that ‘‘local’’ declara-
tions are given priority over names from other namespaces:

/1 nmy old program /1 now nodi fied

namespace A {
void f(int);
}

namespace M ne {

voi d f(double);
usi ng nanespace A

void g()

f(1); /1 calls f(double)
f(1.0); [/ calls f(double)
A f(1); I/ calls f(int)

}

This technique of wrapping one’s own functions in a namespace has three important properties:

[1] You no longer pollute the global space with your own names.

[2] A change in included namespaces such as A no longer affects working code (even where using-
directives are used) because the local declarations are given priority.

[3] It allows me to be explicit about what names are my own. Note that global names comming from
include files are often not controlled by their users so considering all global names ‘‘my own’’
would often be a poor assumption.

Again, the technique of wrapping one's own code in a namespace uses the scope rules to limit the effective-
ness of the ambiguity control mechanism and can therefore be dangerous. An aternative view is that dis-
abling overloading in thisway enhances safety.

Overload Resolution
Note than a using-declaration introduces every function of a given name into a new scope. Thisis essential
to preserve the designer’ s intentions about their use. For example:

namespace A {
void f(int);
void f(char);
}

It is clearly the intent of the designer of A that f (97) should cal f(int) andf(’a’) should cal
f (char). Allowing selective inclusion of f (i nt) and f (char) into a scope would lay the user open
to subtle and unnecessary errors. For example:

void g()

using A :f(int); // not allowed, but ‘‘what if?
f('a); /1 calls f(int), probably wong
}

When converting old code it is essential that overload resolution apply across namespace boundaries.
Consider:

/Il my.h:
int f(int);
I

-16 -

/'l your.h:
doubl e f (doubl e);
...

/Il x.c

#include ny. h
#i ncl ude your. h

I
void g()
f(1); [l calls f(int)
f(1.0); [/ calls f(double)
}
After the obvious conversion to namespaces this will work as before:
/Il my.h:
namespace ny {
int f(int);
1.
}
/1 your.h:
nanespace your {
doubl e f(double);
I
}
Il x.c

#i nclude ny. h
#i ncl ude your.h

usi ng nanmespace ny;
usi ng namespace your;

/1
void g()
{
f(1); /1 calls f(int)
f(1.0); [/ calls f(double)
}

Similarly, using anamespace for my. h only will not change the meaning.

C Struct Hack
| do not propose to extend the C compatibility hack of allowing the same name for a class and a non-class
names to apply across name spaces. For example

class X { public: /* ... */ X(); I* ...*] };
void X(int);

void f()
{

struct X a;
X(1); /1 function cal

}
This cannot be rewritten as

-17 -

nanespace A {

class X { public: /* ... */ X(); [* ...*] };
}
namespace B {

void X(int);
}

usi ng namespace A;
usi ng nanmespace B;

void f()
{
struct X a; /1 error
X(1); /'l error
}

The reason to disallow this is partly awish not to perpetuate the C struct hack, partly to ensure that a C++
syntax checker isn't required to do ambiguity resolution. Consequently, a use of a name that is found as a
type name in one namespace and as non-type name in another is an error.

Dispersed namespace definitions
Consider:

namespace A { void f(); }

usi ng namespace A;

void f1()
{
a(); /1 error: no g() declared
}
namespace A { void g(); }
void f2()
{
9(); /1 ok? ok!
}

The second call of g is ok because ‘‘usi ng nanespace A; '’ is a directive to look into A whenever a
name lookup is done. It is not a declaration that enters names from A into the current scope. On the other
hand

namespace A { void f(); }

using A :g;
is an error because there isno A: : g to refer to. Similarly, definition of names not already declared in a
namespace is not allowed. For example:

void Ar:g() { /* ... */ } Il error: noginA

The reason not to allow addition of a new name into a namespace A simply by defining it using A: : isto
protect against misspellings, misunderstandings as to which namespace a name belongsto, etc.

Lookup Details
Using a namespace name before it has been declared is not allowed in order to make it possible to catch
typos. For example:

/1 no previous definition of A
usi ng namespace A; // error: A undefined

If necessary, the effect of aforward declaration can be achieved with dispersed namespace definition:

-18-

nanespace A { }

usi ng namespace A, /1 fine
/1 .
namespace A { /* ... */ }

This makes it possible to write mutual references between namespaces:

nanespace B { }

namespace A {
usi ng nanespace B;
I

}

namespace B {
usi ng nanmespace A,
I

}

Fortunately, it is trivial for implementations to avoid infinite loops by simply never usi ng the same
namespace twice in asingle lookup.

Global Scope
Consider
int a;
void f()
{
int a;
a++; // local a
Dlats; /1 global a
}

If we wrap a namespace around this and add yet another variable called a we get:

int a;

namespace X {

int a;
void f()
{ -
int a;
a++; // local a
X:a++; /] X :a
ira++; [/ X :a or global a ? global a!
}

}

In other words, we have to decide whether qualification by : : means ‘‘global’’ or *‘in the nearest enclos-
ing namespace.”’ The latter would ensure that wrapping arbitrary code in a namespace implied no change
of meaning. However, that would leave the genuinely global name inaccessible. Consequently, | propose
the former meaning. Therefore, : : a refers to a name found in the global scope (including, of course,
names imported into the global scope by using-declarations and using-dir ectives).

Note that using-directives can cause clashes between global names and names in a namespace:

-19-

int a;
namespace X {
int a;
}
int il =a; // global a
usi ng nanespace X;

int i2
int i3

a; /1 error: X :a or global a ?
:ra; // error: X :a or global a ?

