
EMBEDDED C AND C++ COMPILEREMBEDDED C AND C++ COMPILEREMBEDDED C AND C++ COMPILEREMBEDDED C AND C++ COMPILER
EVALUATION METHODOLOGYEVALUATION METHODOLOGYEVALUATION METHODOLOGYEVALUATION METHODOLOGY
Class 443, Embedded Systems Conference, September 26-30, 1999

Chuck Tribolet and John Palmer

The Authors
Chuck Tribolet is a Senior Programmer at IBM Research Division’s Almaden
Research Center in San Jose, California. Chuck graduated from Stanford in
1973 with a BS in Industrial Engineering and an MS in Computer Engineering.
He joined IBM at Los Gatos in April 1973 and holds five patents on various
aspects of software. He is currently responsible for evaluating C and C++
compilers for an assortment of embedded microprocessors for use in disk drives .

e-mail: triblet@almaden.ibm.com
Voice: 408-927-2707
Fax: 408-927-4166

John Palmer is a Research Staff Member at the IBM Almaden Research Center.
He works on disk drive performance, both at the level of the overall drive and at
the level of the processors that run the disk drives. For variety, he also studies
disk error patterns to improve error recovery behavior. John graduated from
Clemson University in 1969 with a BS in Applied Mathematics.

E-mail: jpalmer@almaden.ibm.com
Voice: 408-927-1724
Fax: 408-927-4010

Abstract
Making a processor architecture change is a frightening prospect to anyone in
the embedded systems world. Not only are there questions about code porting
and new development tools, but there are likely to be large unknowns about the
performance of the new architecture. Nevertheless, advances in architecture
knowledge and decreasing chip costs make it attractive to consider the potential
gain from a more modern architecture.

In evaluating new architectures for our embedded application, we organized our
efforts in two directions: code compilation and performance modeling. In the
natural way, the two are related: generally the larger the code size, the longer it
will take to execute and the more you will have to pay for memory space.

The compiler and microprocessor vendors will all supply data showing that their
product is best. Which one is right? Asking them about the relative merits of

Embedded C and C++ Compiler Evaluation Methodology Page 1 of 17

their product versus the competition isn’t productive because they all think they
have the greatest compiler in the world, and can show you data to prove it.
Unfortunately, they spend more time turning the knobs on their own compiler
than they do on their competitor’s, so they may be comparing a well-tuned
Mustang to a poorly tuned Camaro. Furthermore, their benchmark is different
from your application. These in-house benchmarks have made them all honestly
believe they have the best processor and compiler. Obviously, they ALL can’t all
have them.

This paper presents a methodology for evaluating embedded C and C++
compilers and their associated microprocessors. This methodology was used in
the selection of the components to be used on a disk drive. It uncovered a
number of potential pitfalls early in the design cycle. Had these been uncovered
later, it would have been difficult to correct them.

We used our compiler observations in selecting the microprocessor. It was
obvious that in some cases a good compiler was enhancing the performance of
the microprocessor. Additionally, we inferred information on the performance
characteristics of the microprocessor from analysis of the generated code.

The other tool we created to aid us in evaluating choices and in correctly tuning
the final choice was a simulator that would predict the behavior of processors of
different architectures. As input to the simulator, we had traces from two
different processors running the different parts of our function that we hoped to
combine on a single processor in a new architecture. With this simulator, we
were able to predict with sufficient precision the behavior of our application on
several different architectures, use this to predict the clock rates and memory
systems that would be required with each of the processor architectures. We did
it all long before we could have created running code for any of the proposed
systems.

The paper describes the structure of the simulator itself, particularly how it was
made flexible enough to model widely differing architectures. We will discuss the
collection of traces and adaptation of them both to our expected future workload
and to each of the proposed architectures. Finally, we will discuss the type of
information obtained from the simulator and the way in which it was used in
making an architecture decision, fine tuning the system that we picked, and in
the planning for future evolution.

Compiler Selection

The Initial Approach
A naive approach is to select some code, compile for various engines or have
the vendors compile it, and tabulate the results. We started out this way, but the
actual process played out to be much more interesting.

