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Introduction 
 
This paper discusses the basics of hardware manipulation using C and C++.  It focuses on 
the common idioms for controlling devices that you can write in Standard C or Standard 
C++. 
 
Both C and C++ provide the following features that aid embedded programming: 
• bitwise operators and bitfields for packing data and manipulating individual bits in 

hardware registers 
• the const qualifier for identifying ROMable data 
• the volatile qualifier for identifying objects, such as memory-mapped ports, that may 

change due to events outside a program’s control 
• the type sig_atomic_t for declaring objects that a program can set and clear with-

out interruption 
 
C++ does not add any features specifically for embedded programming, but classes can 
be extremely helpful in hiding messy hardware details behind cleaner interfaces. 
 
 

Touching Hardware 
 
Nearly all computer architectures use at least one of the following methods for accessing 
the hardware of input/output (i/o) devices: 
• Memory-mapped i/o maps device registers into the conventional data space.  To a C 

or C++ programmer, memory-mapped i/o registers look much like ordinary data.  
Storing into a memory-mapped device register sends commands or data to a device.  
Reading from a memory-mapped i/o register retrieves status information or data from 
a device.  This is the approach used in the Motorola 68K family of processors. 

• Port i/o maps control and data registers into a separate (often small) data space.  Port 
i/o is similar to memory-mapped i/o except that programs must use special instruc-
tions, such as the in and out instructions on the Intel x86 processors, to move data 
to or from the device registers.  Neither the C nor C++ standard says anything spe-



cifically about port i/o, so it’s almost impossible to write code for port i/o devices 
without using non-standard language or library features. 

• Some architectures provide special i/o instructions dedicated to particular devices.  As 
with port i/o, special i/o instructions are outside the C and C++ standards.  Code for 
such devices usually requires using non-standard language or library features. 

 
Since Standard C and C++ are best at memory-mapped i/o, we will explore that first. 
 
 

Representing Hardware Device Registers 
 
A given hardware device often communicates through a sequence of device registers.  
Some registers communicate control and status information; others communicate data.  A 
given device may use separate registers for input and output.  Registers may occupy 
bytes, or words, or whatever the architecture demands. 
 
The simplest representation for a device register is as an object of the appropriately sized 
and signed integer type.  For example, you might declare a one-byte register as a char or 
a two-byte register as a short int.  Then you can receive data from a device by reading 
a value from its input data register, and send data to a memory-mapped device by storing 
a value into its output data register. 
 
A typical control/status register is really not an integer-valued object – it’s a collection of 
bits.  One bit may indicate that the device is ready to perform an operation, while another 
bit might indicate whether interrupts have been enabled for that device.  A given device 
might not use all the available bits in its control/status register. 
 
Using the bitmask approach to manipulate control/status registers, you: 
• use bitwise operators to set, clear and test bits in the registers 
• use symbolic constants to represent masks for isolating bits 
 
For example, here’s the bitmask representation for a simple 16-bit control/status register: 
 
typedef short int control; 
#define ENABLE 0x0040       /* bit 6: enable interrupts */ 
#define READY  0x0080       /* bit 7: device is ready */ 
 
Neither Standard C nor Standard C++ lets you declare a variable so that it resides at a 
specified memory address.  Rather, you locate a device register by declaring a pointer 
whose value is the specified address.  For example, a program can define: 
 
control *const pcr = (control *)0xFF70; 



 
which uses a cast expression to initialize pcr to point to the address of a memory-
mapped control/status register.  Although Standard C and C++ both allow cast expres-
sions that convert integers to pointers (such as the one above), the exact behavior of such 
casts vary across platforms. 
 
C++ offers an alternative form for the cast syntax called a reinterpret_cast, as in: 
 
control *const pcr = reinterpret_cast<control *>(0xFF70); 
 
Of the two styles for casts, reinterpret_cast is now the preferred one in C++. 
 