6 Nested Namespaces

One obvious use of namespaces isto wrap a complete set of declarations and definitions in a separate name
space:

nanespace X {
/1 all ny declarations
}

The list of declarations will in general contain namespace declarations. Thus, for practical reasons — as
well as for the simple reason that constructs ought to nest unless there is a strong reason for them not to —
nested namespaces are allowed. For example:

namespace X {
nanespace Y {

void f();
1o,
}
/1
}
A user of X can use names from Y only through explicit qualification or an appropriate usi ng declaration:
fQ); /1 error: no f in global scope
X f(); /Il error: no f in X
XY f(); /Il fine
usi ng nanespace X;
Y. f(); /Il fine
usi ng nanmespace Y,
f(O); Il fine
or aternatively

usi ng namespace X :Y,;
f(); /Il fine

Naturally, usi ng can be used within a namespace. For example:

namespace A {
void f();
}

-20-

nanespace B {
namespace C {
void g();

}

void h();

usi ng nanespace A, // make A’ s nanes visible through B
usi ng nanmespace C, // make C s nanes visible through B

}

voi d k()
usi ng nanespace B;
(), /] B :f == A : f
a(); /l B::g ==B:.:C:f
h(); /1 B::h

}

This implies that namespace names are type names from the point of view of a parser and thus not a new
implementation burden.
Note that usi ng a namespace A from within a namespace B does not make A itself a member of B:

namespace A {
void f();
}

namespace B {
usi ng nanmespace A; // make A's nanes visible through B

void f();
void g();
}
void h()
{
B::A:f(); /1 error: No AinB
B::f(); /1 ok
usi ng namespace B;
f(); /1 error: anbi guous
}

The reason that B: : f doesn’t lead to an ambiguity with A: : f isthat f isfound in B so that there is no
need to look out into the global scope — where A: : f would have been found because of the usi ng
namespace A

To contrast, the plain f () is ambiguous because the usi ng nanmespace Bin h() plus the usi ng
nanespace AinBimpliesthat both A: : f and B: : f are seen when the global scope is considered |ook-
ing for f () outsideh().

Using a non-local name from within a namespace is equivalent to having qualified it with the names-
pace name when looking:

void B::g()
f(); // ok: B :f
}

AsseenfromB: : g(), f istheloca nameB: : f sothereisno needtolook ‘‘out’ into the global scope —
where A: : f would have been found because of theusi ng namespace A.

-21-

7 Namespace Names

The name of a global namespace must be unique among the global namesin a program. For example:

nanespace Foo {
I
}

voi d Foo(); /1 error: name clash

This implies that the problem of name clashes has been ‘*moved out’’ one level rather than solved in gen-
era. This is acceptable because it reduces the number of names that can clash by a couple of orders of
magnitude and al so because there is a class of non-clashing names that can be used for namespace names. |
imagine that company names and names of major libraries will be popular as namespace names. Such
names are kept distinct by commercial law and also by strong interests in keeping product names separate
and widely known. A namespace called bs might work in alocal environment but would be ill-chosen for
world-wide use. However, ATT, Rati onal , and | BMwill only clash provided there already are other
problems with those namest. Allowing the user to disambiguate clashing names in the absence of source
code requires tools that cannot be portable because they will have to operate on object code format and
obey local linkage conventions. However, in many environments it is not too hard to write a tool that con-
verts an object file to another that is equivalent except that different names are used. This can allow a par-
ticular user to overcome problems that cannot be solved in general.
Using longer names will help avoid clashes, but more or less requires the use of synonyms:

namespace Anerican_Tel ephone_and_Tel egraph {
I
}

nanespace ATT = Anerican_Tel ephone_and_Tel egr aph;

Longer names carries a — presumably not too large — overhead given the current state of common linker
technology.

One might consider avoiding clashes between namespace names and other names by requiring uses of
namespace names to be prefixed by the keyword nanespace much as C structure tags have to be prefixed
by the keyword st r uct . | consider that too ugly. To see that, rewrite the examples in this paper to con-
sistently use nanespace as a prefix or read a large C program that does not use typedef or #def i ne to
minimize st r uct asaprefix.

Note that the name of a namespace can be ‘‘re-used’’ within a namespace, but such a name will cause a
name clash if used unadorned in the global scope. For example:

namespace X {

class X {

/1

b

/1
}
X X a; /1 no problemso far
usi ng nanmespace X; // no problemso far
X b; /'l error: namespace X and class X used in same scope

Naturally, short simple minded names such asM ne, X, and A should be avoided in real code.

T Thereare —or at |east there used to be — two companies with the legal name *Rational’ in the USA.

-22-

8 Standard Libraries
Consider:

#i ncl ude <i ostream h>
#i ncl ude <string. h>

int main()
{
char* p = "Hello, world!"
cout << p <<’ ' << strlen(p) << ’'\n’;

}

This had better work as expected. However, we would aso like to use iostreams and C-style strings with-
out polluting the global namespace.

This can be done like this: First take the current <st r i ng. h> and use it to write a new header that we
might call _stri ng. h:

/1 _string.h:
namespace dib {

extern "C'
/1l contents of C <string.h>
}

}
and use thisto defineanew stri ng. h:
/1 string.h:
#i ncl ude <_string. h>
using dib;

This assumes that all standard C libraries are in a single namespace and have C linkage, but that is not
essential for this discussions.

Given this, the program above will compile — meaning that we haven’t broken any old code. Someone
who wants to use C-style strings without polluting the global name space might write:

#i ncl ude <i ostream h>
#include <_string. h>

int main()
{

char* p = "Hello, world!"

cout << p <<’ ' << dib::strlen(p) << ’'\n’;
}

Note that nested includes are very common. In general, this implies that either the headers must contain
using-directives or else the users must provide using-directives for indirectly included namespaces. For
example:

/1 hi. h:
#i ncl ude "hll. h"
#i ncl ude "h12. h"
namespace hl {
/1
}

Here the user might have to say

i ncl ude "hl. h"

usi ng nanmespace hil;
usi ng nanmespace hl1l;
usi ng nanespace hl2;

Thiswill in some cases be a violation of an abstraction because the user sees hl as a single set of services

-23-

and not as acomposite. If so, h1. h can be rewritten to

/1 hil. h:
#i ncl ude "h11. h"
#i ncl ude "h12. h"
namespace hl {
usi ng nanmespace hl1l;
usi ng nanespace hl2;
I

to allow

include "hl.h"
usi ng nanmespace hl;

Namespaces and C Linkage
Consider:

namespace A {
extern "C'" void f(int);
extern "C' void g(int);

}

namespace B {
extern "C'" void f(int);
extern "C' void g(double);

}

Isthislegal? Does A: : f () and B: : f () refer to the same C function? After al, there cannot be two C
functionscalled f () . To answer these questions let’ sfirst consider a couple of simple cases:

namespace A {
void f(int);
void g(int);
}

namespace B {
void f(int);
voi d g(doubl e);
}

Thisisclearly legal and A: : f () and B: : f () aredifferent functions. How about?:

namespace A {
extern "Ada" void f(int);
extern "Ada" void g(int);

}

namespace B {
extern "Ada" void f(int);
extern "Ada" void g(double);

}

Since Ada allows function name overloading and has a package concept that resembles namespaces one
would expect thisistolegal and A: : f () and B: : f () to refer to different Ada functions. Anything else
would require assumptions about the semantics about Ada — and a C++ compiler cannot be assumed to
know Ada. Thus, as far as C++ is concerned A: : f () and B: : f () refer to different functions indepen-
dently of linkage specifications.