Defining the Benchmark

Embedded C and C++ Compiler Evaluation Methodology Page 2 of 17

The best benchmark is your entire application. Size does matter. The law of
large numbers applies. Small benchmarks can produce misleading results if the
modules selected happen to match what one combination of compiler and
microprocessor handles well or poorly. Any vendor worth her salt can make a
small benchmark look good. Furthermore, a small benchmark can be compiled
on a smaller memory model than the entire application, will fit in a smaller Small
Data Area than the whole, and needs fewer registers. Early in our evaluation,
we created a single module benchmark. Its results were entirely different from
those of a much larger benchmark.

Using your entire application as a benchmark will require some degree of
modification, both to make it more ANSI compliant in the cases where it
gratuitously diverges from the standard, and to isolate with preprocessor logic
the noncompliant code in the cases that exploit some required nonstandard
feature. A couple of person-days effort made 75% of our files compile. Three
quarters of your application is a much better benchmark than any small
benchmark or any vendor benchmark. Another couple of person-weeks over the
course of the bench marking got the remaining 25% to compile. In our case, the
cost of using the entire application as the benchmark paid off. It resulted in more
accurate results, we now have a very nearly ANSI-compliant code base for our
product, and it wasn’t nearly as much work as predicted.

It is important to use your own application, or something very similar. Our
application consists primarily of long strings of if/then/else statements so loop
optimization is not as important as the optimization of linear code and branches,
exploitation of the Small Data Area, optimization of register usage, and ROM
size.

On the other hand a laser printer manufacturer would care about how fast the
code will loop through a four hundred megabit image of a page at 600 dpi. Your
benchmark must match the characteristics of your own application.

Since we did not have hardware with any of the alternative microprocessors, we
chose not to actually exectute the code generated by the various compilers. If
you are evaluating compilers for existing hardware, this would be a useful
validation of the results.

Procuring Compilers
An old recipe for rabbit stew starts off: “First, catch a rabbit.” Well, first identify
and acquire the interesting compilers. Ask your microprocessor vendors which
compiler vendor they recommend, but don’t limit yourself to just one compiler per
microprocessor. Review the trade press, and cruise the floor at the Embedded
Systems Conference. Most compiler vendors will give you a 2-8 week evaluation
license for free and they were very cooperative about extending these licenses
when the selection process went longer than expected.

You will find that some compilers are “badge-engineered,” that is, the same
compiler will appear under several names. In general, you will only need to
benchmark one of them in depth.

Embedded C and C++ Compiler Evaluation Methodology Page 3 of 17

Measurement Environment
Once you have your first compiler in hand, it’s time to start setting up an efficient
workbench for compiler measurement. You will be doing many, many, runs, so it
is very important that it take as little of your time as possible to do a run. We
ended up bench marking 22 compilers on 13 processors. One processor had six
different compilers. We ran over 150 combinations of options.

There are variations in C between compilers and microprocessors. For example
the size of an int might be 16 bits in one implementation and 32 bits in another,
or one microprocessor might have a small data area sufficient to hold all static
variables, while another’s SDA might be small and only hold a few key variables.
I set up a single master source directory. When a given compiler required minor
source code changes, I did it using preprocessor logic (#if statements) in that
master source directory. These allowed minor changes (usually in pragmas and
typedefs) to be tailored for each combination of compiler and microprocessor.

For each run on a given compiler there is a OBJ directory that contains the
output files (object and listing files) and the variable portions of the input (the
batch file used to invoke the compiler and parameter file, if any). I keep these
object directories long term, which allows me to track what the environment was,
and what the results were. Going a bit overboard on record keeping will pay
dividends down the road (but bear in mind that I do sell disk drives for a living).

