Doc No: X3]J16/91-0130
WG21/N0063
Date: 4 November 1991
Reply to: Dag Briick

Comments on C++ Concurrency

Dag M. Briick

Department of Automatic Control
Lund Institute of Technology
Box 118,5-221 00 Lund, Sweden
dag@control.lth.se

This paper gives a brief description of uC++, an extended version of C++
with primitives for concurrent programming, and evaluates the Waterloo
proposal’s suitability for standardization. There is also a more general dis-

cussion of some fundamental requirements for concurrent programming
in C++,

1. Summary

Some sort of standard C++ concurrency library is desirable, although there are sev-
eral opinions of what it should look like. The preliminary proposal from University
of Waterloo [Buhr et al, 1991] describes an interesting system called zC++, and a
revised version of 4C++ is described in [Buhr and Stroobosscher, 1991]. There are
two drawbacks of the proposal that I believe will prevent it from being accepted as
a standard in its present form:

e The proposal relies on substantial extensions of the basic C++ language, both
new syntax and new semantics. Most importantly, the changes will have an
impact on all C++ programs, not only those that use concurrency. The increase
in complexity also affects every C++ implementation.

* The proposal is written based on one particular view of concurrency. Although
I'think the proposal is reasonable, it will surely not correspond to every inter-
pretation of the word concurrency. Because the proposal is based on language
extensionsand not only library extensions, thereis no obvious way to substitute
a different concurrency scheme.

The authors hope that their proposal can form the basis for further discussions of
concurrency in C++. The analysis in the paper provides valuable input to X3J16: it
defines three fundamental execution properties and shows how common concur-
rency mechanisms can be expressed as combination of the execution properties.

It is clear that better designs and implementations of some constructs can be
provided if the language is carefully revised. Some problems that arise in concurrent
programming lend themselves to general solutions that deserve closer study, e.g.,
assertion of class invariants. Other concurrency primitives cannot be implemented
in an efficient and type-safe way without major extensions to C++.

2. Overview of 4C++

HC++ provides support for several forms of concurrent programming through a
combination of language extension and library extension. Synchronous communi-
cation between concurrent objects* is performed using function calls; asynchronous
communication was deemed too complicated to be provided as a built-in feature.
4 C++ extends C++ with some new keywords:

uCoroutine uSuspend uWhen

uTask uResume uOr

uMutex uAccept

uNoMutex uWait
uSignal

uCoroutine or uTask replace the keyword class to indicate a concurrent object.
uMutex and uNoMutex are new type qualifiers that specify the presence or absence
of mutual exclusion of public member functions. The other new keywords control
synchronization. For example,

uMutex uCoroutine Foo {
public:

Foo():

void Set (int);

uNoMutex void Get (int §&);
}:

defines a coroutine where public members are protected from multiple access,
except Get which is explicitly declared to have no protection.

The current implementation translates each extension into one or more C++
statements. 4C++ uses a single-memory model and executes on uniprocessors and
multiprocessor shared-memory computers running the UNIX operating system.
So far, uC++ has never been used in a stand-alone configuration for hard real-time
applications.

In the current version, tasks do not have priorities to distinguish operations
running at different time scales, and the authors believe that in future versions
of uC++, two priority levels are sufficient in practical applications — certainly a

controversial position. The two-level scheme will be implemented in future versions
of uC++.

* Concurrent object is a deliberately loose term representing objects used for coroutines or au-

tonomous tasks (processes). The proposal uses better terminology, which is too specific to use
here.

3. Some fundamental requirements

I'think the proposal is most valuable in that it identifies three dimensions of the
design space for concurrent systems. Most (maybe all) mechanisms for concurrent
programming can be identified as combinations of the following three execution
properties:

Thread. Execution that occurs independently of other execution. Conceptually
this is a virtual processor whose function is to advance execution by changing
execution state.

Execution state. The state information needed to permit concurrent execution.
An execution state is either active or passive, depending on whether or not it is
currently being executed by a thread.

Mutual exclusion. An action on a resource that takes place without interruption
by other actions on the resource. In concurrent systems, mutual exclusion is needed
to guarantee consistent generation of results. o

Common mechanisms for concurrent programming can then be expressed as com-
binations of the fundamental execution properties:

Execution Mutual
Mechanism Thread state exclusion
Class object no no no
Monitor no no yes
Coroutine no yes no
Coroutine-monitor no yes yes
Task yes yes yes

Other combinations are either contradictory (e.g., thread without execution state),
or essentially useless (task without mutual exclusion).

Ibelieve the identification of these three execution properties will be useful for
discussing concurrency in C++. It will enable analysis of capability, flexibility and
complexity of concurrency proposals.

Threads

The notion of threads is intimately associated with scheduling, i.e., some sort of
algorithm that decides which thread should be executed next. Scheduling is one of
the main characterizations of a real-time system, and many design issues depend
on the chosen scheduler. Different forms of scheduling are needed depending on
the application, and flexible implementations allow user-defined schedulers.

Consequently, I do not think scheduling should be standardized by a langua ge
committee. Given a standardized coroutine facility (see below), different forms of
scheduling can be implemented in a portable way. The portable implementation
may be inefficient, but efficient specialized implementations are also possible.

