

Doc No: SC22/WG21/N1864
 J16/05-0124

 Date: Aug 22, 2005
 Project: JTC1.22.32

 Reply to: Herb Sutter
 Microsoft Corp.

 1 Microsoft Way
 Redmond WA USA 98052

 Email: hsutter@microsoft.com

TG5 Liaison Report #10

No face-to-face meeting of Ecma TC39/TG5 (C++/CLI) has been held since March 2005.
However, phone meetings have been used to review and approve numerous changes to
the draft.

The following TG5 documents are attached to this liaison report:

• TC39-TG5/2005/016 *Working draft 1.11 of the C++/CLI Standard, Language

Specification, April 2005
• TC39-TG5/2005/017 Project Editor's Report, April 2005
• TC39-TG5/2005/018 C++/CLI Specification Comments - revision 28 April 2005
• TC39-TG5/2005/019 *Working draft 1.12 of the C++/CLI Standard, Language

Specification, May 2005
• TC39-TG5/2005/020 C++/CLI Specification Comments - revision 7 July 2005
• TC39-TG5/2005/021 *Working draft 1.13 of the C++/CLI Standard, Language

Specification, July 2005
• TC39-TG5/2005/022 Agenda for the 11th meeting of TC39-TG5, Redmond,

September 2005
• TC39-TG5/2005/023 C++/CLI Specification Comments - revision 22 August

2005
• TC39-TG5/2005/024 *Working draft 1.14 of the C++/CLI Standard, Language

Specification, August 2005

*Documents TC39-TG5/2005/016, 019, and 021 were intermediate committee drafts of
the specification and are not included here. They are superseded by document 024, which
can be found at the following URLs:

http://www.plumhall.com/ecma/index.html
http://go.microsoft.com/fwlink/?LinkId=50042

This is a replacement/place-holder for Documents TC39-TG5/2005/016, 019, 021, and
024. Documents 016, 019, and 021 were intermediate committee drafts of the
specification, and are not included here. They are superseded by document 024, which
can be found at the following URLs:

http://www.plumhall.com/ecma/index.html
http://go.microsoft.com/fwlink/?LinkId=50042

http://www.plumhall.com/ecma/index.html
http://go.microsoft.com/fwlink/?LinkId=50042

 Ecma/TC39-TG5/2005/017

2005-04 Project Editor’s Report
Rex Jaeschke

Ecma TC39 TG5 project editor
rex@RexJaeschke.com

+1 703 860-0091

Working Draft 1.11 has been produced and distributed. The following work went into producing it:

1. I applied corrections resulting from the Hawaii March meeting.

2. I applied corrections arising from the reviews by Dinkumware, Jon Caves, and Andy Rich.

3. I incorporated some of Brandon’s new postings.

4. I made a pass over the whole draft, making many copy edits and corrections to examples; only the non-
trivial edits were tracked.

5. People continue to dislike the subtle distinction between “array” and “Array”. As such, I have changed
“Array” to “CLI array”.

6. The contents of Annex E, “CLI naming guidelines” has been replaced with a URL.

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

2005tg5-017 For Ecma use only

mailto:rex@RexJaeschke.com

Ecma/TC39-TG5/2005/018

1

2

3

4

5

6

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

7-Oct-03 Rex Jaeschke Technical P.J. Plauger The current CLI spec supports Unicode V3.0. What, if
anything, should we do w.r.t V3.1/V4.0?

Brought up during the phone meeting of 10/7/2003.

Meeting #4 (NJ): Take no action. Don't mention more
that necessary.

Yes

7-Oct-03 Tom Plum Technical Tom Plum Diagnostics: How should we deal with warnings and
such?

Meeting #3 (Melbourne): Tom will adapt text from the
C# spec and present it.

Meeting #4 (NJ): Withrawn without action.

Yes

10-Oct-03 Phone meeting Editorial Editor Future directions: Should there be an informative
annex listing future directions?

Possible entries are:

1. Supporting static members in interfaces
2. Mixed types
3. gcnew of unmanaged types
4. new of managed types

Yes

10-Oct-03 Tom Plum Technical Tom Plum While discussing enums (25.1.3) and wchar_t's not
being permitted as an underlying type, a discussion
arose w.r.t CLI's requiring wchar_t to have the same
representation as System::Char; that is, a 16-bit
character.

This needs further investigation.

Possible need to look at/point to the PDTR currently
out from WG11 (ISO C).

This is part of a more general issue. Do we require
exact mapping for types, or do we allow a certain
amount of flexibility? See issue #93.

In email on 2003-10-12 Tom Plum wrote:

Refining my comments re wchar_t, I see a short-term
and a long-term ...

Short-term, there's no need to change anything. The
16-bit unicode type is wchar_t in VC++ and in
C++/CLI.

Long-term, the decision is up to TG5, and depends
upon who participates. My own guess is that TG5 in
fact will be the first group that has to integrate
Unicode 3.1 and 4.0 into its language definition. I
suspect that before we're done we'll have four types of
character (and literal and C++ string):

char - has to be 8 bits to integrate with CLI
 'x' "str" string = basic_string<char>

wchar_t - implementation's legacy choice of widechar
 L'x' L"str" wstring = basic_string<wchar_t>

char16_t - 16-bit character type, has to be UCS-2 or
UTF-16 for CLI
 u'x' u"str" ustring (?) = basic_string<char16_t>
(or string16?)

char32_t - 32-bit character type, has to be UTF-32 for
CLI
 U'x' U"str" Ustring (?) = basic_string<char32_t>
(or string32?)

wchar_t can be the same type as char16_t or
h 32 t b t i 't i d t b

Yes

10-Oct-03 Phone meeting Technical Brandon Bray Issue of mapping system value types to the
fundamental types, and interop with the standard
library.

Merged in with issue #93 Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

7

8

9

10

11

21-Oct-03 Rex Jaeschke 7 Technical P.J. Plauger What is the interaction between the standard I/O
streams and System::Console?

Meeting #3 (Melbourne): It appears that there will not
be any synchronization between the two.

Meeting #8 (WA): Decided to say nothing about this.

Yes

4-Dec-03 meeting #1 (TX) 12.1.1 Technical Steve Adamczyk 64-bit integer mapping.

Meeting #1 (TX): Steve to write a paper for Jan 04
meeting. Done.

Meeting #2 (HI): This paper will be presented at the
March meeting of WG21. Let's see how it is received?

Meeting #4 (NJ): Steve will suggest how to tighten
existing wording w.r.t a 64-bit integer type in the
current draft, as part of the cleanup for the public
drop.

As to how to document the library support has yet to
be determined.

Yes

4-Dec-03 meeting #1 (TX) Technical Brandon Bray Write a paper on "It just works" Yes

4-Dec-03 meeting #1 (TX) 14 Technical R Brandon Bray pull together all the conversion information into one
place. Make sure all conversions are covered.

Yes

4-Dec-03 meeting #1 (TX) 15.3.2 Technical Steve Adamczyk comma vs. semicolon as separator in indexed access
expressions

In indexed access expressions (§15.3.2), comma
operators are currently disallowed inside [] unless
they are enclosed in parentheses. This conflicts with
usage in existing template libraries (e.g., Lambda),
in which the comma operator occurs inside []
without enclosing it in parentheses.

Meeting #2 (HI): Can we treat commas in [] not
having enclosing parenthesis, in any context, always
be treated as punctuators?

Yes. Steve will provide words to the editor for this.

Meeting #3 (Mel): Steve produced a paper. He
reported one outstanding issue: In 15.3.2, "Indexed
Access", in the C++/CLI spec is rather vague. There,
we have
 indexed-access: indexed-designator [expression-list
]
where indexed-access is defined as an additional
alternative for
postfix-expression:
 postfix-expression: indexed-access
Unfortunately, there isn't any definition of indexed-
designator, so I'm not quite sure whether all the multi-
dimensional cases are supposed be handled by indexed-
designator, leaving the traditional cases to be handled
by the original (possibily modified) syntax.
An alternative would be not to introduce indexed-
access at all, and use the definition
 postfix-expression: postfix-expression [expression-
list]
to handle all the cases, for both traditional subscripting
and the new C++/CLI indexer references.
There was agreement to this so Steve will update his p

yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

12

13

14

15

4-Dec-03 meeting #1 (TX) 9 Technical Tom Plum Issue of source code/Unicode mapping. What
assumptions, if any, should we make about the form
of input text? Handling of string literals, character
constants, and comments.

Meeting #3 (Melbourne): Had a short discussion. Tom
will produce a paper for the May meeting.

Meeting #4 (NJ): Tom got more input at this meeting,
and will produce a paper for the Jun meeting. DONE
(see email "TG5 issue #12 - character sets" from 5/29
EDT)

Meeting #5 (Redmond): Discussed Tom's paper in
detail. He'll update and recirculate.

Meeting #6 (Redmond): Closed out this issue with the
string literal portion of this issue being transferred to
#182

Yes

4-Dec-03 meeting #1 (TX) 12 Technical M Brandon Bray Add a diagram of the type tree Yes

5-Dec-03 meeting #1 (TX) 15.3.9 Technical Editor alternative syntax for typeid <type-id>

The current syntax typeid <type-id> is too close to
the Standard C++ forms.

Meeting #2 (Hawaii): Ownership of this issue
transferred from John to Herb.

Several alternatives were discussed, including a
keyword CLI_typeid or CLI_typeof, and a static
member .class ala Java. Also ::typeid.

Herb addressed this in his keywords paper, which was
adopted in Melbourne

Yes

5-Dec-03 meeting #1 (TX) 16.1.1 Technical Tom Plum Write a paper for Jan, 04, meeting on use of for-
each with STL types.

TG5 will not pursue this as it's part of the work being
considered by WG21's evolution group.

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

16

17

18

19

20

21

5-Dec-03 meeting #1 (TX) 16.1.1 Technical P.J. Plauger The for each statement.

Meeting #1 (Texas): Write a paper for Jan, 04,
meeting on spelling "for each" simply as "for".

Meeting #2 (Hawaii): Tom presented his proposal from
his email entitled {"for" in the style of "for each"}
from January 28. A discussion ensued, during which
the following alternatives (the colon versions of which
were new) were discussed in detail:

1. for each (type var in coll)
2. for (type var in coll)
3. for each (type var : coll)
4. for (type var : coll)

A straw poll indicated a preference for the alternatives
1 or 3, so these will be considered further.

Subsequent discussion on the liaison reflector lead to a
preference for
A. for (type var : coll) or
B. for (type var ; coll) // various TG5 members believe
this is too error prone

Meeting #4 (NJ): Bill will submit a proposal for the Jun
meeting on the semantics of the for-each statement.
Syntax remains as for each (type var in coll)

Meeting #5 (Redmond): Bill reported that nothing
need change in the TG5 spec in this regard. He's found
library solutions for his STL .NET-related concerns.

Yes

5-Dec-03 meeting #1 (TX) 17 Technical John Spicer Check on the UK submission to WG21 re opening
nested namespaces.

Meeting #2 (Hawaii): John doesn't see a problem with
the basic mechanism. Let WG21 handle this.

Yes

5-Dec-03 meeting #1 (TX) 18.3.6 Technical Bjarne Stroustrup How might parameter arrays fit into sequence
constructors being considered in WG21?

We liaised. No action. Yes

5-Dec-03 meeting #1 (TX) Technical L Brandon Bray list of overlap between Standard C++ and features
proposed by C++/CLI

Meeting #9 (NJ): Close without action. Yes

8-Dec-03 Herb Sutter 18.7.1 Technical Herb Sutter Subject: RE: CLI binding: Delegating constructors
and exceptions

>>> "Herb Sutter" <hsutter@microsoft.com> 24
November 2003 18:33:42 >>>

> Actually, it's in there, thanks to BSI.

> EDG suggested that we specify the answer in
terms of object lifetime,
so that other answers,
> including the destructor calling question, can just
fall out from rest
of ISO C++ which specifies
> most things in terms of object lifetimes In the

Herb responded. Resolved. Yes

24-Nov-03 Attila Feher Editorial Editor When distilling PDF, add bookmarks. Look at other
options too (such as hotlinks).

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

22

23
24

25

26

27

28

29

30
31
32
33
34

35

36

37

38
39
40
41

42

24-Nov-03 Attila Feher 8.4 Technical Base doc, pp. 17, line 43 (Automatic memory
management).

Object^ Pop() {
 if (first == nullptr)
 throw gcnew Exception("Can't Pop from an
empty Stack.");

Why do you gcnew the Exception? Is it necessary?
There you throw a hat (handle), if I understand
correctly. But why... Cannot even a value type just
be thrown and make the catch box it, as it happens
in C++?

Not an issue for TG5. Yes

16-Dec-03 Phone meeting 8.2.3 Editorial R Brandon Bray Say more, especially w.r.t the template class
array<element-type>.

Yes

16-Dec-03 Phone meeting 9 Technical R Brandon Bray Review this clause. Yes
16-Dec-03 Phone meeting 10 Technical H Brandon Bray Revise this clause by covering topics including

application entry point, assembly boundaries, among
others.

No

16-Dec-03 Phone meeting 10.2.1 Technical Brandon Bray Clarify the ordering definition when multiple
accessibility keywords are used.

Yes

16-Dec-03 Phone meeting 12.13.6 Technical H Brandon Bray Describe how interior_ptr, pin_ptr, array, and
safe_cast are template-like with certain constraints.

Yes

16-Dec-03 Phone meeting 12.3.6 Technical M Brandon Bray Describe how the compiler will need to emit a
modopt to distinguish interior_ptr<T> from tracking
reference to T (T%) in the metatada.

Yes

16-Dec-03 Phone meeting 12.3.6.2 Technical M Brandon Bray Spell out target type restrictions (for an interior_ptr) Yes

16-Dec-03 Phone meeting 12.3.6.3 Editorial Brandon Bray Describe the dangers of pointer arithmetic and
interior_ptrs.

merged into issue #87. Yes

16-Dec-03 Phone meeting 12.3.7 Technical Brandon Bray Provide a grammar for pinning_ptr merged into issue #27. Yes
16-Dec-03 Phone meeting 13 Technical Tom Plum What, if anything, goes in this clause? Yes
16-Dec-03 Phone meeting 14.1.1 Editorial R Brandon Bray Review this subclause. Yes
16-Dec-03 Phone meeting 14.4 Editorial R Brandon Bray Review this subclause. Yes
16-Dec-03 Phone meeting 15.1 Technical H Brandon Bray The rewrite rules for e[x] (default indexed accesses)

are different where there is only one index. This is
because there is a potential ambiguity with the C++
operator[]. Is this mentioned elsewhere?

Yes

16-Dec-03 Phone meeting 15.3.8 Technical M Brandon Bray cv-qualification needs to be considered for
dynamic cast.

No

16-Dec-03 Phone meeting 15.3.9 Technical Brandon Bray Are typeid<long> and typeid<char> allowed (and if
so, what do they mean).

They are allowed and are distinct. Yes

16-Dec-03 Phone meeting 15.3.9 Technical L Brandon Bray Provide a spec for standard typeid (that returns
std::type_info) in addition to the new typeid (that
returns System::Type).

Meeting #9 (NJ): Close and list in Future Directions. Yes

16-Dec-03 Phone meeting 15.3.13 Editorial H Brandon Bray Update this subclause Yes
16-Dec-03 Phone meeting 15.4.1.1 Editorial R Brandon Bray Review this subclause. Yes
16-Dec-03 Phone meeting 15.4.1.4 Technical All Should a unary ^ operator exist? Meeting #4 (NJ): No Yes
16-Dec-03 Phone meeting 15.4.6 Technical Brandon Bray Define the grammar for gcnew array, and describe

array creation expression.
Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

43

44

45

46
47

48

49

50

51

16-Dec-03 Phone meeting 15.11.1 Technical Mark Hall Add support for handle equality comparison, and
handle ==/!= nullptr, and vice versa.

Meeting #3 (Mel): Had a short discussion. Mark will
produce a paper for the May meeting.

Meeting #4 (NJ): No progress. To be discussed via
email, and at the Jun meeting

Meeting #5 (WA): Discussed briefly. Asked Mark to
write this up and distribute to the reflector.

Phone call Jun 29: This issue was resolved; just needs
drafting of final words.

Meeting 7 (WA): In the case of if(handle), which
conversions are attempted before comparison against
nullptr is used?

We agreed that if an explicit conversion to bool exists,
if(handle) uses that.

There is no implicit unboxing.

Steve and Mark worked on this and presented it to the
full committee on the 2nd day.

Based on committee feedback, Mark will write this up
for future consideration.

No

16-Dec-03 Phone meeting 15.18 Technical H Brandon Bray
Add words to discuss assignment for properties and
events from the point of view of the rewrite rules.

Yes

16-Dec-03 Phone meeting 15.2 Technical Brandon Bray Investigate whether string literals include compile-
time expressions, such as concatenation of strings
with non-strings.

Meeting #4 (NJ): No action to be taken at this time. Yes Yes

16-Dec-03 Phone meeting 16.3 Technical Jonathan Caves

Meeting #3 (Melbourne): It was suggested that this
issue be brought to WG21. It's a security issue in
standard C++; it's not a CLI-specific issue. Jonathan
will produce a paper for the May meeting.

Meeting #4 (NJ): TG5 expressed opposition to
expression-level checked/unchecked. Not to bring it to
WG21.

Yes Yes

16-Dec-03 Phone meeting 17 Technical M Brandon Bray Provide text for this clause (Namespaces) No
16-Dec-03 Phone meeting 18.3.1 Technical Editor Explain the difference between using ‘override’ and

‘= function-name’; one creates an .override directive
in CIL, the other does not.

Yes

16-Dec-03 Phone meeting 18.3.4 Technical Brandon Bray Describe in more detail the semantics of new,
including its use on static member functions
(currently new only applies to overriding, not to
hiding).

Yes

16-Dec-03 Phone meeting 18.4 Technical M Brandon Bray Extend declarator-id’s by adding a new production
that allows default.

No

16-Dec-03 Phone meeting 18.4 Technical Brandon Bray The grammar for indexer-parameter-declaration
does not allow handles or pointers, but full
declarators are not needed. The grammar should
allow a simpler sequence of ptr-operator.

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

52

53
54
55

56
57

58

59

60
61

62

63
64

65

66

67

68

16-Dec-03 Phone meeting 18.4.2 Technical H Brandon Bray This subclause only covers how the accessor
functions must be defined. The expressions clause
needs to cover the rewrite rules that call accessor
functions.

Yes

16-Dec-03 Phone meeting 18.4.2 Technical Brandon Bray Property syntax: Describe the qualified name of a
property.

Meeting #2 (Hawaii): Agreed to keep the current
syntax.

Yes

16-Dec-03 Phone meeting 18.5.2 Editorial R Brandon Bray Review this subclause. Yes
16-Dec-03 Phone meeting 18.6 Editorial R Brandon Bray Review this subclause. Yes
16-Dec-03 Phone meeting 18.7.4 Technical M Brandon Bray Identify when (operator) synthesis would and would

not occur.
Yes

16-Dec-03 Phone meeting 18.6.5.1 Technical L Brandon Bray Writeup op_true and op_false operators DUPE OF #145 Yes
16-Dec-03 Phone meeting 18.6.6.1 Technical Mark Hall Reword this subclause similarly to the way special

member functions are described.
Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

No

16-Dec-03 Phone meeting 18.6.6.1 Technical H Brandon Bray Add another subclause to cover the compiler-
generated conversion from handle to unspecified
bool type.

Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

Yes

16-Dec-03 Phone meeting 18.9 Technical Brandon Bray Add grammar for literal-constant-initializer =
Standard C++ constant-initializer + float/double +
String + nullptr.

Yes

16-Dec-03 Phone meeting 18.9, 18.10 Technical Brandon Bray Justify why we need literal and initonly fields. They are used in the BCL. Yes
16-Dec-03 Phone meeting 18.10.1 Technical L Brandon Bray Add a description that for any value class we have to

make the copy before calling member functions.
Meeting #9 (NJ): Needs to be done. No

16-Dec-03 Phone meeting 18.11 Technical H Brandon Bray Say more about finalizers (including Dispose/~T and
Finalize/!T) and add some examples.