Then what about C? The analogy to ordinary C++ and linkage to ‘‘other languages’ indicates that
A::f() andB:: f () must beconsidered different functions by C++ even if they have C linkage.

At first glance, this appears to prevent the use of namespaces for things like the C++ versions of the C
standard libraries — an unacceptable restriction. Consider:

-24-

nanespace Cib {
extern "C'" int strlen(const char*);
}

To be useful, st rl en must link to the st r | en found in the standard C library. This can be achieved by
either having C i b be ‘“*magic’’ or by having C linkage imply that the linkage name is the same as a global
name even for functions and objects declared within namespaces. Making Cl i b ‘*‘magic’’ doesn't sound
like avery good idea. For starters, we would need several such ‘‘magic’’ namespaces.

Fortunately, the other alternative appears manageable. C++ would consider functionssuch as A: : f ()
and B: : f () to bedistinct. However, if more than one had C linkage a linker error would occur. In gen-
eral, a C++ compiler wouldn't be able to detect such errors except where A: : f () and B: : f () was actu-
ally defined with C linkage in the samefile.

9 Eliminating Global st ati c

It is often useful to wrap a set of declarations in a namespace simply to avoid interference from declarations
in header files or to avoid having the names used interfere with globa declarations in other compilation
units. For example:

#i ncl ude <header. h>
nanespace M ne {

int a;
void f() { /* ... *I }
int g() {/* ... *}

}

However, in such cases we aren't redlly interested in the name of the namespace as long as it doesn't clash
with other namespace names. To serve that need more elegantly we could allow a namespace to be
unnamed:

#i ncl ude <header. h>
namespace {

int a;
void f() { /* ... *I }
int g() {/* ... *}

}
Except for overloading by namesin the header, thisis equivalent to

#i ncl ude <header. h>

static int a;
static void f() { /* ... */ }
static int g() { /* ... *I }

Such overloading is usually undesirable and also easily achievable when desired:

nanespace {
#i ncl ude <header. h>

int a;
void f() { /* ... *I }
int g() {/* ... *}

}

Therefore, | propose that we deprecate the use of st at i ¢ for control of visibility of global names. That
would leave st at i ¢ with asingle meaning: statically allocated, don’t replicate.

An unnamed namespace is unique to its compilation unit. A name from an unnamed namespace can be
accessed without qualification after its point of declaration.

-25-

10 Implicationsfor Classes

It has been suggested that a namespace should be a kind of class, but | don’t think that is a good idea (see
Appendix B). The opposite, that a class is akind of namespace, seems almost obvioudly true. A classisa
namespace in the sense that all operations supported for namespaces can be applied with the same meaning
to a class unless the operation is explicitly prohibited for classes. Thisimplies simplicity, generality, while
minimizing implementation effort.

Derived Classes
L et us consider some implications:

class B {
public:
f(char);
b
class D: public B {
public:
f(int);
b
void f(D& d)
d.f('c'); // calls D :f(int)
}

Thisresolves as ever. Thereisanew explanation, though: D is anamespace. The namespace Dis nested in
thenamespaceBso D: : f (i nt) hidesB:: f(char) soD::f(int) iscaled.
Now if you don't like that you can try this:

class B {
public:
f(char);
b
class D: public B {
public:
f(int);
using B::f; /1 bring B::f into D and enabl e overl oadi ng
b
void f (D& d)
{
d.f('c); // calls D::f(char) !
}

We suddenly have a choice.
As ever, names from different sibling base classes clash (independently of what they name):

struct A{ void f(int); };
struct B { void f(double); };

struct C: A B {
void g() {

f(1); /1 error: A :f(int) or B::f(double)

f(1.0); // error: A :f(int) or B::f(double)

-26-

Usi ng Base Classes
To avoid confusion a using-declaration that is a class member must name a member of a (direct or indirect)
base class. To avoid problems with the dominance rule using-directives are not allowed as class members.

struct D: A {
usi ng nanmespace A; // error: using directive as nenber

}s
Also consider:

class B {
public:

f(char);
b

class D: private B {
public:
using B::f;
s
This achieves what currently requires use of an access specification:

class D: private B {
public:
B::f;
s
Thus, usi ng declarations make access specifications redundant. Consequently, | propose to deprecate
them.

Usi ng Classes
Consider:
class X {
static void f();
void g();
s
void h()
{
usi ng nanespace X, [/ ok?
f();
g(); // error: object mssing for menber function
}

That is, should it be allowed to specify a using-declaration or a using-directive for a class? My suggested
answer is‘‘yes.”” My (weak) argument for ‘‘yes’’ is‘‘why not?’
One possibleuseistoreplacef ri end functionswith st at i ¢ membersin some cases:

cl ass compl ex {
/1
static conpl ex operator+(conpl ex, conpl ex) ;
s
conplex a, b;
conplex z1 = a+b; // error no conplex + in scope

usi ng namespace conpl ex;
conplex z2 = a+b; // ok

| remain less than completely convinced about the utility of this technique.

-27 -

11 Definition of Namespaces Features

Thisisafirst cut at areference manual style definition of namespaces.
To integrate namespaces into the reference manual text, namespaces must be defined before classes and
the aspects of classes that relates to name lookup must be rephrased in terms of namespaces.

