
X3J16/94-0096
WG21/N0483

Template Issues and Proposed Resolutions
Revision 7

John H. Spicer
Edison Design Group, Inc.

jhs@edg.com

June 1, 1994

Revision History

Version 1 { March 5, 1993: Distributed in Portland and in the post-Portland mailing.
Version 2 { May 28, 1993: Distributed in pre-Munich mailing. Reects tentative decisions
made in Portland and additional issues added after the Portland meeting. In Portland, the
extensions working group reviewed most of the issues from 1.1 to 2.8 and also reviewed 6.3.
Version 3 { September 28, 1993: Distributed in pre-San Jose mailing. Reects decisions made
in Munich. No new issues were added in this revision.
Version 4 { November 24, 1993: Distributed in post-San Jose mailing. Reects decisions made
in San Jose. Note that issues that have been closed as a result of formal motions in San Jose
will be omitted from subsequent versions of this paper. In San Jose the extensions working
group identi�ed a number of issues that required additional work. These issues have not been
addressed in this paper but will be addressed in the next revision.
Version 5 { January 25, 1994: Distributed in the Pre-San Diego mailing. The 41 closed issues
have been removed, 20 have been added, and a few existing ones have been updated.
Version 6 { March 25, 1994: Distributed in the Post-San Diego mailing. Reects decisions
made in San Diego. Note that issues that have been closed as a result of formal motions in
San Diego will be omitted from subsequent versions of this paper. In San Diego the extensions
working group identi�ed a number of issues that required additional work. These issues have
not been addressed in this paper but will be addressed in the next revision.
Version 7 { June 1, 1994: Distributed in the Pre-Waterloo mailing. The 24 issues closed in
version 6 have been removed and 16 new issues have been added.

Introduction

This document attempts to clarify a number of template issues that are currently either unde-
�ned or incompletely speci�ed. In general, this document addresses smaller issues.

Of the issues that are addressed, some are covered in far more detail than others. Some of
the resolutions represent solid proposals while others are more like trial balloons. The more
tentative proposals are so designated in the body of the document.

Even those resolutions that represent fairly solid proposals are only proposals. This doc-
ument is not intended as a formal proposal of any speci�c language changes. Rather, it is



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 2

intended as to be used as a framework for discussion of these issues. Hopefully this will ulti-
mately result in formal proposals for language changes.

Organization of the Document

The document is organized in sections. Each section consists of a list of questions. Each
question has an answer, a status, the version number of the �rst version of this document that
included the question, and the version number of the last change in the question. This allows
the reader to skip over questions that have not changed since the last time he or she read the
document.

Acknowledgements

I would like to thank Bjarne Stroustrup who contributed greatly by providing issues, reviewing
and improving upon proposed resolutions, and providing insights into other language changes
that may impact templates.

Summary of Issues

Because this is a rather long document this summary is provided to allow the reader to quickly
�nd issues in which he or she may be interested. Note that closed issues have been removed
from the body of the paper. Please refer to a previous version of the paper for additional
information on these issues.

Template Parameters

1.1 Can template parameters have default arguments? (closed in version 4)

1.2 Where can default arguments for template parameters be speci�ed? (closed in
version 4)

1.3 Can a type parameter be used in the type declaration of a nontype parameter?
(closed in version 4)

1.4 Can a nontype parameter as used above have a default argument? (closed in version
4)

1.5 Should it be possible to redeclare a template parameter name to mean something
else inside a template de�nition? (closed in version 4)

1.6 Can the name of a nontype parameter be omitted? (closed in version 4)

1.7 Can the name of a type parameter be omitted? (closed in version 4)

1.8 Can a typedef appear in a template declaration? (closed in version 4)

1.9 Can a nontype parameter have a reference type? (closed in version 4)



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 3

1.10 Are quali�ers allowed on nontype parameters? (closed in version 4)

1.11 May a template parameter have the same name as the class template with which it
is associated? (closed in version 4)

Class Template References

2.1 Can a nontype parameter that is not a reference be used as an lvalue or have its
address taken? (closed in version 4)

2.2 Can the class template name be used as a synonym for the current instantiation
inside a class template? (closed in version 4)