Once pcr points to a memory-mapped control/status register, the program can communi-
cate with the device by testing or setting the value of the register via pcr.  For example, 
 
*pcr &= ~ENABLE;            /* clear enable bit */ 
 
clears the control register’s enable bit, so the device will not trigger interrupts.  A loop 
such as: 
 
while ((*pcr & READY) == 0) /* wait until ready */ 
    ; 
 
repeatedly polls (tests) the control register’s ready bit until that bit is non-zero.  This loop 
makes the program wait until the device completes whatever it’s doing. 
 
In C, you can make a control register look more like an object by using a macro as fol-
lows: 
 
#define cr (*pcr) 
 
Then you can manipulate the device register by writing expressions such as: 
 
cr &= ~ENABLE; 
 
In C++, you can use a reference (rather than a macro), as in: 
 
control &cr = *pcr; 
 
Again, then you can write expressions such as: 
 
cr &= ~ENABLE; 
 



Many devices use a control/status and a data register in tandem.  The declarations for 
such a pair might look like: 
 
typedef short int control; 
typedef short int data; 
 
typedef struct port port; 
struct port 
    { 
    control cr; 
    data dr; 
    }; 
 
port *const p = (port *)0xFF70; 
 
The typedef: 
 
typedef struct port port; 
 
defines port as a type name that’s equivalent to struct port.  This allows you to 
refer to the structure type port without also writing the keyword struct in front of it.  
In C++, a struct, union or enum name is automatically a type name, so you don’t need 
the typedef in C++.  But it doesn’t hurt.  For the remainder of this paper, I will assume 
for convenience that a struct, union or enum name is a type name, even in C. 
 
A bi-directional device (supporting both input and output) may use a pair of registers for 
input and another pair for output.  The declaration for such a pair might look like: 
 
struct ioport 
    { 
    port in, out; 
    }; 
 
Using the declaration above, 
 
ioport *const piop = (ioport *)0xFF70; 
 
declares piop to point to an ioport, and: 
 
piop->out.cr &= ~ENABLE; 
 
disables output interrupts for that port.  An assignment such as: 
 
piop->out.dr = c; 



 
sends the value of character c to the output device.  It immediately clears the ready bit in 
the output control/status register to indicate that the device is busy.  A loop such as: 
 
while ((piop->out.cr & READY) == 0) 
    ; 
 
or: 
 
while (!(piop->out.cr & READY)) 
    ; 
 
waits until the output device is ready to receive another character.  A function such as: 
 
void put(char const *s, ioport *p) 
    { 
    for (; *s != '\0'; ++s) 
        { 
        while ((p->out.cr & READY) == 0) 
            ; 
        p->out.dr = *s; 
        } 
    } 
 
sends the characters from null-terminated string s to the output device controlled by *p. 
 
 

The Volatile Qualifier 
 
The previous function might not work exactly as expected.  Here’s an example that illus-
trates why. 
 
Using the previous declaration for ioport, the following sequence of code writes '\r' 
(carriage return) and '\n' (newline or line feed) to the output device of an ioport 
(based on Plauger [1988]): 
 



ioport *const p = (ioport *)0xFFFC4; 
... 
while (!(p->out.cr & READY)) 
    ; 
p->out.dr = '\r'; 
while (!(p->out.cr & READY)) 
    ; 
p->out.dr = '\n'; 
 
This code is supposed to wait until the output device’s READY bit indicates that the de-
vice is ready to perform an operation.  Then it writes a '\r' to the device’s data register.  
The code waits again until the device is ready to perform another operation.  Then it 
writes a '\n' to the device’s data register. 
 
The compiler has no way of knowing that p->out.cr is actually a device register 
whose value changes spontaneously in response to external events such as a change in 
state for a peripheral device.  The compiler’s optimizer might therefore conclude that the 
value of the READY bit in p->out.cr never changes.  It’s always 1 or it’s always 0. 
 
If the READY bit never changes, then there’s no need to test the loop condition more than 
once.  The program can test the bit once and then either loop forever or skip the loop en-
tirely.  Thus, the compiler’s optimizer can transform: 
 
while (!(p->out.cr & READY)) 
    ; 
 
into: 
 
if (!(p->out.cr & READY)) 
    for (;;) 
        ; 
 
In fact, the compiler can transform both loops in the same way.  After this optimization, 
the driver code becomes: 
 
if (!(p->out.cr & READY)) 
    for (;;) 
        ; 
p->out.dr = '\r'; 
if (!(p->out.cr & READY)) 
    for (;;) 
        ; 
p->out.dr = '\n'; 
 



Again, the compiler can’t see any code that changes the READY bit.  It concludes that the 
READY bit is either always set or always clear. 
• If the READY bit is always set, the program always skips the first loop.  When the 

execution reaches the second loop, the bit is still set and so the program skips the 
second loop as well. 