Paper included in WD1.10. Yes

16-Dec-03 Phone meeting 19 Technical Brandon Bray Supply more text for this clause. Yes
16-Dec-03 Phone meeting 18.1 Technical Editor As a cross-language issue, come up with terminology

to distingish between destructors and finalizers.
Perhaps "deterministic destructor" vs. "non-
deterministic finalizer."

Add some text in spec re this, esp. w.r.t C#'s use of
destructor

Feb 2005. Issue was dropped as the revised version of
Brandon's "Destructors and Finalizers" paper makes
this intent clear, and TG2 has now dropped the use of
"destructor" in favor of "finalizer".

Yes

16-Dec-03 Phone meeting 21 Editorial M Brandon Bray Introduce value classes -- Discuss the following:
value classes are optimized for small data structures.
As such, value classes do not allow inheritance from
anything but interface classes. Tie in fundamental
classes.

No

16-Dec-03 Phone meeting 21.4.1 Technical H Brandon Bray Add words about instance constructors and static
constructor.
Value classes cannot have SMFs (specifically, default
constructor, copy constructor, assignment operator,
destructor, or finalizer. Need to add specification for
this along with rationale.

No

16-Dec-03 Phone meeting 22 Technical L Brandon Bray Consider writing some text for this "place-holder"
clause. Should this all go in the new annex "Future
directions"?

Meeting #9 (NJ): Existing words adequate. Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

69

70
71

72

73
74
75

76

77

78

79

80

81
82
83

84
85
86

16-Dec-03 Phone meeting 23 Technical Editor The spec currently states "Throughout this Standard,
the term "array" is used to mean an array in
C++/CLI. A C++-style array is referred to as a
native array whenever the distinction is needed."
Tom was concerned that this was, perhaps, too
subtle. He will try to come up with an alternative
name for C++/CLI arrays.

Meeting #2 (Hawaii): Use "Array" when we mean CLI
array, and "array" means C-style array.

Yes

16-Dec-03 Phone meeting 23 Technical Sean Perry Check if the term "array" is used in the library
extensions plan of WG21.

Yes it is. Yes

16-Dec-03 Phone meeting 23 Editorial R Brandon Bray Will review this whole clause. Yes
16-Dec-03 Phone meeting Technical Sean Perry Look into possible performance issues re "for each"

and delegates.
No information. Yes

16-Dec-03 Phone meeting 23.4 Technical P.J. Plauger Every array type inherits the members declared by
the type System::Array. Currently, arrays do not
have iterators compatible with Standard C++’s
template library. Should they?

Meeting #5 (Redmond): Bill reported that nothing
need change in the TG5 spec in this regard.

Yes

16-Dec-03 Phone meeting 23.5 Technical M Brandon Bray Write-up array covariance w.r.t arrays. No
16-Dec-03 Phone meeting 23.6 Technical M Brandon Bray Write up array initialization. No
16-Dec-03 Phone meeting 24.4 Technical H Brandon Bray Address what happens when a ref class does not

implement an interface function (and what happens
when a base class has a non-virtual function with the
same name).

Resolved in HI; incorporated into 1.11 Yes

16-Dec-03 Phone meeting 25 Technical Herb Sutter Coordinate with WG21's extended enum proposal. see #102 Yes

16-Dec-03 Phone meeting 26.1 Technical Brandon Bray Redo the grammar for delegate-definition, and find a
place for it in the type tree. Replace all uses of
"return-type" with appropriate production.

Yes

16-Dec-03 Phone meeting 27 Technical H Brandon Bray Cover unification of CLI and Standard C++ exception-
handling models, and anything else that might go in
this clause.

Are exceptions asynchronous now in some cases?
Yes they are. (For example,
NullReferenceException.)

Meeting #5 (WA): Kevin Free (Microsoft) gave a verbal
presentation.

catch(…) catches managed and native exceptions.

catch(System::Object^) also catches both kinds, but
won’t invoke the destructor (so can leak).

CLI exception handling supports more features than
we expose.

The issue remained with Brandon to write up, as
before.

No

16-Dec-03 Phone meeting 20.5.1 Technical Brandon Bray
Check the name
System::Reflection::DefaultMemberAttribute; it
might have been renamed in the CLI standard.

Yes

16-Dec-03 Phone meeting 20.5.2 Technical R Brandon Bray
Describe MethodImplOption metadata generation.

The editor has added quite a bit of text re this
attribute. See if that is sufficient.

Yes

16-Dec-03 Phone meeting 29 Technical M Brandon Bray Flesh out "Templates" clause. No
16-Dec-03 Phone meeting 30 Technical Editor Flesh out "Generics" clause. Yes
16-Dec-03 Phone meeting 31 Technical P.J. Plauger Suggest possible standard library interaction issues

apart from I/O synchronization.
Meeting #8 (WA): Decided to say nothing about this. Yes

16-Dec-03 Phone meeting 32 Technical Brandon Bray Flesh out "CLI libraries" clause. Yes
16-Dec-03 dummy entry yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

87
88
89
90

91

92

16-Dec-03 Phone meeting A Technical L Brandon Bray Flesh out "Verifiable code" clause. Meeting #9 (NJ): Close without action. Yes

16-Dec-03 Phone meeting B Technical L Editor Flesh out "Documentation comments" clause. Yes
16-Dec-03 Phone meeting C Technical Editor Add any non-normative references Yes
16-Dec-03 Phone meeting D Technical Editor Add naming guidelines for generics Yes
29-Jan-04 meeting #2 (HI) 9.1.2 Technical Editor Steve asked:

Keywords:
 Are they keywords or identifiers?
 If keywords, are they always present or only in
some modes?
 Are they recognized at the lexical level or at
the syntactic level?
 If at the syntactic level, what are the rules?
(disambiguation?)
 Should keywords like ref class have a space in
the keyword or are they two words?

Meeting #2 (Hawaii): Herb will write a paper on
keywords to cover the following:

1) If it can be an identifier, it is.
2) Use Mark's preprocessor option 1 (to not make the
spaced words pp tokens, but rather, to assemble them
early in translation phase 4).
3) Add the fallback for namespace keywords.

Address why "generic" shouldn't be spelled in some
other way, perhaps as a spaced keyword, so that it
need not be a regular keyword.

Meeting #3 (Melbourne): Done, accepted, Editor to
integrate. Steve will add more words (see issue #121).

Yes

29-Jan-04 meeting #2 (HI) Technical M Brandon Bray "size size" name lookup issue (see email thread
started by Herb Sutter on January 14 on the liaison
reflector under the topic {Name lookup 1 (of 2):
"Size Size" (CLI property naming idiom)}.)

This is the common CLI idiom of naming a property
(or potentially other members) with the same name
as its type. In particular, here are two common
examples:

value class Size { /*…*/ };

value class Color { /*…*/ };

ref class X {
public:
 property Size Size;
 property Color Color;
};

In other languages, it’s easy to simply use the
identifier “Size” without qualification and have the
compiler Do the Right Thing™. But C++ name
lookup is different. The status quo in Managed C++
syntax was that we made no change to C++ lookup
rules, with the result that authors of classes that use
this idiom are required to qualify most occurrences
of “Size” which is ugly. The issue mostly appears
only within the class itself (and in derived classes).

Here's a brief description of the problem:

ref class X {
public:
 property Size Size {
 Si () { }

Meeting #8 (WA): Decided to not include this in V1. Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

93

94

95

96

29-Jan-04 meeting #2 (HI) 12.1 Technical Tom Plum Do we require exact mapping for types, or do we
allow a certain amount of flexibility?

Should the size and representation of types long,
long long, and long double (as well as wchar_t, see
issue #5) be implementation-defined. Should all (or
almost all) of the fundamental types being
implementation-defined.

The CLI types System::Single and System::Double
require IEEE (IEC 559) representation. On many
systems these naturally map to float and double,
respectively. However, the IBM 390 does not used
IEEE format for either of these types. A C++/CLI
program running in that environment would want
float/double to map to 390 types, so there would
need to be a conversion to/from the CLI floating
types.

In order to encourage the writing of portable code,
we’d need the largest core of fundamental type
mapping as possible; for example, signed and
unsigned 8-, 16-, and 32-bit integer mapping.

Meeting #3 (Mel): There was a lengthy discussion. No
resolution.

Meeting #4 (NJ): There was a lengthy discussion.

Meeting #5 (WA): There was another lengthy
discussion, which resulted in Plum's notes being
incorporated into the meeting minutes.

The edits from Plum's subsequent paper were
incorporated into WD1.6 for Meeting #6 (WA).

Yes

29-Jan-04 meeting #2 (HI) Technical Mark Hall Relationship between primitive types and CLI types.

The current spec allows the following: int i = 10;
String^ s = i.ToString();
Standard C++ doesn’t allow member selection on
expressions of primitive type. Assuming int maps to
System::Int32, just how much alike are these two
types? Specifically, when do we treat the primitive as
the underlying class.

Meeting 5 (WA): Asked Mark to write this up and
distribute to the reflector. Please address the side-
effect issue; that is, given (i++).ToString, is the
increment done?

Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

Re the side-effect, yes, it must be done.

No

29-Jan-04 meeting #2 (HI) 10 Technical H Brandon Bray Provide words for #using. The editor has added quite a bit of text re this topic. Yes

29-Jan-04 meeting #2 (HI) 9.1.1 Technical M Editor The spec does not provide a way to use a keyword
as an identifier. (VC++ uses the intrinsic
__identifier(name) to achieve this; C# uses a leading
@.) This is an issue for inter-operability; for
example, being a consumer of a public type (written
in something other than C++) that has a name (or
contains a public member that has a name) that is a
keyword in C++.

Meeting #8 (WA): It was proposed we support the
intrinsic approach, accepting __identifier(x), where x is
a string literal or an identifier. String version is
reserved for implementers.

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

97

98

99
100

101

102
103

104

105

29-Jan-04 meeting #2 (HI) Technical Editor Overloading on arity. (This is a liaison issue with
TG3.)

The issue involves the overloading of a non-generic
type with a one or more generic types of the same
name in the same namespace. For example, the
following is permitted by the CLS:

ref class X { /*…*/ };

generic<typename T> /*…*/
ref class X { /*…*/ };

generic<typename T, typename U> /*…*/
ref class X { /*…*/ };

Meeting 3 (Mel): Herb presented this issue, which was
then reassigned to Brandon.

Meeting 5 (WA): In this version, we'll support a
generic and non-generic version of a type in the same
namespace, but not in different namespaces.

There was a discussion about using something like
“using generic x::y” to provide cross-namespace
support as well.

Rex to work with Brandon to get this into the draft.

Meeting 7 (WA): Herb reported that the MS
implementation can consume same-named generics
that overload on arity in the same assembly, but it
cannot create them.

Yes

29-Jan-04 meeting #2 (HI) 30 Technical R Brandon Bray Restrictions on generics re generic code generation.

The current generics clause needs to be fleshed out,
especially w.r.t how overload resolution works within
the CLI.

Meeting #2 (HI): Brandon will write a paper on this.

Meeting #4 (NJ): The fleshing out of Clause 30 is a
significant contribution toward this. More work needed
in declarations and function calls.

No

29-Jan-04 meeting #2 (HI) Technical Daveed Vandevoorde Write a paper proposing properties as specified by
C++/CLI, for the March 2004 meeting of WG21.

Yes

29-Jan-04 meeting #2 (HI) Technical Herb Sutter nullptr: Write a paper proposing this to WG21. Meeting #4 (NJ): WG21 expressed interest. Yes
29-Jan-04 meeting #2 (HI) Technical Herb Sutter delegating constructors: Write a paper proposing this

to WG21.
Meeting #4 (NJ): No implementation of this is
expected anytime soon. TG5 agreed to not include this
in this round. Editor will move 8.8.7.1 and 18.7.1 to
Annex E, and remove any usage of delegating
constructors from examples in other clauses.

Yes Yes

29-Jan-04 meeting #2 (HI) Technical Herb Sutter enhanced enums: Write a paper proposing this to
WG21.

Meeting #4 (NJ): WG21 doesn’t like enum class. WG21
doesn’t know yet what it wants to do in this regard.
However, if WG21 adopts a feature like this, but with
different syntax, TG5 will revisit this when appropriate.

Yes

29-Jan-04 meeting #2 (HI) Technical Brandon Bray Explicit overriding: Propose to WG21 Meeting #4 (NJ): withdrawn Yes
29-Jan-04 meeting #2 (HI) Technical Steve Adamczyk sealed, on classes and methods: Propose to WG21 Meeting #4 (NJ): withdrawn Yes

29-Jan-04 meeting #2 (HI) 14.5.1 Technical Mark Hall Constructors can't be used in casts in managed
classes. Should they be allowed in explicit
conversions?
All managed type constructors being explicit by
default. (Already yes, but reconfirm this.)

Meeting #4 (NJ): Steve will send the editor
sufficient text to go into the public drop to indicate
our intention re this topic. DONE.

Meeting 5 (WA): Asked Mark to write this up and
distribute to the reflector.

Meeting 7 (WA): Steve and Mark worked on this
and presented it to the full committee on the 2nd
day. Mark will write this up for future consideration.

No

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

106

107
108

109
110

111

112
113
114

115

116

117
118

119

120

29-Jan-04 meeting #2 (HI) Technical Editor Should >> handled as two tokens rather than one;
e.g., List<List<int>>.

Meeting #3 (Mel): Had a short discussion. Tom will
produce a paper for the May meeting.

Meeting #4 (NJ): TG5 agreed that if a < for a template
is seen, and >> that are not inside parentheses, that
>> will always be considered to be the closing
delimiter of two < symbols, and results in an error if
there are not two such corresponding < symbols.

Refer to Daveed's paper WG21/N1649 for more
information.

Meeting #7 (WA): This paper was updated (see
N1699). It was discussed in TG5 and will be discussed
at the up-coming WG21 meeting, at which TG5
members will participate.

Meeting #8 (WA): Daveed presented this at the WG21
meeting this week. He proposed option 1, to which
WG21 agreed. He was charged to write the final words.

Meeting #9 (NJ): Daveed submitted a revised paper,
which was accepted.

Implemented in WD1.10.

Yes

29-Jan-04 meeting #2 (HI) Technical Editor Look at the usage of the term "object" within the
spec, and compare with the C++ std.

Yes

19-Feb-04 12.3.6 Technical Brandon Bray Provide syntax for interior_ptrs Yes
19-Feb-04 12.3.6.3 Technical L Brandon Bray Cover the dangers of pointer arithmetic and

interior ptrs
Meeting #9 (NJ): Close without action. Yes

19-Feb-04 12.3.7.1 Technical Brandon Bray Provide syntax for pinning_ptrs Yes
19-Feb-04 15.3.2 Technical M Brandon Bray Need to consider how indexed access expressions are

interpreted in templates.
No

19-Feb-04 15.3.9 Technical Brandon Bray Check if long::typeid, char::typeid, etc. are allowed
(and if so, what do they mean).

Meeting #4 (NJ): Allowed, but no modopts Yes

19-Feb-04 28.5.1.2 Technical Brandon Bray Provide text for MethodImplOption attribute duplicate Yes
19-Feb-04 15.4.6.2 Technical Brandon Bray Does new-initializer need to be changed? Yes
19-Feb-04 15.2 Technical Brandon Bray Do string literals include compile-time expressions,

such as string concatenation?
duplicate Yes

19-Feb-04 18.4.2 Technical H Brandon Bray Add some discussion of how accesses to properties
are rewritten into accessor functions. This should be
covered in rewrite rules in the expressions clause.
Note that access checking for whether a property can
be written to or read from is done after rewriting and
overload resolutions.

Yes

19-Feb-04 18.4.2 Technical H Brandon Bray The qualified name of a property needs to be
described somewhere. Once that happens, how an
out-of-class definition is done will already be covered
by existing rules.

No

19-Feb-04 23.1.1 Technical Editor Is reference conversion the correct term? No; it's a handle conversion Yes
19-Feb-04 28.5.1.1 Technical Editor Check this name (DefaultMember); this attribute

might have been renamed in the CLI standard.
It has not been renamed, and appears in Beta 1 with
that name.

Yes

19-Mar-04 meeting #3 (Mel) Technical Tom Plum Does typename allow us to pursue a containment
policy re elaborated specifiers?

Meeting 7 (WA): Decided to drop this issue. Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

121

122

123

124

19-Mar-04 meeting #3 (Mel) Technical Steve Adamczyk In the context of Herb's keywords paper (2004-05),
Steve will write up the notion "If it can be an
identifier, it is."

Yes

19-Mar-04 meeting #3 (Mel) Technical Steve Adamczyk Write a WG21 paper on extended integer types,
promotion rules, costs of conversion, and the like,
for the May meeting.

Meeting #4 (NJ): Not yet done, but still planned. Yes

3-May-04 meeting #4 (NJ) Technical Tom Plum The draft uses the term "constructed type". It was
suggested that the corresponding Standard C++
term is"instantiation". Which should we use?

Meeting 7 (WA): Chose to use "constructed type". No
change needed to the spec.

Yes

10-Jun-04 Jonathan Caves Technical Jonathan Caves Indexed properties -- Consider the following:

interface class I1 {
 property int Value;
};

interface class I2 {
 property int Value[String^] {
 int get(String^);
 void set(String^, int);
 };
};

ref class D : I1, I2 {
 // Implements the properties
};

D^ d;
d->Value["Foo"];

The question is what does the last line do?

Which leads to a language design question - what
should the complier do when faced with a property
followed by a '['

1) Should it look for just parameterized properties
and if there isn't one fail - I suspect not

2) Should it look for all properties and if the returned
set contains a parameterized property it should
prefer it - this sounds like magic to me.

3) Should it look for all properties perform overload
resolution across the whole set and it the resulting
call is ambiguous then issue an error.

Meeting #5 (WA): Discussed this. Option #3 preferred.

Meeting 7 (WA): Discussed this in detail.

property int Value[int] {
 void set(int, int);
};

x->Value[1] = 4
is treated as
x->set_Value(1,4);

property array<int>^ Value {
 array<int>^ get();
}

x->Value[1] = 4
is treated as
x->get_Value()[1] = 4

property int% Value[int] {
 int% get(int);
}

x->Value[1] = 4
is treated as
x->get_Value(1) = 4

This construct violates the principle of properties (that
of setting/getting the value of some property), so is
not to be encouraged; however, it is supported, but no
need to consider it further here.

No

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

125

126

127

128

129

130

131

132

133

134

135

14-Jun-04 meeting #5 (WA) 8.15.3 Technical M Brandon Bray Based on the rules for type deduction in templates, it
seems surprising that you can match
array<ItemType>^ with an argument of type int.
Here is a standard C++ example intended to
illustrate the issue:
 template <class ItemType> struct Stack {};
 template <class ItemType> struct Array {
 Array(ItemType);
 };
 template <class ItemType>
 void PushMultiple(Stack<ItemType>,
Array<ItemType>);
 int main() {
 Stack<int> s;
 PushMultiple(s, 1); // deduction fails
 PushMultiple<int>(s, 1);
 }
Are the rules for generic different in this area?
[There seems to be information related to this in
30.3.2. See that subclause for further comments on
this issue.]

No

14-Jun-04 meeting #5 (WA) 12.1 Technical Editor

The type long long will be defined by pointing to

Meeting 7 (WA): Steve has produced a revised version,
N1693. Editor to fold this in the spec. TG5 understands
that WG21 has not yet accepted this paper, but is
expected to at its Oct 2004 meeting.

Yes

14-Jun-04 meeting #5 (WA) 12.3.3 Technical L Brandon Bray
Add text to indicate the circumstances under whic

Meeting #9 (NJ): MS-specific; Close without action. Yes

14-Jun-04 meeting #5 (WA) 12.3.6 Technical L Brandon Bray
The compiler will need to emit a modopt to distinguish interior_ptr<T> from tracking reference to T (T

Yes

14-Jun-04 meeting #5 (WA) 12.3.7 Technical L Brandon Bray
Need to add text to indicate the circumstances under which the modopt IsPinned shall be emitted (i.e.,

Yes

14-Jun-04 meeting #5 (WA) 14.1.1 Technical L Brandon Bray
Separate the list of conversions from the order of p

Meeting #9 (NJ): Close without action. Yes

14-Jun-04 meeting #5 (WA) 15.3.3 Technical M Editor Add text to indicate the circumstances under
which type modifiers shall be emitted, and point
to each modifier's definition.