2.3 Can a class template have a template parameter as a base class? (closed in version
4)

2.4 Can a local type be used as a type argument of a class template? (closed in version
4)

2.5 Can a character string be a nontype argument? (closed in version 4)

2.6 Can any conversions be done on nontype actual arguments of class templates?
(closed in version 6)

2.7 What causes a template class to be instantiated? (closed in version 4)

2.8 How can a class template name be used within the de�nition of the template?
(closed in version 6)

2.9 The previous rule makes possible runaway recursive instantiations. How should an
implementation prevent this? (closed in version 5)

2.10 At what point are names injected? (closed in version 6)

2.11 Does an array parameter decay to a pointer type? (closed in version 6)

2.12 What can be used as an actual argument for a parameter that is a reference? (closed
in version 4)

2.13 Can template parameters be used in elaborated type speci�ers? (closed in version
4)

2.14 Can a class template or function template be declared as a friend of a class? (closed
in version 6)

2.15 Can template arguments be supplied in explicit destructor calls? (closed in version
4)

2.16 What happens if the same name is used for a template parameter of an out-of-class
de�nition of a member of a class template and a member of the class? (closed in
version 6)



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 4

2.17 What happens if the name of a template parameter of a class template is also the
name of a member of one of its base classes? (closed in version 6)

2.18 When must a type used within a template be completed? (closed in version 6)

2.19 Must a specialization declaration precede the use of a class template in a context
that requires only an incomplete type? (closed in version 6)

2.20 Proposal to defer error checking for operator ->. (closed in version 6)

2.21 When are names considered known in a template dependent base class? (closed in
version 6)

2.22 Proposed revision to rules for explicit instantiation of all class members.

2.23 How does name injection interact with the semantics of friend declarations?

Function Templates

3.1 Can function templates have default function parameters? (closed in version 4)

3.2 Can the parameters with default arguments involve template parameters in their
types? (closed in version 5)

3.3 Can a local type be used as a type argument of a template function? (closed in
version 4)

3.4 Can any conversions be done when matching arguments to function templates?
(closed in version 5)

3.5 The WP requires that every template parameter be used in an argument type of
a function template. What constitutes a \use" of a template parameter in an
argument type? (closed in version 4)

3.6 Can unnamed types be used as template arguments? (closed in version 4)

3.7 Can template parameters be used in quali�ed names in function template declara-
tions?

3.8 Can a noninline function template be instantiated when referenced? (closed in
version 4)

3.9 A proposal to allow conversions in function template calls. (closed in version 6)

3.10 What happens when the explicit speci�cation of function template arguments results
in an invalid type? (closed in version 6)

3.11 How do default arguments work when using new explicit specialization declarations?
(closed in version 6)

3.12 How do old style specialization declarations interact with new style ones? (closed
in version 6)



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 5

3.13 Revisiting default arguments.

3.14 What are the rules regarding use of the inline keyword in function template decla-
rations?

3.15 How may elaborated type speci�ers be used in function template declarations?

3.16 Clari�cation of template parameter deduction rules.

3.17 How may an overloaded function name be used as a function template argument in
a context that requires parameter deduction?

3.18 Must a function template declaration be visible when an instance of the template
is called?

3.19 What are the rules regarding the deduction of template template parameters?

Member Function Templates

4.1 Are inline member functions that are not used by a given class template instance
instantiated? (closed in version 4)

4.2 Can a noninline member function or a static data member be instantiated when
referenced? (closed in version 4)

4.3 Must the template parameter names in a member function de�nition match the
names used in the class de�nition? (closed in version 4)

4.4 What are the rules regarding use of the inline keyword in member function decla-
rations? (closed in version 6)

4.5 How are default arguments for parameters of member functions of class templates
handled? (closed in version 4)

4.6 Can a class template member function be redeclared outside of the class? (closed
in version 6)

4.7 Can a member function of a class specialization be instantiated from a member
function of the class template?

4.8 Can a template member function be declared in a specialization declaration?

4.9 Can a member function de�ned in a class template de�nition be specialized?

Class Template Speci�c Declarations and De�nitions

5.1 Can you create a speci�c de�nition of a class template for which only a declaration
has been seen? (closed in version 4)

5.2 Can you declare an incompletely de�ned object type that is a speci�c de�nition of
a class template? (closed in version 4)



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 6

5.3 Can the class template name be used as a synonym for the current speci�c de�nition
inside the speci�c de�nition? (closed in version 4)