• If the READY bit is always clear, the program enters the first loop and never leaves.  
It never gets a chance to execute the second loop. 

In either case, the program never executes the second loop. 
 
Therefore, the optimizer can eliminate the second if-statement entirely.  The optimized 
driver code becomes: 
 
if (!(p->out.cr & READY)) 
    for (;;) 
        ; 
p->out.dr = '\r'; 
p->out.dr = '\n'; 
 
Now, as far as the compiler can see, the first assignment writes '\r' into a location, 
only to have the next assignment overwrite the same location with '\n'.  Therefore, 
only the last assignment is worth keeping.  The final “optimized” code looks like: 
 
if (!(p->out.cr & READY)) 
    for (;;) 
        ; 
p->out.dr = '\n'; 
 
It does the wrong thing, but much more efficiently than the original code! 
 
The way to prevent this overly aggressive optimization is the use the volatile qualifier, as 
in: 
 
ioport volatile *const p = (ioport *)0xFFFC4; 
 
This declares p as a “const pointer to a volatile ioport”.  The volatile qualifier 
indicates that an object, such as a memory-mapped port, may be change even thought the 
program didn’t change it.  The volatile qualifier prevents the compiler from “optimizing 
away” references to an object that seems unchanging, but doesn’t inhibit other optimiza-
tions. 
 
In a declaration such as: 
 
ioport volatile *const p = ... ; 



 
volatile is not part of the type of ioport.  This is appropriate only if some ioports 
are non-volatile.  If volatility is inherent in ioports, volatile should be part of the 
ioport type. 
 
Recall that each ioport is a pair of ports.  It may be that only some registers within a 
port are volatile: 
 
struct port 
    { 
    control volatile cr; 
    data dr; 
    }; 
 
If every member of a port is volatile, you must declare each member so, as in: 
 
struct port 
    { 
    control volatile cr; 
    data volatile dr; 
    }; 
 
If you want to declare the entire port as a volatile type, this won’t work: 
 
volatile struct port 
    { 
    control cr; 
    data dr; 
    }; // error: missing declarator 
 
To declare the entire port as a volatile type, you can use a typedef, as in: 
 
typedef struct /* no tag */ 
    { 
    control cr; 
    data dr; 
    } volatile port; 
 
Just as pointer conversions can add but not remove a const qualifier, they can add but not 
remove a volatile qualifier: 
 



T *p; 
T volatile *pv; 
pv = p;        // OK 
p = pv;        // error 
p = (T *)pv;   // OK 
 
Believe it or not, the “new style” cast for removing volatile from a pointer type is 
const_cast.  There is no such thing as a volatile_cast: 
 
T *p; 
T volatile *pv; 
p = const_cast<T *>(pv);      // yes 
p = volatile_cast<T *>(pv);   // no 
 
You must preserve the volatility of arguments in parameter passing as well: 
 
ioport volatile *const piop = ...; 
void put(char const *s, ioport *p); 
 
put("...", piop);   // error 
 
The call is an error because the compiler can’t convert piop from “pointer to volatile 
ioport” into “pointer to ioport”.  You can eliminate the error by declaring put’s 
second parameter as ioport volatile *p, as in: 
 
void put(char const *s, ioport volatile *p); 
 
Objects can be both const and volatile, meaning “I promise I won’t change it, but I’ll as-
sume that something else might.”  This is appropriate for read-only device registers. 
 
 

Representing Hardware Registers as Bitfields 
 
Bitfields offer a slightly more elegant approach to modeling hardware registers.  Using 
this approach, you: 
• declare a register as a struct and its bits as bitfield members, and 
• set, clear and test bits in registers by referring to each bitfield by name. 
 
