Accredited Standards Committee* Doc No:
X3, INFORMATION PROCESSING SYSTEMS

Date:
Project:

Reply to:

Lifetime of temporaries

Andrew Koenig

Motivation

Classes that represent character strings often do something like this:

class String {
private:
chars data;
publiec:
String(const chars p) {
asgert(p != 0);
data = new char([strlen(p)+1];
strcpy(data, p);
}s;
~String() { delete data; }
operator const charw() { return data; }

int size() const { return strlen(data); }
// ...

}s
The conversion to const chars is intended to allow things like this:

String 8 = "hello";
printf("Xs\n", (const chars) s);

Now suppose we add a concatenation operator:
String operator+ (const String&, const String&);
We might then expect to be able to do this:

L]

Operating under the procedures of the American National Standards Institute (ANSI)
Standards Secretariat: CBEMA, 311 First Street NW, Suite 500, Washington DC 20001

X3J16/92—-002©
WG21/N0098

January 28, 1992
Programming Language C++
Andrew Koenig

AT&T Bell Laboratories

184 Liberty Corner Road
Warren NJ 07059 USA
ark@europa.att.com



String s = "hello";
String t = " world";
printf("%s\n", (const chars) (s+t));

But does this really work?

The answer is unfortunate: the present draft leaves it up to the implementation and many
(but not all) implementations actually allow this program to work ‘correctly.” The expression
s+t is evaluated into a temporary and operator const chars is called for that temporary.
After operator const chars returns, the draft says. the temporary is ‘dead’ and that it can
therefore be destroyed any time until the end of the containing block.

Unfortunately, if the temporary is destroyed before calling printf, then the associated
destructor will free the auxiliary memory used by that temporary. That, of course, is the
same memory addressed by the pointer returned by operator const chars, so that by
the time printf gets around to using that pointer, it points to garbage.

Of course, the current draft does not require C++ implementations to free the temporary that
early. Indeed, some implementations leave the temporary around until the end of the
enclosing block, in which case that same pointer now points to valid memory.

This disparity between C++ implementations naturally raises the question: what, if anything,
should the Standard say about lifetime of temporaries?

Accurate definition is better for users

The present situation is better for implementers than for users. If I am trying to write a
portable C++ program, I cannot say

printf("%Xs\n", (const chars) (s+t));

because there is no guarantee that it will work on every implementation. On the other hand,
implementers will have a strong incentive to destroy temporaries as late as possible because
almost all implementers want to make it easy for users to move programs to their
implementation. Thus we have the distressing situation where most implementations will
have this useful behavior available but conscientious users will not be entitled to take
advantage of it!

This is a general principle: a Standard whose purpose is to make it easy for people to write
portable programs should leave as little unspecified as reasonably possible. For that reason,
it is important to look at the lifetime of femporaries and see whether it can be defined more
sharply than it is at present. :

The alternatives

The Standard might specify any of several possibilities for destroying temporaries. We can
associate each possibility with a phrase that describes it:

Immediate destruction. This would require every temporary to be destroyed as soon as its
value has been used. It may be necessary to say precisely what is meant by ‘“‘used,” of
course. For example, in an expression like £(x).g(), it is essential that the value returned
by £ not be destroyed until after g has been called! Aside from that, though, there would be
few difficulties in agreeing on just what is meant by “immediate.”

End of statement. A temporary persists until the end of the statement that created it. That
would allow

printf("%s\n", (const chars) (s+t));
to work but would prohibit



const chars p = g + t;
printf("%s\n", p);

because the temporary created by s+t would have to be destroyed before the printf call
could get at it. This would mean that by the time printf£ is called, p points to garbage.

End of block. This is probably the most liberal policy that makes sense: a temporary stays
around until the end of the block in which it was created. This would allow both

printf("%s\n", (const chars) (s+t));

and 7:‘\7

e
const chars p = g + t; c.r»3‘ = mi
printf("%s\n", s+t); G, < ‘ﬁ‘ﬁ

but would still prohibit this: ) c\c_ / y S

L A W’? C »
const chars p; «Yﬁz’ -7 " K
{ R e
String s = "hello"; h &Z;v/' T
String t = " world"; — S .¢;>
Pe=8+t; e N,

} < Y
printf("%s\n", p):
That seems fair, as no one would expect the following related example to work, either:

const chars p;

{
String s = "hello";
P = B

}

printf("%Xs\n", p);

There is another reason not to demand that temporaries persist beyond the block in which
they were created: that block might be iterated:

const chars p[100];

for (int 4 = 0; 4 < 100; 1i++) {
String a = "hello";
pli] = 8 '+ string("");

}

It temporaries persist beyond their block, the implementation would have to maintain a
dynamic list of all the temporaries that were created in evaluating the multiple instances of
s + "" in order to guarantee that the elements of p point somewhere sensible. Garbage
collection may be a desirable thing, but this is not a good way to introduce it!