5.4 Can a speci�c de�nition of a class template be a local class? (closed in version 4)

Other Issues

6.1 Should classes used as template arguments have external linkage? (closed in version
4)

6.2 When must errors in template de�nitions be issued and when must they not be
issued? (closed in version 4)

6.3 What kinds of types may be used in a function template declaration while still being
able to deduce the template argument types? (closed in version 4)

6.4 Can a static data member of a class template be declared with an incomplete array
type? (closed in version 4)

6.5 How should template arguments that contain \>" be parsed? (closed in version 4)

6.6 Can template versions of operator new and operator delete be declared? (closed
in version 4)

6.7 How can a name that is unde�ned at the point of its use in a template declaration
be determined to be a type or nontype? (closed in version 4)

6.8 May template declarations be given a linkage speci�cation other than C++. (closed
in version 6)

6.9 Should there be a translation limit that speci�es a minimum depth of recursive
instantiation that must be supported? (closed in version 6)

6.10 Can a single template declaration declare more than one thing? (closed in version
6)

6.11 Can a storage class be speci�ed in a template parameter declaration? (closed in
version 6)

6.12 Can an incomplete type be used as a template argument? (closed in version 6)

6.13 Can a template nontype parameter have a void type? (closed in version 6)

6.14 Can a nontype parameter be a oating point type? (closed in version 6)

6.15 What kind of expressions may be used as nontype template arguments?

6.16 Can a template parameter be used in an explicit destructor call? (closed in version
6)

6.17 Can pointer to member types be used as nontype parameters?

6.18 Issues regarding declarations of specializations.



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 7

6.19 Clari�cation of explicit designation of a name as a type.

6.20 Template compilation model proposal.

6.21 How is a dependent name known to be a template?

Nontype Parameters for Function Templates

A proposal for nontype parameters for function templates as required by the Bitset class.
(closed in version 4)

Class Template References

2.22 Proposed revision to rules for explicit instantiation of all class members.

In the current WP an explicit instantiation request of a template class implies the in-
stantiation of all its members. I propose that this be revised to say that it implies the
instantiation of all its members that have not been specialized.

Status: Open

Version added: 7
Version updated: 7

2.23 Question: How does name injection interact with the semantics of friend declarations?

The semantics of friend declarations in class templates are not clear. Prior to adoption
of the \no injection" rule, most implementations seem to treat a function declared in a
friend declaration in a manner similar to the equivalent declaration appearing outside of
the template. The declaration, in addition to granting friendship, also a�ected overload
resolution. In the following example f(A<int>,int) is injected from the instantiation of
A<int>. As a result, the call of f(ai, 'c') is treated di�erently than the call of f(1, 'c')

because the former allows conversions of its arguments while the latter does not1.

template <class T> void f(T, int);

template <class T> struct A {

friend void f(A<T>, int);

};

int main()

{

A<int> ai;

f(ai, 'c'); // Calls f(A<int>,int) with conversion

f(ai, 1); // Calls f(A<int>,int)

f(1, 'c'); // Error - no matching function

f(1, 1); // Calls f(int,int)

}

1This example is written using the \old" rules that permitted name injection and also the rules that prohibited
conversion of function template arguments. Under the new conversion rules, the conversion of char to int would
be allowed even for the function template call.



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 8

The motivation for the \no injection" rule was to avoid the silent introduction of declara-
tions that a�ect overload resolution, so clearly the old semantics of friend declarations are
made obsolete by the no injection rule. But what are the new semantics?

Proposal one: A friend declaration in a template class conveys friendship, but does noth-
ing more. It has no e�ect on overload resolution or on the source of the de�nition. A
specialization declaration may not be used in a friend declaration. A class specialization
is treated as a normal class declaration for purposes of injection.

This proposal has a number of unfortunate consequences. A friend declaration in a class
template is unlike any other declaration in the langauge. Furthermore, when selecting
rules for class specializations one must choose between the normal class rules and the class
template rules. Either choice results in some kind of inconsistency. Either it is impossible
to write a class specialization whose semantics duplicate those of the class template or it
is impossible to write a class specialization (or class template) whose semantics duplicate
those of a normal class.

template <class T> void f(T, int);

struct A {

friend void f(A, int); // Friendship & overload resolution

friend void f<>(A int); // ???