Meeting #9 (NJ): Needs to be done.

Done in WD1.10.

Yes

14-Jun-04 meeting #5 (WA) 15.3.10 Technical M Brandon Bray
Unboxing and boxing are described as preferred user-defined conversions; however, this is incorrect.

No

14-Jun-04 meeting #5 (WA) 15.3.10 Technical L Brandon Bray In a static cast of a handle to a base type to a
handle for a derived type, there is no checking.
This can be unverifiable and might cause a gc
hole.

Meeting #9 (NJ): Close without action. Yes

14-Jun-04 meeting #5 (WA) 16.3.3 Technical M Editor Add text to indicate the circumstances under
which the modreq IsUdtReturn shall be emitted
(i.e., ref class type retruned by value). Point to
that modreq's spec.

Meeting #9 (NJ): Needs to be done.

Done in WD1.10.

Yes

14-Jun-04 meeting #5 (WA) 18 Technical R Brandon Bray
This table and corresponding sections should include Special Member Functions (SMFs) like destructo

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

136

137

138

139

140

141

142

143

144

145

146

147

148

149

14-Jun-04 meeting #5 (WA) 18.2.1 Technical Editor

Need to address the following: C++/CLI uses the
System::Reflection::DefaultMemberAttribute
attribute to specify that something other than the
default name, “Item”, should be used. Given that,
the text describes what happens if no name is
chosen; that is, Item is used by default. Once the
name has been set with DefaultMember, it cannot
be changed in a derived class. If two interfaces
have different DefaultMember attributes,
implementing both interfaces is ill-formed.

Meeting #9 (NJ): Editor to mention this in the default
indexer clause.

Incorporated in WD1.10.

Yes

14-Jun-04 meeting #5 (WA) 18.3 Technical Brandon Bray
Extend the grammar to accommodate attributes on functions.

Yes

14-Jun-04 meeting #5 (WA) 18.4 Technical Mark Hall
Need to write up the restrictions on trivial properties.

No

14-Jun-04 meeting #5 (WA) 18.4 Technical Editor We probably should say something about the
reserved names get_Item and set_Item, and their
relationship with default indexed properties.
Also, add a forward pointer to the corresponding
attribute.

Meeting #9 (NJ): Needs to be done.

Handled as part of the resolution of #136.

Yes

14-Jun-04 meeting #5 (WA) 18.5 Technical Brandon Bray
The production event-type has not yet been defined. The syntactic category of this element needs to be

Yes

14-Jun-04 meeting #5 (WA) 18.5.2 Technical Brandon Bray
It is a bit strange to define grammar productions for these functions. We probably should either make t

Yes

14-Jun-04 meeting #5 (WA) 18.5.3 Technical L Brandon Bray

An event with the new modifier introduces a new
event that does not override an event from a base
class. Make sure the complete specification is
provided in the clause for the new modifier.

Meeting #9 (NJ): Already in draft. Yes

14-Jun-04 meeting #5 (WA) 19.7 Technical L Brandon Bray The restriction below does not apply to non-static
member operators – that need not have a
parameter of the type of the class.

Meeting #9 (NJ): Needs to be done. No

14-Jun-04 meeting #5 (WA) 18.6.1 Technical L Brandon Bray Provide an example for "Homogenizing the candidate
overload set".

Yes

14-Jun-04 meeting #5 (WA) 18.6.5.2 Technical Editor Provide C++ names for operator True and False Meeting #8 (WA): Move to future directions and close
out.

Yes

14-Jun-04 meeting #5 (WA) 18.9 Technical Brandon Bray
add literal to storage-class-specifier

Yes

14-Jun-04 meeting #5 (WA) 18.1 Technical Brandon Bray
add initonly to storage-class-specifier

Yes

14-Jun-04 meeting #5 (WA) 20.2 Technical Editor Add text to indicate the circumstances under
which type modifiers shall be emitted, and point
to each modifier's definition.

Meeting #9 (NJ): Needs to be done.

Done in WD1.10.

Yes

14-Jun-04 meeting #5 (WA) 20.3 Technical L Editor Add text to indicate the circumstances under
which type modifiers shall be emitted, and point
to each modifier's definition.

Meeting #9 (NJ): Needs to be done.

Done in WD1.10.

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

150

151

152

153

154

155

156

157

158

14-Jun-04 meeting #5 (WA) 21.4.1 Technical Brandon Bray
Add words about instance constructors and static constructor.

Yes

14-Jun-04 meeting #5 (WA) 25.2 Technical M Brandon Bray
The note says "pickup the restrictions from page 333 (of Brandon's paperback copy of the C# spec)".

No

14-Jun-04 meeting #5 (WA) 25.1.3 Technical Brandon Bray Complete the production enum-base. Also, since this
production is used by both native and CLI enums,
yet it's described in the native section, wording
might need to be re-arranged to make it read better
from both enums' perspectives.

Yes

14-Jun-04 meeting #5 (WA) 30.1 Technical M Brandon Bray The text indicates that a generic-declaration may
appear in a class scope, but the syntax of member-
declaration has not been extended to permit a
generic-declaration. [[#98]]

No

14-Jun-04 meeting #5 (WA) 30.1 Technical R Brandon Bray
Doesn't the text "a generic name declared in
namespace scope or in class scope shall be
unique in that scope" make the first sentence of
this paragraph redundant? Re the reference to
14.5.4: That is the section on partial
specialization. Generics can't be partially
specialized, can they? The spec. should probably
answer that explicitly.

No

14-Jun-04 meeting #5 (WA) 30.1 Technical R Brandon Bray What is a non-generic type? Does it mean that the
rules are the same as classes? As template
classes? Something else?

No

14-Jun-04 meeting #5 (WA) 30.1 Technical Editor
Can generic types be nested in native classes?

Included in WD1.10. Yes

14-Jun-04 meeting #5 (WA) 30.1 Technical Brandon Bray Type Overloading – This involves overloading on
arity, and is currently under investigation. Such a
feature permits the following:
ref class X {};
generic<typename T>
ref class X {};
generic<typename T, typename U>
ref class X {};

Duplicate of #97 Yes

14-Jun-04 meeting #5 (WA) 30.1.1 Technical R Brandon Bray

The equivalent wording for template parameters
in the working paper has been changed to
"defines its identifier to be a typedef-name". The
revised wording should probably be used here too
(see core issue 283)

No

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

159

160

161

162

163

164

165

166

14-Jun-04 meeting #5 (WA) 30.1.2 Technical R Brandon Bray
30.1.2 says "Like templates in Standard C++,
within the body of a generic type any usage of the
unqualified unadorned name of that type is
assumed to refer to the current instantiation."
30.1.3 then goes on to describe "The instance
type". Those seem like to different ways of
describing the same concept. Can they be unified
in some way?

Yes

14-Jun-04 meeting #5 (WA) 30.1.6 Technical R Brandon Bray This subclause describes when a static
constructor is invoked. In 18.8, it references the
CLI Standard Partition II (10.5.3). Are the rules
the same? (Yes) Should this subclause also just
reference the CLI spec?
There are two sets of behavior; we need to say
which one we use.

No

14-Jun-04 meeting #5 (WA) 30.1.7 Technical M Brandon Bray
What to say about explicit conversion functions (which can only occur in managed class types)?

No

14-Jun-04 meeting #5 (WA) 30.2.2 Technical R Brandon Bray

This subclause lists the types that can and cannot
be generic arguments. Fundamental types are not
included in either set, neither are function types.
The subclause does not say whether or not cv-
qualified types are allowed.

No

14-Jun-04 meeting #5 (WA) 30.2.4 Technical R Brandon Bray "The non-inherited members of a constructed type
are obtained by substituting, for each generic-
parameter in the member declaration, the
corresponding generic-argument of the constructed
type. The substitution process is based on the
semantic meaning of type declarations, and is not
simply textual substitution."

It would be helpful to explain this in more detail
and/or give an example where this makes a
difference.

Yes

14-Jun-04 meeting #5 (WA) 30.3 Technical Editor
Can a generic function be declared inside a native class? (Yes) Can generic functions (and member fun

Yes

14-Jun-04 meeting #5 (WA) 30.3 Technical Editor Types not used as a parameter type to a generic
function cannot be deduced. Are the nondeduced
context rules the same as Standard C++ or not?
The sentence before this is true, but not complete if
the rules are the same as Standard C++.

Meeting #8 (WA): The intent for V1 is to use the same
rules as for templates.

Meeting #9 (NJ): Say the following: "Types that
cannot be deduced for function templates cannot be
deduced for generic functions "

Yes

14-Jun-04 meeting #5 (WA) 30.3 Technical Editor
What, if anything, does it mean for a generic funct

Meeting #6 (WA): all have the usual meaning. Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

167

168

169

170

171

14-Jun-04 meeting #5 (WA) 30.3 Technical L Brandon Bray "When the type of a parameter or variable is a
type parameter, the declaration of that parameter
or variable shall use that type parameter’s name
without any pointer, reference, or handle
declarators."

What about cv-qualifiers?

Meeting #9 (NJ): Needs to be done. CV-qualifiers are
not permitted.

No

14-Jun-04 meeting #5 (WA) 30.3 Technical L Brandon Bray

Can you take the address of a generic function ins

Meeting #6 (WA): Tentatively decided, NO.

Meeting #8 (WA): Reconsidered, and now think YES.
Consider the following example:

delegate void D(int);

generic <class T>
void F(T t);

D^ d = gcnew D(&F<int>);

W d th t thi f l idi

Yes

14-Jun-04 meeting #5 (WA) 30.3.2 Technical L Brandon Bray
The issue raised in 8.15.3 is somewhat answered
here. 18.3.6 seems to deal with expanded forms
of calls, not expanded forms of function
declarations. I interpret the text above as saying
that deduction is done as if the function were
declared like this:
 generic <typename ItemType>
 void PushMultiple(Stack<ItemType>^,
ItemType i1, ItemType i2,/* ... */);
Is that correct? I think this requires a more
detailed description.

Meeting #9 (NJ): Needs to be done. Add example(s). No

14-Jun-04 meeting #5 (WA) 30.3.2 Technical L Brandon Bray Something needs to be said about instantiating a
generic delegate using a generic function.

Meeting #9 (NJ): Needs to be done. No

14-Jun-04 meeting #5 (WA) 30.4.2 Technical H Brandon Bray When are members considered hidden? Is it
using the rules described later? Those are
described as applying only when a type parameter
has both a class constraint and one or more
interface constraints though.

Meeting #9 (NJ): Needs to be done.

Resolved in HI; incorporated into 1.11

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

172

173

174

175

176

177

178

14-Jun-04 meeting #5 (WA) 30.4.4 Technical H Brandon Bray Miscellaneous generics issues:
1. I seem to recall discussions of other kinds of
constraints (I believe one of them concerned
whether you could do a "new T()").
2. Doesn't there need to be some discussion of how
overload resolution works when a function argument
has a type parameter as its type?
3. Are the typename and template rules for syntactic
disambiguation the same in generics as in
templates? Presumably, the lack of specialization
would eliminate the need for these.
4. If scope contains a set of overloaded generic
functions, is partial ordering used to choose between
them?
5. I assume since there is nothing that says
otherwise, that generics can be friends of other
classes and generics can make other classes,
functions, (including generics) friends?
6. If friendship is supported, can a generic first be
declared in a friend declaration (suggested answer:
no).
7. Standard C++ has restrictions on type parameters
such as prohibiting types with no linkage. Does this
rule apply to generic arguments?
8. Are there generic conversion functions?

Meeting #8 (WA):

1. For V1, we can consume and enforce these special
constraints, but we can't author them. However, we
plan to do so in future, so add this to "Future
directions".

Resolved in HI; incorporated into 1.11

Yes

14-Jun-04 meeting #5 (WA) 32.1.4 Technical L Brandon Bray To ensure that signatures for the same Type
produced by different implementations match, the
ordering in such a set of modreqs and modopts is as
follows: first modreqs in ascending order by name,
then modopts in ascending order by name, with case
being significant. [[We need some rule here; is this
the one?]].

Meeting #9 (NJ): Add a description of our best guess
at the correct solution, to Future Directions, then mark
this Postponed. Point to this from the normative text
somehow.

No

14-Jun-04 meeting #5 (WA) 32.1.4 Technical L Brandon Bray
If IsBoxed is retained for the standard, we have
an ordering issue to consider: Currently, the value
type special modopt is emitted before the
IsBoxed modreq. For example, class
[mscorlib]System.ValueType
modopt([mscorlib]System.Int32)
modreq([a]n.IsBoxed). That puts a modopt before
a modreq.

Meeting #9 (NJ): MS-specific; Close without action. Yes

14-Jun-04 meeting #5 (WA) 32.1.5.1 Technical L Brandon Bray This modifier [IsBoxed] is a workaround for the
MS implementation. Does it have any long-term
value for the standard, even if only as an
historical note?

Meeting #9 (NJ): MS-specific; Close without action. Yes

14-Jun-04 meeting #5 (WA) E Technical R Brandon Bray
Flesh out Future Directions

Yes

14-Jun-04 meeting #5 (WA) E.7 Technical Brandon Bray
Add text to show the behavior in the CLI (includin

Feature dropped. So no need to persue. yes

14-Jun-04 meeting #5 (WA) F Technical Brandon Bray Flesh out anything in incompatibilities with Standard
C++

Duplicate so closed this one. Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

179

180

181

182

23-Jul-04 TG3 liaison Technical Mark Hall Support for Hide-By-Signature on Methods in ref
classes
(This would also apply to setter/getter methods for
properties.)

See email thread started by Rex J. on Jul 24.

Meeting #6 (WA): Some possible ways to address this
(and results of a straw poll) are:
1) Support hidebyname only and issue better error
messages. [0 in favour]
2) Make all ref class methods be hidebysig;
a. Only [0 in favour]
b. Default, with an option to select hidebyname [6 in
favour]
3) Add hidebysig keyword to allow explicit marking of
methods. [0 in favour]
with 3 people unsure.

We could go two routes:
A) Bring hidebysig in via “using” directive to hoist base
class/interface names (this is an approximate solution
only, as it doesn’t allow hoist-by-signature, only hoist-
by-name) [0 in favour]
B) Do repeated lookup in all base classes (like C#) [8
in favour]

Tom circulated the relevant pages from the CLI spec
(Partition I, 7.10.4).
We need to take into account the CLS rules when
resolving this issue.

Meeting #7 (WA): Had a brief discussion. No progress.

Yes

14-Jun-04 meeting #5 (WA) 26 Technical Editor Committee agreed with Rex's proposal to require
that delegates have the optional BeginInvoke and
EndInvoke methods for async processing of
delegates.

This was reported to TG3 at its Jun 04 meeting, but
there were concerns about the Compact Profile's not
being required to support these at runtime. Since this
is still an open issue in TG3, this issue will remain open
in TG5.

Yes

27-Jun-04 Technical Tom Plum Here are Tom's assumptions:

C++/CLI will not initially have a built-in type for
decimal the way C# has. In C++/CLI, you have to
use namespace System::Decimal.

The C++/CLI draft doesn't specify anything about
semantics of Decimal; the requirements are as given
in CLI (TG3). So we benefit from all the work done
in TG3 on allowing IEEE Decimal as an alternative to
.NET Decimal.

Re the methods of the type System::Decimal
methods, are they adequate for the C++
programmer, or should the compiler know something

Phone call Jun 29: discussed Decimal; agreed C++/CLI
can just use constructors.

yes

26-Jul-04 phone meeting Technical H Brandon Bray Discussion of passing a string literal in the presence
of overloads taking String^ and const
char * (what about char *?)

Meeting #6 (WA): The compiler currently chooses the
String^ over the const char*. Involves type deduction
across templates and generics.
Reassigned from Mark to Brandon.

String literal portion of issue 12 was transferred to
#182.

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

183

184

185

186

187

188

189

190

191

2-Aug-04 meeting #6 (WA) Technical M Brandon Bray Overload assignment operator for handles. Post-meeting #7. MS design team discussed this and
believes that we should drop this issue.

Meeting #8 (WA). Decided to drop it.

Yes

2-Aug-04 meeting #6 (WA) Technical Herb Sutter Describe problem with overloading on % vs. &

Herb presented the following code:

#include <iostream>
using namespace std;
void f(const int&) { cout << "f(const int&)" <<
endl; }
void f(int&) { cout << "f(int&)" << endl; }

void g(int%) { cout << "g(int%)" << endl; }
void g(int&) { cout << "g(int&)" << endl; }

int main() {
 const int ci = 0;
 int i = 0;
 int^ hi = gcnew int;

 f(ci);
 f(i);

 g(*hi);
// g(i); // ambiguous: should g(int&) be
preferred?
}

The following code was his attempt to write an
agnostic swap:

template<typename T>
void swap(T% a, T% b) {
#if defined NO_PIN_PTR // doesn't work
 T temp = a; a = b; b = temp;
#elif defined PIN_PTR_BUG // doesn't
compile
 T temp = *pin_ptr<T>(a);
 *pin_ptr<T>(*pa) = *pin_ptr<T>(*pb);

No

2-Aug-04 meeting #6 (WA) Technical Herb Sutter Collapsing reference to reference. (It’s in the C++0x
spec.)

Meeting #9 (NJ): Close without action. Yes

2-Aug-04 meeting #6 (WA) Technical M Brandon Bray Should we standardize traits? Meeting 9 (NJ): Agreed to drop this. Yes

2-Aug-04 meeting #6 (WA) Technical Brandon Bray user-defined assignment operator for handles dupelicate of #183 Yes

2-Aug-04 meeting #6 (WA) Technical H Brandon Bray Look at using + to implement String concatenation. Yes

2-Aug-04 meeting #6 (WA) Technical Editor Look at the changes to the grammar for C++0x and
note where they affect the C++/CLI grammar.

Put note in clause 3 using Steve's note to me as an
example.

Done in WD1.10.

Yes

2-Aug-04 meeting #6 (WA) Editorial Editor Add an annex identifying behavior that is
implementation-defined, undefined, or unspecified.

Yes

2-Aug-04 meeting #6 (WA) Technical R Brandon Bray Review the specification checking the usage of
accessibility vs. visibility

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

192

193

194

195

196

197

198

199

200

2-Aug-04 meeting #6 (WA) Technical L Brandon Bray Provide an annex containing the differences between
the grammar of Standard C++ and C++/CLI

Meeting #9 (NJ): Close without action. Yes

2-Aug-04 meeting #6 (WA) Technical Sean Perry Look at the issue of whether or not the mapping of
bool should be implementation-defined.

Meeting 7 (WA): Sean wrote this up and presented it
to the full committee on the 2nd day.

Based on committee feedback, Sean will revise his
paper for future consideration.

This was integrated into WD1.9.

Yes

2-Aug-04 Anthony Williams 15.3.2 Technical Jonathan Caves

Re Anthony's post to the reflector re "default index

Meeting 7 (WA): Discussed the possibility of
disallowing both the default indexed property and
operator[].

No

25-Aug-04 Rex Jaeschke 14.1. Technical L Brandon Bray Separate the list of conversions from the order of
preference (such as how Standard C++ separates
Standard Conversions from overload resolution).

duplicate of #130 Yes

30-Sep-04 meeting #7 (WA) Technical Herb Sutter In native types, % behaves like &. No

30-Sep-04 meeting #7 (WA) 19.1 Technical Herb Sutter Should generic member functions be allowed in
native classes?

This feature appeared in the draft as an "editorial"
addition. Does MS really intend to implement this
feature? Yes MS did

Yes

30-Sep-04 meeting #7 (WA) 2 Technical Herb Sutter Propose wording to require that extensions over and
above ISO C++ requirements, be diagnosed.

Meeting 9 (NJ): Re the new paragraph added to §2.
“Conformance” in response to spreadsheet issue #198,
the committee believed this text does not adequately
address the issue. The editor was asked to remove it.