Namespaces
The grammar for the namespace constructs is:

namespace-definition:
namespace identifiergy { declaration-listop }

namespace-alias-definition:
namespace identifier = namespace-name ;

using-declaration:
usi ng namespace-name : : identifier ;
usi ng namespace-name :: (using-list) ;

using-directive:
usi Nng nanmespace namespace-name ;

namespace-name:
identifier
namespace-name : : identifier

using-list:
name
using-list , name

An identifier in a namespace-name must have been specified to refer to a namespace by being the identifier
in a namespace-definition or a namespace-alias-definition.

The identifier in a namespace-alias-definition may not be defined elsewhere in its scope and defines a
synonym for the namespace-name mentioned. The identifier in a namespace-definition must either be
undefined in its scope or be a namespace-name defined in a namespace-definition in the same scope. All
namespaces with the same namespace-name in the same scope are considered part of the same namespace.
All global namespaces with the same namespace-name are considered part of the same namespace. An
identifier used as a global namespace-name cannot be used as the name of any other global namespace,
template, type, function, object, or value in the program.

A namespace-definition or a namespace-alias-definition is a declaration. The identifiers mentioned
after : : inausing-declaration must have been declared in the namespace named by the namespace-name.

A namespace-definition can only be occur at the global scope or within another namespace. A using-
declaration can be used as a declaration-statement, a member-declaration, at the global scope, or within
another namespace. A using-directive can be used as a declaration-statement, at the global scope, or within
another namespace (that is not a class).

All unnamed namespaces within a compilation unit are treated as one namespace *‘ the unnamed names-
pace’’ and treated asif it had anamethat is unique in aprogram. A name from an unnamed namespace can
be accessed without qualification after its point of declaration.

Members of a namespace can be defined within that namespace. Members of a named namespace can
also be defined using explicit qualification.

Anextern orfriend function first declared within a namespace or a non-namespace member of a
namespace is a member of that namespace. A type name first declared within a namespace or a non-
namespace member of that namespace is a member of that namespace.

-28-

Comments on the Grammar
Note that a name need not be a simple identifier; for example, it can be an operator-name.

Silly typing errors will inevitably arise from the syntactic similarity of the namespace constructs to
other C++ constructs. | propose we allow an optional semicolon after a global declaration to lessen the
frustration. Thiswould be akind of ‘‘empty declaration’’ to match the empty statements.

The keywords nanespace and usi ng were chosen in the hope of minimizing clashes with identi-
fiers. The word ext er n could be used instead of hanmespace to save a keyword, but this kind of key-
word overloading has led to confusion in the past.

| considered several alternatives for a syntax for specific using-declarations. The minimal syntax is
simply a namespace-name followed by alist of identifiers:

using Af String g

However, that seemed too minimal, too error-prone, and out of line with the way lists are represented el se-
where in the C++ grammar so after a few experiments | settled the namespace name followed by : : fol-
lowed by either asingle name or a comma separated list enclosed in parentheses:
using A :f;
using A :(f, String, 9);
The former is obvious; the latter simply avoids repetition of the A: : . The types of the namesf, Stri ng,
and g arefoundin A.
The simpler alternative of allowing a single name only was considered attractive, but restrictive.
The mention of nanespace in a using-directive is redundant. A compiler could distinguish using-
directives from using-declarationss based on the type of the name specified. However, that would compli-
cate parsing — and more importantly — | found the more explicit form easier to teach and read.

Explicit Qualification

A name defined in a namespace can be accessed qualified by a namespace-name for its namespace using
the: : operator . A qualified name can be used as a dnamein adefinition. In that case, the definition from
the point of the qualification until the end of the declaration is considered in the scope of the namespace.
For example:

namespace X {

typedef int I;
I f(l);
}
Xl Xe:f(l ay { /... *} /1 correct
I X f(l a) {/* ... %} /1 error: return type not in scope

usi ng

The member names specified in a using-declaration are defined in the scope in which the using-declaration
appears. The names thus declared are aliases for their origina declarations so that the using-declaration
does not affect the type, linkage, etc. of the members referred to. A using-declaration is not a definition,
thus redundant using-declarations of a name are allowed.

A using-directive specifies that the names in the namespace can be used in the scope in which the
using-directive appears exactly as if the names from the namespace had been declared outside a namespace
at the point where their namespace was declared.

A using-declaration or a using-directive does not affect names being declared.

Classes
The scope of aclassis anamespace. The scope of a derived classis nested in the scope of each of its base
classes. Qualification and using apply to classes exactly as to (other) namespaces. A using-declaration
used as a member declaration must refer to accessible base classes and/or accessible members of base
classes. A namespace that is not a class cannot be defined within a class. A namespace that is a class can-
not have names added by further namespace declarations.

The access-specifier syntax is deprecated.

-29-

Commentson Classes
Note that a using-directive cannot be used as a member declaration.

Names cannot be injected into a class by friend declarations, etc., but they can be injected into a names-
pace; see appendix E.

A namespace is open; that is, you can add namesto it from several namespace declarations. Classes are
not.

Static
Theuseof st at i c at the global scope or within a namespace that is not a class is deprecated.

12 Implementation and Compatibility | ssues

An implementation of this proposal can be done in the compiler only. Basically, the link-time aspects
namespaces can be implemented as a formalization of the old add-a-prefix-to-names techniques for avoid-
ing global name clashes. No linker support beyond support for long names is necessary. On the other
hand, linker support can provide more convenient and potentially more efficient alternatives to the use of
long names.

It is possible to implement namespaces without breaking link-compatibility.

No run-time support is needed.

The implementation of usi ng implies that the name lookup mechanism will have to search multiple
scopes (namespaces) when looking for declarations and apply the overloading rules to names from different
name spaces. This strongly resembles what has to be done for lookup in multiple inheritance hierarchies so
C++ compilers already have the internal mechanisms needed to support usi ng.

Except for clashes with the new keywords nanespace and usi ng there should be no source compati-
bility problems. Placing standard libraries in namespaces could have compatibility implications, but it
seems that placing suitable usi ng declarations in standard headers will ensure that no existing program
changes its meaning.

Experience shows that this proposal can be implemented in five days. The amount of code added was
of the order of 300 lines of C++. Our measurement tools wasn't precise enough to detect a difference in
compile time speed caused by namespaces. We haven’t yet measured link-time overheads.