};

template <class T> struct B {

friend void f(B<T>, int); // Friendship only

friend void f<>(B<T>, int); // ???

};

void f(B<int>, int); // Affects only overload resolution

void f<>(B<char>, int); // Affects only source of definition

Proposal two: Proposal two is a proposal to bring back name injection. John Barton and
Lee Nackman of IBM have a paper in the pre-Waterloo mailing2 arguing that injection
from templates is an important facility. As a consequence of the Barton/Nackman paper
the injection issue may be revisited. Should the committee's previous decision regarding
injection be reversed I want to have an equivalent clari�cation of friend semantics available
as part of such a resolution.

The �rst part of this proposal is a description of the proposed name injection rules (this
was the original version of issue 2.10 from revision 1 through revision 4 of this paper).

// Name injection

template <class T> struct A {

friend void f(A<T>){}

friend void f2(struct X* x);

};

void main()

{

void* fp;

2I've been told that such a paper is expected to be in the mailing



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 9

X* x; // Error - X is undefined

fp = f; // Error - f is undefined

f2(x); // Error - f2 is undefined

A<int> a;

X* x2; // OK - X defined during instantiation of A<int>

fp = f; // OK - only one instance of f

A<char> ac;

fp = f; // Error - f is now overloaded

}

Nothing is injected when the class template is scanned. X, f(A<int>), and f2 are in-
jected into the global scope when A<int> is instantiated. When A<char> is instantiated,
f(A<char>) is injected into the global scope. X already exists so nothing else is done with
X.

The second part of the proposal clari�es the sematics of friend declaration in template
classes.

A friend declaration in a template class, as in other classes, conveys friendship and injects
a declaration into the enclosing scope that a�ects overload resolution. A specialization
declaration may not appear in a friend declaration.

The advantage of this proposal is that normal classes, class temlates, and class specializa-
tions are all handled in the same way.

Status: Open

Version added: 7
Version updated: 7

Function Templates

3.7 Question: Can template parameters be used in quali�ed names in function template dec-
larations?

template<class T> void f(T::X a);

template<class T> void g(T::E a);

template<class T> void h(T::I a);

struct X {

struct Y {};

enum E {};

typedef int I;

};

struct Z {

typedef X::Y my_y;

};

void g()



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 10

{

X::Y y

X::E e;

X::I i;

Z::my_y y2;

f(y); // f(X::Y);

f(y2); // f(X::Y);

g(e); // g(X::E);

h(i); // Error - type of i is int not X::int

}

The example shown above illustrates the most general use of this construct. A more typical
use would probably be something like the following:

template <class T> struct A {

struct B {

friend B& operator +(const B&, const B&);

};

};

template <class T> A<T>::B& operator +

(const A<T>::B& b1, const A<T>::B& b2){}

template <class T> void f(A<T>, A<T>::B){}

int main()

{

A<int> a;

A<int>::B b1;

A<int>::B b2;

A<int>::B b3;

f(a, b1);

b1 = b2 + b3;

}

This illustrates that the question really boils down to \can nested types be used in function
template declarations". The arguments for supporting this kind of usage are the same as
the arguments for providing nested types at all. In my opinion, it should be possible
to take just about any class and convert it into a template. Banning nested types in
function template declarations would make it impossible to convert many kinds of classes
into template equivalents.

There are at least two compilers (IBM and EDG) that currently support this feature.

Note that now that nontype template parameters may be used in function templates, the
same principle applies to nontype parameters. For example,

template <int I> struct A {

struct B {};

};



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 11

template <int I> void f(A<I>, A<I>::B){}

One concern that has been expressed regarding this feature is that in a construct such as
T::A, T is the class in which A is declared and not strictly a type attribute of A. While this
is true, it does not change the fact that what is being deduced is in fact a type (or nontype
in the case of nontype parameters). The question is whether the class of which a type is a
member can be used as information from which type (or nontype) information is deduced.
In other words, we are not adding a new kind of deduction, we are simply expanding the
kind of information that can be used by the deduction process.

Answer: Yes. A name declared this way is assumed to be a type name.

Note that the type of the actual argument must be a nested type (class/struct, union, or
enum). A typedef is simply a synonym for another type and cannot be used.