For example, 
 



struct control 
    { 
    unsigned int /* unused */ : 6; 
    unsigned int enable : 1; 
    unsigned int ready : 1; 
    unsigned int /* unused */ : 8; 
    }; 
typedef short int data; 
 
struct port 
    { 
    control volatile cr; 
    data volatile dr; 
    }; 
 
Using these declarations, 
 
piop->out.cr.enable = 0; 
 
disables output interrupts for that port and: 
 
while (piop->out.cr.ready == 0) 
    ; 
 
waits until the output device is ready. 
 
If you prefer, you can even think of each single-bit bitfield as a boolean, and write: 
 
piop->in.cr.enable = false; 
 
to disable output interrupts and: 
 
while (!piop->in.cr.ready) 
    ; 
 
to waits until the output device is ready. 
 
In C++, you can use the boolean constants false and true.  In C, you must define 
these symbols appropriately. 
 
A word of caution: Neither C nor C++ specifies whether a compiler must allocate bits 
starting with the most- or the least-significant bit.  Therefore, although this technique is 
generally applicable across platforms, the code itself is not likely to be portable. 
 



 
MIXING HARDWARE REGISTER METAPHORS 
 
You can sometimes get the most compact and efficient code by employing different rep-
resentations for a single register.  For example, if n is an int, then: 
 
if ((n & ~INT_MAX) == 0) 
 
tests the high-order bit of n using a bitmask.  (The symbol INT_MAX is a macro defined 
in <limits.h> as the largest positive value that an int can hold.)  Typically, the size 
and speed of a bit masking instruction is independent of the position of the bit(s) within 
the mask. 
 
You can also test the high-order bit of n using a signed comparison with zero: 
 
if (n < 0) 
 
On some architectures, this signed comparison generates a smaller or faster instruction 
than a bitwise-and.  Thus, some hardware designers have a habit of placing the most of-
ten used bit of a control/status register as the sign bit so that software can use a signed 
comparison to test that bit.  This encourages you to treat a control/status register as a 
signed int sometimes, and as a set of bits at other times. 
 
A union can provide alternative views of a single device register: 
 
struct byte_pair 
    { 
    signed char lo, hi; 
    }; 
 
union control 
    { 
    short int word; 
    byte_pair byte; 
    }; 
 
This union assumes that sizeof(short int) is 2, which is not true on all platforms. 
 
Anyway, using the union, here’s a (possibly) efficient way to test the high-order bit of the 
high byte of a register: 
 



control volatile *const pcr = (control *)0xFF70; 
... 
if (pcr->byte.hi < 0) 
    ... 
 
Again, you must be careful to adapt these coding techniques to match the byte ordering of 
your architecture.  For example, the union above overlays lo with the low-order byte of 
word only if the machine is “little-endian”.  On a “big-endian” machine, you should re-
verse the order of the bytes in the byte_pair, as in: 
 
struct byte_pair 
    { 
    signed char hi, lo; 
    }; 
 
Once you get the byte ordering correct, then for control c, the expressions c.byte.hi 
and c.byte.lo refer to the high- and low-order bytes of the register, respectively.  
c.word refers to the entire register. 
 
Remember, no matter how you mix representations, you must rely on implementation-
dependent storage representations. 
 
 

Hiding Messy Details in a C++ Class 
 
A C++ class can hide most of the messy details described above, such as the choice of 
bitmasks vs. bitfields (including any bitmask constants) or dependency on implementa-
tion-defined byte ordering.  For example, you might define a class control_status 
for control/status registers as: 
 
class control_status 
    { 
public: 
    void enable(); 
    void disable(); 
    bool enabled() const; 
    bool ready() const; 



private: 
    enum { ENABLE = 0x0040, READY = 0x0080, ... }; 
    union 
        { 
        short int word; 
        byte_pair byte; 
        } u; 
    }; 
 
This class represents a control/status register as a union wherein you can view the register 
as either a (signed) short int or a pair of signed char.  The class assumes that 
sizeof(short int) is 2, and that the low-order byte of a short int has the same 
address as the entire short int.  Only the union member u occupies storage.  The 
enum definition defines a type and constants, but no data that occupies space in con-
trol_status objects. 
 