Execution state

The notion of execution state is not difficult to describe with an abstract base class,
although implementations will of course be tailored to the architecture. The defi-
nition must prescribe some mechanism for context switching, such as, uSuspend

and uResume in 4C++ or Transfer in Modula-2. Coroutine-style programming
would then be possible in C++. »

Execution state can be defined as a pure library extension and need not affect
the language definition. Particular implementations may handle context switching
more efficiently, just like some C/C++ implementations implement stremp and
mamcpy by inline code.

Mutual exclusion

A fundamental problem in implementing a monitor, or some other protection mech-
anism, is to guarantee that the resource is protected. In current C++ real-time
systems the programmer must explicitly use the correct mechanism, for example,
wait/signal on a semaphore or a lock object. It is possible to provide functions that
enforce mutual exclusion in a base class, but it is not possible to guarantee that they
will be called.

Mutual exclusion can be regarded as a special case of class invariant. A general
mechanism for asserting class invariants would most likely be able to handle mutual
exclusion.

The predecessor to C++, C with Classes [Stroustrup, 1982], had such a mecha-
nism. Given two classes written in an extended C++,

class Monitor { :

call Monitor(); // Lock protected region
return Monitor():; // Free protaected region

}:

class Mailbox : public Monitor {
void Send(int);
}:
a call to Mailbox: :Send () would implicitly invoke the inherited member func-
tions that guarantee mutual exclusion:
void Mailbox: :Sand ()

{
Monitor::call Monitor():

Monitor: :return Monitor():
}

Extending the language with proper call/return functions will probably not affect
existing C++ programs and implementations, and will not introduce any cost when
not used. An extended version of C++ that provides similar features (and much
more) is described in [Seliger, 1990]. An alternative approach is to provide a tool
that inserts lock objects in the appropriate places (wherever that is).

Some concurrency primitives are inherently difficult, or impossible, to imple-
ment without major language extensions. For example, the uAccept statement of
HC++ (similar to Ada’s rendez-vous) provides efficient type-safe communication
with selection from multiple queues.

Two-phase construction

Another problem we have encountered is two-phase construction, i.e., the need to
let the constructor of a base class do some additional initialization after the object
is constructed. In the following example we want to make a process eligible for
scheduling when it has been completely constructed.

class Process (
char* stack;
protacted:
Process (int stacksize);
virtual void Main() = 0;
}:

extern void Schedule (Process *p):;

Procass: :Process (int stacksiza)
: stack(new char[stacksiza])
{
Schedule (this) ;
}

The problem is that the object is not completely constructed when the process is
made ready to run. In a typical implementation, the “vtbl” does not contain a valid
entry for the virtual Main function. In the destructor case, the derived part of the
process object has been destroyed before the base class destructor suspends the
process.

These problems can of course be “solved” by the application programmer; the
correct calls to schedule the process must be inserted in the constructors of the
derived classes, which means that all derived classes need intimate knowledge of
the process implementation. It is essential that only leaf classes call Schadule, so
complete knowledge of the inheritance hierarchy is also needed.

This is one of the most important difficulties when realizing concurrency with
a library based approach; uC++ uses some sort of magic to handle two-phase
construction. One possible solution for C++ is to re-invent the inner concept of
Simula-67 [Birtwistle et al., 1973}:

Process: :Process (int stacksize)
: stack (new char[stacksize])
{
inner;
Schedule (this) ;
}

Construction of the base class is done in two phases. Firstly, the base class construc-
tor is run up to the innar statement. Secondly, derived classes are constructed.
Thirdly, the rest of the base class constructor is run. In this example, the pro-
cess is not scheduled until construction (process initialization) is completed. The
main advantage is that the desired behaviour can be guaranteed by the base class
implementor. There are, of course, several fine points that are not discussed here.

Low-level requirements

We need some simple mechanism for implementing the mutual exclusion primitive.
A C++ equivalent to the test-and-set or test-and-add instructions found on many
processors would be useful. This is also a library extension and will not affect the
language definition.

Most forms of concurrent programming require re-entrancy. We cannot require
that every standard library function be re-entrant, but the C++ standard should
enable the programmer to avoid functions that are not re-entrant. I suggest that
the standard will require every implementation to list all functions that are not
re-entrant.

References

BIrTWISTLE, G. M., O.-J. DaAHL, B. MYHRHEAUG, and K. NYGAARD (1973): SIM-
ULA BEGIN. Auerbach Publishers Inc., Philadelphia, PA, USA. Also published
by Studentlitteratur.

Bugr, P. A, G. DircarieLp, R. A. STROOBOSSCHER, B. M. YOUNGER, and
C. R. ZaRNKE (1991): “uC++: Concurrency in the object-oriented language
C++.” Software — Practice and Experience. ANSI document X3J16/91-0133
ISO document WG21/N0066.

BuHgr, P. A. and R. A. STROOBOSSCHER (1991): uC++ Annotated Reference Man-

ual, Version 3.0. Department of Computer Science, University of Waterloo.
Preliminary Draft.

SELIGER, R. (1990): “Extending C++ to support remote procedure call, concurrency,
exception handling, and garbage collection.” In Proc. USENIX C++ Conference,
San Francisco, CA, USA. USENIX Association. April 9-11, 1990.

STROUSTRUP, B. (1982): “Classes: an abstract type facility for the C language.”
SIGPLAN Notices, 17:1, pp. 42-51.

’