This proposed resolution suggests that a compiler should be able to determine that names
used in this context are types. An alternative would be to require explicit designation as
a type. The current facility for such designation (using typedef) is not well suited for this
kind of construct, so some change to the current facility would probably be required.

Status: Open

Version added: 1
Version updated: 7

3.13 Revisiting default arguments.

I would like to recommend that we revisit the proposed rules for default arguments to
specify that the default arguments for a given specialization be locked in at the point that
name binding occurs.

This is motivated by examples such as the following. If it is possible to add default
arguments to a function template with template parameters that depend on other template
parameters, then the new default argument would need to be type-checked for each of the
instantiations that have already been generated { a process which has the potential of
yielding new errors for the already generated instantiations.

While this is possible to do, I think it would be more confusing to users than simply saying
that the default argument information is locked in when the �rst instance of the template
is referenced. I would recommend the same for member functions.

template <class T> void f(T, T, T*);

void g1()

{

int i;

f(i,i,&i); // Default arg information locked here

}

template <class T>

void f(T, T, T* = new T); // Error - default arguments modified

// after the first use



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 12

void g2()

{

int i;

f(i,i); // Without this rule, is this legal?

char c;

f(c,c); // How about this?

}

In the following example, a default argument is provided that is only valid for certain
instantiations. How would the behavior of this program change if the default argument
declaration (currently declared at point #2) were moved to either #1 or #3?

If the declaration were at point #1, an error would be issued at the call labeled #4 because
the default argument is incompatible with the parameter type.

If the declaration were at point #2, should an error be issued at point #2 because the
default argument is invalid for an existing instantiation? Or, should the error only be
issued if the default argument value is actually used in an invalid call?

Unless we adopt a rule that prohibits changing the default arguments once name binding
has occurred, we introduce a situation in which the legality of one call depends on whether
or not a previous call of the same function has been seen. I think this is undesirable.

template <class T> void f(T, T);

struct A {};

// template <class T> void f(T, T = 1); // #1

void g1()

{

int i;

A a;

f(i,i);

f(a,a); // #4

}

template <class T> void f(T, T = 1); // #2

void g2()

{

int i;

A a;

f(i);

f(a,a); // Is this an error?

f(a); // Error: default argument has wrong type

}

// template <class T> void f(T, T = 1); // #3

Status: Open

Version added: 5
Version updated: 7



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 13

3.14 Question: What are the rules regarding use of the inline keyword in function template
declarations?

Answer: Whether a function template is declared as being inline or static has no e�ect on
specializations. If a specialization is to be inline it must be declared inline regarless of how
the template was declared.

template <class T> void f(T) {}

template <class T> inline void g(T) {}

inline void f<>(int){} // OK

void g<>(int){} // OK (not inline)

Declarations of any given template or specialization must be consistent with previous
declarations (using the same rules that apply to nontemplate functions).

template <class T> void f(T) {} // Defaults to noninline

template <class T> inline void f(T); // Error: conflicts with

// previous declaration

template <class T> inline void g(T) {}

template <class T> void g(T); // OK - defaults to previous

// declaration

Status: Open

Version added: 7
Version updated: 7

3.15 Question: How may elaborated type speci�ers be used in function template declarations?

template <class T> void f(struct T t){}

template <class T> void f(union T t){}

template <class T> void f(enum T t){}

union U {};

struct S {};

class C {};

enum E {};

int main()

{

U u;

S s;

C c;

E e;

f(u); // Calls f(union T)

f(s); // Calls f(struct T)

f(c); // Calls f(struct T)

f(e); // Calls f(enum T)

}



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 14

Answer: An elaborated type speci�er in a function template declaration restricts the func-
tion matching process so that only actual arguments of the appropriate kind will match
the template.

Status: Open

Version added: 7
Version updated: 7

3.16 Clari�cation of template parameter deduction rules.

The WP does not currently describe how the type deduction process works when multi-
ple function arguments are used to deduce a single type. I believe that there is general
agreement on how this is done, but the WP needs to be explicit about this process.

Proposed clari�cation: Template parameters that are not explicitly speci�ed must be de-
ducible from the actual arguments of a given call (such parameters will be referred to
as deducible parameters). A set of template parameter values (types and nontypes) is
produced for each function parameter containing deducible parameters. Each function
parameter is deduced independently of any other parameters (i.e., the deduction of one
parameter does not bias the deduction of a subsequent parameter). The set of parameter
values deduced from a function parameter must be consistent with the values deduced
from previous parameters (i.e., one can determine that a given template fails to match a
call when a parameter value deduced from one function parameter is inconsistant with the
value deduced from a previous function parameter).