Running the Benchmark
Be aggressive about trying compiler options. The compilers each have many
options, and it is important to arrive at the best set of the options for each
compiler. To arrive at a starting set, examine the set of options, and determine
which ones seem as if they might influence the resulting code. Then ask the
compiler vendor what they suggest, select a starting set of options, and start
running tests. Here’s where an efficient workbench and careful record keeping
become critical. If the option helps, keep it. If it does not, discard it for now.
Repeat this process until you have tried all the interesting options. Now go do it
AGAIN because it’s possible that while option A didn’t help on the first pass, it
will now that option B has been turned on. On the second pass, try turning off
options you turned on during the first pass — it’s possible that some other
change has now made option C a poor choice. Continue until you can’t make it
better.

Take the vendor-suggested options with a large grain of salt. Almost every
vendor has given me bad advice at one time or another. In particular, they all
seem to believe that their compiler option to minimize code size was the best. In
every case, I was able to beat this option by tweaking the individual compiler
parameters.

A thorough tweaking of compiler options will frequently generate an improvement
on the order of 30% over an initial decent set of options. If the initial set is truly
abysmal, the improvement could be in excess of 100%. I remember one Pascal

Embedded C and C++ Compiler Evaluation Methodology Page 4 of 17

compiler from a prior life that you could degrade by 10,000% with the wrong
options.

Pay attention to the memory model used and what is placed in the small data
area. A large application won’t fit in a tiny memory model or a tiny small data
area, and you may not find out until you try linking the code. You may get a rude
surprise (I did, in one case) at link time.

Comparing Compilers
As I have stated previously, the performance of our code is primarily influenced
by the performance of linear code, and linear performance is largely determined
by code size. Code size is also important due to ROM size constraints. At the
beginning, the code was written a dialect of C that was specific to a particular
compiler for a particular microprocessor (specifically Microsoft C6 for AMD 186).
After a small amount of work, each of the new compilers would compile one half
to two thirds of the modules, but different compilers failed on different modules. I
developed a scheme where we would compare the size of the modules that DID
compile to the size of the corresponding modules for the 186. For example, let
us assume that we have three compilers, A (the current base), B, and C, and
that we also have five modules (V, W, X, Y, and Z). If we compile each module
with each compiler, and extract the module sizes, we get:

In this example, had we simply compared the sizes of what did compile (470
bytes versus 620 bytes), compiler C would have been unfairly penalized for
successfully compiling the large module W, and we would have selected
compiler B. However, when we compared the relative sizes of the successfully
compiled modules, Compiler C is the winner.

Why not just compare the modules that compiled on both B and C? That would
have had a smaller sample size (three modules) than the technique shown
above (four modules).

Compiler Influences on Overall Performance
Some of the effects of the compiler on overall performance include:

Embedded C and C++ Compiler Evaluation Methodology Page 5 of 17

0.931.12Ratio (relative code size)

670420Corresponding compiler A
size

620470Compiled size
909070Module Z size

180210200Module Y size
100110100Module X size

250syntax
error

300Module W size

syntax
error

6050Module V size
Compiler CCompiler BCompiler A

1. Code size. This can be measured directly, usually by measuring the
size of the .text section. Most compilers include a tool that will do this
by reading the object file. Code size has a secondary effect of
influencing the cache performance.

2. Instruction count can be measured directly, usually with a simple
program that reads assembler listing files, or by dividing the code size
by the average instruction size.

3. Cache behavior is more difficult to evaluate analytically. You can
either run actual code on a target, or emulate.

4. SDA use is also more difficult to evaluate analytically in a direct
manner, however its effects on performance are measurable in other
ways. Poor SDA usage will results in additional memory accesses
(which can be measured or simulated) poor locality of reference
(whose influence on cache behavior can also be measured or
simulated) and larger code size (which can be measured).

5. Register use is again more difficult to evaluate analytically, however
its effects on performance are the similar to SDA use and can be
measured in the same ways. You can get a feel for this by reading
the generated assembler code.

6. Linking conventions affect performance by requiring more or fewer
instructions to perform a function call, which influence code size, and
by requiring more space in the stack, which can be determined by
inspection of the generated code.