This example defines the constants ENABLE and READY as enumeration constants rather 
than as the macros used in earlier examples.  The advantage that enumerations have over 
macros is that: 
• Macros ignore the normal scope rules of C and C++.  That is, they ignore { and }, so 

macros might substitute in places you don’t want them to.  Enumerations observe the 
scope rules. 

• Some compilers don’t preserve macro names among the symbols they pass on to their 
debuggers. 

 
Class control_status defines its member functions as inline to avoid run-time 
performance penalties: 
 
inline 
void control_status::enable() 
    { 
    u.word |= ENABLE; 
    } 
 
inline 
void control_status::disable() 
    { 
    u.word &= ~ENABLE; 
    } 
 



inline 
bool control_status::enabled() const 
    { 
    return u.word & ENABLE; 
    } 
 
inline 
bool control_status::ready() const 
    { 
    return u.byte.lo < 0; 
    } 
 
As is often the case with unions, we are not interested in the union itself, but rather only 
in the members in the union.  That is, we never refer to control_status member u 
by itself.  We always refer to u.word or u.byte.  C++ lets you eliminate the name u 
by using an anonymous union, as in: 
 
class control_status 
    { 
public: 
    ... 
private: 
    ... 
    union 
        { 
        short int word; 
        byte_pair byte; 
        } /* no name here */; 
    }; 
 
This, in turn, simplifies the member functions.  For example, using the anonymous union, 
the definition for control_status::ready simplifies from: 
 
inline 
bool control_status::ready() const 
    { 
    return u.byte.lo < 0; 
    } 
 
to: 
 



inline 
bool control_status::ready() const 
    { 
    return byte.lo < 0; 
    } 
 
Class control_status restricts access to hardware so that the rest of the program can 
manipulate that hardware only in proscribed ways.  That is, all manipulation of a con-
trol_status must be through public member function calls, as in: 
 
struct port 
    { 
    control_status csr; 
    data dr; 
    }; 
 
port *const p = ...; 
... 
p->csr.disable(); 
while (!p->csr.ready()) 
    ; 
 
If control_status objects can be declared volatile, as in: 
 
struct port 
    { 
    control_status volatile csr; 
    data volatile dr; 
    }; 
 
then control_status member functions such as disable must be declared vola-
tile, as in: 
 
class control_status 
    { 
public: 
    void enable() volatile; 
    void disable() volatile; 
    bool enabled() const volatile; 
    bool ready() const volatile; 
    ... 
    }; 
 



The keyword volatile also must appear in the corresponding member function defini-
tion: 
 
inline 
void control_status::enable() volatile 
    { 
    u.word |= ENABLE; 
    } 
 
A volatile member function treats the object it applies to (*this) as a volatile object.  
You cannot apply a member function to a volatile object unless the member function is a 
volatile member function.  A member function can be both const and volatile. 
 
You can use structs and macros in C to organize hardware manipulation as if you were 
using a class.  However, structs and macros cannot prevent erroneous operations on a 
device as well as a class can.  Classes leave the program with fewer ways to misuse the 
hardware. 
 
 

Write-Only Registers 
 
Some machines have control/status registers that are write-only.  Write-only registers 
pose a problem for functions such as: 
 
inline 
void control_status::enable() volatile 
    { 
    word |= ENABLE; 
    } 
 
The statement in the function body is shorthand for: 
 
    word = word | ENABLE; 
 
The reference to word on the right-hand side of the = is a read access.  If word is write-
only, this function won’t work properly. 
 
For a write-only register, the program must maintain a read-write copy of the register.  
The place to keep that read-write copy is in a class. 
 