Ownership was transferred from Tom to Herb.

No

30-Sep-04 meeting #7 (WA) 16.2.1 Technical R Brandon Bray Proof the text on Collection type and how a for each
is executed.

Yes

meeting #7 (WA) 19.1 Technical Herb Sutter Regarding "Member functions in a native class can
be generic", support for this appears to have been
added inadvertently. However, is there any user
need for it?

Since the MS product was going to support this
anyway, Steve A. agreed to have it in the std.

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

201

202

203
204

23-Oct-04 meeting #8 (WA) Technical H Brandon Bray How to accomodate non-CLI calling conventions on
other platforms.

Meeting #8 (WA):

delegate void D(int);

generic<class T>
void F(T t) { System::Console::WriteLine(t-
>ToString()); }

typedef void (* FP)(int);

void G(FP fp) {
 D^ d = gcnew D(fp);
 d(1010);
}

int main() {
 D^ d = gcnew D(&F<int>);
 d(42);

 FP fp = &F<int>;
 fp(101);

 G(&F<int>);

In MS's implementation, need to use __clrcall to
indicate the clr calling convention. This lead to a
discussion of how to accomodate non-CLI calling
conventions on other platforms. It was noted that
the CLI draft spec, Partition II, 15.3, "Calling
convention", states:

"When dealing with methods implemented outside
the CLI it is important to be able to specify the
calling convention required. For this reason there

No Yes

23-Oct-04 meeting #8 (WA) Technical H Brandon Bray Name lookup in managed classes ignores interfaces. Yes

26-Oct-04 Rex Jaeschke 10.1.2 Technical M Brandon Bray [Note: The compiler needs to add typedef members
to the class so that template code can use the return
type or the parameter types. [[Need more
explanation.]] end note]

No

26-Oct-04 Rex Jaeschke 12.2.2 Technical M Brandon Bray Write intro text. No

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

205

206
207

208
209

210

211

212

26-Oct-04 Rex Jaeschke 15.5 Technical H Brandon Bray 15.5 Explicit type conversion (cast notation)
The rules in the C++ Standard (§5.4/5) have been
extended for C++/CLI by including safe casts before
static casts.
• a const_cast
• a safe_cast
• a safe_cast followed by a const_cast
• a static_cast
• a static_cast followed by a const_cast
• a reinterpret_cast
• a reinterpret_cast followed by a const_cast
[Note: Standard C++ programs remain unchanged
by this, as safe casts are ill-formed when either the
expression type or target type is a native class. end
note]

Provide background on the expected behavior and
rationale. (Get this from the updated casting
proposal.)

No

26-Oct-04 Rex Jaeschke 21.4 Technical M Brandon Bray Simple value classes: Flesh this out. No

26-Oct-04 Rex Jaeschke 24.2.5 Technical H Brandon Bray Interface member access: Write up. No

26-Oct-04 Rex Jaeschke 27.2 Technical L Brandon Bray
Attribute specification: Write up net modules.

Meeting #9 (NJ): Close without action. The standard
will not mention net modules.

Yes

24-Nov-04 15.3.13 Technical L Brandon Bray Should safe_cast allow casting to void? Meeting #9 (NJ): This is allowed. Yes

4-Dec-04 Rex Jaeschke 29.5.1 Technical M Brandon Bray There is confusion about DefaultMember attribute
and IndexerNameAttribute. In the current
implementation, it appears that the first one is
exhibiting the behavior of the second one, and the
second one is being emitted into metadat directly
when it should be consumed by the compiler.

No

4-Dec-04 Rex Jaeschke 17.1 Technical L Brandon Bray The namespace cli is reserved. However, what if the
compiler imports an assembly created by C#, for
example, containing a user-defined namespace cli
having a type T, or a user-defined type called cli
defined at the global namespace level and having a
type T. Both of these appear to C++/CLI as the
same names, namely ::cli::T? (BTW, this works with
the current implementation.)

Yes

4-Dec-04 Rex Jaeschke Technical M Brandon Bray Since static constructors are emitted in metadata as
protected members, TG5 required that they be
defined as protected, rather than the previous
treatment, which allowed the programmer to give
them any accessibility, but that was ignored by the
compiler. (The same situation occurs with a finalizer
and a destructor for a ref class.)

Now that an interface is allowed to have a static
constructor, we have no way to explicitly declare
that member to be protected; all members in an
interface are implicitly public. What to do?

Meeting 9 (NJ): Leave as is; that is, require a
diagnostic if the accessibility specified contradicts what
is required. Make sure this applies to destructors and
finalizers as well.

Yes

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

213

214

215

216

217

218

4-Dec-04 Rex Jaeschke Technical M Brandon Bray 13.3.3.2/4 of the C++ Standard has rules for pointer
conversions, that need to be adapted to handles.
Review this subclause and determine the changes
needed for the C++/CLI spec.

No

4-Dec-04 Rex Jaeschke Technical Editor Representation of false and nullptr.

After changes made earlier this year by TC39/TG3,
the definition of System::Boolean requires that an
instance of that type be 8 bits, that false be all-bits-
zero, and that true have any one or more bits set.
However, some months ago, TG5 agreed to NOT
require that C++/CLI's bool type map to
System::Boolean. As such, the representation of
true and false is now unspecified.

Consider a value class that contains a bool member.
Being a value class it can't have a default
constructor; instead, instances are born with the
guaranteed default value all-bits-zero. However,
without having any guarantee about the
representation of true and false, we are not
guaranteed what, if anything, that default value
means.

I believe it would be most useful for C++/CLI to
require that false be all-bits-zero, and that true have
any one or more (unspecified) bits set.

(Note that TG3 and TG2 have a similar issue with
System::Decimal, which is a 128-bit value class. As
it happens, while all-bits-zero represents value zero
in both the MS and IEEE 754r decimal representations

Implemented in WD1.10. Yes

Feb-3-2005 Jeff Peil 13.1.1,
13.1.3

Technical 2 Brandon Bray §13.1.1 and 13.1.3 disagree, one describes gc-lvalue-
>lvalue as a conversion for native types, the other
describes it as never having gc-lvalues for these
(they are always l-values) They need to be made
consistent.

Resolved in HI; incorporated into 1.11 Yes

Feb-3-2005 Jeff Peil 18.5 Technical Editor Shouldn't DllImport be allowed on static member
functions in ref/value classes?

Done in WD1.10. Yes

Feb-3-2005 Sean Perry 29.1.1 Technical Editor How do attributes work with derived classes. If I
declare class B and D, which derives from B, and
apply attribute X to both of them. What happens for
the various values of AllowMultiple & Inherited?

(pg. 154, line 35) We need to talk about inheritance.
What happens to the attributes of the base class
when we provide attributes on the derived class?

Editor posted a response to the liaison reflector on Feb
15, and made several small improvements to WD1.10.

Yes

Feb-10-2005 Rex Jaeschke 15.3 Technical M Brandon Bray Are the productions

 postfix-expression . pseudo-finalizer-name
 postfix-expression -> pseudo-finalizer-name

necessary, and, if so, should the "pseudo-" prefix be
dropped?

No

Ecma/TC39-TG5/2005/018

1

A B C D E F G H I J
Date
Raised?

Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

219

220
221

222

223

224

3-Mar-05 Brandon Bray Technical M Brandon Bray Currently, the Visual C++ compiler allows a friend to
first declare a generic type. Whether the language
specification says this is allowed is up for discussion.
Are there any issues we should consider before
saying that it should be supported?

No

7-Mar-05 Sean Perry Technical M Brandon Bray Destroying members should happen after the base
class stuff in the fault block. TG5 also brought up the
destructor order (which Jeff brought up last week).

From Herb: Constructor failures.

We need to tweak the IL we generate for
constructors to have smoother handling of
constructor exceptions and deep virtual calls in
constructors. Here’s what we need to do:

.ctor {

 bool baseIsConstructed = false;

 try {

 construct all our own directly held members

 call our base class’s constructor

 baseIsConstructed = true;

 run our own constructor body

 }

 fault {

 destroy all our own directly held members (if non-
null)

 if(baseIsConstructed)

 call our base class’s destructor (same as when
chaining from Dispose(true))

No

28-Apr-05 Jonathan Caves 15.3.3 Technical M Brandon Bray Add an example No
28-Apr-05 Jonathan Caves 15.4.5 Technical M Brandon Bray I think that some text needs to be added specifiy

that with a generic parameter dynamic_cast is used
to convert IDisposable and if this conversion fails
then no further action in taken. The test sort of says
this but not explicitly enough.

Consider adding the new text in the generics clause. No

28-Apr-05 Jonathan Caves 15.21 Technical M Brandon Bray Add an example which shows what happens if a
property returns an array, or if it returns a reference
and it is used in a 'set' context but it does not have
set method.

No

28-Apr-05 Jonathan Caves 19.7 Technical M Brandon Bray Revise this to accommodate -> as a static operator.
Also revise 19.7.2.

No

This is a replacement/place-holder for Documents TC39-TG5/2005/016, 019, 021, and
024. Documents 016, 019, and 021 were intermediate committee drafts of the
specification, and are not included here. They are superseded by document 024, which
can be found at the following URLs:

http://www.plumhall.com/ecma/index.html
http://go.microsoft.com/fwlink/?LinkId=50042

http://www.plumhall.com/ecma/index.html
http://go.microsoft.com/fwlink/?LinkId=50042

Ecma/TC39-TG5/2005/020

1

25

43
47

50

58

62

66

67
74
75

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

16-Dec-03 Phone meeting 10 Technical H Brandon Bray Revise this clause by covering topics including
application entry point, assembly boundaries, among
others.

No

16-Dec-03 Phone meeting 15.11.1 Technical Mark Hall Add support for handle equality comparison, and
handle ==/!= nullptr, and vice versa.

Meeting #3 (Mel): Had a short discussion. Mark will
produce a paper for the May meeting.

Meeting #4 (NJ): No progress. To be discussed via
email, and at the Jun meeting

Meeting #5 (WA): Discussed briefly. Asked Mark to
write this up and distribute to the reflector.

Phone call Jun 29: This issue was resolved; just needs
drafting of final words.

Meeting 7 (WA): In the case of if(handle), which
conversions are attempted before comparison against
nullptr is used?

We agreed that if an explicit conversion to bool exists,
if(handle) uses that.

There is no implicit unboxing.

Steve and Mark worked on this and presented it to the
full committee on the 2nd day.

Based on committee feedback, Mark will write this up
for future consideration.

No

16-Dec-03 Phone meeting 17 Technical M Brandon Bray Provide text for this clause (Namespaces) No
16-Dec-03 Phone meeting 18.4 Technical H Brandon Bray Extend declarator-id’s by adding a new production

that allows default.
No

16-Dec-03 Phone meeting 18.6.6.1 Technical Mark Hall Reword this subclause similarly to the way special
member functions are described.

Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

No

16-Dec-03 Phone meeting 18.10.1 Technical L Brandon Bray Add a description that for any value class we have to
make the copy before calling member functions.

Meeting #9 (NJ): Needs to be done. No

16-Dec-03 Phone meeting 21 Editorial M Brandon Bray Introduce value classes -- Discuss the following: value
classes are optimized for small data structures. As
such, value classes do not allow inheritance from
anything but interface classes. Tie in fundamental
classes.

No

16-Dec-03 Phone meeting 21.4.1 Technical H Brandon Bray Add words about instance constructors and static
constructor.
Value classes cannot have SMFs (specifically, default
constructor, copy constructor, assignment operator,
destructor, or finalizer. Need to add specification for
this along with rationale.

No

16-Dec-03 Phone meeting 23.5 Technical M Brandon Bray Write-up array covariance w.r.t arrays. No
16-Dec-03 Phone meeting 23.6 Technical M Brandon Bray Write up array initialization. No

Ecma/TC39-TG5/2005/020

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

79
82

94

98

105

111

117

16-Dec-03 Phone meeting 27 Technical H Brandon Bray Cover unification of CLI and Standard C++ exception-
handling models, and anything else that might go in
this clause.

Are exceptions asynchronous now in some cases? Yes
they are. (For example, NullReferenceException.)

Meeting #5 (WA): Kevin Free (Microsoft) gave a verbal
presentation.

catch(…) catches managed and native exceptions.

catch(System::Object^) also catches both kinds, but
won’t invoke the destructor (so can leak).

CLI exception handling supports more features than we
expose.

The issue remained with Brandon to write up, as before.

No

16-Dec-03 Phone meeting 29 Technical M Brandon Bray Flesh out "Templates" clause. No
29-Jan-04 meeting #2 (HI) Technical Mark Hall Relationship between primitive types and CLI types.

The current spec allows the following: int i = 10;
String^ s = i.ToString();
Standard C++ doesn’t allow member selection on
expressions of primitive type. Assuming int maps to
System::Int32, just how much alike are these two
types? Specifically, when do we treat the primitive as
the underlying class.

Meeting 5 (WA): Asked Mark to write this up and
distribute to the reflector. Please address the side-effect
issue; that is, given (i++).ToString, is the increment
done?

Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

Re the side-effect, yes, it must be done.

No

29-Jan-04 meeting #2 (HI) 30 Technical R Brandon Bray Restrictions on generics re generic code generation.

The current generics clause needs to be fleshed out,
especially w.r.t how overload resolution works within
the CLI.

Meeting #2 (HI): Brandon will write a paper on this.

Meeting #4 (NJ): The fleshing out of Clause 30 is a
significant contribution toward this. More work needed
in declarations and function calls.

No

29-Jan-04 meeting #2 (HI) 14.5.1 Technical Mark Hall Constructors can't be used in casts in managed
classes. Should they be allowed in explicit
conversions?
All managed type constructors being explicit by
default. (Already yes, but reconfirm this.)

Meeting #4 (NJ): Steve will send the editor
sufficient text to go into the public drop to indicate
our intention re this topic. DONE.

Meeting 5 (WA): Asked Mark to write this up and
distribute to the reflector.

Meeting 7 (WA): Steve and Mark worked on this
and presented it to the full committee on the 2nd
day. Mark will write this up for future consideration.

No

19-Feb-04 15.3.2 Technical M Brandon Bray Need to consider how indexed access expressions are
interpreted in templates.

No

19-Feb-04 18.4.2 Technical H Brandon Bray The qualified name of a property needs to be
described somewhere. Once that happens, how an out-
of-class definition is done will already be covered by
existing rules.

No

Ecma/TC39-TG5/2005/020

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

124

10-Jun-04 Jonathan Caves Technical Jonathan Caves Indexed properties -- Consider the following:

interface class I1 {
 property int Value;
};

interface class I2 {
 property int Value[String^] {
 int get(String^);
 void set(String^, int);
 };
};

ref class D : I1, I2 {
 // Implements the properties
};

D^ d;
d->Value["Foo"];

The question is what does the last line do?

Which leads to a language design question - what
should the complier do when faced with a property
followed by a '['

1) Should it look for just parameterized properties and
if there isn't one fail - I suspect not

2) Should it look for all properties and if the returned
set contains a parameterized property it should prefer
it - this sounds like magic to me.

3) Should it look for all properties perform overload
resolution across the whole set and it the resulting call
is ambiguous then issue an error.

Mark Hall says: Jonathan's looking into deferring the

Meeting #5 (WA): Discussed this. Option #3 preferred.

Meeting 7 (WA): Discussed this in detail.

property int Value[int] {
 void set(int, int);
};

x->Value[1] = 4
is treated as
x->set_Value(1,4);

property array<int>^ Value {
 array<int>^ get();
}

x->Value[1] = 4
is treated as
x->get_Value()[1] = 4

property int% Value[int] {
 int% get(int);
}

x->Value[1] = 4
is treated as
x->get_Value(1) = 4

This construct violates the principle of properties (that
of setting/getting the value of some property), so is not
to be encouraged; however, it is supported, but no need
to consider it further here.

No

Ecma/TC39-TG5/2005/020

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

125

132

138

143

151

153

154

155

14-Jun-04 meeting #5 (WA) 8.15.3 Technical M Brandon Bray Based on the rules for type deduction in templates, it
seems surprising that you can match
array<ItemType>^ with an argument of type int.
Here is a standard C++ example intended to illustrate
the issue:
 template <class ItemType> struct Stack {};
 template <class ItemType> struct Array {
 Array(ItemType);
 };
 template <class ItemType>
 void PushMultiple(Stack<ItemType>,
Array<ItemType>);
 int main() {
 Stack<int> s;
 PushMultiple(s, 1); // deduction fails
 PushMultiple<int>(s, 1);
 }
Are the rules for generic different in this area?
[There seems to be information related to this in
30.3.2. See that subclause for further comments on
this issue.]

No

14-Jun-04 meeting #5 (WA) 15.3.10 Technical M Brandon Bray
Unboxing and boxing are described as preferred user-defined conversions; however, this is incorrect.

No

14-Jun-04 meeting #5 (WA) 18.4 Technical Mark Hall
Need to write up the restrictions on trivial properties.

No

14-Jun-04 meeting #5 (WA) 19.7 Technical L Brandon Bray The restriction below does not apply to non-static
member operators – that need not have a
parameter of the type of the class.

Meeting #9 (NJ): Needs to be done. No

14-Jun-04 meeting #5 (WA) 25.2 Technical M Brandon Bray
The note says "pickup the restrictions from page 333 (of Brandon's paperback copy of the C# spec)".

No

14-Jun-04 meeting #5 (WA) 30.1 Technical M Brandon Bray The text indicates that a generic-declaration may
appear in a class scope, but the syntax of member-
declaration has not been extended to permit a
generic-declaration. [[#98]]

No

14-Jun-04 meeting #5 (WA) 30.1 Technical R Brandon Bray

Doesn't the text "a generic name declared in
namespace scope or in class scope shall be unique
in that scope" make the first sentence of this
paragraph redundant? Re the reference to 14.5.4:
That is the section on partial specialization.
Generics can't be partially specialized, can they?
The spec. should probably answer that explicitly.

No

14-Jun-04 meeting #5 (WA) 30.1 Technical R Brandon Bray What is a non-generic type? Does it mean that the
rules are the same as classes? As template
classes? Something else?

No

Ecma/TC39-TG5/2005/020

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

158

160

161

162

167

14-Jun-04 meeting #5 (WA) 30.1.1 Technical R Brandon Bray

The equivalent wording for template parameters
in the working paper has been changed to
"defines its identifier to be a typedef-name". The
revised wording should probably be used here too
(see core issue 283)

No

14-Jun-04 meeting #5 (WA) 30.1.6 Technical R Brandon Bray This subclause describes when a static
constructor is invoked. In 18.8, it references the
CLI Standard Partition II (10.5.3). Are the rules
the same? (Yes) Should this subclause also just
reference the CLI spec?
There are two sets of behavior; we need to say
which one we use.

No

14-Jun-04 meeting #5 (WA) 30.1.7 Technical M Brandon Bray
What to say about explicit conversion functions (which can only occur in managed class types)?

No

14-Jun-04 meeting #5 (WA) 30.2.2 Technical R Brandon Bray

This subclause lists the types that can and cannot
be generic arguments. Fundamental types are not
included in either set, neither are function types.
The subclause does not say whether or not cv-
qualified types are allowed.

No

14-Jun-04 meeting #5 (WA) 30.3 Technical L Brandon Bray "When the type of a parameter or variable is a
type parameter, the declaration of that parameter
or variable shall use that type parameter’s name
without any pointer, reference, or handle
declarators."

What about cv-qualifiers?

Meeting #9 (NJ): Needs to be done. CV-qualifiers are
not permitted.

No

Ecma/TC39-TG5/2005/020

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

169

170

173

14-Jun-04 meeting #5 (WA) 30.3.2 Technical L Brandon Bray
The issue raised in 8.15.3 is somewhat answered
here. 18.3.6 seems to deal with expanded forms
of calls, not expanded forms of function
declarations. I interpret the text above as saying
that deduction is done as if the function were
declared like this:
 generic <typename ItemType>
 void PushMultiple(Stack<ItemType>^,
ItemType i1, ItemType i2,/* ... */);
Is that correct? I think this requires a more
detailed description.