How does one assess performance? A basic view is that the amount of time
(Ttotal) required to execute a program is the average time required to execute one
instruction (Tinst) times the number of instructions required to do the job on that
microprocessor:

Ttotal = Tinst*Ninst

How does one find the right values for Tinst and Ninst? A compiler study like the
one we have been discussing does most of the work for you. Assuming that you
can run your current code either on real hardware or a simulator and take traces
of it, count the instructions in that trace. Next, determine the average instruction
size for your benchmark. Do not accept the vendor’s average instruction size.
The product of these two numbers is the number of bytes of code executed.
Now, you can use the relative code size across different compilers and
microprocessors to generate a new “bytes of code” number that can be divided
by the number of bytes per instruction for that environment to give Ninst.

A good value for Tinst is harder to generate. The time for an instruction is the
cycle time of the machine times the number of cycles required by that instruction
(cycles per instruction, CPI). If your environment is very simple (no caches or
other unpredictable causes of processor stalls) then you can get CPI numbers

Embedded C and C++ Compiler Evaluation Methodology Page 6 of 17

from the architecture book. If you have a complex memory system, you will
probably need a simulator to determine CPI.

Compilers Can Get Better
“Greed is good,” and the compiler vendors are greedy. They want ALL the
business, and they recognize that to win they have to be the best, or at least very
close. Several of them, at various times, worked with us on joint studies of the
generated code. In one case, this study resulted in a decrease in the size of the
generated code on the order of 20%. Other studies produced smaller, but still
significant, gains. A significant lever here is being able to tell vendor A that their
code was behind the competition by X%. Warning: some evaluation licenses
have nondisclosure clauses to prevent you from telling another vendor anything
about the compiler being evaluated.

Greed also made the vendors listen and respond in weeks, not years. The
embedded compiler vendors have a relatively small number of customers and
this seems to have made them sensitive to satisfying the needs of each. Some
were much better about this than others.

The comparison of multiple compilers on a single processor proved to be a
valuable tool in pushing compiler vendors to improve their product. It’s difficult to
generalize about processors that do not have this competition among compiler
vendors. We saw one case where the only available compiler appeared to do
very well, and another where we think the compiler was a problem.

If you are fighting to stay in a certain standard ROM size, working with your
compiler vendor can be a very useful tool.

Embedded C and C++ Compiler Evaluation Methodology Page 7 of 17

Results
The chart titled “Code Size Improvements” shows data points for several
compilers, all on the same microprocessor. The vertical axis is code size relative
to the existing 186 microprocessor. The horizontal axis is calendar time,
approximately in weeks. Some significant things to note:
� All of the compilers improved greatly.
� Some of the improvements were from changing options.
� Some of the improvements were from improved versions of the compilers.
� Some of the option experiments were a BIG mistake. Note compiler D at

about week 24.
� Except for one, they all ended up very close, and that vendor claims they

have the problem solved, but I haven’t seen the code yet. Having compilers
cluster in this fashion suggests that they may be reaching the optimal result
for that processor architecture.

� Results on other microprocessors yielded similar curves. The processors
themselves appeared to have more influence on code size than the choice of
well-tuned compilers within a single processor family.

Embedded C and C++ Compiler Evaluation Methodology Page 8 of 17

Code Size Improvements

EL
F

fm
t

B
es

t G
ue

ss
 a

t O
pt

io
ns

R
em

ov
e

C
al

l V
ec

to
r T

ab
le

N
ew

 v
er

si
on

N
ew

 v
er

si
on

Fi
na

l p
os

iti
on

0 5 10 15 20 25 30 35 40
Time (weeks)

100

120

140

160

180

200

220

C
od

e
si

ze
 (%

 o
f 1

86
)

Compiler A Compiler B Compiler C Compiler D

!

!

Performance Simulation

Overview
Our challenge was to provide performance predictions for half a dozen different
processor architectures. Because of the rapidly changing costs of various types
of on-chip memory, we needed to be able to assess a number of different
memory structures attached to each processor. Finally, because of the cost of
conversion, we needed to have at least rough plans for the new architecture to
be extendable through several generations of drives, requiring predictions of
code size and MIPS requirements through several years.