13 Acknowledgements

This proposal has its origins in discussions on name space control that has taken place over the last couple
of years at standards meetings, conferences, and in particular on the extension group mail reflector. Hereis
alist of people | know contributed to the discussions or commented on previous versions of this paper: Dag
Briick, John Bruns, Reg Charney, Steve Dovich, Bill Gibbons Philippe Gautron, Tony Hansen, Peter Juhl,
Andrew Koenig, Eric Krohn, Doug Mcllroy, Richard Minner, Martin O’Riorden, John Skaller, Jerry
Schwarz, Mark Terribile, and Mike Vilot. Peter Juhl wrote theinitial implementation.

14 Appendix A : A Simpler Alternative

| have tried to be comprehensive, and that always leads to a perception of complexity. After all, you don’t
have to have seen the really warped examples to use an language feature. However, the namespace and
usi ng proposa is more complex than | would have liked and severa further extensions has been sug-
gested (and rejected).

Three simplifications have also been suggested:

[1] Making a namespace a kind of class.

[2] Don't have ausi ng declaration.

[3] Making a namespace declaration imply usi ng.
Option [1] isdiscussed in Appendix B below. This section considers[2] and [3].

-30-

Nousi ng
Consider [2]; that is, a namespace is defined as described above, but to use a namespace we must use
explicit quaification (thereisno usi ng declaration).

This makes it significantly harder to use a namespace than not to use it. Consider having to write
Qi b:: infront of every use of a standard C library function. | think that this would be intolerable and
would lead to demands that ‘‘ common and important’’ libraries should be ** special’’ in the sense that their
names should be “*truly global.”” Unfortunately, everyone would demand that privilege for their library and
sloppy practice would prevail. It would be too much of a convenience to ignore the namespace feature. |
have no faith in our ability to preach ‘*good manners’ where ‘‘bad manners’ provide a significant conve-
nience.

Some convenience could be achieved through the introduction of aliases:

nanespace X {
I
}

typedef X :String string;
int& v = X :v;
However, if such declarations find their way into common use (especially if they appear in standard header

files) we have lost the benefits of namespaces by explicitly polluting the global name space again. If
instead we made the introduction of local synonyms easier we would have reinvented usi ng.

Implicit usi ng
Consider [3]; that is, a namespace defined is as described above, but the declaration of a namespace implies
ausi ng so that every nameis accessible directly by its non-qualified name.

Not having an explicit usi ng declaration is a significant simplification, but we |lose the ability to selec-
tively include names from a namespace.

namespace X {
class String { /* ... *[};
int f(int);

}

namespace Y {
class String { /* ... */ };
doubl e f(double);

}
void f()
{
String s = "asdf"; /1 error: anbi guous
X :String s = "asdf"; /1 ok
Y::String s = "asdf"; /1 ok
typedef X :String String; // fromnow on String nmeans
[l X :String
f(1); [/ call X :f(int)
f(1.0); [// call Y::f(double)
Y. f(1); /1 call Y::f(double)
X::f(1.0); [/ call X :f(int)
int (&)(int) = X:f; [/ fromnow on f neans
I X f
}

Clearly, the ambiguity control provides some protection against surprises and t ypedef s and references
can be used to compensate for the lack of selective usi ng declarations. However, it cannot be guaranteed
that adding a namespace to an existing program doesn’t change the meaning. Consider:

-31-

int f(int);

11

void h()

f(1.0); [// calls f(int)
}
Adding a namespace Y might change its meaning (as specified by the overload resolution rules):

int f(int);

11

nanmespace Y {
doubl e f(doubl e);

I
}
I
void h()
{

f(1.0); // calls f(int) [// no |longer:

/1 nowit calls Y::f(double)

}

Is this an acceptable cost to make saving us from usi ng declarations? Many have expressed the opinion
that it isn’t: It must be guaranteed that names doesn't “‘leak’” from a namespace into the global namespace
without explicit programmer action.

Note that because the lookup rules for namespaces with implicit usi ng are aimost identical to the
lookup rules for namespaces plus explicit usi ng declarations, there isn’'t a significant difference in the
implementation difficulty of the two variants.

15 Appendix B: Namespaces and Classes

A classisatype. A classis also a mechanism for grouping declarations in a separate scope. As shown in
81 a class can be used for name management though it is not ideal. However, could the class concept be
extended to become a convenient mechanism for name space control thus rendering nanespace redun-
dant or allowing nanespace to be defined as akind of class? Actually, of course it could, the real ques-
tionsare'‘should it?’ and ‘‘how different from other classeswould ananespace haveto be?’

| don't have a*‘killer argument’’ for or against namespaces as classes, but my view is that on balance
equating namespace and class is more trouble than it is worth; that is why this section is an appendix and
not a proposal.

Having ananespace be akind of cl ass in amanner similar to the way uni onsand st r uct sare
cl asses might minimize the set of concepts a user had to learn and maximize the uniformity of the lan-
guage rules. So consider defining a namespace asacl ass from which no objects can be created, but
that is an object itself (much like an anonymous uni on is). To ease discussion, let us call such a class a
nodul e to distinguish it from namespace as discussed above. However, if we actually decided to go
with a namespace as a class variant | think that ** namespace’’ might still be the better keyword.

Thus defined, a modul e need not have the restrictions on membership specified for other classes to
make object creation manageable. For example, a nodul e can have template members (a necessity). A
nodul e can’t have operator new and del et e functions because there is only one (implicitly allocated)
object of the nodul e *‘type.’’ However, a nodul e constructor might be useful, as might a modul e
destructor. Please note, however, that a nodul e could only have one constructor and that would almost
certainly have to be a default constructor. A nmodul e might also have virtual functions, though, because
there seem no reason not to give the unique object representing the modul e a virtual function table.

-32-

Derived nodul es could provide overriding functions.

Name L ookup

We could give a module *‘implicit usi ng’’" as suggested in variant [3] above, but that is out of character
for aclass, so we must consider if ausi ng declaration is needed. It is needed for the reasons given in the
discussion of variant [2] above. In other words, lookup issues are not affected by having a nodul e as
class compared to the namespace (non-class) proposal.