In the following example, both calls are ill-formed beacuse the values of T deduced for each
of the function template's function parameters are not consistent with one another.

Some compilers incorrectly accept the �rst call while rejecting the second call. These
compilers incorrectly perform a derived to base conversion on the second argument. In
other words, the evaluation of the �rst function parameter biases the deduction of the
second. The type deduction process should not exhibit this kind of order dependency.

template <class T> void f(T, T){}

struct A {};

struct B : public A {};

int main()

{

A a;

B b;

f(a, b); // Error - no matching function

f(b, a); // Error - no matching function

}

Status: Open

Version added: 7
Version updated: 7



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 15

3.17 Question: How may an overloaded function name be used as a function template argument
in a context that requires parameter deduction?

Answer: If the address of an overloaded function is used as an argument in a function tem-
plate call, the compiler attempts to match each member of the set of overloaded functions
with the function template parameter. The result must be a single nontemplate function or
a template function reference in which all of the template parameters have been explicitly
speci�ed (i.e., in which no type deduction is required).

template <class T> void f(void (*)(T, int));

void g(int,int);

void g(char,int);

void h(char,int);

void h(int,int,int);

int main()

{

f(g); // Error - ambiguous

f(h); // OK - only h(char, int) matches

}

The following is another example using member pointers instead of normal pointers:

struct A {

void f(int){}

void f(int, int){}

};

template<class T1, class T2> void g(T1* t, void (T1::*func)(T2)){}

main() {

A a;

g(&a, &A::f); // OK - only A::f(int) matches

}

Status: Open

Version added: 7
Version updated: 7

3.18 Quesiton: Must a function template declaration be visible when an instance of the template
is called?

file1.c:

template <class T> void f(T){}

int main()

{

f(1);

some_function();

}



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 16

file2.c:

void f(int);

void some_function()

{

f(1); // Error (although not a required diagnostic)

}

Answer: Yes. If the de�nition of a function is to be supplied by a generated compiler
instance, the template declaration must be visible at the point of the call. If the de�nition is
to be supplied by a user specialization, both the template declaration and the specialization
declaration must be visible.

Note: A compiler could diagnose this kind of error by using a di�erent name mangling
scheme for template and nontemplate functions and detecting the presence of both template
and nontemplate varieties of the same name.

Status: Open

Version added: 7
Version updated: 7

3.19 What are the rules regarding the deduction of template template parameters?

Answer: A template template parameter may only be deduced from a template template
parameter of a template class instance used in the argument list of the call.

template <template X<class T> > struct A {};

template <template X<class T> > void f(A<X>){}

template <class T> struct B {};

int main()

{

A<B> ab;

f(ab); // Calls f(A<B>)

}

Status: Open

Version added: 7
Version updated: 7

Member Function Templates

4.7 Question: Can a member function of a class specialization be instantiated from a member
function of the class template? (This is an issue raised by Erwin Unruh). I believe this is
a clari�cation of existing practice.

Answer: No. In the example below, A<int>::f() is unde�ned and would result in a linker
error. The same rule applies to static data members of class specializations.



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 17

template <class T> struct A {

void f();

};

template <class T> void A<T>::f(){}

struct A<int> {

void f();

};

int main()

{

A<int> a;

a.f();

}

Status: Open

Version added: 7
Version updated: 7

4.8 Question: Can a template member function be declared in a specialization declaration?

Answer: Yes. (However, see also 6.18)

template <class T> struct A {

void f();

};

template <class T> void A<T>::f(){}

void A<int>::f(); // OK - A<int>::f will not be generated from

// the template

int main()

{

A<int> a;

a.f();

}

Status: Open

Version added: 7
Version updated: 7

4.9 Question: Can a member function de�ned in a class template de�nition be specialized?

template <class T> struct A {

void f(){}

void g();

};

template <class T> void A<T>::g(){}



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 18

void A<int>::f(){} // Error

void A<int>::g(){} // OK

Answer: No

Status: Open

Version added: 7
Version updated: 7

Other Issues

6.17 Question: Can pointer to member types be used as nontype parameters?

Answer: Yes. The actual argument may be a pointer to a member of the speci�ed class or
of a class derived from the speci�ed class.