Our embedded application is disk drives and disk drives run two relatively
independent types of applications. The servo application (moving the disk heads
to the right place and keeping them there) is smaller in code size, but larger in
number of instructions executed. This application is characterized by a high
interrupt rate. Basically the servo application is an interrupt handler that gets a
position error signal 5 to 10 thousand times per second and responds by
changing the power applied to the disk arm. It is critically important that this
interrupt handler run without delay because errors in execution timing can
translate to positioning errors on the disk or even total confusion about head
positioning. The other application is the command application which interprets
read and write commands to the disk, instructs the servo to move the arm, and
sets up all the other control hardware required to make a data transfer. The
command application is generally much larger (in code size) than the servo
application but the vast majority of this code is rarely used (error recovery,
format, mode settings). The code which is run routinely as part of the basic disk
read and write operations is generally relatively tolerant of changes in timing
because most of its execution time is masked by the mechanical motions
required of the arm.

In our current environment, the two applications run on separate processors.
The servo code runs on a DSP and the command code runs in an Intel 186
architecture processor. It was our intention to provide a single engine that would
be capable of running both of these applications and would be less expensive
than our current multiprocessor design. We intended to do this by putting
little-used code in inexpensive off-chip memory and locating high-usage code in
a combination of on-chip memory and caches. We expected to be increasing
the use of on-chip memory over the next few years, so we wanted to plan an
architecture that would be adaptable to this faster memory as it became
available.

A quick query to vendors showed that basically all of them had a clock rate range
that would be likely to meet our needs. Each could also talk about several
possibilities for cache sizes, speeds of multiply instructions, and various memory
options. We needed a way to decide just how much money to invest in each of
these in order to end up with a satisfactory system.

Embedded C and C++ Compiler Evaluation Methodology Page 9 of 17

We briefly considered the possibility of using prototype boards, but rejected that
approach because we didn’t have the manpower to get enough code running in
that environment to be meaningful. That approach also limits you to the memory
structure that exists on the prototype board and would not allow evaluation of
on-chip features that were critical to our designs. We also rejected using
simulators provided by the vendors. While quite useful for certain questions, all
of these were of a type that did a very precise simulation of the behavior of the
processor and its pipeline, but like the prototype board, required code that would
actually run correctly on that processor.

Realizing that we did not have the means to exploit the precise processor
models, we chose an approach that provided minimum precision in the
processor core, but did a relatively thorough job of modeling the memory system
that feeds the processor. While we couldn’t provide a sequence of actual
instructions, we did think we could construct a plausibly representative sequence
of instruction and data addresses that would suffice to exercise the memory
system. With an address trace, you can track accesses to all of the various
regions of memory, track cache contents, and make at least an approximation of
bus contention. All of the architectures we were considering were more akin to
RISC then CISC and they tended to execute most instructions in one cycle
baring delays in instruction fetch or data access. Consequently, we could make
a basic assumption that each instruction would take 1 cycle and we would
attempt to track a couple of exception case multi-cycle instructions. The
construction and use of this “address-based simulator” is the subject of the
remainder of this section.

Trace Collection
For address-based simulation, you need addresses and these we generated
from traces of our existing microcode. We collected traces for both our
command application and our servo application. Both were simple in concept,
but had “take care” aspects that bear mentioning. What one would like to do are
just hook up a logic analyzer and have it trace all instruction fetches and all data
references. In the case of our command application, we were able to follow that
plan exactly because our processor is uncached and the memory bus comes out
of the processor chip. We traced a collection of the common flavors of disk read
and write operations and concatenated these traces to make a single trace. (We
later did some work on infrequently used code like the format operation.) The
only adaptation to the trace we made at this stage was to remove trace entries
for idle time (we have an idle loop). This is important because including these
instructions will tell you that the cache works very well when you have nothing to
do, but that’s not when you care, so simulate things you care about.