The previous definition for control_status provides a class for objects that overlay 
bus addresses corresponding to hardware registers.  The following control_status 



class uses a different approach that’s more appropriate when dealing with write-only reg-
isters.  Here, a control_status object is not the hardware itself, but an object in 
memory that points to and monitors a register at a specified bus address.  For example, 
 
union csr_type 
    { 
    short int word; 
    byte_pair byte; 
    }; 
 
class control_status 
    { 
public: 
    typedef size_t address_type; 
    control_status(address_type); 
    void enable(); 
    ... 
private: 
    ... 
    csr_type image; 
    csr_type volatile *actual_csr; 
    }; 
 
Here, member image is a copy of the register pointed to by member actual_csr.  The 
control_status constructor: 
 
control_status::control_status(address_type at): 
    actual_csr(reinterpret_cast<csr_type *>(at)) 
    { 
    image.word = 0; 
    } 
 
sets actual_csr to point to the actual hardware register and clears the image.  The 
corresponding enable function might look something like: 
 
void control_status::enable() 
    { 
    image |= ENABLE; 
    *actual_csr = image; 
    } 
 
Notice that the control_status member functions no longer need to be volatile.  
Now, control_status objects have a member that’s a pointer  to a volatile 
csr_type, but the control_status object is not volatile. 



 
 

Port I/O 
 
When using port i/o, you define the data structures for device registers pretty much as 
above; however, you cannot move data to and from the device registers by simple as-
signment.  Since the C and C++ standards do not encompass port i/o, you must rely on 
language extensions for moving data to and from port i/o registers.  Here are some exam-
ples of what your compiler might provide (from Plauger [1993]): 
 
• special functions: 
 

char c = in(0x40); 
 
• inline assembly code: 
 

char c; 
_asm in, 0x40 
_asm mov y, al 

 
• unique address spaces and addressing modes: 
 

@port char InBuf = 0x40; 
char c = InBuf; 

 
Again, your best bet is to hide messy details in as little code as possible, preferably in 
member functions of a C++ class. 
 
 
INTERRUPT HANDLING 
 
Interrupt handling is largely outside the C and C++ standards.  However, both languages 
provide type sig_atomic_t defined in <signal.h> as the integral type of an object 
that a program can access as an atomic entity, even in the presence of asynchronous inter-
rupts. 
 
Interrupt calling conventions rarely match normal C/C++ function calling conventions.  
When writing interrupt handlers in C or C++, you must either dip into assembly lan-
guage, or use language extensions offered by some implementations as in the following 
example. 
 
The keyword volatile and type sig_atomic_t are also useful in declaring data for 
communicating between asynchronous execution threads.  For example, here’s a small 



real-mode MS-DOS™ program with an interrupt handler that responds to hitting the con-
trol-break key: 
 
/* 
 * ctrlbrk.c - a crude Ctrl-Break interrupt handler 
 * (based on Duncan, [1986]) 
 */ 
#include <signal.h> 
 
sig_atomic_t volatile cb_seen = 0; 
 
void interrupt far cb_handler(void) 
    { 
    cb_seen = 1; /* keep it simple ! */ 
    } 
 
/* 
 * using the Ctrl-Break interrupt handler 
 */ 
#define CB_VECTOR 0x1B 
 
int main() 
    { 
    int c; 
    void (interrupt far *old_handler)(void); 
    old_handler = _dos_getvect(CB_VECTOR); 
    _dos_setvect(CB_VECTOR, cb_handler); 
    for (;;) 
        { 
        ... 
        if (cb_seen) 
            { 
            puts("\nCtrl-Break detected!\n"); 
            cb_seen = 0; 
            } 
        ... 
        } 
    _dos_setvect(CB_VECTOR, old_handler); 
    return 0; 
    } 
 
The keywords far and interrupt are common language extensions available on C 
and C++ compilers for PC platforms.  _dos_getvect and _dos_setvect are DOS 
system calls.  The call to _dos_getvect returns the current value of an interrupt vec-



tor.  _dos_setvect stores a new value into an interrupt vector.  The program stores the 
prior value of the interrupt vector in old_handler so it can put that value back at the 
end. 
 
Note that cb_seen must be volatile; otherwise, the compiler might generate code on 
the assumption that it’s always zero. 
 
 

In Summary 
 
• You can control memory-mapped i/o using only standardized language features (but 

they will still have platform-specific behavior). 
• Port i/o, special i/o instructions and interrupt handling are outside the standard.  You 

can do it only by using language extensions. 
• Whatever you do, isolate language and hardware dependencies inside abstract types, 

such as a C++ class. 
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