Meeting #9 (NJ): Needs to be done. Add example(s). No

14-Jun-04 meeting #5 (WA) 30.3.2 Technical L Brandon Bray Something needs to be said about instantiating a
generic delegate using a generic function.

Meeting #9 (NJ): Needs to be done. No

14-Jun-04 meeting #5 (WA) 32.1.4 Technical L Brandon Bray To ensure that signatures for the same Type produced
by different implementations match, the ordering in
such a set of modreqs and modopts is as follows: first
modreqs in ascending order by name, then modopts
in ascending order by name, with case being
significant. [[We need some rule here; is this the
one?]].

Meeting #9 (NJ): Add a description of our best guess at
the correct solution, to Future Directions, then mark this
Postponed. Point to this from the normative text
somehow.

No

Ecma/TC39-TG5/2005/020

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

184

194

196

198

2-Aug-04 meeting #6 (WA) Technical Herb Sutter Describe problem with overloading on % vs. &

Herb presented the following code:

#include <iostream>
using namespace std;
void f(const int&) { cout << "f(const int&)" <<
endl; }
void f(int&) { cout << "f(int&)" << endl; }

void g(int%) { cout << "g(int%)" << endl; }
void g(int&) { cout << "g(int&)" << endl; }

int main() {
 const int ci = 0;
 int i = 0;
 int^ hi = gcnew int;

 f(ci);
 f(i);

 g(*hi);
// g(i); // ambiguous: should g(int&) be
preferred?
}

The following code was his attempt to write an
agnostic swap:

template<typename T>
void swap(T% a, T% b) {
#if defined NO_PIN_PTR // doesn't work
 T temp = a; a = b; b = temp;
#elif defined PIN_PTR_BUG // doesn't
compile
 T temp = *pin_ptr<T>(a);
 *pin_ptr<T>(*pa) = *pin_ptr<T>(*pb);
 *pin_ptr<T>(*pb) = temp;

No

2-Aug-04 Anthony Williams 15.3.2 Technical Jonathan Caves

Re Anthony's post to the reflector re "default index

Meeting 7 (WA): Discussed the possibility of disallowing
both the default indexed property and operator[].

No

30-Sep-04 meeting #7 (WA) Technical Herb Sutter In native types, % behaves like &. No

30-Sep-04 meeting #7 (WA) 2 Technical Herb Sutter Propose wording to require that extensions over and
above ISO C++ requirements, be diagnosed.

Meeting 9 (NJ): Re the new paragraph added to §2.
“Conformance” in response to spreadsheet issue #198,
the committee believed this text does not adequately
address the issue. The editor was asked to remove it.

Ownership was transferred from Tom to Herb.

No

Ecma/TC39-TG5/2005/020

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

203
204

206
207

210

213

218

219
221

222

223

224

26-Oct-04 Rex Jaeschke 10.1.2 Technical M Brandon Bray [Note: The compiler needs to add typedef members to
the class so that template code can use the return
type or the parameter types. [[Need more
explanation.]] end note]

No

26-Oct-04 Rex Jaeschke 12.2.2 Technical M Brandon Bray Write intro text. No
26-Oct-04 Rex Jaeschke 21.4 Technical M Brandon Bray Simple value classes: Flesh this out. No

26-Oct-04 Rex Jaeschke 24.2.5 Technical H Brandon Bray Interface member access: Write up. No

4-Dec-04 Rex Jaeschke 29.5.1 Technical M Brandon Bray There is confusion about DefaultMember attribute and
IndexerNameAttribute. In the current implementation,
it appears that the first one is exhibiting the behavior
of the second one, and the second one is being
emitted into metadat directly when it should be
consumed by the compiler.

No

4-Dec-04 Rex Jaeschke Technical M Brandon Bray 13.3.3.2/4 of the C++ Standard has rules for pointer
conversions, that need to be adapted to handles.
Review this subclause and determine the changes
needed for the C++/CLI spec.

No

Feb-10-2005 Rex Jaeschke 15.3 Technical M Brandon Bray Are the productions

 postfix-expression . pseudo-finalizer-name
 postfix-expression -> pseudo-finalizer-name

necessary, and, if so, should the "pseudo-" prefix be
dropped?

No

3-Mar-05 Brandon Bray Technical M Brandon Bray Currently, the Visual C++ compiler allows a friend to
first declare a generic type. Whether the language
specification says this is allowed is up for discussion.
Are there any issues we should consider before saying
that it should be supported?

No

28-Apr-05 Jonathan Caves 15.3.3 Technical M Brandon Bray Add an example No
28-Apr-05 Jonathan Caves 15.4.5 Technical M Brandon Bray I think that some text needs to be added specifiy that

with a generic parameter dynamic_cast is used to
convert IDisposable and if this conversion fails then no
further action in taken. The test sort of says this but
not explicitly enough.

Consider adding the new text in the generics clause. No

28-Apr-05 Jonathan Caves 15.21 Technical M Brandon Bray Add an example which shows what happens if a
property returns an array, or if it returns a reference
and it is used in a 'set' context but it does not have
set method.

No

28-Apr-05 Jonathan Caves 19.7 Technical M Brandon Bray Revise this to accommodate -> as a static operator.
Also revise 19.7.2.

No

This is a replacement/place-holder for Documents TC39-TG5/2005/016, 019, 021, and
024. Documents 016, 019, and 021 were intermediate committee drafts of the
specification, and are not included here. They are superseded by document 024, which
can be found at the following URLs:

http://www.plumhall.com/ecma/index.html
http://go.microsoft.com/fwlink/?LinkId=50042

http://www.plumhall.com/ecma/index.html
http://go.microsoft.com/fwlink/?LinkId=50042

Ecma/TC39-TG5/2005/022

Agenda
for the: 11th meeting of Ecma TC39-TG5
to be held in: Redmond, WA, USA
on: September 2005

TIME: 09:00 t i l l 17:00 on Mon 19t h September 2005
 09:00 t i l l 17:00 on Tue 20t h September 2005
 09:00 t i l l 10:00 on Fri 23r d September 2005
 [8:30AM Breakfast, Noon lunch each day]

LOCATION: Microsoft Campus
 Bldg 42, Room 1600
 Redmond, WA 98052
 USA
 (Directions: see TG5/2004/021)

CONTACT: John Hawkins
 johawk@microsoft.com

1 Opening
1.1 Appointment of Recording Secretary
1.2 Introduction of participants
1.3 Host facilities/local information

2 Adoption of the agenda

3 Final approval of minutes of previous TG5 meeting
(TG5/2005/015)

4 Matters arising from the minutes not covered elsewhere

5 Project Editor’s Report

6 Approving tracked changes in latest draft

7 Date and place of next meetings

8 Reports from Liaisons
8.1 TC39 TG3 (CLI) – Rex Jaeschke
8.2 SC22/WG21 (C++) – Tom Plum, P. J. Plauger, Tana Plauger,

John Spicer, and Steve Adamczyk
8.3 TC39 TG2 (C#) – Rex Jaeschke

Ecma International Rue du Rhône 114 CH-1204 Geneva T/F: +41 22 849 6000/01 www.ecma-international.org

IW tc39-tg5-2005-022.doc

mailto:johawk@microsoft.com

9 Action item spreadsheet review

10 Approval of TG5 spec to forward to TC39

11 Any other business, and appreciation of hosts

12 Adjournment

2

1

2

3

4

5

6

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

7-Oct-03 Rex Jaeschke Technical P.J. Plauger The current CLI spec supports Unicode V3.0. What, if
anything, should we do w.r.t V3.1/V4.0?

Brought up during the phone meeting of 10/7/2003.

Meeting #4 (NJ): Take no action. Don't mention more
that necessary.

Yes

7-Oct-03 Tom Plum Technical Tom Plum Diagnostics: How should we deal with warnings and
such?

Meeting #3 (Melbourne): Tom will adapt text from the
C# spec and present it.

Meeting #4 (NJ): Withrawn without action.

Yes

10-Oct-03 Phone meeting Editorial Editor Future directions: Should there be an informative
annex listing future directions?

Possible entries are:

1. Supporting static members in interfaces
2. Mixed types
3. gcnew of unmanaged types
4. new of managed types

Yes

10-Oct-03 Tom Plum Technical Tom Plum While discussing enums (25.1.3) and wchar_t's not
being permitted as an underlying type, a discussion
arose w.r.t CLI's requiring wchar_t to have the same
representation as System::Char; that is, a 16-bit
character.

This needs further investigation.

Possible need to look at/point to the PDTR currently out
from WG11 (ISO C).

This is part of a more general issue. Do we require
exact mapping for types, or do we allow a certain
amount of flexibility? See issue #93.

In email on 2003-10-12 Tom Plum wrote:

Refining my comments re wchar_t, I see a short-term
and a long-term ...

Short-term, there's no need to change anything. The
16-bit unicode type is wchar_t in VC++ and in
C++/CLI.

Long-term, the decision is up to TG5, and depends
upon who participates. My own guess is that TG5 in
fact will be the first group that has to integrate
Unicode 3.1 and 4.0 into its language definition. I
suspect that before we're done we'll have four types
of character (and literal and C++ string):

char - has to be 8 bits to integrate with CLI
 'x' "str" string = basic_string<char>

wchar_t - implementation's legacy choice of widechar
 L'x' L"str" wstring = basic_string<wchar_t>

char16_t - 16-bit character type, has to be UCS-2 or
UTF-16 for CLI
 u'x' u"str" ustring (?) = basic_string<char16_t>
(or string16?)

char32_t - 32-bit character type, has to be UTF-32 for
CLI
 U'x' U"str" Ustring (?) = basic_string<char32_t>
(or string32?)

wchar_t can be the same type as char16_t or
char32 t but isn't required to be

Yes

10-Oct-03 Phone meeting Technical Brandon Bray Issue of mapping system value types to the
fundamental types, and interop with the standard
library.

Merged in with issue #93 Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

7

8

9

10

11

21-Oct-03 Rex Jaeschke 7 Technical P.J. Plauger What is the interaction between the standard I/O
streams and System::Console?

Meeting #3 (Melbourne): It appears that there will not
be any synchronization between the two.

Meeting #8 (WA): Decided to say nothing about this.

Yes

4-Dec-03 meeting #1 (TX) 12.1.1 Technical Steve Adamczyk 64-bit integer mapping.

Meeting #1 (TX): Steve to write a paper for Jan 04
meeting. Done.

Meeting #2 (HI): This paper will be presented at the
March meeting of WG21. Let's see how it is received?

Meeting #4 (NJ): Steve will suggest how to tighten
existing wording w.r.t a 64-bit integer type in the
current draft, as part of the cleanup for the public
drop.

As to how to document the library support has yet to
be determined.

Yes

4-Dec-03 meeting #1 (TX) Technical Brandon Bray Write a paper on "It just works" Yes

4-Dec-03 meeting #1 (TX) 14 Technical R Brandon Bray pull together all the conversion information into one
place. Make sure all conversions are covered.

Yes

4-Dec-03 meeting #1 (TX) 15.3.2 Technical Steve Adamczyk comma vs. semicolon as separator in indexed access
expressions

In indexed access expressions (§15.3.2), comma
operators are currently disallowed inside [] unless they
are enclosed in parentheses. This conflicts with usage
in existing template libraries (e.g., Lambda), in which
the comma operator occurs inside [] without enclosing
it in parentheses.

Meeting #2 (HI): Can we treat commas in [] not
having enclosing parenthesis, in any context, always
be treated as punctuators?

Yes. Steve will provide words to the editor for this.

Meeting #3 (Mel): Steve produced a paper. He
reported one outstanding issue: In 15.3.2, "Indexed
Access", in the C++/CLI spec is rather vague. There,
we have
 indexed-access: indexed-designator [expression-list
]
where indexed-access is defined as an additional
alternative for
postfix-expression:
 postfix-expression: indexed-access
Unfortunately, there isn't any definition of indexed-
designator, so I'm not quite sure whether all the multi-
dimensional cases are supposed be handled by
indexed-designator, leaving the traditional cases to be
handled by the original (possibily modified) syntax.
An alternative would be not to introduce indexed-
access at all, and use the definition
 postfix-expression: postfix-expression [expression-
list]
to handle all the cases, for both traditional
subscripting and the new C++/CLI indexer references.
There was agreement to this, so Steve will update his p

yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

12

13

14

15

4-Dec-03 meeting #1 (TX) 9 Technical Tom Plum Issue of source code/Unicode mapping. What
assumptions, if any, should we make about the form of
input text? Handling of string literals, character
constants, and comments.

Meeting #3 (Melbourne): Had a short discussion. Tom
will produce a paper for the May meeting.

Meeting #4 (NJ): Tom got more input at this meeting,
and will produce a paper for the Jun meeting. DONE
(see email "TG5 issue #12 - character sets" from 5/29
EDT)

Meeting #5 (Redmond): Discussed Tom's paper in
detail. He'll update and recirculate.

Meeting #6 (Redmond): Closed out this issue with the
string literal portion of this issue being transferred to
#182.

Yes

4-Dec-03 meeting #1 (TX) 12 Technical M Brandon Bray Add a diagram of the type tree Yes

5-Dec-03 meeting #1 (TX) 15.3.9 Technical Editor alternative syntax for typeid <type-id>

The current syntax typeid <type-id> is too close to the
Standard C++ forms.

Meeting #2 (Hawaii): Ownership of this issue
transferred from John to Herb.

Several alternatives were discussed, including a
keyword CLI_typeid or CLI_typeof, and a static
member .class ala Java. Also ::typeid.

Herb addressed this in his keywords paper, which was
adopted in Melbourne

Yes

5-Dec-03 meeting #1 (TX) 16.1.1 Technical Tom Plum Write a paper for Jan, 04, meeting on use of for-each
with STL types.

TG5 will not pursue this as it's part of the work being
considered by WG21's evolution group.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

16

17

18

19

20

21

5-Dec-03 meeting #1 (TX) 16.1.1 Technical P.J. Plauger The for each statement.

Meeting #1 (Texas): Write a paper for Jan, 04, meeting
on spelling "for each" simply as "for".

Meeting #2 (Hawaii): Tom presented his proposal
from his email entitled {"for" in the style of "for
each"} from January 28. A discussion ensued, during
which the following alternatives (the colon versions of
which were new) were discussed in detail:

1. for each (type var in coll)
2. for (type var in coll)
3. for each (type var : coll)
4. for (type var : coll)

A straw poll indicated a preference for the alternatives
1 or 3, so these will be considered further.

Subsequent discussion on the liaison reflector lead to
a preference for
A. for (type var : coll) or
B. for (type var ; coll) // various TG5 members
believe this is too error prone

Meeting #4 (NJ): Bill will submit a proposal for the Jun
meeting on the semantics of the for-each statement.
Syntax remains as for each (type var in coll)

Meeting #5 (Redmond): Bill reported that nothing
need change in the TG5 spec in this regard. He's
found library solutions for his STL .NET-related
concerns.

Yes

5-Dec-03 meeting #1 (TX) 17 Technical John Spicer Check on the UK submission to WG21 re opening
nested namespaces.

Meeting #2 (Hawaii): John doesn't see a problem with
the basic mechanism. Let WG21 handle this.

Yes

5-Dec-03 meeting #1 (TX) 18.3.6 Technical Bjarne Stroustrup How might parameter arrays fit into sequence
constructors being considered in WG21?

We liaised. No action. Yes

5-Dec-03 meeting #1 (TX) Technical L Brandon Bray list of overlap between Standard C++ and features
proposed by C++/CLI

Meeting #9 (NJ): Close without action. Yes

8-Dec-03 Herb Sutter 18.7.1 Technical Herb Sutter Subject: RE: CLI binding: Delegating constructors and
exceptions

>>> "Herb Sutter" <hsutter@microsoft.com> 24
November 2003 18:33:42 >>>

> Actually, it's in there, thanks to BSI.

> EDG suggested that we specify the answer in terms
of object lifetime,
so that other answers,
> including the destructor calling question, can just fall
out from rest
of ISO C++ which specifies
> most things in terms of object lifetimes In the 11/21

Herb responded. Resolved. Yes

24-Nov-03 Attila Feher Editorial Editor When distilling PDF, add bookmarks. Look at other
options too (such as hotlinks).

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

22

23
24

25

26

27

28

29

30
31
32
33
34

35

36

37

38
39
40
41

42

24-Nov-03 Attila Feher 8.4 Technical Base doc, pp. 17, line 43 (Automatic memory
management).

Object^ Pop() {
 if (first == nullptr)
 throw gcnew Exception("Can't Pop from an empty
Stack.");

Why do you gcnew the Exception? Is it necessary?
There you throw a hat (handle), if I understand
correctly. But why... Cannot even a value type just be
thrown and make the catch box it, as it happens in
C++?

Not an issue for TG5. Yes

16-Dec-03 Phone meeting 8.2.3 Editorial R Brandon Bray Say more, especially w.r.t the template class
array<element-type>.

Yes

16-Dec-03 Phone meeting 9 Technical R Brandon Bray Review this clause. Yes
16-Dec-03 Phone meeting 10 Technical H Brandon Bray Revise this clause by covering topics including

application entry point, assembly boundaries, among
others.

Resolved on July 21, 2005 conference call.
Incorporated into 1.14a.

Yes

16-Dec-03 Phone meeting 10.2.1 Technical Brandon Bray Clarify the ordering definition when multiple
accessibility keywords are used.

Yes

16-Dec-03 Phone meeting 12.13.6 Technical H Brandon Bray Describe how interior_ptr, pin_ptr, array, and
safe_cast are template-like with certain constraints.

Yes

16-Dec-03 Phone meeting 12.3.6 Technical M Brandon Bray Describe how the compiler will need to emit a modopt
to distinguish interior_ptr<T> from tracking reference
to T (T%) in the metatada.

Yes

16-Dec-03 Phone meeting 12.3.6.2 Technical M Brandon Bray Spell out target type restrictions (for an interior_ptr) Yes

16-Dec-03 Phone meeting 12.3.6.3 Editorial Brandon Bray Describe the dangers of pointer arithmetic and
interior_ptrs.

merged into issue #87. Yes

16-Dec-03 Phone meeting 12.3.7 Technical Brandon Bray Provide a grammar for pinning_ptr merged into issue #27. Yes
16-Dec-03 Phone meeting 13 Technical Tom Plum What, if anything, goes in this clause? Yes
16-Dec-03 Phone meeting 14.1.1 Editorial R Brandon Bray Review this subclause. Yes
16-Dec-03 Phone meeting 14.4 Editorial R Brandon Bray Review this subclause. Yes
16-Dec-03 Phone meeting 15.1 Technical H Brandon Bray The rewrite rules for e[x] (default indexed accesses)

are different where there is only one index. This is
because there is a potential ambiguity with the C++
operator[]. Is this mentioned elsewhere?

Yes

16-Dec-03 Phone meeting 15.3.8 Technical M Brandon Bray cv-qualification needs to be considered for
dynamic_cast.

Resolved on July 7, 2005 conference call. This issue is
overcome by events. Dynamic cast can no longer
unbox values, and thus there is no need to consider cv-
qualification.

Yes

16-Dec-03 Phone meeting 15.3.9 Technical Brandon Bray Are typeid<long> and typeid<char> allowed (and if so,
what do they mean).

They are allowed and are distinct. Yes

16-Dec-03 Phone meeting 15.3.9 Technical L Brandon Bray Provide a spec for standard typeid (that returns
std::type_info) in addition to the new typeid (that
returns System::Type).

Meeting #9 (NJ): Close and list in Future Directions. Yes

16-Dec-03 Phone meeting 15.3.13 Editorial H Brandon Bray Update this subclause Yes
16-Dec-03 Phone meeting 15.4.1.1 Editorial R Brandon Bray Review this subclause. Yes
16-Dec-03 Phone meeting 15.4.1.4 Technical All Should a unary ^ operator exist? Meeting #4 (NJ): No Yes
16-Dec-03 Phone meeting 15.4.6 Technical Brandon Bray Define the grammar for gcnew array, and describe

array creation expression.
Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

43

44

45

46

47

48

49

50

16-Dec-03 Phone meeting 15.11.1 Technical M Brandon Bray Add support for handle equality comparison, and
handle ==/!= nullptr, and vice versa.