Conditional temporaries

Temporaries are sometimes created in a conditional context. In that case, it might make
sense to destroy them within the ‘scope’ of that condition regardless of the policy that applies
to other temporaries.

The trouble is that doing otherwise may have to be implemented in a way that is expensive
to the user. Consider, for example, the expression x?(const char#)(p+q):0. If x is
nonzero, then p+q is evaluated, yielding a temporary that must be destroyed at some point.
If x is zero, then that temporary was not constructed and therefore must not be destroyed.

If the destruction of this temporary is deferred until after the ?: expression is complete, the
implementation must remember whether the temporary was constructed in order to decide
later whether to destroy it. If there are many such temporaries, much time may be



consumed in testing such flags. * wd A

Therefore, even if unconditionally created temporaries persist until the end of the block, it
might make sense to destroy conditionally created temporaries earlier. We can distinguish
the resulting cases by using the word conditional to refer to a strategy in which temporaries
created conditionally are destroyed early and unconditional for a strategy in which all
temporaries are destroyed at the same time. Thus we might have conditional end of statement,
unconditional end of statement, and so on.

Early destruction is hazardous

At one time I thought that immediate destruction was the best course because it made it easy
to define the meaning of an expression: evaluate its subexpressions, evaluate its root operator
or function, destroy the temporaries in the subexpressions, and yield the result of the root
operator.

Two things convinced me otherwise.- First;- immediate- destruction is essentially the strategy
adopted by the GNU g++ compiler. The author of their string library says he receives several
complaints a month from users about things like

printf("Xs\n", (const chars) (s+t));

This suggests that immediate destruction has usability problems. I thought at first that those
problems could always be traced to classes that returned a pointer (or reference) to data
belonging to the class itself, and that the solution was simply not to design string classes
with const chars conversions but rather require the user to allocate the memory for the
result of the conversion. However, consider this:

const String& passthru(const Stringsé x) { return x; }

This function accepts a reference and returns the same reference. There doesn’t seem much
wrong with that. But under early destruction, the following will fail:

int n = passthru(s+t).size();

because the temporary associated with s+t will presumably be destroyed before calling size
on what, as far as the compiler is concerned, is a completely independent object! This
suggests that immediate destruction is too early, just as retaining temporaries beyond the end
of the block is too late.

There is, however, another possibility. In the example above, the call to passthru(s+t)
binds a reference to the result of s+t because passthru takes a const String& argument.
The current draft says that a temporary with such a reference bound to it persists as long as
the reference does, but is not presently clear as to just how long that is when the reference is
itself a formal parameter, as here. It might, for instance, make sense to say that such a
reference persists until the end of the largest expression enclosing it.

Safety, frugality, and invariants

The main practical issue surrounding lifetime of temporaries is keeping users from being
surprised when memory they expected to be able to use vanishes unexpectedly. In that
sense, later destruction is always better, because it always reduces the set of circumstances in
which users might be unpleasantly surprised.

However, several users have noticed that the amount of memory consumed by temporaries is
potentially significant:

Matrix a, b, ¢}
// give values to a, b, and ¢, and then ...
Matrix m = a + b # ¢;

Here, bec requires a temporary. If that temporary cannot be deleted until the end of the
surrounding block, it may wind up consuming a great deal of memory in a context where the



user did not expect it. Moreover, it doesn’t work to force earlier destruction by saying
{ Matrix m = a + b » ¢; }
because then m goes out of scope as well.

Destruction at end of statement might seem to be the best compromise here, but it too
violates the principle of least surprise: in all other contexts, where e1 and e2 are expressions,

el, e2;
has exactly the same effect as

el; e2;
If temporaries are destroyed at end of statement, this is no longer true.
The choice

None of the alternatives seems to have a conclusive advantage over the others, although
some may have conclusive disadvantages. In general, when choosing between something
that is easy to use and something that is easy to implement, C++ has tended towards what is
easy to use; that tendency should guide our choice here too. With that in mind, let's
examine each of the alternatives. Immediate destruction. There is no difference between
conditional and unconditional immediate destruction. Immediate destruction is probably
easiest to define and implement. It is known to cause problems, however, as seen by
existing users of existing classes. It therefore seems like a dubious idea to require all other
implementers to force their users to confront the same problems.