struct A {

int i;

void f();

};

struct A2 : public A {};

template <int A::* pma> struct B {};

template <void (A::* pmfa)()> struct C {};

B<&A::i> b1;

C<&A::f> c1;

B<&A2::i> b2;

C<&A2::f> c2;

Status: Open

Version added: 7
Version updated: 7

6.18 Issues regarding declarations of specializations.

The language was recently revised to require that a specialization be declared before it is
used. For example,

template <class T> void f(T){}

void f<>(int); // Declares that a specialization of

// f(int) will be provided

While this usage is clear for normal template functions, it is problematic for members of
template classes. In the nonmember case shown above, the template argument list makes
it clear that the function is a specialization. In the member function, only the argument
list of the class is present, making the purpose of the declaration less clear. For static data
members the problem is even worse because the syntax for the specialization is already
used to mean a de�nition for which no speci�c value is provided.



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 19

template <class T> struct A {

void f();

static int i;

};

void A<int>::f(); // Is this a specialization declaration?

int A<int>::i; // This is a definition, not a declaration

I propose that a keyword be added to designate a declaration as a specialization and that
the current syntax for specializations be eliminated. The following are some of the possible
keywords:

template <class T> struct A {

static int i;

};

specialize int A<int>::i;

specialise int A<int>::i;

specific int A<int>::i;

specialism int A<int>::i; // Yes, specialism is a real word

Of these, I personally prefer specialize because it matches the wording used in the
working paper. If specialize is not acceptable because it is spelled di�erently in some
countries, then specific would probably be my second choice.

Status: Open

Version added: 7
Version updated: 7

6.19 Clari�cation of explicit designation of a name as a type.

The WP (14.2) says that in an explicit type designation such as

typedef quali�ed-name;

the leftmost identi�er of the quali�ed-namemust be a template-argument name. This needs
to be revised because the type designations are also needed for members of base classes
whose type depends on a template parameter.

This should be revised to say that the quali�ed-name must include a quali�er containing
a template parameter or template class name.

Status: Open

Version added: 7
Version updated: 7

6.20 Template compilation model proposal.

One of the issues that has been around for a long time is how a user needs to organize
his/her template source code so that it may be moved from one compiler to another without
requiring any reorganization.

The speci�c issue is where the de�nition of noninline member functions and static data
members must be speci�ed.

There are at least three di�erent models that are either in use or have been discussed:



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 20

1. All de�nitions must be present in all compilations (in order for the automatic instan-
tiation mechanism to be guaranteed to work). As I understand it, this is the approach
used by the Borland compiler.

The advantage to this approach is that it allows users to organize their source code
(e.g., �le names, directories, etc.) in any form desired as long as the necessary text is
included at compile time. Another advantage is the fact that it makes dependencies
between template de�nition �les easy to see (e.g., tools like makedepend will work
automatically, even when using templates).

The disadvantage is that it may result in much larger compilations than are really
required. Another disadvantage is the fact that some processors may not want to
process the de�nitions at this point in time (e.g., cfront-style link time instantiators).

2. The de�nitions may be found in a �le name \related" to the �le name in which the
template declaration was found (e.g., the de�nitions for templates declared in List.h
would be found in List.c). This is the approach used by cfront and others seeking to
be compatible with cfront.

The disadvantages of this approach is that it enforces a particular set of naming
conventions on the user, and that it makes dependencies more di�cult to understand.

3. The de�nitions are placed in an arbitrary .c �le that is separately compiled. The
output of the compiler is used at some other unspeci�ed time along with the output
of compilations that make use of the template to generate the necessary instantiations.
I'm not aware of any compilers that make use of this model.

I believe that if theWP is to mandate a compilation model, it must be capable of supporting
the most commonly used compilation models with as little change to existing source code
as possible.

I propose that a new preprocessing directive be added to the language. The new directive
would use a syntax similar to the #include preprocessing directive.

#templatedefs "filename"

#templatedefs <filename>

This directive would be placed in header �les that declare templates and would provide
the name of the �le in which the template de�nitions for noninline functions and static
data members could be found.

I think the new command needs to be a preprocessing command so that model #1 above
can be supported. In model #1, the new directive would essentially be treated as an
#include.