Our servo application was not so easy to trace because it was already built with
on-chip memory and the processor memory bus was not visible from off-chip.
We were fortunate that the servo programmers had built a simulated
environment that they could run outside of the disk drive to do early debugging.
We were able to use existing instrumentation in that simulation environment to

Embedded C and C++ Compiler Evaluation Methodology Page 10 of 17

extract an instruction trace and could infer a data trace from it. After doing a
trace like this, a key step is to find a way to compare your trace to actual
operation. In our case, we were able to compare the simulator’s total time with
real world total time for processing an interrupt. We discovered that the
simulator had stubbed out about 20% of the total path length, so we would need
to add that back in. (More about this later.)

We did not merge the two traces because we needed to preserve the separation
so as to understand the interleaving of function under varying system conditions.

Trace Adaptation
We now had two traces, one coming from an Intel 186 architecture and one
coming from a TI DSP. We needed to convert them into traces that could have
come from each of the new architectures. We also needed to extend the traces
to account for future function additions or for those functions that were for
various reasons missing from the traces.

The architectural conversion of a trace is done independently on instruction and
data references. To convert the instruction references to a new architecture, we
followed a 4-step process. First, scan the trace to locate areas of contiguous
I-fetches. These would correspond to the “basic blocks” within the microcode
(i.e., sections of code between jumps or branches). Second, expand the size of
the block by an architecture-related code size ratio. The code size ratio’s for
each architecture were determined by the compiler study already described.
Third, assign a new starting address to the block, also based on the code size
ratio. This maintains the same relative positioning for the new and old versions
of the block. Fourth, divide up the newly re-sized block of code into instructions
of length(s) appropriate to the target architecture and insert each of these
instruction addresses in the new trace. During this process, data references are
carried through without changing the data address, leaving the references as
much as possible in the same position relative to the instruction sequence.

Data reference conversion is a little more complex because it requires adaptation
for the number of registers on the target architecture. Both of our source traces
were taken from accumulator-based machines, so those traces exhibit a lot of

Embedded C and C++ Compiler Evaluation Methodology Page 11 of 17

Original trace
Contiguous I-fetches Set 1 Set 2 Set 3

Expand /
contract
by code size ratioAdapt for memory reference

Adapt for instruction count
Re-partition into instructions
 of appropriate length

Varies with
architecture
and code type

Architecture
specific

memory loads and stores that would not appear if more registers are available.
At first, we ignored the effect of the extra memory references, assuming that
single-cycle caches and processor pipelines would make these disappear. As
we learned more about our target machines, however, we discovered that
several had extra cycle penalties for load or store operations or both. At that
point, we went back and built a simple LRU model for moving data into and out
of registers. In this model, data was put into a register when first referenced and
would not be re-fetched from memory as long as it was in a that register. Data in
a register would be discarded or written back to memory when it was the oldest
value in a register and a register was required for new data. Such a model, if
given access to all the registers in the machine, would give far too good a picture
of register effectiveness. To calibrate the model, we went to the code generated
in the compilation exercises. In a subset of the modules, we manually tabulated
the density of memory references in the generated code. Armed with this
“memory reference density”, we went back to the register model and decreased
the number of registers available to it until it yielded a set of load and store
operations equal to that in the compiled code. What we found was that
“clairvoyant” use of 4-5 registers generated a density of data references
equivalent to the compiled code, even on machines with many more registers.

The last piece of trace adaptation was artificial trace expansion to cover function
additions or, in the case of the servo trace, existing functions that were not
captured in the trace. To do this, we simply took the converted trace and
replayed it for an appropriate distance, changing the base addresses of both
code and data to a new region to simulate new code and variables.

Simulator Structure
With the traces in hand, it was time to have a simulator. As shown below, at the
center of the simulator is the “Instruction simulator” that runs the master clock
and handles the small number of exceptions to the one cycle-per-instruction
assumption. The Instruction Simulator is fed trace records by an interleave
routine that takes input alternately from the command trace and the servo trace.
The Instruction Simulator then indicates instruction fetch by sending the address
of the instruction out on the “I-fetch” path and data access by sending a read or
write out the “Data access” path. Each of these memory paths consists of

Embedded C and C++ Compiler Evaluation Methodology Page 12 of 17

multiple elements that can be any combination of busses and caches leading
ultimately to a memory of some type.