Meeting #3 (Mel): Had a short discussion. Mark will
produce a paper for the May meeting.

Meeting #4 (NJ): No progress. To be discussed via
email, and at the Jun meeting

Meeting #5 (WA): Discussed briefly. Asked Mark to
write this up and distribute to the reflector.

Phone call Jun 29: This issue was resolved; just needs
drafting of final words.

Meeting 7 (WA): In the case of if(handle), which
conversions are attempted before comparison against
nullptr is used?

We agreed that if an explicit conversion to bool exists,
if(handle) uses that.

There is no implicit unboxing.

Steve and Mark worked on this and presented it to the
full committee on the 2nd day.

Based on committee feedback, Mark will write this up
for future consideration.

Phone call Aug 18, 2005: Resolved. Added sections for
handle equality operators and string equality.

Yes

16-Dec-03 Phone meeting 15.18 Technical H Brandon Bray
Add words to discuss assignment for properties and
events from the point of view of the rewrite rules.

Yes

16-Dec-03 Phone meeting 15.2 Technical Brandon Bray Investigate whether string literals include compile-time
expressions, such as concatenation of strings with non-
strings.

Meeting #4 (NJ): No action to be taken at this time. Yes Yes

16-Dec-03 Phone meeting 16.3 Technical Jonathan Caves

Meeting #3 (Melbourne): It was suggested that this
issue be brought to WG21. It's a security issue in
standard C++; it's not a CLI-specific issue. Jonathan
will produce a paper for the May meeting.

Meeting #4 (NJ): TG5 expressed opposition to
expression-level checked/unchecked. Not to bring it to
WG21.

Yes Yes

16-Dec-03 Phone meeting 17 Technical M Brandon Bray Provide text for this clause (Namespaces) Resolved on July 21, 2005 conference call.
Incorporated into 1.14a.

Yes

16-Dec-03 Phone meeting 18.3.1 Technical Editor Explain the difference between using ‘override’ and ‘=
function-name’; one creates an .override directive in
CIL, the other does not.

Yes

16-Dec-03 Phone meeting 18.3.4 Technical Brandon Bray
Describe in more detail the semantics of new, including
its use on static member functions (currently new only
applies to overriding, not to hiding).

Yes

16-Dec-03 Phone meeting 18.4 Technical H Brandon Bray Extend declarator-id’s by adding a new production that
allows default.

Resolved on July 21, 2005 conference call.
Incorporated into 1.14a.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

51

52

53
54
55

56
57

58

59

60
61

62

63
64

65

66

67

16-Dec-03 Phone meeting 18.4 Technical Brandon Bray The grammar for indexer-parameter-declaration does
not allow handles or pointers, but full declarators are
not needed. The grammar should allow a simpler
sequence of ptr-operator.

Yes

16-Dec-03 Phone meeting 18.4.2 Technical H Brandon Bray This subclause only covers how the accessor functions
must be defined. The expressions clause needs to
cover the rewrite rules that call accessor functions.

Yes

16-Dec-03 Phone meeting 18.4.2 Technical Brandon Bray Property syntax: Describe the qualified name of a
property.

Meeting #2 (Hawaii): Agreed to keep the current
syntax.

Yes

16-Dec-03 Phone meeting 18.5.2 Editorial R Brandon Bray Review this subclause. Yes
16-Dec-03 Phone meeting 18.6 Editorial R Brandon Bray Review this subclause. Yes
16-Dec-03 Phone meeting 18.7.4 Technical M Brandon Bray Identify when (operator) synthesis would and would

not occur.
Yes

16-Dec-03 Phone meeting 18.6.5.1 Technical L Brandon Bray Writeup op_true and op_false operators DUPE OF #145 Yes
16-Dec-03 Phone meeting 18.6.6.1 Technical M Brandon Bray Reword this subclause similarly to the way special

member functions are described.
Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

Phone call Aug 18, 2005: Resolved. Text deleted and
replaced with section on handle equality.

Yes

16-Dec-03 Phone meeting 18.6.6.1 Technical H Brandon Bray Add another subclause to cover the compiler-generated
conversion from handle to unspecified bool type.

Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

Yes

16-Dec-03 Phone meeting 18.9 Technical Brandon Bray Add grammar for literal-constant-initializer = Standard
C++ constant-initializer + float/double + String +
nullptr.

Yes

16-Dec-03 Phone meeting 18.9, 18.10 Technical Brandon Bray Justify why we need literal and initonly fields. They are used in the BCL. Yes
16-Dec-03 Phone meeting 19.12.1 Technical L Brandon Bray Add a description that for any value class we have to

make the copy before calling member functions.
Meeting #9 (NJ): Needs to be done. No

16-Dec-03 Phone meeting 18.11 Technical H Brandon Bray Say more about finalizers (including Dispose/~T and
Finalize/!T) and add some examples.

Paper included in WD1.10. Yes

16-Dec-03 Phone meeting 19 Technical Brandon Bray Supply more text for this clause. Yes
16-Dec-03 Phone meeting 18.1 Technical Editor As a cross-language issue, come up with terminology

to distingish between destructors and finalizers.
Perhaps "deterministic destructor" vs. "non-
deterministic finalizer."

Add some text in spec re this, esp. w.r.t C#'s use of
destructor

Feb 2005. Issue was dropped as the revised version
of Brandon's "Destructors and Finalizers" paper makes
this intent clear, and TG2 has now dropped the use of
"destructor" in favor of "finalizer".

Yes

16-Dec-03 Phone meeting 21 Editorial M Brandon Bray Introduce value classes -- Discuss the following: value
classes are optimized for small data structures. As
such, value classes do not allow inheritance from
anything but interface classes. Tie in fundamental
classes.

Resolved in the 1.14b draft circulated for the August
4, 2005 conference call.

Yes

16-Dec-03 Phone meeting 21.4.1 Technical H Brandon Bray Add words about instance constructors and static
constructor.
Value classes cannot have SMFs (specifically, default
constructor, copy constructor, assignment operator,
destructor, or finalizer. Need to add specification for
this along with rationale.

Resolved on July 21, 2005 conference call.
Incorporated into 1.14a.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

68

69

70
71

72

73

74

75

76

77

78

79

16-Dec-03 Phone meeting 22 Technical L Brandon Bray Consider writing some text for this "place-holder"
clause. Should this all go in the new annex "Future
directions"?

Meeting #9 (NJ): Existing words adequate. Yes

16-Dec-03 Phone meeting 23 Technical Editor The spec currently states "Throughout this Standard,
the term "array" is used to mean an array in C++/CLI.
A C++-style array is referred to as a native array
whenever the distinction is needed." Tom was
concerned that this was, perhaps, too subtle. He will
try to come up with an alternative name for C++/CLI
arrays.

Meeting #2 (Hawaii): Use "Array" when we mean CLI
array, and "array" means C-style array.

Yes

16-Dec-03 Phone meeting 23 Technical Sean Perry Check if the term "array" is used in the library
extensions plan of WG21.

Yes it is. Yes

16-Dec-03 Phone meeting 23 Editorial R Brandon Bray Will review this whole clause. Yes
16-Dec-03 Phone meeting Technical Sean Perry Look into possible performance issues re "for each" and

delegates.
No information. Yes

16-Dec-03 Phone meeting 23.4 Technical P.J. Plauger Every array type inherits the members declared by the
type System::Array. Currently, arrays do not have
iterators compatible with Standard C++’s template
library. Should they?

Meeting #5 (Redmond): Bill reported that nothing
need change in the TG5 spec in this regard.

Yes

16-Dec-03 Phone meeting 23.5 Technical M Brandon Bray Write-up array covariance w.r.t arrays. Phone call Aug 18, 2005: Resolved. Text included in
handle conversion section.

Yes

16-Dec-03 Phone meeting 23.6 Technical M Brandon Bray Write up array initialization. Phone call Aug 18, 2005: Resolved. Section written. Yes

16-Dec-03 Phone meeting 24.4 Technical H Brandon Bray Address what happens when a ref class does not
implement an interface function (and what happens
when a base class has a non-virtual function with the
same name).

Resolved in HI; incorporated into 1.11 Yes

16-Dec-03 Phone meeting 25 Technical Herb Sutter Coordinate with WG21's extended enum proposal. see #102 Yes

16-Dec-03 Phone meeting 26.1 Technical Brandon Bray Redo the grammar for delegate-definition, and find a
place for it in the type tree. Replace all uses of "return-
type" with appropriate production.

Yes

16-Dec-03 Phone meeting 27 Technical H Brandon Bray Cover unification of CLI and Standard C++ exception-
handling models, and anything else that might go in
this clause.

Are exceptions asynchronous now in some cases? Yes
they are. (For example, NullReferenceException.)

Meeting #5 (WA): Kevin Free (Microsoft) gave a
verbal presentation.

catch(…) catches managed and native exceptions.

catch(System::Object^) also catches both kinds, but
won’t invoke the destructor (so can leak).

CLI exception handling supports more features than
we expose.

The issue remained with Brandon to write up, as
before.

Phone call Aug 18, 2005: Resolved. Enough text exists
in the document. If a specific issue is raised, it will be
another item on this spreadsheet. As is, this item is
too broad to leave open.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

80

81

82
83

84
85
86

87
88
89
90

91

16-Dec-03 Phone meeting 20.5.1 Technical Brandon Bray Check the name
System::Reflection::DefaultMemberAttribute; it might
have been renamed in the CLI standard.

Yes

16-Dec-03 Phone meeting 20.5.2 Technical R Brandon Bray
Describe MethodImplOption metadata generation.

The editor has added quite a bit of text re this
attribute. See if that is sufficient.

Yes

16-Dec-03 Phone meeting 29 Technical M Brandon Bray Flesh out "Templates" clause.

Explicit and partial specializations of a class template
shall have the same class kind as the primary
template. For example, an explicit specialization of a
ref class template cannot be a value class. -- this isn't
true, but should be covered.

Are there any issues with metadata name emission? Is
it even necessary to standardize this since template
specializations are really only useful inside an
assembly.

Non-type template parameters will not include %, ^, or
nullptr.

Phone call Aug 18, 2005. Resolved. Template issues
covered by the spec are sufficient for closing this work
item. If other issues about templates need to be
written, they will be submitted as a separate paper or
subsequent specific work items.

Yes

16-Dec-03 Phone meeting 30 Technical Editor Flesh out "Generics" clause. Yes
16-Dec-03 Phone meeting 31 Technical P.J. Plauger Suggest possible standard library interaction issues

apart from I/O synchronization.
Meeting #8 (WA): Decided to say nothing about this. Yes

16-Dec-03 Phone meeting 32 Technical Brandon Bray Flesh out "CLI libraries" clause. Yes
16-Dec-03 dummy entry yes
16-Dec-03 Phone meeting A Technical L Brandon Bray Flesh out "Verifiable code" clause. Meeting #9 (NJ): Close without action. Yes

16-Dec-03 Phone meeting B Technical L Editor Flesh out "Documentation comments" clause. Yes
16-Dec-03 Phone meeting C Technical Editor Add any non-normative references Yes
16-Dec-03 Phone meeting D Technical Editor Add naming guidelines for generics Yes
29-Jan-04 meeting #2 (HI) 9.1.2 Technical Editor Steve asked:

Keywords:
 Are they keywords or identifiers?
 If keywords, are they always present or only in
some modes?
 Are they recognized at the lexical level or at the
syntactic level?
 If at the syntactic level, what are the rules?
(disambiguation?)
 Should keywords like ref class have a space in
the keyword or are they two words?

Meeting #2 (Hawaii): Herb will write a paper on
keywords to cover the following:

1) If it can be an identifier, it is.
2) Use Mark's preprocessor option 1 (to not make the
spaced words pp tokens, but rather, to assemble them
early in translation phase 4).
3) Add the fallback for namespace keywords.

Address why "generic" shouldn't be spelled in some
other way, perhaps as a spaced keyword, so that it
need not be a regular keyword.

Meeting #3 (Melbourne): Done, accepted, Editor to
integrate. Steve will add more words (see issue
#121).

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

92

29-Jan-04 meeting #2 (HI) Technical M Brandon Bray "size size" name lookup issue (see email thread started
by Herb Sutter on January 14 on the liaison reflector
under the topic {Name lookup 1 (of 2): "Size Size"
(CLI property naming idiom)}.)

This is the common CLI idiom of naming a property (or
potentially other members) with the same name as its
type. In particular, here are two common examples:

value class Size { /*…*/ };

value class Color { /*…*/ };

ref class X {
public:
 property Size Size;
 property Color Color;
};

In other languages, it’s easy to simply use the identifier
“Size” without qualification and have the compiler Do
the Right Thing™. But C++ name lookup is different.
The status quo in Managed C++ syntax was that we
made no change to C++ lookup rules, with the result
that authors of classes that use this idiom are required
to qualify most occurrences of “Size” which is ugly. The
issue mostly appears only within the class itself (and in
derived classes).

Here's a brief description of the problem:

ref class X {
public:
 property Size Size {
 Size get() { return s_; }
 void set(Size s) { s = s; } // A

Meeting #8 (WA): Decided to not include this in V1. Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

93

94

95

96

29-Jan-04 meeting #2 (HI) 12.1 Technical Tom Plum Do we require exact mapping for types, or do we allow
a certain amount of flexibility?

Should the size and representation of types long, long
long, and long double (as well as wchar_t, see issue
#5) be implementation-defined. Should all (or almost
all) of the fundamental types being implementation-
defined.

The CLI types System::Single and System::Double
require IEEE (IEC 559) representation. On many
systems these naturally map to float and double,
respectively. However, the IBM 390 does not used IEEE
format for either of these types. A C++/CLI program
running in that environment would want float/double to
map to 390 types, so there would need to be a
conversion to/from the CLI floating types.

In order to encourage the writing of portable code,
we’d need the largest core of fundamental type
mapping as possible; for example, signed and unsigned
8-, 16-, and 32-bit integer mapping.

Meeting #3 (Mel): There was a lengthy discussion. No
resolution.

Meeting #4 (NJ): There was a lengthy discussion.

Meeting #5 (WA): There was another lengthy
discussion, which resulted in Plum's notes being
incorporated into the meeting minutes.

The edits from Plum's subsequent paper were
incorporated into WD1.6 for Meeting #6 (WA).

Yes

29-Jan-04 meeting #2 (HI) Technical M Brandon Bray Relationship between primitive types and CLI types.

The current spec allows the following: int i = 10;
String^ s = i.ToString();
Standard C++ doesn’t allow member selection on
expressions of primitive type. Assuming int maps to
System::Int32, just how much alike are these two
types? Specifically, when do we treat the primitive as
the underlying class.

Meeting 5 (WA): Asked Mark to write this up and
distribute to the reflector. Please address the side-
effect issue; that is, given (i++).ToString, is the
increment done?

Meeting 7 (WA): ?? To be done in Tue morning work
sessions.

Re the side-effect, yes, it must be done.

Phone call Aug 18, 2005: Resolved. Added text to
12 1 1 in fundamental types

Yes

29-Jan-04 meeting #2 (HI) 10 Technical H Brandon Bray Provide words for #using. The editor has added quite a bit of text re this topic. Yes

29-Jan-04 meeting #2 (HI) 9.1.1 Technical M Editor The spec does not provide a way to use a keyword as
an identifier. (VC++ uses the intrinsic
__identifier(name) to achieve this; C# uses a leading
@.) This is an issue for inter-operability; for example,
being a consumer of a public type (written in
something other than C++) that has a name (or
contains a public member that has a name) that is a
keyword in C++.

Meeting #8 (WA): It was proposed we support the
intrinsic approach, accepting __identifier(x), where x
is a string literal or an identifier. String version is
reserved for implementers.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

97

98

99
100

101

102
103

104

29-Jan-04 meeting #2 (HI) Technical Editor Overloading on arity. (This is a liaison issue with TG3.)

The issue involves the overloading of a non-generic
type with a one or more generic types of the same
name in the same namespace. For example, the
following is permitted by the CLS:

ref class X { /*…*/ };

generic<typename T> /*…*/
ref class X { /*…*/ };

generic<typename T, typename U> /*…*/
ref class X { /*…*/ };

Meeting 3 (Mel): Herb presented this issue, which was
then reassigned to Brandon.

Meeting 5 (WA): In this version, we'll support a
generic and non-generic version of a type in the same
namespace, but not in different namespaces.

There was a discussion about using something like
“using generic x::y” to provide cross-namespace
support as well.

Rex to work with Brandon to get this into the draft.

Meeting 7 (WA): Herb reported that the MS
implementation can consume same-named generics
that overload on arity in the same assembly, but it
cannot create them.

Yes

29-Jan-04 meeting #2 (HI) 30 Technical R Brandon Bray Restrictions on generics re generic code generation.

The current generics clause needs to be fleshed out,
especially w.r.t how overload resolution works within
the CLI.

Some issues to consider are: (1) using templates inside
of generics, (2) overloading rules, and (3) dynamic
cast to type parameters. The high level goal with
generics (as with other parts of C++/CLI) is to provide
a close mapping of the underlying capabilities of the
CLI, which means that C++ can potentially create
generics that other languages might not be able to
consume. Not all languages support all capabilities, but
C++/CLI supports more than most. (However,
C++/CLI does not support array co- or contra-
variance.)

Meeting #2 (HI): Brandon will write a paper on this.

Meeting #4 (NJ): The fleshing out of Clause 30 is a
significant contribution toward this. More work needed
in declarations and function calls.

No

29-Jan-04 meeting #2 (HI) Technical Daveed Vandevoorde Write a paper proposing properties as specified by
C++/CLI, for the March 2004 meeting of WG21.

Yes

29-Jan-04 meeting #2 (HI) Technical Herb Sutter nullptr: Write a paper proposing this to WG21. Meeting #4 (NJ): WG21 expressed interest. Yes
29-Jan-04 meeting #2 (HI) Technical Herb Sutter delegating constructors: Write a paper proposing this

to WG21.
Meeting #4 (NJ): No implementation of this is
expected anytime soon. TG5 agreed to not include this
in this round. Editor will move 8.8.7.1 and 18.7.1 to
Annex E, and remove any usage of delegating
constructors from examples in other clauses.

Yes Yes

29-Jan-04 meeting #2 (HI) Technical Herb Sutter enhanced enums: Write a paper proposing this to
WG21.

Meeting #4 (NJ): WG21 doesn’t like enum class.
WG21 doesn’t know yet what it wants to do in this
regard. However, if WG21 adopts a feature like this,
but with different syntax, TG5 will revisit this when
appropriate.

Yes

29-Jan-04 meeting #2 (HI) Technical Brandon Bray Explicit overriding: Propose to WG21 Meeting #4 (NJ): withdrawn Yes
29-Jan-04 meeting #2 (HI) Technical Steve Adamczyk sealed, on classes and methods: Propose to WG21 Meeting #4 (NJ): withdrawn Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

105

106

107
108

109
110

111

112
113
114

29-Jan-04 meeting #2 (HI) 14.5.1 Technical M Brandon Bray Constructors can't be used in casts in managed classes.
Should they be allowed in explicit conversions?
All managed type constructors being explicit by default.
(Already yes, but reconfirm this.)

Meeting #4 (NJ): Steve will send the editor
sufficient text to go into the public drop to indicate
our intention re this topic. DONE.

Meeting 5 (WA): Asked Mark to write this up and
distribute to the reflector.

Meeting 7 (WA): Steve and Mark worked on this
and presented it to the full committee on the 2nd
day. Mark will write this up for future
consideration.

Phone call Aug 18, 2005: Resolved. Deleted
contradictory text in 14.5.1. Added 13.3 to cover
the three different cases for direct initialization.

Yes

29-Jan-04 meeting #2 (HI) Technical Editor Should >> handled as two tokens rather than one;
e.g., List<List<int>>.

Meeting #3 (Mel): Had a short discussion. Tom will
produce a paper for the May meeting.

Meeting #4 (NJ): TG5 agreed that if a < for a
template is seen, and >> that are not inside
parentheses, that >> will always be considered to be
the closing delimiter of two < symbols, and results in
an error if there are not two such corresponding <
symbols.

Refer to Daveed's paper WG21/N1649 for more
information.