The preprocessing level also seems right because the preprocessor already includes the
concept of a source �le name (in #include directives), while the actual language lacks such
a concept. Furthermore, the �le name should go through the same search path processing
that normal include �le names go through. This restricts processing of �le names to the
preprocessing phase of translation and the higher level language can remain ignorant of
such things.

For compilers that implement model #2, the new directive would essentially be ignored
by the preprocessor (or perhaps translated into something else, like a pragma) and the
�le name would be passed through to the compiler. The compiler would then record the



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 21

�le name along with the other information saved about templates and would then use the
speci�ed �le name at whatever point it was needed to generate instantiations.

This directive allows complete freedom for an implementation to choose when to process the
template de�nition �le. It permits the de�nition �le to be processed during all compilations,
selected compilations (at the compiler's discretion), or at some point after compilation
(such as a link time mechanism).

If the speci�ed �le is processed at some point, it will be processed as if it were textually
included at an unspeci�ed point following the #templatedefs directive in one of the �les
in which the #templatedefs directive appeared.

The Sun3 and EDG compilers both currently make use of a mechanism (in certain com-
pilation modes) in which a template de�nition �le is included at some point during the
compilation process4. User code should not rely on inclusion at a particular point, so it
seems best to leave the inclusion point as \unspeci�ed". The Sun and EDG compilers do,
however, rely on di�erent mechanisms to generate the name of the �le to be included.

The prospect of adding a preprocessing directive is admittedly a di�cult one to swallow,
but I think a necessary one. C++ already requires a di�erent preprocessor to accommodate
// style comments. The additional processing required to handle the #templatedefs

directive would be trivial (but would be compiler dependent).

I've gotten initial comments on this proposal from a few people. I would summarize their
comments as follows:

� A new preprocessing directive is ugly and is likely to be unpopular among members
of the committee.

� However, preprocessing is probably the right place for this information to be provided.

Status: Open

Version added: 7
Version updated: 7

6.21 Question: How is a dependent name known to be a template?

This issue was raised by Erwin Unruh in c++std-ext-2239.

In the following example from Erwin's posting, the f on the indicated line refers to an
integer data member in A<B>, and to a function template in A<C>.

template <class T> class A : public T {

void foo(){

T t;

f < 1 > (t,t); // critical line

}

};

class B {

3This is based on my (hopefully correct) understanding of how Sun handles instantiations. I hope someone
from Sun will correct me if I have misunderstood.

4Actually, both compilers currently do the inclusion at the end of the primary source �le



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 22

int f;

};

int operator> (B, bool);

A<B> ab;

class C {};

template <class T> void f(T, C);

A<C> ac;

In another example from Erwin's posting, a variation of the problem using member tem-
plates is illustrated.

struct A { int x; };

struct B { template<int> void x(int); };

template <class T> struct C : public T {

void foo(){

x < 1 > (2); // critical line #1

}

};

C<A> ca; // #1 is double comparison

C<B> cb; // #1 is template function

Answer: We currently have a means of designating that a given name is a type for use when
a type will be de�ned in a template dependent base class. I propose a similar mechanism
for templates. A name will be assumed not to be a template unless explicitly designated
as one.

template <class T> class A : public T {

template f; // May be placed here

void foo(){

T t;

template f; // or may be placed here

f < 1 > (t,t);

}

};

The second example would be modi�ed as follows:

struct A { int x; };

struct B { template<int> void x(int); };

template <class T> struct C : public T {

template T::f; // May be placed here

void foo(){

template T::f; // or may be placed here

x < 1 > (2); // critical line #1

}

};



94-0096/N0483 - Template Issues and Proposed Resolutions - Revision 7 23

C<A> ca; // #1 is double comparison (now made invalid)

C<B> cb; // #1 is template function

The identi�er following the template keyword must either have no quali�er or have a
quali�er that begins with either a template parameter or a template class name.

If this proposal is adopted, I believe we should modify one of the existing uses of the
keyword template. It is currently used for template declarations and for explicit instanti-
ation requests. I believe that using it for both explicit instantiation requests and for explicit
template designation would be confusing. I propose that a new keyword instantiate be
added for use in explicit instantiation requests and that the keyword template no longer
be supported in that context.

Status: Open

Version added: 7
Version updated: 7