The precise definition of the instruction and data memory hierarchies is the real
key to this simulator because it is in these places that we expected to see the
largest performance effects and where we would also see the largest number of
choices that needed evaluating. To allow the dynamic configuration of a large
number of different architectural arrangements, we created each element of the
memory system as a subclass of a generic memory class. The parent class had
roughly the interface shown below in which lots of device-specific parameters are
passed when the object is created. Following creation, elements receive a set of
calls that identify the memory elements below them and address ranges
supported by each. When actual simulation starts each element will receive only
generic memory requests to read or write data. Each element of the hierarchy is

designed to accept requests from
above and pass them on to other
elements below. An element may
add time both before passing the
request on and after receiving a
response.

Within this general structure, we built
elements to simulate the timing and
arbitration priorities of busses, cache
elements that worked as instruction
or data caches, and memory

Embedded C and C++ Compiler Evaluation Methodology Page 13 of 17

The Simulator

Command
 Trace

Tailored by
architecture

Servo Trace

Tailored by
architecture

Trace Interleave
Statistics

Instruction
simulator

Branch, MPY
Instruction clock

I-fetch Data access

Instruction
Memory
Hierarchy

Data
Memory
Hierarchy

Generic Memory Element

Create

Reference
(Addr
 Len
 Time)

First word time
Last word time

Report

Reference
requests
to other
memory
elements

Statistics

(unique parameters)

Connect

(Address ranges for
lower memory

elements)

elements that would exhibit the behavior of flash, SRAM, and SDRAM. The Bus
elements we built were more often coded uniquely rather than being specified by
parameters. The cache element accepts parameters like total size, line size,
associativity, and replacement algorithm. We built memory elements for each of
the basic types of memory but then parameterized them with respect to address
range, width, and various speed characteristics.

As an example, consider the operation of the cache element. At creation time,
the initialization routine gets the total size, line size, associativity, and
replacement algorithm. It uses the size and associativity arguments to allocate
the arrays that will track the contents of each cache line. It then will read from a
disk file the contents of the cache of that type and shape at the end of the
previous simulation run (i.e., the last instruction cache of 16K bytes with line size
16 and associativity 2). We found it useful to save and restore the cache state
rather than have the early part of the simulation distorted by startup effects.
With everything in place, the first request arrives. If it is a hit in the cache, the
response is made that the data is immediately available. If the data is not in the
cache, then the cache will send a request for the appropriate cache line
addresses to the next memory element (probably the memory bus). When that
request is returned, it will have the time at which the first word in that line
becomes available and when the last line is available. If the first word is the
requested word (an architecture question), that word is returned without further
delay, but the cache element remembers that the current line is still in the
process of being loaded. If requests for other lines arrive immediately, they can
be handled. If, as is often the case, the request is for another word in the line
being fetched, then the cache must decide how much delay to add in its
response.

In this fashion, an instruction fetch request made by the Instruction Simulator will
travel some distance into the instruction memory hierarchy before being returned
and at the end it will return a time at which that instruction will be available. A
typical instruction hierarchy might consist of (1) the processor prefetch queue, (2)
an instruction cache, (3) the memory bus, and (4) a flash memory. The
illustration below is a typical configuration for our application. In it, you can see

that we have multiple paths for instruction fetch, one to on-chip memory and one
to off-chip flash. We actually have four paths to data memory, one to on-chip
SRAM, one to the flash, one to off-chip DRAM, and one to registers in the Hard

Embedded C and C++ Compiler Evaluation Methodology Page 14 of 17

Processor

16K
I-cache

4K
d-cache

HDC
DRAM

Flash
50 ns

MCU

IP Code

IP Data

Memory Bus

4K
SRAM

Servo Data

16K
SRAM

Servo Code

16
32

Disk Controller (HDC). ASIC registers we generally defined as an SRAM with
appropriate timing.