Meeting #7 (WA): This paper was updated (see
N1699). It was discussed in TG5 and will be discussed
at the up-coming WG21 meeting, at which TG5
members will participate.

Meeting #8 (WA): Daveed presented this at the WG21
meeting this week. He proposed option 1, to which
WG21 agreed. He was charged to write the final
words.

Meeting #9 (NJ): Daveed submitted a revised paper,
which was accepted.

Implemented in WD1.10.

Yes

29-Jan-04 meeting #2 (HI) Technical Editor Look at the usage of the term "object" within the spec,
and compare with the C++ std.

Yes

19-Feb-04 12.3.6 Technical Brandon Bray Provide syntax for interior_ptrs Yes
19-Feb-04 12.3.6.3 Technical L Brandon Bray Cover the dangers of pointer arithmetic and

interior_ptrs
Meeting #9 (NJ): Close without action. Yes

19-Feb-04 12.3.7.1 Technical Brandon Bray Provide syntax for pinning_ptrs Yes
19-Feb-04 15.3.2 Technical M Brandon Bray Need to consider how indexed access expressions are

interpreted in templates.
Resolved on July 21, 2005 conference call.
Incorporated into 1.14a.

Yes

19-Feb-04 15.3.9 Technical Brandon Bray Check if long::typeid, char::typeid, etc. are allowed
(and if so, what do they mean).

Meeting #4 (NJ): Allowed, but no modopts Yes

19-Feb-04 28.5.1.2 Technical Brandon Bray Provide text for MethodImplOption attribute duplicate Yes
19-Feb-04 15.4.6.2 Technical Brandon Bray Does new-initializer need to be changed? Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

115

116

117
118

119

120

121

122

123

19-Feb-04 15.2 Technical Brandon Bray Do string literals include compile-time expressions,
such as string concatenation?

duplicate Yes

19-Feb-04 18.4.2 Technical H Brandon Bray Add some discussion of how accesses to properties are
rewritten into accessor functions. This should be
covered in rewrite rules in the expressions clause. Note
that access checking for whether a property can be
written to or read from is done after rewriting and
overload resolutions.

Yes

19-Feb-04 18.4.2 Technical H Brandon Bray The qualified name of a property needs to be described
somewhere. Once that happens, how an out-of-class
definition is done will already be covered by existing
rules.

Resolved on July 21, 2005 conference call.
Incorporated into 1.14a.

Yes

19-Feb-04 23.1.1 Technical Editor Is reference conversion the correct term? No; it's a handle conversion Yes
19-Feb-04 28.5.1.1 Technical Editor Check this name (DefaultMember); this attribute might

have been renamed in the CLI standard.
It has not been renamed, and appears in Beta 1 with
that name.

Yes

19-Mar-04 meeting #3 (Mel) Technical Tom Plum Does typename allow us to pursue a containment
policy re elaborated specifiers?

Meeting 7 (WA): Decided to drop this issue. Yes

19-Mar-04 meeting #3 (Mel) Technical Steve Adamczyk In the context of Herb's keywords paper (2004-05),
Steve will write up the notion "If it can be an identifier,
it is."

Yes

19-Mar-04 meeting #3 (Mel) Technical Steve Adamczyk Write a WG21 paper on extended integer types,
promotion rules, costs of conversion, and the like, for
the May meeting.

Meeting #4 (NJ): Not yet done, but still planned. Yes

3-May-04 meeting #4 (NJ) Technical Tom Plum The draft uses the term "constructed type". It was
suggested that the corresponding Standard C++ term
is"instantiation". Which should we use?

Meeting 7 (WA): Chose to use "constructed type". No
change needed to the spec.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

124

10-Jun-04 Jonathan Caves Technical M Brandon Bray Indexed properties -- Consider the following:

interface class I1 {
 property int Value;
};

interface class I2 {
 property int Value[String^] {
 int get(String^);
 void set(String^, int);
 };
};

ref class D : I1, I2 {
 // Implements the properties
};

D^ d;
d->Value["Foo"];

The question is what does the last line do?

Which leads to a language design question - what
should the complier do when faced with a property
followed by a '['

1) Should it look for just parameterized properties and
if there isn't one fail - I suspect not

2) Should it look for all properties and if the returned
set contains a parameterized property it should prefer
it - this sounds like magic to me.

3) Should it look for all properties perform overload
resolution across the whole set and it the resulting call
is ambiguous then issue an error.

Mark Hall says: Jonathan's looking into deferring the

Meeting #5 (WA): Discussed this. Option #3
preferred.

Meeting 7 (WA): Discussed this in detail.

property int Value[int] {
 void set(int, int);
};

x->Value[1] = 4
is treated as
x->set_Value(1,4);

property array<int>^ Value {
 array<int>^ get();
}

x->Value[1] = 4
is treated as
x->get_Value()[1] = 4

property int% Value[int] {
 int% get(int);
}

x->Value[1] = 4
is treated as
x->get_Value(1) = 4

This construct violates the principle of properties (that
of setting/getting the value of some property), so is
not to be encouraged; however, it is supported, but
no need to consider it further here.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

125

126

127

128

129

130

131

132

133

134

135

14-Jun-04 meeting #5 (WA) 8.15.3 Technical M Brandon Bray Based on the rules for type deduction in templates, it
seems surprising that you can match
array<ItemType>^ with an argument of type int. Here
is a standard C++ example intended to illustrate the
issue:
 template <class ItemType> struct Stack {};
 template <class ItemType> struct Array {
 Array(ItemType);
 };
 template <class ItemType>
 void PushMultiple(Stack<ItemType>,
Array<ItemType>);
 int main() {
 Stack<int> s;
 PushMultiple(s, 1); // deduction fails
 PushMultiple<int>(s, 1);
 }
Are the rules for generic different in this area?
[There seems to be information related to this in
30.3.2. See that subclause for further comments on
this issue.]

Phone call Aug 18, 2005: Resolved. The example
suggested the wrong behavior, so the example was
changed.

Yes

14-Jun-04 meeting #5 (WA) 12.1 Technical Editor

The type long long will be defined by pointing to th

Meeting 7 (WA): Steve has produced a revised
version, N1693. Editor to fold this in the spec. TG5
understands that WG21 has not yet accepted this
paper, but is expected to at its Oct 2004 meeting.

Yes

14-Jun-04 meeting #5 (WA) 12.3.3 Technical L Brandon Bray
Add text to indicate the circumstances under which

Meeting #9 (NJ): MS-specific; Close without action. Yes

14-Jun-04 meeting #5 (WA) 12.3.6 Technical L Brandon Bray
The compiler will need to emit a modopt to distinguish interior_ptr<T> from tracking reference to T (T

Yes

14-Jun-04 meeting #5 (WA) 12.3.7 Technical L Brandon Bray
Need to add text to indicate the circumstances under which the modopt IsPinned shall be emitted (i.e.,

Yes

14-Jun-04 meeting #5 (WA) 14.1.1 Technical L Brandon Bray
Separate the list of conversions from the order of pr

Meeting #9 (NJ): Close without action. Yes

14-Jun-04 meeting #5 (WA) 15.3.3 Technical M Editor Add text to indicate the circumstances under
which type modifiers shall be emitted, and point to
each modifier's definition.

Meeting #9 (NJ): Needs to be done.

Done in WD1.10.

Yes

14-Jun-04 meeting #5 (WA) 15.3.10 Technical M Brandon Bray
Unboxing and boxing are described as preferred use

Resolved on July 21, 2005 conference call.
Incorporated into 1.14a.

Yes

14-Jun-04 meeting #5 (WA) 15.3.10 Technical L Brandon Bray In a static cast of a handle to a base type to a
handle for a derived type, there is no checking.
This can be unverifiable and might cause a gc
hole.

Meeting #9 (NJ): Close without action. Yes

14-Jun-04 meeting #5 (WA) 16.3.3 Technical M Editor Add text to indicate the circumstances under
which the modreq IsUdtReturn shall be emitted
(i.e., ref class type retruned by value). Point to that
modreq's spec.

Meeting #9 (NJ): Needs to be done.

Done in WD1.10.

Yes

14-Jun-04 meeting #5 (WA) 18 Technical R Brandon Bray
This table and corresponding sections should include Special Member Functions (SMFs) like destructo

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

136

137

138

139

140

141

142

143

144

145

146

147

148

14-Jun-04 meeting #5 (WA) 18.2.1 Technical Editor

Need to address the following: C++/CLI uses the
System::Reflection::DefaultMemberAttribute
attribute to specify that something other than the
default name, “Item”, should be used. Given that,
the text describes what happens if no name is
chosen; that is, Item is used by default. Once the
name has been set with DefaultMember, it cannot
be changed in a derived class. If two interfaces
have different DefaultMember attributes,
implementing both interfaces is ill-formed.

Meeting #9 (NJ): Editor to mention this in the default
indexer clause.

Incorporated in WD1.10.

Yes

14-Jun-04 meeting #5 (WA) 18.3 Technical Brandon Bray
Extend the grammar to accommodate attributes on functions.

Yes

14-Jun-04 meeting #5 (WA) 18.4 Technical Mark Hall
Need to write up the restrictions on trivial propertie

There is no record of what this was referred to. Closed
on Aug 4, 2005 conference call.

Yes

14-Jun-04 meeting #5 (WA) 18.4 Technical Editor We probably should say something about the
reserved names get_Item and set_Item, and their
relationship with default indexed properties. Also,
add a forward pointer to the corresponding
attribute.

Meeting #9 (NJ): Needs to be done.

Handled as part of the resolution of #136.

Yes

14-Jun-04 meeting #5 (WA) 18.5 Technical Brandon Bray
The production event-type has not yet been defined. The syntactic category of this element needs to be

Yes

14-Jun-04 meeting #5 (WA) 18.5.2 Technical Brandon Bray
It is a bit strange to define grammar productions for these functions. We probably should either make t

Yes

14-Jun-04 meeting #5 (WA) 18.5.3 Technical L Brandon Bray

An event with the new modifier introduces a new
event that does not override an event from a base
class. Make sure the complete specification is
provided in the clause for the new modifier.

Meeting #9 (NJ): Already in draft. Yes

14-Jun-04 meeting #5 (WA) 19.7 Technical L Brandon Bray

The first citation of the C++ Standard does not
apply to non-static member operators – that need
not have a parameter of the type of the class.

Meeting #9 (NJ): Needs to be done. No

14-Jun-04 meeting #5 (WA) 18.6.1 Technical L Brandon Bray Provide an example for "Homogenizing the candidate
overload set".

Yes

14-Jun-04 meeting #5 (WA) 18.6.5.2 Technical Editor Provide C++ names for operator True and False Meeting #8 (WA): Move to future directions and close
out.

Yes

14-Jun-04 meeting #5 (WA) 18.9 Technical Brandon Bray
add literal to storage-class-specifier

Yes

14-Jun-04 meeting #5 (WA) 18.1 Technical Brandon Bray
add initonly to storage-class-specifier

Yes

14-Jun-04 meeting #5 (WA) 20.2 Technical Editor Add text to indicate the circumstances under
which type modifiers shall be emitted, and point to
each modifier's definition.

Meeting #9 (NJ): Needs to be done.

Done in WD1.10.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

149

150

151

152

153

154

155

156

157

158

14-Jun-04 meeting #5 (WA) 20.3 Technical L Editor Add text to indicate the circumstances under
which type modifiers shall be emitted, and point to
each modifier's definition.

Meeting #9 (NJ): Needs to be done.

Done in WD1.10.

Yes

14-Jun-04 meeting #5 (WA) 21.4.1 Technical Brandon Bray
Add words about instance constructors and static constructor.

Yes

14-Jun-04 meeting #5 (WA) 25.2 Technical M Brandon Bray

The note says "pickup the restrictions from page 33

Phone call Aug 18, 2005: Resolved. This referred to
elements of the array chapter, which is now complete.

Yes

14-Jun-04 meeting #5 (WA) 25.1.3 Technical Brandon Bray Complete the production enum-base. Also, since this
production is used by both native and CLI enums, yet
it's described in the native section, wording might need
to be re-arranged to make it read better from both
enums' perspectives.

Yes

14-Jun-04 meeting #5 (WA) 30.1 Technical M Brandon Bray The text indicates that a generic-declaration may
appear in a class scope, but the syntax of member-
declaration has not been extended to permit a
generic-declaration. [[#98]]

Resolved on July 21, 2005 conference call.
Incorporated into 1.14a.

Yes

14-Jun-04 meeting #5 (WA) 31.1 Technical R Brandon Bray

Doesn't the text "a generic name declared in
namespace scope or in class scope shall be unique
in that scope" make the first sentence of this
paragraph redundant? Re the reference to 14.5.4:
That is the section on partial specialization.
Generics can't be partially specialized, can they?
The spec. should probably answer that explicitly.

No

14-Jun-04 meeting #5 (WA) 30.1 Technical R Brandon Bray What is a non-generic type? Does it mean that the
rules are the same as classes? As template
classes? Something else?

No

14-Jun-04 meeting #5 (WA) 30.1 Technical Editor
Can generic types be nested in native classes?

Included in WD1.10. Yes

14-Jun-04 meeting #5 (WA) 30.1 Technical Brandon Bray Type Overloading – This involves overloading on arity,
and is currently under investigation. Such a feature
permits the following:
ref class X {};
generic<typename T>
ref class X {};
generic<typename T, typename U>
ref class X {};

Duplicate of #97 Yes

14-Jun-04 meeting #5 (WA) 30.1.1 Technical R Brandon Bray Regarding the phrase, "A generic-parameter
defines its identifier to be a type-name", the
equivalent wording for template parameters in the
working paper has been changed to "defines its
identifier to be a typedef-name". The revised
wording should probably be used here too (see
core issue 283)

No

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

159

160

161

162

163

164

165

166

14-Jun-04 meeting #5 (WA) 30.1.2 Technical R Brandon Bray 30.1.2 says "Like templates in Standard C++,
within the body of a generic type any usage of the
unqualified unadorned name of that type is
assumed to refer to the current instantiation."
30.1.3 then goes on to describe "The instance
type". Those seem like to different ways of
describing the same concept. Can they be unified
in some way?

Yes

14-Jun-04 meeting #5 (WA) 31.1.6 Technical R Brandon Bray This subclause describes when a static constructor
is invoked. In 18.8, it references the CLI Standard
Partition II (10.5.3). Are the rules the same? (Yes)
Should this subclause also just reference the CLI
spec?
There are two sets of behavior; we need to say
which one we use.

No

14-Jun-04 meeting #5 (WA) 30.1.7 Technical M Brandon Bray

What to say about explicit conversion functions (wh

Phone call Aug 18, 2005: Resolved. It wasn't really
clear anything needed to be said, but an explicit
mention of conversion functions was mentioned.

Yes

14-Jun-04 meeting #5 (WA) 31.2.2 Technical R Brandon Bray This subclause lists the types that can and cannot
be generic arguments. Fundamental types are not
included in either set, neither are function types.
The subclause does not say whether or not cv-
qualified types are allowed.

No

14-Jun-04 meeting #5 (WA) 30.2.4 Technical R Brandon Bray "The non-inherited members of a constructed type are
obtained by substituting, for each generic-parameter in
the member declaration, the corresponding generic-
argument of the constructed type. The substitution
process is based on the semantic meaning of type
declarations, and is not simply textual substitution."

It would be helpful to explain this in more detail and/or
give an example where this makes a difference.

Yes

14-Jun-04 meeting #5 (WA) 30.3 Technical Editor
Can a generic function be declared inside a native class? (Yes) Can generic functions (and member fun

Yes

14-Jun-04 meeting #5 (WA) 30.3 Technical Editor Types not used as a parameter type to a generic
function cannot be deduced. Are the nondeduced
context rules the same as Standard C++ or not? The
sentence before this is true, but not complete if the
rules are the same as Standard C++.

Meeting #8 (WA): The intent for V1 is to use the same
rules as for templates.

Meeting #9 (NJ): Say the following: "Types that
cannot be deduced for function templates cannot be
deduced for generic functions."

Yes

14-Jun-04 meeting #5 (WA) 30.3 Technical Editor
What, if anything, does it mean for a generic functio

Meeting #6 (WA): all have the usual meaning. Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

167

168

169

170

171

14-Jun-04 meeting #5 (WA) 31.3 Technical L Brandon Bray "When the type of a parameter or variable is a type
parameter, the declaration of that parameter or
variable shall use that type parameter’s name
without any pointer, reference, or handle
declarators."

What about cv-qualifiers?

Meeting #9 (NJ): Needs to be done. CV-qualifiers are
not permitted.

No

14-Jun-04 meeting #5 (WA) 30.3 Technical L Brandon Bray

Can you take the address of a generic function insta

Meeting #6 (WA): Tentatively decided, NO.

Meeting #8 (WA): Reconsidered, and now think YES.
Consider the following example:

delegate void D(int);

generic <class T>
void F(T t);

D^ d = gcnew D(&F<int>);

We agreed that this was a useful idiom

Yes

14-Jun-04 meeting #5 (WA) 30.3.2 Technical L Brandon Bray

The issue raised in 8.15.3 (#125 in this list) is
somewhat answered here. 18.3.6 seems to deal
with expanded forms of calls, not expanded forms
of function declarations. I interpret the text above
as saying that deduction is done as if the function
were declared like this:
 generic <typename ItemType>
 void PushMultiple(Stack<ItemType>^,
ItemType i1, ItemType i2,/* ... */);
Is that correct? I think this requires a more
detailed description.

Meeting #9 (NJ): Needs to be done. Add example(s). No

14-Jun-04 meeting #5 (WA) 31.3.2 Technical L Brandon Bray Something needs to be said about instantiating a
generic delegate using a generic function.

Meeting #9 (NJ): Needs to be done. No

14-Jun-04 meeting #5 (WA) 30.4.2 Technical H Brandon Bray When are members considered hidden? Is it using
the rules described later? Those are described as
applying only when a type parameter has both a
class constraint and one or more interface
constraints though.

Meeting #9 (NJ): Needs to be done.

Resolved in HI; incorporated into 1.11

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

172

173

174

175

176

14-Jun-04 meeting #5 (WA) 30.4.4 Technical H Brandon Bray Miscellaneous generics issues:
1. I seem to recall discussions of other kinds of
constraints (I believe one of them concerned whether
you could do a "new T()").
2. Doesn't there need to be some discussion of how
overload resolution works when a function argument
has a type parameter as its type?
3. Are the typename and template rules for syntactic
disambiguation the same in generics as in templates?
Presumably, the lack of specialization would eliminate
the need for these.
4. If scope contains a set of overloaded generic
functions, is partial ordering used to choose between
them?
5. I assume since there is nothing that says otherwise,
that generics can be friends of other classes and
generics can make other classes, functions, (including
generics) friends?
6. If friendship is supported, can a generic first be
declared in a friend declaration (suggested answer:
no).
7. Standard C++ has restrictions on type parameters
such as prohibiting types with no linkage. Does this
rule apply to generic arguments?
8. Are there generic conversion functions?

Meeting #8 (WA):

1. For V1, we can consume and enforce these special
constraints, but we can't author them. However, we
plan to do so in future, so add this to "Future
directions".

Resolved in HI; incorporated into 1.11

Yes

14-Jun-04 meeting #5 (WA) 32.1.4 Technical L Brandon Bray To ensure that signatures for the same Type produced
by different implementations match, the ordering in
such a set of modreqs and modopts is as follows: first
modreqs in ascending order by name, then modopts in
ascending order by name, with case being significant.
[[We need some rule here; is this the one?]].

The above isn't the correct wording, so I removed it
from the draft. The ordering probably should be
specified.

Meeting #9 (NJ): Add a description of our best guess
at the correct solution, to Future Directions, then
mark this Postponed. Point to this from the normative
text somehow.

No

14-Jun-04 meeting #5 (WA) 32.1.4 Technical L Brandon Bray If IsBoxed is retained for the standard, we have an
ordering issue to consider: Currently, the value-
type special modopt is emitted before the IsBoxed
modreq. For example, class
[mscorlib]System.ValueType
modopt([mscorlib]System.Int32)
modreq([a]n.IsBoxed). That puts a modopt before
a modreq.

Meeting #9 (NJ): MS-specific; Close without action. Yes

14-Jun-04 meeting #5 (WA) 32.1.5.1 Technical L Brandon Bray This modifier [IsBoxed] is a workaround for the
MS implementation. Does it have any long-term
value for the standard, even if only as an historical
note?

Meeting #9 (NJ): MS-specific; Close without action. Yes

14-Jun-04 meeting #5 (WA) E Technical R Brandon Bray
Flesh out Future Directions

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

177

178

179

180

181

14-Jun-04 meeting #5 (WA) E.7 Technical Brandon Bray
Add text to show the behavior in the CLI (including

Feature dropped. So no need to persue. yes

14-Jun-04 meeting #5 (WA) F Technical Brandon Bray Flesh out anything in incompatibilities with Standard
C++

Duplicate so closed this one. Yes

23-Jul-04 TG3 liaison Technical Mark Hall Support for Hide-By-Signature on Methods in ref
classes
(This would also apply to setter/getter methods for
properties.)

See email thread started by Rex J. on Jul 24.

Meeting #6 (WA): Some possible ways to address this
(and results of a straw poll) are:
1) Support hidebyname only and issue better error
messages. [0 in favour]
2) Make all ref class methods be hidebysig;
a. Only [0 in favour]
b. Default, with an option to select hidebyname [6 in
favour]
3) Add hidebysig keyword to allow explicit marking of
methods. [0 in favour]
with 3 people unsure.

We could go two routes:
A) Bring hidebysig in via “using” directive to hoist
base class/interface names (this is an approximate
solution only, as it doesn’t allow hoist-by-signature,
only hoist-by-name) [0 in favour]
B) Do repeated lookup in all base classes (like C#) [8
in favour]

Tom circulated the relevant pages from the CLI spec
(Partition I, 7.10.4).
We need to take into account the CLS rules when
resolving this issue.

Meeting #7 (WA): Had a brief discussion. No progress.

Yes

14-Jun-04 meeting #5 (WA) 26 Technical Editor Committee agreed with Rex's proposal to require that
delegates have the optional BeginInvoke and
EndInvoke methods for async processing of delegates.

This was reported to TG3 at its Jun 04 meeting, but
there were concerns about the Compact Profile's not
being required to support these at runtime. Since this
is still an open issue in TG3, this issue will remain
open in TG5.

Yes

27-Jun-04 Technical Tom Plum Here are Tom's assumptions:

C++/CLI will not initially have a built-in type for
decimal the way C# has. In C++/CLI, you have to use
namespace System::Decimal.

The C++/CLI draft doesn't specify anything about
semantics of Decimal; the requirements are as given in
CLI (TG3). So we benefit from all the work done in
TG3 on allowing IEEE Decimal as an alternative to .NET
Decimal.

Re the methods of the type System::Decimal methods,
are they adequate for the C++ programmer, or should
the compiler know something special about Decimal?

Phone call Jun 29: discussed Decimal; agreed
C++/CLI can just use constructors.

yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

182

183

184

185

186

187

26-Jul-04 phone meeting Technical H Brandon Bray Discussion of passing a string literal in the presence of
overloads taking String^ and const
char * (what about char *?)

Meeting #6 (WA): The compiler currently chooses the
String^ over the const char*. Involves type deduction
across templates and generics.
Reassigned from Mark to Brandon.

String literal portion of issue 12 was transferred to
#182.

Yes

2-Aug-04 meeting #6 (WA) Technical M Brandon Bray Overload assignment operator for handles. Post-meeting #7. MS design team discussed this and
believes that we should drop this issue.

Meeting #8 (WA). Decided to drop it.

Yes

2-Aug-04 meeting #6 (WA) Technical L Herb Sutter Describe problem with overloading on % vs. &

Herb presented the following code:

#include <iostream>
using namespace std;
void f(const int&) { cout << "f(const int&)" <<
endl; }
void f(int&) { cout << "f(int&)" << endl; }

void g(int%) { cout << "g(int%)" << endl; }
void g(int&) { cout << "g(int&)" << endl; }

int main() {
 const int ci = 0;
 int i = 0;
 int^ hi = gcnew int;

 f(ci);
 f(i);

 g(*hi);
// g(i); // ambiguous: should g(int&) be
preferred?
}

The following code was his attempt to write an agnostic
swap:

template<typename T>
void swap(T% a, T% b) {
#if defined NO_PIN_PTR // doesn't work
 T temp = a; a = b; b = temp;
#elif defined PIN_PTR_BUG // doesn't
compile
 T temp = *pin_ptr<T>(a);
 *pin_ptr<T>(*pa) = *pin_ptr<T>(*pb);
 *pin ptr<T>(*pb) = temp;

No

2-Aug-04 meeting #6 (WA) Technical Herb Sutter Collapsing reference to reference. (It’s in the C++0x
spec.)

Meeting #9 (NJ): Close without action. Yes

2-Aug-04 meeting #6 (WA) Technical M Brandon Bray Should we standardize traits? Meeting 9 (NJ): Agreed to drop this. Yes

2-Aug-04 meeting #6 (WA) Technical Brandon Bray user-defined assignment operator for handles dupelicate of #183 Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

188

189

190

191

192

193

194

195

196

197

198

199

200

2-Aug-04 meeting #6 (WA) Technical H Brandon Bray Look at using + to implement String concatenation. Yes

2-Aug-04 meeting #6 (WA) Technical Editor Look at the changes to the grammar for C++0x and
note where they affect the C++/CLI grammar.

Put note in clause 3 using Steve's note to me as an
example.

Done in WD1.10.

Yes

2-Aug-04 meeting #6 (WA) Editorial Editor Add an annex identifying behavior that is
implementation-defined, undefined, or unspecified.

Yes

2-Aug-04 meeting #6 (WA) Technical R Brandon Bray Review the specification checking the usage of
accessibility vs. visibility

Yes

2-Aug-04 meeting #6 (WA) Technical L Brandon Bray Provide an annex containing the differences between
the grammar of Standard C++ and C++/CLI

Meeting #9 (NJ): Close without action. Yes

2-Aug-04 meeting #6 (WA) Technical Sean Perry Look at the issue of whether or not the mapping of
bool should be implementation-defined.

Meeting 7 (WA): Sean wrote this up and presented it
to the full committee on the 2nd day.

Based on committee feedback, Sean will revise his
paper for future consideration.

This was integrated into WD1.9.

Yes

2-Aug-04 Anthony Williams 15.3.2 Technical M Brandon Bray

Re Anthony's post to the reflector re "default indexe

Meeting 7 (WA): Discussed the possibility of
disallowing both the default indexed property and
operator[].

Phone call Aug 18, 2005: Resolved. The text of 15.3.1
disallowes this in accordance with meeting 7.

Yes

25-Aug-04 Rex Jaeschke 14.1. Technical L Brandon Bray Separate the list of conversions from the order of
preference (such as how Standard C++ separates
Standard Conversions from overload resolution).

duplicate of #130 Yes

30-Sep-04 meeting #7 (WA) Technical M Brandon Bray In native types, % behaves like &. This is correctly specified in 13.1.3; closed on August
4, 2005 conference call.

Yes

30-Sep-04 meeting #7 (WA) 19.1 Technical Herb Sutter Should generic member functions be allowed in native
classes?

This feature appeared in the draft as an "editorial"
addition. Does MS really intend to implement this
feature? Yes, MS did.

Yes

30-Sep-04 meeting #7 (WA) 2 Technical Herb Sutter Propose wording to require that extensions over and
above ISO C++ requirements, be diagnosed.

Meeting 9 (NJ): Re the new paragraph added to §2.
“Conformance” in response to spreadsheet issue
#198, the committee believed this text does not
adequately address the issue. The editor was asked to
remove it.

Ownership was transferred from Tom to Herb.

Closed on Aug 4 2005 conference call

Yes

30-Sep-04 meeting #7 (WA) 16.2.1 Technical R Brandon Bray Proof the text on Collection type and how a for each is
executed.

Yes

meeting #7 (WA) 19.1 Technical Herb Sutter Regarding "Member functions in a native class can be
generic", support for this appears to have been added
inadvertently. However, is there any user need for it?

Since the MS product was going to support this
anyway, Steve A. agreed to have it in the std.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

201

202

203

204

23-Oct-04 meeting #8 (WA) Technical H Brandon Bray How to accomodate non-CLI calling conventions on
other platforms.

Meeting #8 (WA):

delegate void D(int);

generic<class T>
void F(T t) { System::Console::WriteLine(t-
>ToString()); }

typedef void (* FP)(int);

void G(FP fp) {
 D^ d = gcnew D(fp);
 d(1010);
}

int main() {
 D^ d = gcnew D(&F<int>);
 d(42);

 FP fp = &F<int>;
 fp(101);

 G(&F<int>);

In MS's implementation, need to use __clrcall to
indicate the clr calling convention. This lead to a
discussion of how to accomodate non-CLI calling
conventions on other platforms. It was noted that the
CLI draft spec, Partition II, 15.3, "Calling convention",
states:

"When dealing with methods implemented outside the
CLI it is important to be able to specify the calling
convention required. For this reason there are 16
possible encodings of the calling kind Two are used

No Yes

23-Oct-04 meeting #8 (WA) Technical H Brandon Bray Name lookup in managed classes ignores interfaces. Yes

26-Oct-04 Rex Jaeschke 10.1.2 Technical M Brandon Bray [Note: The compiler needs to add typedef members to
the class so that template code can use the return type
or the parameter types. [[Need more explanation.]]
end note]

Phone call Aug 18, 2005: Resolved. The compiler does
not do this, so the text that suggested it happens was
removed.

Yes

26-Oct-04 Rex Jaeschke 12.2.2 Technical M Brandon Bray Write intro text. Phone call Aug 18, 2005: Resolved. Text written. Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

205

206

207

208
209

210

211

212

26-Oct-04 Rex Jaeschke 15.5 Technical H Brandon Bray 15.5 Explicit type conversion (cast notation)
The rules in the C++ Standard (§5.4/5) have been
extended for C++/CLI by including safe casts before
static casts.
• a const_cast
• a safe_cast
• a safe_cast followed by a const_cast
• a static_cast
• a static_cast followed by a const_cast
• a reinterpret_cast
• a reinterpret_cast followed by a const_cast
[Note: Standard C++ programs remain unchanged by
this, as safe casts are ill-formed when either the
expression type or target type is a native class. end
note]

Provide background on the expected behavior and
rationale. (Get this from the updated casting proposal.)

Resolved on July 7, 2005 conference call.
Incorporated into 1.13.

Yes

26-Oct-04 Rex Jaeschke 21.4 Technical M Brandon Bray Simple value classes: Flesh this out. Resolved in the 1.14b draft circulated for the August
4, 2005 conference call.

Yes

26-Oct-04 Rex Jaeschke 24.2.5 Technical H Brandon Bray
Interface member access: Write up.

Resolved on July 21, 2005 conference call.
Incorporated into 1.14a.

Yes

26-Oct-04 Rex Jaeschke 27.2 Technical L Brandon Bray
Attribute specification: Write up net modules.

Meeting #9 (NJ): Close without action. The standard
will not mention net modules.

Yes

24-Nov-04 15.3.13 Technical L Brandon Bray Should safe_cast allow casting to void? Meeting #9 (NJ): This is allowed. Yes

4-Dec-04 Rex Jaeschke 29.5.1 Technical M Brandon Bray There is confusion about DefaultMember attribute and
IndexerNameAttribute. In the current implementation,
it appears that the first one is exhibiting the behavior
of the second one, and the second one is being emitted
into metadat directly when it should be consumed by
the compiler.

Phone call Aug 18, 2005: Resolved. Added the ability
to use IndexerName.

Yes

4-Dec-04 Rex Jaeschke 17.1 Technical L Brandon Bray The namespace cli is reserved. However, what if the
compiler imports an assembly created by C#, for
example, containing a user-defined namespace cli
having a type T, or a user-defined type called cli
defined at the global namespace level and having a
type T. Both of these appear to C++/CLI as the same
names, namely ::cli::T? (BTW, this works with the
current implementation.)

Yes

4-Dec-04 Rex Jaeschke Technical M Brandon Bray Since static constructors are emitted in metadata as
protected members, TG5 required that they be defined
as protected, rather than the previous treatment, which
allowed the programmer to give them any accessibility,
but that was ignored by the compiler. (The same
situation occurs with a finalizer and a destructor for a
ref class.)

Now that an interface is allowed to have a static
constructor, we have no way to explicitly declare that
member to be protected; all members in an interface
are implicitly public. What to do?

Meeting 9 (NJ): Leave as is; that is, require a
diagnostic if the accessibility specified contradicts
what is required. Make sure this applies to destructors
and finalizers as well.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

213

214

215

216

217

218

4-Dec-04 Rex Jaeschke Technical M Brandon Bray 13.3.3.2/4 of the C++ Standard has rules for pointer
conversions, that need to be adapted to handles.
Review this subclause and determine the changes
needed for the C++/CLI spec.

Phone call Aug 18, 2005: Resolved. Added 14.2.1.1 to
rank handle conversions.

Yes

4-Dec-04 Rex Jaeschke Technical Editor Representation of false and nullptr.

After changes made earlier this year by TC39/TG3, the
definition of System::Boolean requires that an instance
of that type be 8 bits, that false be all-bits-zero, and
that true have any one or more bits set. However,
some months ago, TG5 agreed to NOT require that
C++/CLI's bool type map to System::Boolean. As such,
the representation of true and false is now unspecified.

Consider a value class that contains a bool member.
Being a value class it can't have a default constructor;
instead, instances are born with the guaranteed default
value all-bits-zero. However, without having any
guarantee about the representation of true and false,
we are not guaranteed what, if anything, that default
value means.

I believe it would be most useful for C++/CLI to
require that false be all-bits-zero, and that true have
any one or more (unspecified) bits set.

(Note that TG3 and TG2 have a similar issue with
System::Decimal, which is a 128-bit value class. As it
happens, while all-bits-zero represents value zero in
both the MS and IEEE 754r decimal representations, the

Implemented in WD1.10. Yes

Feb-3-2005 Jeff Peil 13.1.1,
13.1.3

Technical 2 Brandon Bray §13.1.1 and 13.1.3 disagree, one describes gc-lvalue-
>lvalue as a conversion for native types, the other
describes it as never having gc-lvalues for these (they
are always l-values) They need to be made consistent.

Resolved in HI; incorporated into 1.11 Yes

Feb-3-2005 Jeff Peil 18.5 Technical Editor Shouldn't DllImport be allowed on static member
functions in ref/value classes?

Done in WD1.10. Yes

Feb-3-2005 Sean Perry 29.1.1 Technical Editor How do attributes work with derived classes. If I
declare class B and D, which derives from B, and apply
attribute X to both of them. What happens for the
various values of AllowMultiple & Inherited?

(pg. 154, line 35) We need to talk about inheritance.
What happens to the attributes of the base class when
we provide attributes on the derived class?

Editor posted a response to the liaison reflector on
Feb 15, and made several small improvements to
WD1.10.

Yes

Feb-10-2005 Rex Jaeschke 15.3 Technical M Brandon Bray Are the productions

 postfix-expression . pseudo-finalizer-name
 postfix-expression -> pseudo-finalizer-name

necessary, and, if so, should the "pseudo-" prefix be
dropped?

Resolved on July 21, 2005 conference call.
Incorporated into 1.14a.

Pseudo-finalizer is not referenced in the document any
more.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

219

220

221

222

223

3-Mar-05 Brandon Bray Technical M Brandon Bray Currently, the Visual C++ compiler allows a friend to
first declare a generic type. Whether the language
specification says this is allowed is up for discussion.
Are there any issues we should consider before saying
that it should be supported?

Phone call Aug 18, 2005: Resolved. Added 20.5 to
cover friends for native classes.

Yes

7-Mar-05 Sean Perry Technical M Brandon Bray Destroying members should happen after the base
class stuff in the fault block. TG5 also brought up the
destructor order (which Jeff brought up last week).

From Herb: Constructor failures.

We need to tweak the IL we generate for constructors
to have smoother handling of constructor exceptions
and deep virtual calls in constructors. Here’s what we
need to do:

.ctor {

 bool baseIsConstructed = false;

 try {

 construct all our own directly held members

 call our base class’s constructor

 baseIsConstructed = true;

 run our own constructor body

 }

 fault {

 destroy all our own directly held members (if non-
null)

 if(baseIsConstructed)

 call our base class’s destructor (same as when
chaining from Dispose(true))

 }

Revised on July 7, 2005 conference call. Incorporated
into 1.13.

Yes

28-Apr-05 Jonathan Caves 15.3.3 Technical M Brandon Bray Add an example Resolved in the 1.14b draft circulated for the August
4, 2005 conference call.

Yes

28-Apr-05 Jonathan Caves 15.4.5 Technical M Brandon Bray I think that some text needs to be added specifiy that
with a generic parameter dynamic_cast is used to
convert IDisposable and if this conversion fails then no
further action in taken. The test sort of says this but
not explicitly enough.

Consider adding the new text in the generics clause.

Phone call Aug 18, 2005: Resolved. Added the phrase
"dynamic cast" to 15.4.5 which covers the delete
expression for generic type parameters.

Yes

28-Apr-05 Jonathan Caves 15.21 Technical M Brandon Bray Add an example which shows what happens if a
property returns an array, or if it returns a reference
and it is used in a 'set' context but it does not have set
method.

Resolved in the 1.14b draft circulated for the August
4, 2005 conference call.

Yes

1

A B C D E F G H I J
Date Raised? Issue Raiser? Reference Issue Type Priority Owner Comment Other Remarks Resolved? Postponed?

224

28-Apr-05 Jonathan Caves 19.7 Technical M Brandon Bray Revise this to accommodate -> as a static operator.
Also revise 19.7.2.

Resolved in the 1.14b draft circulated for the August
4, 2005 conference call.

Yes

This is a replacement/place-holder for Documents TC39-TG5/2005/016, 019, 021, and
024. Documents 016, 019, and 021 were intermediate committee drafts of the
specification, and are not included here. They are superseded by document 024, which
can be found at the following URLs:

http://www.plumhall.com/ecma/index.html
http://go.microsoft.com/fwlink/?LinkId=50042

http://www.plumhall.com/ecma/index.html
http://go.microsoft.com/fwlink/?LinkId=50042

	liaison report #10 to WG21.pdf
	tc39-tg5-2005-022.pdf
	1 Opening
	1.1 Appointment of Recording Secretary
	1.2 Introduction of participants
	1.3 Host facilities/local information

	2 Adoption of the agenda
	3 Final approval of minutes of previous TG5 meeting (TG5/200
	4 Matters arising from the minutes not covered elsewhere
	5 Project Editor’s Report
	6 Approving tracked changes in latest draft
	7 Date and place of next meetings
	8 Reports from Liaisons
	8.1 TC39 TG3 (CLI) – Rex Jaeschke
	8.2 SC22/WG21 (C++) – Tom Plum, P. J. Plauger, Tana Plauger,
	8.3 TC39 TG2 (C#) – Rex Jaeschke

	9 Action item spreadsheet review
	10 Approval of TG5 spec to forward to TC39
	11 Any other business, and appreciation of hosts
	12 Adjournment

	tc39-tg5-2005-022.pdf
	1 Opening
	1.1 Appointment of Recording Secretary
	1.2 Introduction of participants
	1.3 Host facilities/local information

	2 Adoption of the agenda
	3 Final approval of minutes of previous TG5 meeting (TG5/200
	4 Matters arising from the minutes not covered elsewhere
	5 Project Editor’s Report
	6 Approving tracked changes in latest draft
	7 Date and place of next meetings
	8 Reports from Liaisons
	8.1 TC39 TG3 (CLI) – Rex Jaeschke
	8.2 SC22/WG21 (C++) – Tom Plum, P. J. Plauger, Tana Plauger,
	8.3 TC39 TG2 (C#) – Rex Jaeschke

	9 Action item spreadsheet review
	10 Approval of TG5 spec to forward to TC39
	11 Any other business, and appreciation of hosts
	12 Adjournment