Distributed Specification
The key differenceisthat a class (interface) is specified in one place and anamespace as specified above
can be added to wherever necessary. Thus a nmodul e has a unique (centralized) interface whereas a
nanespace does not specify alimited set of names defined in a unique place.

Is this different important and if so in which ways? At first glance, not being distributed looks like a
serious problem. However, derived modules and/or usi ng declarations can be used to provide most bene-
fits of extensibility. For example, say module X isgiven and | really want to add to it:

modul e X {
I

b
| can simply derive from X:

nodule Y : public X {
I
b

Anything within Y can now use X's public and protected names as conveniently as X's own functions, and
my users can use X's and the names | added through Y as conveniently asif | had added to X directly.
The same effect can be achieved through usi ng:

nodul e Y {
usi ng nanespace X;
/1

s

In fact, thisis the way one would simulate inheritance in the nanmes pace proposal.

We generally try to avoid having object definitions in headers, especially objects that are meant to be
unique. Since a nodul e defines a unique object, yet it will typically live in a header to alow its use,
nodul e definitions would be unique in the language (and thus different from other classes and a likely
source of controversy and confusion). The implementation support for nodul es would be unique also.
However, any technique used to obtain a unique virtual function table can be used.

Are there any definite and significant benefits from having a unique definition of a module compared to
the distributed definitions of a namespace? | see none. If they exist, they ought to have something to do
with initialization (see below).

Class specific Features

Let's consider class specific features to see if they help in name space management. Constructors and
destructors help with initialization and cleanup, but there is no really good way to specify initialization
order for global objectsin different compilation units. Maybe the module concept could help? Consider:

/1 X h
nmodul e X {
A a;
B b;
i
/Il Xc
B B :b = g(/*args*/);
A X :a = f(/*args*/);

Ordinary class rules say that member a should be constructed before member b. However, ordinary global

-33-

object initialization rules say that B: : b’s initializer should be executed before X: : a’s. We could resolve
this (one way or the other or as an error), but having a namespace as a class actually added a problem rather
than helping us by providing a existing rule to resolve the issue. Further, unless we introduce something
new (not already in our class concept) the module concept does not help with initialization order problems.

Derived modules and virtual module functions seems an intriguing concept. However, derived modules
can be simulated trivially by namespaces and usi ng, and | have trouble seeing any important uses of
nodul e virtual functions. All | can come up with for Modul es seems to be just as well handled by a
class with a unique object:

class X { /* ... *I } X

The essential power of derived classes comes when objects are manipulated through interfaces defined as
base classes referred to through pointers and references. Having a single anonymous object only cramps
my style.

Classes interact with templates and | can think of some really nice uses for template nodul es and for
nodul e names as template arguments. However, there is nothing particularly difficult in extending the
template concept to allow template nanespaces so thisisn't an argument for or against namespaces as
classes.

Global Declarationsvs Member Declarations
Currently a class member cannot be given C linkage. This must be allowed for modules. For example:

nodul e M {
extern "C" void f(int);

b
Similarly, mrodul e member templates must be allowed. For example:

modul e M {
extern "C'" void f(int);
tenplate<class T> class Y { /* ... */ };
tenmpl ate<class T> f(T*) { /* ... *| };
s

Theidea of wrapping ananespace declaration around a complete . ¢ file does not have an equivalent for
nodul es. That would have required the suspension of the rules for what initializers can appear in classes
and of the rule that member functions defined within a class are inline by default.

Conclusions

A classisatype. A namespaceisamore fundamental concept than classes. There is no significant benefit
in merging the two concepts. There are several minor problems with treating a namespace as a class (all
can be overcome). On balance, it is better to build the concept of a class on the concept of a namespace
rather then the other way around.

16 Appendix C: Possible Further Extensions

Naturally, many extensions to the nanmespace and usi ng proposa have been suggested. For example,
several ideas have been along making namespaces more like classes or more like modules; these are consid-
ered in Appendix B. Here, | will just mention some variants of usi ng.

A usi ng declaration brings one or more names into the current namespace.

Renaming
However, what if | don't like the names chosen by the designer of the namespace. Maybe usi ng should
allow me to chose a synonym that is more to my taste. For example:

using g = A f;

| think thiswould be afrill because C++ aready has ways of expressing synonyms:

/1 no using

typedef A :String String;

int& m= A :n;

int (&)() = A:f;
We don’t have a general way of expressing synonyms independently of the type of the function, type,
object, etc. named. |f we want such a mechanism | suggest we look at ways of generalizing t ypedef . |
don’t plan to pursue this, though.

The reason for that is partly that | don’t see a need for it, but primarily that | dislike chasing chains of
aliases while maintaining code. If the namel see spelled f isreally the g defined in the header which actu-
ally isdescribed as h in the documentation and what is called k in your code then we have a problem. Nat-
uraly, this would be an extreme case, but not out of line with examples created by macro-aficionados.
Every renaming requires understanding of a mapping for both users and tools.

The introduction of synonyms can be useful and occasionally close to essential. | don't see a need for
extending the mechanism provided beyond the ability to introduce aliases for namespace names, though.
Further features would simply encourage (mis)use of synonyms.

Exclusion
It was also suggested that we might like to include all names from a namespace except an explicitly named
set. For example:

using A :(!'f); /I all of A except f
using B::(!g); [/ all of A except g

f(10); /1l B :f

1.

g(20); Il A:g
Theideaisthat if we find aclash arising from aplain

usi ng nanmespace A, /1 A has f and g

usi ng nanmespace B; /1 B has f and g

f(10); /1 error: A:f or B:.:f?

I

g(20); /1 error: A:g or B::g?

we simply modify the using-directive to exclude the *‘ offending’’ names.

The problem with this solution is that it is indirect and brittle. We do not say what we want, but what
we don't want. That poorly documents our intention and leaves room for the ambiguity to reappear if we
add another namespace that again defines the excluded name. That scenario isn't unlikely for popular
namessuch as St ri ng, Bool ean, etc.

The solution is brittle because a adding a name in one of the namespaces may still break code or change
the meaning of a program.

prefer
To compensate for the weaknesses of ‘‘exclusion’” its logical compliment, an explicit expression of prefer-
ence, was suggested:

usi ng namespace A, /1 Ahas f and g
usi ng nanmespace B; /1 B has f and g

prefer A, // neaning: in case of clashes use nanmes fromA

Unfortunately, this approach still suffers from being brittle and in a sense from being too powerful. Having
“‘preferred’”’ namespace A over namespace B adding a name to A can change the meaning of a program or
make it stop compiling (just asin the case of ‘‘exclusion’’). The problem is that we have expressed an gen-
era preference for A rather than simply resolving existing ambiguities. This also means that preferring
A :f andB: : f isn't possible. One could remedy this by allowing preference for individual names to be

-35-

expressed, but now the pr ef er mechanism is starting to elaborate exactly along the lines of usi ng.
The proposal handles this example without added features through using-declarations in a namespace
introduced to allow the disambiguation (see §5).

usi ng namespace A, /1 A has f and g
usi ng nanmespace B; /1 B has f and g

namespace {

using A :g; /1 hides other g
using B::f; /1 hides other f
f(10); /1l B::f

1.

g(20); Il A:g

17 Appendix D: Overloading and Namespaces

One of the most vigorously debated issues about namespace was. Should functions overload across names-
paces and if so should overloading somehow be restricted compared with *‘ordinary’’ overloading? This
proposal suggests that overloading across namespaces be allowed according to the usual overloading rules.
Where that is not desirable, | can either refrain from using using-declarations and using-directives, or wrap
my functions in a separate namespace (84). The reason for allowing overloading across namespaces are;

[1] Overloading together with ambiguity control is an important convenience (function with the same
name and unrelated names doesn't clash, so that | don’t have to take action to resolve such clashes;
say, by renaming functions) and protection (calls that are ambiguous according to the usual C++
rules are caught).

[2] Overloading across #i ncl ude header boundaries exists in current practice and overloading across
namespace boundariesis essential to maintain current practices and upgrade current code.

[3] Use of overloaded of operators, especially current uses of << becomes quite difficult if overloading
across hamespaces is not supported.

[4] The option not to overload is available in a convenient form (use explicit qualification or express a
local preference by ausing-declaration).

TheProblem
The worry is that overloading across namespaces could become a maintenance problem. Consider:

namespace X {

void f(A);
}
namespace Y {
void f(B);
}

First note that the problem can only happen after someone applied a using-directive to both:

usi ng namespace X;
usi ng nanmespace Y;

This will cause overloading between names appearing in both X and Y even if the programmer is unaware
that a name appearsin both. A single using-directive combined with the use of genuinely global names can
cause equivalent problems. Such problems currently occur as overloading across include files. Names-
paces address such problems as long as multiple using-directives are not used. | do not consider multiple
using-declarations a problem because, like ordinary declarations, each injects an explicitly specified name
into a namespace.

The discussion was not over whether there was a problem, but about the magnitude of the problem. |
think that the problems from using-directives will be in the noise compared with problems from other
sources. Others predict ‘‘horrendous maintenance problems.”’ All rest their cases on unreliable and

-36-

subjective experience and logical arguments (also unreliable in practice). | think the real problem isthat we
cannot quantify the estimate of how often problems will occur and how hard such problems would be to
detect and correct. Not al overload problems we now experience will re-surface as cross-namespace over-
loading problems.

Personally, | would minimize the use of multiple using-directives and thus minimize the potential as
well asthereal problems. However, | don’t see how | could realistically completely avoid such usage and |
would not like to impose arule against it upon all C++ programmers. That would be too much like impos-
ing my own preferences and too much like trying to legislate morality.

Like others, | expect and recommend that purveyors of compilers and similar fundamental tools provide
optional warnings against cross-namespace overloading resolution where more than one candidate resolu-
tion exist. Peoplewho isreally paranoid (by ‘‘paranoid’’ | don’t mean *‘stupid:’’ sometimes ‘‘they’’ really
are out to get you) can work with such an option permanently enabled. However, I'm about as sure as I'll
ever be that there are large application areas where prohibiting cross-namespace overloading resolution
would be amistake. That is, I'm for optional warnings, yet against a uniformly enforced prohibition.

Examples
Consider:

nanespace X {
class A{ I* ... *| };
ostrean& operator<<(ostream& const Ag&);

}

nanespace Y {
class B{ /* ... *| };
ostrean& operat or<<(ostream& const B&);

}

usi ng nanespace X;
usi ng nanespace Y,

void f(A a, BDb)
{

cout <<a; /1 X :operator<<
cout <<b; /1 Y::operator<<

}

| think this must be allowed, and therefore | consider a*‘ no overloading across namespaces’ unacceptable.
The nastiest problem is that of a call being ‘*hijacked’’ by addition of a name in a previously unused
namespace. Here, first is an example where only a single namespace is used:

nanespace Q {
class Quad {
...
Quad(doubl e) ;
oper at or doubl e();

}s
Quad sqgrt(Quad);
}

usi ng namespace Q

void f(double d, Quad Q)

{
double sqd = sqgrt(d); [// Q:sqrt(Quad(d))
) Quad sqq = sqrt(q); Il Q:sqrt(q)

Adding another namespace with afunction that is a better match of a class and we quietly change the mean-
ingof f():

-37-

nanespace std_math { /1 expanded <mat h. h>
doubl e sqgrt (doubl e);
...

}

usi ng nanmespace std_nath;

namespace Q {
class Quad {
I
Quad(doubl e);
operator double();
Iy
Quad sqgrt(Quad);
}

usi ng nanmespace Q

void f(double d, Quad Q)
{ doubl e sqd = sqrt(d); /1 std_math::sqrt()
/1 no longer Q:sqrt(Quad(d))

) Quad sqq = sqrt(q);
In some cases, the overload resolution will get ‘‘the right’’ answer relative to the programmer’s expecta
tions; in some cases it will not. What ‘‘the right’’ answer relative to the programmer’ s expectations is can-
not be determined by a compiler. Often, problems are resolved when the programmer is a bit more specific
about what the intent really is. In this particular case, the hijacking problem would have been solved had to
programmer refrained from adding the implicit conversion from Quad to doubl e.

One might say that a programmer ought to be alert to the possibility of changes of meaning when a new
namespace is introduced, but realistically many will just add the namespace and hope for the best.

Further, the problem can occur in a dightly different form. Imagine (if you can) that originaly
std_mat h didn't haveasqrt () function. Thusthe original user code in the example above would look
exactly as before and there would be no st d_nmat h: : sqrt () to match sqrt (d). If anew release of
std_mat h addssqrt () the meaning of the user’s program will quietly change.

There is no disagreement that this is a problem, only disagreement over its magnitude and over the
effectiveness of techniques to minimize its occurrence.

Restriction

It has been suggested that overloading across namespaces should be disallowed. Thiswould certainly solve
the problem presented above, but at an a cost | consider unacceptable; it would prohibit the examples above
and close the main transition path from the current (far worse) state of affairs to the use of namespaces.

Limiting overloading across namespaces to exact matches has been suggested. This is too restrictive
because the addition of an unrelated function in another namespace could break existing code relying of a
perfectly innocuous conversion. For example, inour sqrt () example the addition of complex sqrt ()
would break the quad example even if there were no conversions between quads and conpl exs that
could cause problems.

Limiting overloading across namespaces to operator overloading has been suggested. The counter-
argument is that most programs that rely on operator overloading also rely on the overloading of afew sig-
nificant names. The sguare root function is an example. Further, this too would block the migration path
because people now rely on overloading across include files that would become separate namespaces. Lim-
iting overloading across namespaces to operator overloading would also not solve the critical hijacking
problem, only restrict its occurrence to operators.

Limiting overloading across namespaces to matches that involves only types and conversions from a
single namespace has been suggested. Unfortunately, thesqrt () example shows that even exact matches
can cause the hijacking problem. To me thisindicates that only restrictions too Draconian to be acceptable
can protect against the critical problem.

-38-

Conclusion

We need data to determine how serious the conjectured problems are. Unless new data appear indicat-
ing that the problems are serious | will consider them minor. Using the usual overloading rulesis minimal
(it introduces no new rules) and is therefore the simplest and least confusing solution. We need compilers
and tools to provide an option (only) to warn against cross namespace overloading caused by using-
directives. We should recommend the use of using-directives to be minimized. That is, to be used primar-
ily for standard libraries and as atransition tool.

18 Appendix E: Name I njection

Some declarations require names to be injected into an enclosing scope. For example:

nanespace A {
void f(struct S* p) { ... }
class X {
friend class Y;
friend int f();

}

The usual rule is that such names are injected into the ‘‘nearest enclosing non-class scope.’”” | do not pro-
pose to change this (that’s why this is an appendix), but the decision wasn’t easy. This appendix explains
the problem.

Namespaces and | njection
In the example above two alternatives are obvious:
[1] Inject the names into scope A.
[2] Inject the namesinto the global scope.
By choosing (1) we deem that a namespace isn't a class-scope for the purposes of injection.
The primary purpose of namespaces is to ensure that names are only entered into a common scope
through explicit programmer action. Thus | would hate to find that

namespace A {
/1 anything here
}

namespace B {
/1 anything here
}

could lead to aname clash. Thisisastrong argument that

namespace A {
void f(struct S* p) { ... }
class X {
friend class Y;
friend int f();

}

shouldinject S, Y, and f into A and not into the global scope. This rule aids comprehension and the build-
ing of systems for manipulation of larger units of code.
Consider a more complicated case:

namespace A {
struct U {
struct V *v; [l "V' injected into A :
friend void f(); // "f" injected into A :

}
By a simple transformation this becomes

-39-

nanespace A {

struct U; /1 forward declaration of U
}
struct A :U {
struct V *v; [l "V' injected into A :
friend void f(); // "f" injected into A::
s

In thislast case, one could seriously consider injecting V and f in the global scope. After al, we are defin-
ing a struct and the global scope is certainly enclosing. However, if we inject into the global scope the
namespace ‘‘leaks’ names into the global scope and in-class and out-of-class definition gives different
results. Thus, for A: : Uthe nearest enclosing non-class scopeis A and not the global scope.

Thisruleisn’t without negative aspects. If we implicitly inject into the namespace we cannot determine
the set of names in a namespace by listing explicitly declared the members of a namespace. This was an
arguments against injection into class scopes. However, one of the fundamental differences between
classes and namespaces is exactly that a class is has a fixed and known set of members, whereas a names-
pace is open so that we can add names at any point.

Why don’'t we ban injection? Because, if we ban injection we cannot wrap arbitrary declarations into a
namespace. For example:

class X {
friend void f(); // f() is global
s
void f() { /* ... */ }
works so

namespace A {
class X {
friend void f(); // f() is A:f()
b
void f() { /* ... */}
}

ought to work also. Note that this can be expected to be a common case because of the popularity of defin-
ing operators as friend functions. A further decomposition yields:

nanespace A {

class X;
void f();
}
class A : X {
friend void f();, // f() is A:f()
s
void A:f() { /* ... *}

From these examples we conclude that a friend function defined within a namespace is assumed to be a
member of that namespace. If we want afriend to be global we must declare it in the global scope:

void f();

nanespace A {
class X {
friend void f(); // f() is global
b

-40 -

Namespaces and ext er n
A similar problem occurs for linkage and have a similar resolution for the same reasons. Consider:

nanespace A {
void g()

extern void f(); // global or in A?

}

Isf () assumed to be in the global namespace or in A? Again we consider a program being transformed
from traditional style into using namespaces:

void g()

extern void f();
}
void f() { /* ... */}

This becomes:

nanespace A {

void g()

extern void f();
}
void f() { /* ... *I}

}

If f () hadn’t been part of the program fragment that became A but a completely different program frag-
ment (say a standard library) if should have been declared by including the relevant header. Again, we can
resolve the problem by adding a global declaration:

void f();
namespace A {
void g()
extern void f();
}
void f() { /* ... *I }

}

This exactly parallels the name injection solution. Note that in both cases the solution was to choose local-
ity as the default and allow resolution to global scope/linkage by a declaration that didn’t actually modify
the functions involved.