Unconditional end of statement.

This has the advantage that it would allow things like
printf£("%s\n", (const chars)(s+t));

and also
printf("%s\n", e?(const chars)(s+t):"");

Moreover, destroying temporaries after each statement would limit the duration of large
temporaries in contexts like

Matrix m = a + b » c;

and would reduce the amount of time that would have to be spent testing flags for
temporaries the did not need to be destroyed.

On the other hand, it would not allow either

const chars p = g + t;
printf("%s\n", p);

or

const chars p = 0;
if (e)

p=s + t;
printf("%s\n", p);

which some people might consider to be cleaner ways of writing the previous examples.

Conditional end of statement. This has the advantage of not requiring the implementation to
generate and test extra flags, but it breaks

printf("%s\n", e?(const chars)(s+t):"");

in addition to the examples that fail under unconditional end of statement. It is worth



noting, however, that this example could be written this way:
printf("%s\n", (const charw)(e?(s+t):String(""));
in which case it would work under conditional or unconditional destruction.

As noted before, destroying conditionally or unconditionally at end of statement introduces
for the first time the notion that

el, e2;
and
el1; e2;

are not equivalent. More generally, destroying at end of statement might discourage users
from breaking up big statements into smaller ones.

Unconditional end of block. This is the most liberal ‘policy that is at all workable. However,
the extra flags involved could potentially be quite expensive at run time. For example:

{
if (e) goto X;
if (e1) p1 = 81 + t1;
if (e2) p2 = 82 + t2;
if (e3) p3 = 83 + t3; -
/7 ...
X:
/77 ...
}

Assume here that e1, e2, and so on are ints, 81, 82, t1, 2, and so on are Strings and
P1, p2, and so on are const chars. Then each of the + expressions requires a temporary.
Under unconditional end of block destruction, these temporaries cannot be destroyed uritil
well after label X, which means that the compiler must either test one flag for each temporary

or do the flow analysis to recognize that if ¢ was nonzero when tested, the rest of the flags
are unnecessary.

Conditional end of block. The last example illustrated that in the context of destruction at
end of block, it is not enough to use “conditional” to refer only to temporaries created in a
conditional context within a single expression. Instead, we must interpret ‘“conditional”
within the context of the entire block.

If we do that, we come up with a notion with a certain appeal: under conditional end of
block destruction, every temporary must be destroyed as late as possible in the block in which it was
created, with the added stipulation that every control path through the destruction point must also pass
through the construction point.

Although this formulation is a useful first approximation, and covers some cases nicely, It
turns out that it does not cover all. Looking first at our earlier example:

{
if (e) goto X;
if (e1) p1 = 81 + t1;
if (e2) p2 = 82 + t2;
if (e3) p3 = 83 + t3;
/77 ...

X:
/7 ..

}

we see that each of the temporaries created by s1+t1, s2+t2, and so on must be destroyed



at the end of the statement that created it, because control after that is merged with the path
that would have been followed had the corresponding en been zero. In other words, in a
statement of the form

if (e) s; else t;

where e is an expression and s and t are statements, we see that any temporaries created in
s must be destroyed in s, any temporaries created in t must be destroyed in t, and
temporaries created in e will generally persist beyond the if statement itself.

Where the rule doesn’t quite make it, though, is in something like this:
if (e) { 31; 1f (e1) goto x; 82; } else t; u;

Does the goto statement affect when temporaries from e are destroyed? The presence of the
goto means that it is possible for e to be evaluated without also evaluating u.

I believe this problem can be solved by defining a classof ‘abnormal transfers of control’ that
would include return, break, continue, goto, and throw. For each of these transfers,
we could define just what its affect would be on destruction of temporaries created in a block
containing the transfer. I have not yet attempted to make this rigorous, but am confident
that it is possible.

Of course, either conditional or unconditional end of block destruction can potentially lead to
consuming extra memory, a problem that some users have noticed.

Summary

This has been an attempt to analyze the advantages and disadvantages of several possible
strategies for destruction of temporaries. I am not recommending any particular choice at this
time: I once strongly favored immediate destruction and am presently leaning toward
conditional end of block, but the issues are still far from clear. This analysis is therefore
intended to form a basis for further discussion.