Simulator Output
Running the simulator produced for us, as “management output”, an indicator of
whether performance was sufficient. Of much greater import was further
information about the performance of the various components of this specific
configuration. Among these, it was particularly useful to have overview
information about sources of delay and we typically did this with a breakout of
CPI (Cycles Per Instruction). In such these bar charts, the bottom 1 is our basic
one cycle per instruction assumption. The chart below shows that the servo

code is executing with little delay, but the command code is running about three
times slower because instruction fetch and data access delays. Clearly this code
that is running from cache and obviously getting enough cache misses to cause
a significant slow down. Without knowing more about the environment you can’t
say whether it needs to be fixed and if so, whether the best way to improve
things would be to increase the cache size or to change the memory backing the
cache. In this particular case, actually, it was fast enough for our purposes so
more cache space or memory improvements would have been an unnecessary
expense. A couple more simulator runs told us how much cache would be
required to make the large I-fetch and data access delays go away if we needed
the extra speed.

This type of analysis was typical of our use of the simulator: postulate a
configuration, run the simulator to define performance, identify opportunity areas
if better performance is needed, and then try several alternatives to find the most
attractive one.

In addition to the overview of delay sources, we always had the simulator
generate output on the specific performance of each component. For a cache,
that might look like the following:

Embedded C and C++ Compiler Evaluation Methodology Page 15 of 17

Servo IP Overall
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

C
 P

 I

HDC
Branch
Multiply
Load/Store
D-fetch
I-fetch
Cycles

Cycles Per Instruction

I-cache results
Total: 383034
Hits: 368179
Misses: 14855
Hit Ratio: 96.1 %
Hit times: 18953 usec. Average: 51.5 nsec
Miss times: 6355 usec. Average: 427.8 nsec

What You Can Use It For
We used the simulator for LOTS of things. It helped us identify functional
configurations for every vendor. Given a successful configuration, it then helped
to identify a lowest cost successful configuration. It allowed us to play “what if”
games with possible future memory technologies (or prices). It gave us a way to
answer the processor vendors when they asked for advice on cache sizes and
shapes. It gave us ammunition is a couple of cases to sway their architects to
our way of thinking on the importance of certain memory hierarchy approaches.
(We discovered that the vendors generally only get relatively confused direction
from the users of their processors, so if you walk in with this kind of detailed
understanding, they tended to listen.)

Most of the issues we addressed were specific to our application and
environment, but there were a number of observations that seem to be broadly
applicable:
� If you will be using a cache, making sure it works well enough should be your

number 1 priority. Cache success comes from low miss rate, a fast line fetch
time, or both. Fix performance with whichever is less expensive.

� Watch the clock speed issue. It can be misleading. Processors with smaller
instruction sizes often need higher clock rates than those with larger
instruction sizes. Code size often (but not always) goes down with smaller
instructions, but seldom as much as the decrease in instruction size.
Consequently, you end up needing more of the little instructions and hence a
higher clock rate to do the job in the same time.

� Don’t assume your silicon vendor understands your requirements and
potential uses for on-chip memory. Some were better than others in this
area.

� The numbers you get from the vendor on cycles per instruction (or
instructions per cycle) are achievable on some workload but almost certainly
not on yours.

A warning to the unwary is appropriate. Simulators require large amounts of
skepticism, particularly when you are predicting the future. Every time you
change anything, even an input parameter, you need to assume that the
simulator has gone haywire and is generating spurious results, particularly if
those results look interesting. Any time you get an “interesting” result, you must
have enough intermediate or component timing output so that you can identify

Embedded C and C++ Compiler Evaluation Methodology Page 16 of 17

the precise features that are causing the interesting behavior and, from that,
decide whether or not you will accept the simulator as being realistic. In my
experience, even the most unexpected results are easy to explain once you get
them and spend a little time looking at component performance. If you don’t get
a simple explanation, it is HIGHLY likely that the simulator is lying to you.

Even with the risks of being misled, a good simulator is often the only best
chance for making the right first guess at what silicon to build. Particularly
across major shifts like a change of architecture, it can provide insights that will
save much valuable time in rebuilds avoided. So, good luck in your endeavors
and may the simulator be with you.

Embedded C and C++ Compiler Evaluation Methodology Page 17 of 17

	backform:

