
GenericBase Standards

R. S. Scowen

National Physical Laboratory

Teddington, Middlesex, Great Britain TW11 0LW

Abstract

Generic base standards, that is, ones de�ning these
fundamental concepts of information technology, o�er
a way of improving standardization in IT by enabling
greater commonality.

This paper looks briey at the fundamental base
standards of terminology and character sets. It then
considers inmore depth two other generic base concepts:
syntactic metalanguages (for example, Backus Naur
Form) and numeric oating-point constants. Case
studies illustrate typical unnecessary variations in
existing standards and demonstrate that even the
simplest ideas are treated in widely di�erent ways.

1 Background

Information Technology (IT) is one of the world's
largest industries. Standardization is bene�cial but
complex; there are hundreds of subcommittees and
working groups standardizing di�erent topics in IT.
The standardization process should be performed in
accordance with the ISO/IEC Directives [5] which
state:

\Uniformity of structure, of style and of
terminology shall be maintained not only
within each standard, but also within a series
of associated standards. The structure of
associated standards and the numbering of
their clauses shall, as far as possible, be
identical. Analogous wording shall be used
to express analogous provisions; identical
wording shall be used to express identical
provisions.

The same term shall be used throughout each
standard or series of standards to designate
a given concept. The use of an alternative
term (synonym) for a concept already de�ned
shall be avoided. As far as possible ... only
one meaning shall be attributed to each term
chosen.

These requirements are particularly impor-
tant not only to ensure comprehension of the
standard but also to derive the maximum
bene�t available through automated text
processing techniques and computer-aided
translation."

But these directives are not being followed. JTC1
subcommittees produce information technology stan-
dards after several years deliberation, drafting, and
argument. Some are descriptive, de�ning a version of
what already exists in multiple incompatible dialects.
Others are prescriptive, de�ning something new which
will �ll a gap or replace some proprietary product.
Almost all the members of the committees and working
groups, despite the o�cial liaisons, know little about
most existing standards nor of the work which is going
on in other subcommittees.

The inevitable result is thatmanystandards, despite
the requirements prescribed in the Directives, rede�ne
the same concepts. Naturally, they do it more or less
di�erently in content, notation and terminology. The
standards are therefore unnecessarily large and incom-
patible with each other. They also take considerably
longer to complete. Note that the common concepts
are often the simplest andmost easily understood, they
thereby attract the most discussion and arguments.

Generic base standards de�ne common basic ele-
ments that can be invoked as required for speci�c
standards and applications. Such base standards
provide the bene�t of promoting commonality across
the various invoking standards while simultaneously
reducing the e�ort needed to develop those standards.
In IT they would de�ne the fundamental concepts
of information technology, o�er a way of improving
standardization in IT by enabling greater commonality
and less work by working groups reinventing wheels.
Several such standards could be applicable, not just
in di�erent working groups of a JTC1 subcommittee,
but even in several di�erent subcommittees of JTC1
and Technical Committees of ISO. If they do not
exist, or the experts de�ning standards do not know
about them, then each new standard will rede�ne and

re-express the relevant concepts: the result is wasted
e�ort and unnecessary diversity and incompatibility
among di�erent standards.

Generic base standards

1. Reduce the e�ort needed to de�ne standards
because the working group avoids arguing about
the basic concepts,

2. Facilitate the interworking of standards because
they are based on common foundations,

3. Prevent needless diversity by avoiding di�erent
notations for the same concepts,

4. Enable standards to be shorter and simpler,
because the concepts can be de�ned by reference to
an existing standard, rather than being rede�ned,

5. Encourage the development of tools to check the
internal consistency of standards,

6. Make standards easier to understand, because the
basic concepts and terminology are common to
several di�erent standards.

2 Terminology

JTC1 SC1 is responsible for standardizing IT termi-
nology. It has produced ISO 2382 [6] published in 22
parts, each part de�ning the specialized terminology
in a particular �eld of Information Technology. It
has also compiled ISO TR 12382 [10] which is an
index of every word or phrase de�ned in [6]. But
the coverage is patchy, for example ISO 2382 is of
limited use in resolving the issues raised below in the
discussion of syntactic metalanguages because it does
not mention concepts like `syntax', `metalanguage',
`terminal symbol', or `non-terminal symbol'.

I am convener and project editor of a working
group responsible for producing a standard for the
programming language Prolog [12]. I need current
editions of all parts of the current IT vocabulary
standards, both on paper and on-line, if I am to make
e�ective use of them. But they are not easily available
to me. So although I ought to be a customer for the
work of SC1, it seems to have failed.

I suspect that SC1 is under-resourced and e�ectively
run by a handful of individuals valiantly trying to keep
up with a subject that never stops growing and
developing. Brian Meek has pointed out that each
subcommittee has a responsibility to keep SC1 aware
of its own developing terminology. However I have
seen no evidence that project editors are even aware of

the existence of a standard terminology, certainly the
SC22 working groups and plenary meetings have little
communication with SC1. Brian Meek concludes, and
I agree, \We are all to blame".

David Rayner is responsible for much of the work
of SC21 (Open Systems Interconnection). He has
commented:

\In SC21 there is a vocabulary rapporteur
whose job it is to keep track of all the terms
de�ned in SC21 standards and identify clashes
that need to be resolved. Inevitably he is
overwhelmed by the number of standards
and pace of the activity in SC21 and so
has no time to correlate his work with SC1
de�nitions which SC21 always considers to be
out of date and of no importance to its work
(Note: I'm not defending this attitude). This
is compoundedby SC1 comingupwith its own
set of de�nitions for terms already de�ned in
SC21 standards, rewriting them presumably
to make them more generic but doing so
without any appreciation of the technical
issues raised by such new de�nitions. In
conclusion, I know of no SC21 standard that
refers in its normative references to the SC1
vocabulary standard."

3 Character sets

Programs and data need to be encoded before they
can be processed by IT systems. The relevant character
sets are de�ned in standards de�ned by JTC1 SC2,
and by the computer manufacturers.

For many years, the de facto standard for people
wanting to transfer data from one system to another,
for example by E-Mail, has been ASCII which is a 7-bit
standard. It is suitable for use inUSA (it is anAmerican
standard) and the UK (after changing # to $). It
is unsuitable for the rest of Europe where national
languages have accented and additional alphabetic
characters.

Since 1987, there has been an 8-bit standard ISO
8859 [8]. It is a compatible extension of ASCII and
exists in several parts, each part suitable for use in
several European nations. For example: Part 1 is
suitable for Danish, Dutch, English, Faeroese, Finnish,
French, German, Icelandic, Irish, Italian, Norwegian,
Portuguese, Spanish and Swedish.

Few computer systems in the UK yet support
this standard (see Annex I of [14] for details), and
even those which claim to, do so half-heartedly, for

example by providing a keyboard marked only for
ASCII characters.

The wide availability of ISO 8859 would simplify
electronic communications from the UK with the rest
of Europe, for example it would help our exporters
avoid insulting their customers by ignoring accents.
Inertia prevents its adoption, but a �rm lead from
Government insisting that its IT suppliers support ISO
8859 would soon have positive results.

4 Syntactic metalanguages

A syntactic metalanguage is a notation for de�ning
the syntax of a language by a number of rules. The
concepts are well known, but many slightly di�erent
notations are in use.

Ametalanguagebrings order to the formalde�nition
of a syntax and is useful not just for the de�nition
of programming languages, but for many other formal
de�nitions, for example the format for references in
papers submitted to a journal, or the instructions for
performing a complicated task.

Since the de�nition of the programming language
Algol 60 [13] the custom has been to de�ne the syntax
of a programming language formally. Algol 60 was
de�ned with a notation now known as BNF. This
notation has proved a suitable basis for subsequent
languages but has frequently been extended or slightly
altered. Themanydi�erentnotations are confusingand
have prevented the advantages of formal unambiguous
de�nitions from being widely appreciated.

4.1 What is a syntactic metalanguage?

A syntactic metalanguage is de�nes the syntax
of a language by a set of rules. Each rule names
part of the language (called a non-terminal symbol of
the language) and then de�nes its possible forms. A
terminal symbol of the language is an atom that cannot
be split into smaller components of the language.

A formal syntax de�nition has three distinct uses:

1. it names the various syntactic parts (i.e. non-
terminal symbols) of the language;

2. it shows which sequences of symbols are syntacti-
cally valid sentences of the language;

3. it shows the syntactic structure of any sentence of
the language.

Note that the language being de�ned must be linear,
i.e. the symbols in a sentence of the language can be

placed in an ordered sequence. For example knitting
patterns and recipes in cooking are linear languages,
but electronic circuit diagrams are not.

4.2 Theneed fora standard syntacticmeta-
language

Without a standard syntactic metalanguage every
programming language starts by specifying the meta-
language used to de�ne its syntax. This causes various
problems:

Many di�erent notations It is rare for two di�erent
programming languages to use the same meta-
language. Thus human readers are handicapped
by having to learn a new metalanguage before
they can study a new language.

Concepts not widely understood The lack of a
standard notation hinders the use of rigorous
unambiguous de�nitions.

Imperfect notations Because a metalanguage needs
to be de�ned for every programminglanguage, the
metalanguage often contains defects | examples
are given below in sections 7.5 and 7.7.

Special purpose notations A metalanguage de-
�ned for a particular programming language is
often simpli�ed by taking advantage of special
features in the language to be de�ned. However,
the metalanguage is then unsuitable for other
programming languages.

Few general syntax processors Themultiplicityof
syntactic metalanguages has limited the availabil-
ity of computer programs to analyse and process
syntaxes, for example to check the consistency
of a syntax, to list a syntax neatly, to make
an index of the symbols used in a syntax, to
produce a syntax-checker for programs written in
the language.

In practice experienced readers have little di�culty
in picking up and learning a new notation, but even
so the di�erences obscure mutual understanding and
hinder communication. A standard metalanguage
enables more people to crystallize vague ideas into
an unambiguous de�nition. It is also useful because
people needing to provide formal de�nitions no longer
need to reinvent similar concepts.

4.3 BS6154 { a standard metalanguage

BS6154 [2] de�nes a standard syntactic meta-
language which is based on BNF. It includes the most

widely adopted extensions together with additional
features which experience has shown are often required
when providing a formal de�nition:

Terminal symbols Terminal symbols of the language
can be denoted by enclosing them in either double
or single quotes, for example "x" or 'x'. This
enables any character to be a terminal symbol of
the language.

De�nitions for an explicit number of items

Fortran contains a rule that a label �eld con-
tains exactly �ve characters; an identi�er in PL/I
or COBOL has up to 32 characters. Rules such
as these can be expressed only with di�culty in
BNF, but in BS6154:
Fortran label = 5 * character ;

De�nitions specifying the exceptional cases An
Algol comment ends at the �rst semicolon. A rule
like this cannot be expressed concisely or clearly
in BNF, but in BS6154:
comment character = character - ";" ;

Comments Programming languages and other struc-
tures with a complicated syntax need many rules
to de�ne them. A syntax will be clearer if ex-
planations and cross-references can be provided;
accordingly the standard metalanguage contains
a comment facility so that ordinary text can be
added to a syntax for the bene�t of a human
reader without a�ecting the formal meaning of
the syntax.

Multi-wordmeta-identi�ers A meta-identi�er
(the name of a non-terminal symbol in the lan-
guage) need not be a single word or enclosed in
brackets because there is an explicit concatenate
symbol. This also ensures that the layout of a
syntax (except in a terminal symbol) does not
a�ect the language being de�ned.

Extensibility Ausermaywish to extend the syntactic
metalanguage. A special-sequence is provided for
this purpose, the format and meaning are not
de�ned in the standard except to ensure that the
start and end of an extension can always be seen
easily.

BS6154 is summarized in table 1. The middle
column of the table indicates, when appropriate,
whether the metalanguage symbol is a pre�x operator,
or an in�x operator, or a post�x operator.

The metalanguage symbols `=' `|' `,' `-' `*' are in�x
operators which bind increasingly tightly.

Table 1: BS6154 syntactic metalanguage
BS6154 Operator Meaning

unquoted Non-terminal symbol
words

" ... " Terminal symbol
' ... ' Terminal symbol
(...) Brackets
[...] Optional symbols
f ... g Symbols repeated zero

or more times
f ... g- Symbols repeated one

or more times
= in De�ning symbol
; post Rule terminator
| in Alternative
, in Concatenation
- in Except
* in Occurrences of

(* ... *) Comment
? ... ? Special sequence

BS6154 is being used for the syntax of several
language standards, including Modula-2 [11], VDM-
SL [3, 4], and Prolog [12]. BS6154 is now also being
considered for adoption as an international standard.

5 Floating-point constants

People normally count in decimal, many computers
calculate e�ciently only in binary. The two systems are
not compatible, and arbitrary decimal numbers cannot
be represented exactly internally in the computers,
instead an approximation to the speci�ed value must
be stored.

Every scienti�c programming language therefore
needs to de�ne how to represent an arbitrary numerical
constant, and what approximation to the value of this
constant will be stored in the program.

6 Case studies | Syntactic meta-

languages and oating-point con-
stants

The following case studies examine four scienti�c
programming languages: Algol 60, Extended Pas-
cal, Minimal BASIC, and C. Algol 60 was for long

regarded as a model language de�nition, the oth-
ers are all International Standards. Two examples,
syntactic metalanguages and unsigned oating-point
constants illustrate typical unnecessary variations in
these languages.

For each language, the syntactic language used to
de�ne the language's syntax is �rst summarized, and
then illustrated by reproducing the de�nitions of the
forms of decimal numbers which can be written in
programs. The de�nition is then rewritten in BS6154.

6.1 Algol 60

The syntactic metalanguage in Algol 60 [13], see
table 2, is BNF (Backus Naur Form) | Peter Naur's
adaptation of John Backus's notation (Note that the
Algol 60 report never actually refers to BNF which
was at �rst an abbreviation for `Backus Normal Form',
and only later changed to stand for `Backus Naur
Form' in recognition of Naur's improvements. It is
rare for someone who claims to use BNF as a syntactic
metalanguage actually to do so; more often they use a
dialect or extension instead).

Table 2: BNF syntactic metalanguage
BNF Operator Meaning

h unquoted Non-terminal symbol
words i

unquoted Terminal symbol
characters
::= in De�ning symbol
j in Alternative

An Algol 60 oating-point constant is called an
`unsigned number' and de�ned by the rules (clauses
2.2.1, 2.5.1 of [13]):

hunsigned integeri ::= hdigiti
j hunsigned integeri hdigiti

hintegeri ::= hunsigned integeri j
+ hunsigned integeri j { hunsigned integeri

hdecimal fractioni ::= . hunsigned integeri
hexponent parti ::= 10 hintegeri
hdecimal numberi ::= hunsigned integeri j
hdecimal fractioni j
hunsigned integeri hdecimal fractioni

hunsigned numberi ::= hdecimal numberi j
hexponent parti j
hdecimal numberi hexponent parti

hdigiti ::= 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9

These rules expressed in BS6154 are:

unsigned integer = digit

| unsigned integer, digit ;

integer = unsigned integer

| "+", unsigned integer

| "-", unsigned integer ;

decimal fraction = ".", unsigned integer ;

exponent part = "10", integer ;

decimal number = unsigned integer

| decimal fraction

| unsigned integer, decimal fraction ;

unsigned number = decimal number

| exponent part

| decimal number, exponent part ;

digit = "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9" ;

Algol 60 de�nes the value of a `decimal number' in
clauses:

\2.5.3 Decimal numbers have their conven-
tional meaning. The exponent part is a scale
factor expressed as an integral power of 10."

\3.3.3 ... The actual numerical value of a
primary is obvious in the case of numbers.
..."

\3.3.6. Numbers ... of type real must be
interpreted in the sense of numerical analysis,
i.e. as entities de�ned inherently with only a
�nite accuracy. ... No exact arithmeticwill be
speci�ed, however, and it is indeedunderstood
that di�erent hardware representations may
evaluate arithmetic expressions di�erently.
..."

6.2 Extended Pascal

The metalanguage used in Extended Pascal (and
Pascal) is de�ned in clause 4 of [9], and summarized in
table 3. A Pascal oating-point constant is called an
`unsigned-real' and de�ned by the rules (clauses 6.1.1,
6.1.7 of [9]):

Table 3: Extended Pascal syntactic metalanguage
Pascal Operator Meaning

meta-identi�er Non-terminal symbol
` ... ' Terminal symbol
[...] Optional symbols
f ... g Symbols repeated

zero or more times
= or > in De�ning symbol
. post Rule terminator
| in Alternative

unsigned-real = digit-sequence `.' fractional-part
[`e' scale-factor]
j digit-sequence `e' scale-factor .

sign = `+' j `{' .

fractional-part = digit-sequence .

scale-factor = [sign] digit-sequence .

digit-sequence = digit f digit g .

digit = `0' j `1' j `2' j `3' j `4'
j `5' j `6' j `7' j `8' j `9' .

These rules expressed in BS6154 are:

unsigned real = digit sequence, ".",

fractional part, ["e", scale factor]

| digit sequence, "e", scale factor ;

sign = "+" | "-" ;

fractional part = digit sequence ;

scale factor = [sign], digit sequence ;

digit sequence = digit, { digit } ;

digit = "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9" ;

Extended Pascal de�nes the value of an `unsigned-
real' in clauses:

\6.1.7: ... An unsigned-real shall denote in
decimal notation a value of real-type (see
6.4.2.2). ..."

\6.4.2.2: ... b) real-type. ... The values shall
be implementation-de�ned approximations to
an implementation-de�ned subset of the real
numbers, denoted as speci�ed in 6.1.7 by
signed-real."

6.3 Minimal BASIC

Minimal BASIC [7] is a standard which de�nes a
language which is approximately the common intersec-
tion of all BASIC implementations. The metalanguage
is de�ned only in an informative annex (annex B of
[7]). It is summarized in table 4.

Table 4: Minimal BASIC syntactic metalanguage
BASIC Operator Meaning

italics Non-terminal symbol
ITALICS Terminal symbol

= in De�ning symbol
/ in Alternative
? post Optional symbols
* post Symbols repeated

zero or more times

There is only one numeric type in BASIC and a
`numeric-rep' is de�ned by the rules (clauses 5.2, 7.2
of [7]):

digit = 0 / 1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9

sign = plus-sign / minus-sign

numeric-rep = signi�cand exrad?

signi�cand = integer full-stop? / integer? fraction

integer = digit digit*

fraction = full-stop digit digit*

exrad = E sign? integer

These rules expressed in BS6154 are:

digit

= "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9" ;

sign = plus sign | minus sign ;

numeric rep = significand, [exrad].

significand

= integer, [full stop]

| [integer], fraction ;

integer = digit, { digit } ;

fraction = full stop, digit, { digit } ;

exrad = "E", [sign], integer ;

MinimalBASIC de�nes the value of a `numeric-rep'
in clause:

\7.4 Semantics

The value of a numeric constant is the number
represented by that constant. `E' stands for
`times ten to the power'; if no sign follows
the symbol E, then a plus-sign is understood.
Spaces shall not occur in numeric-constants.

A program may contain numeric representa-
tionswhichhaveanarbitrarynumberofdigits,
though implementationsmay round the value
of such representations to an implementation-
de�nedprecisionof not less than six signi�cant
decimal digits.

Numeric constants may also have an arbi-
trary number of digits in the exrad, though
non-zero constants whose magnitude is out-
side an implementation-de�ned range may be
treated as exceptions. It is recommended
that the implementation-de�ned range for
numeric constants be approximately 1E{38
to 1E+38 or larger. Constants whose magni-
tudes are less than machine in�nitesimal shall
be replaced by zero, while constants whose
magnitudes are larger than machine in�nity
shall be reported as causing an overow."

6.4 C

The metalanguage used in C [1] is de�ned very
briey (clause 3 of [1]), and summarized in table 5.

A C oating-point constant is called a `oating
constant' and de�ned by the rules (clauses 3.1.2,
3.1.3.1 of [1]):

oating-constant:

fractional-constant exponent-partopt oating-su�xopt

Table 5: C syntactic metalanguage
C Operator Meaning

italics Non-terminal symbol
bold Terminal symbol
: in De�ning symbol

\one of" or on pre Alternative
a separate line

opt post Optional symbols

digit-sequence exponent-part oating-su�xopt

fractional-constant:

digit-sequenceopt . digit-sequence

digit-sequence .

exponent-part:

e signopt digit-sequence

E signopt digit-sequence

sign: one of

+ {

digit-sequence:

digit

digit-sequence digit

oating-su�x: one of

f l F L

digit: one of

0 1 2 3 4 5 6 7 8 9

These rules expressed in BS6154 are:

floating constant

= fractional constant, [exponent part],

[floating suffix]

| digit sequence, exponent part,

[floating suffix] ;

fractional constant

= [digit sequence], ".", digit sequence

| digit sequence, "." ;

exponent part

= ("e" | "E"), [sign], digit sequence ;

sign = "+" | "-" ;

digit sequence = digit

| digit sequence, digit ;

floating suffix = "f" | "l" | "F" | "L" ;

digit = "0" | "1" | "2" | "3" | "4"

| "5" | "6" | "7" | "8" | "9" ;

C de�nes the value a `oating constant' in clause:

\3.1.3.1: ... Semantics

The signi�cand part is interpreted as a dec-
imal rational number; the digit sequence in
the exponent part is interpreted as a decimal
number. The exponent indicates the power
of 10 by which the signi�cand part is to be
scaled. If the scaled value is in the range of
representable values (for its type) the result is
either the nearest representable value, or the
larger or smaller representable value imme-
diately adjacent to the nearest representable
value, chosen in an implementation-de�ned
manner."

7 The metalanguages reviewed

Each language has not only adopted a di�erentmeta-
language in order to de�ne its syntax, it has adopted
a di�erent terminology. BS6154 and Extended Pascal
refer to \terminal symbols and non-terminal symbols",
but Minimal BASIC refers to \terminal metanames
and metanames", and C refers to \syntactic categories
(nonterminals) and literal words and character set
members (terminals)".

More seriously they all contain at least one of the
following undesirable features.

7.1 Layout is signi�cant

The meaning of a syntax depends on the layout of
the rules, for example 1) a space is necessary to indicate
concatenation of successive symbols in Pascal, BASIC,
and C, and 2) a new line is necessary to separate two
successive syntax rules in Algol 60, and a blank line is
necessary in C.

7.2 No comment facilities

No comment facilities are provided in any of the
metalanguages: with a large syntax, it is very helpful
to a reader if syntax rules include cross references to
the clauses where non-terminal symbols are de�ned.

7.3 Recursionneeded to express repetition

A recursive de�nition is necessary to represent
repetition of syntactic elements in Algol 60 and C.

7.4 Special fonts or characters are required

The syntax relies on di�erent fonts or special
characters to distinguish di�erent syntactic elements
in Algol 60, Pascal and C; this makes it necessary for
the syntax to be printed rather than being expressed
in ASCII, and thus makes it more di�cult to read the
syntax as data for a program.

BNF has metalinguistic symbols h i which di�er
from<> (greater than, less than symbols). Those who
express BNF in ASCII (which came later) are unable
to preserve this distinction because it is impossible to
distinguish between the terminal character for `greater
than' and the opening angle bracket of a non-terminal
symbol.

Pascal quotes terminal symbols with ` and ' because
these symbols are not characters which can occur in a
Pascal program.

7.5 Carelessde�nitionof themetalanguage

The de�nition of the syntactic metalanguage is
frequently carelessly expressed. For example, C fails to
state that a non-terminal symbol is one or more words
separated by hyphens. And since bold type indicates
a terminal symbol and italics indicates a non-terminal
symbol, it is necessary in C to know whether `.' in a
syntax rule is in bold or italic.

Both Pascal and C fail to de�ne the relative
precedence of the metalanguage operators.

Extended Pascal de�nes (table 1 of [9]) the meta-
language character > to have the meaning \shall
have as an alternative de�nition". This could (but
shouldn't) be taken to mean that the two production
rules for formal-parameter-section (clauses 6.7.3.1,
6.7.3.7.1 of [9]) are alternatives; in fact the second
rule is an additional rule which is applicable in some
circumstances.

formal-parameter-section

> value-parameter-specification

| variable-parameter-specification

| procedural-parameter-specification

| functional-parameter-specification .

formal-parameter-section

> conformant-array-parameter-specification .

7.6 Careless use of the metalanguage

One of Peter Naur's innovations in BNF was that
the names of non-terminal symbols should reect the
semantics of the language. In both Pascal and C digit

sequence represents both an integer and the digits of
a decimal fraction. It would be better to replace the
relevant rules by:

pascal fractional part = digit, { digit } ;

c fractional constant

= [digit sequence], ".", digit, { digit }

| digit sequence, "." ;

In Pascal, BASIC, and C the de�nition and use of
sign fails to indicate that + and the absence of a sign
are semantically the same: it would be better to de�ne
a Pascal scale factor as

sign = ["+"] | "-" ;

scale factor = sign, digit sequence ;

7.7 Limited use of the metalanguage

BNF does not distinguish between the symbols of
the metalanguage, and the terminal characters of the
language being de�ned. It is therefore impossible to
specify any language which has j as a terminal symbol.

In C, syntax rules are limited by the length of the
printed line.

8 Numerical constants

All four languages refer to a oating-point constant
by a di�erent name. Perhaps this is deliberate because
they de�ne di�erent entities, perhaps not. Table 6
shows which numbers are valid in the four languages.

There are rational reasons for this diversity. Thus
Pascal uses `.' for many di�erent purposes and it
would at least complicate and more probably lead to
an ambiguous syntax if a constant could begin or end
with `.'. And languages which use a letter to indicate
the exponent indicator 10 often need to distinguish
between an identi�er and numerical constant.

The four languages all recognize that the value of
the constant will need to be an approximation of the
decimal value. But only Minimal BASIC requires a
minimum level of precision, and no language speci�es
a range of values that must be accepted (although
Minimal BASIC recommends a minimum one).

Table 6: Numerical constants
Constant Algol BASIC Pascal C

12
p p

.34
p p p

12.
p p

12.34
p p p p

105
p

12105
p p p

.34105
p p p

12.105
p p

12.34105
p p p p

10 10 E e or E e or E

The accuracy of the value stored in the computer
compared with the numeric value of the constant is
also treated di�erently. In Extended Pascal it is
implementation-de�ned (with no minimum accuracy
required), in Minimal BASIC at least \six signi�cant
decimal digits", and in C \the nearest representable
value" or one adjacent to it.

9 Conclusions

Technically there are no great di�culties de�n-
ing generic base standards; there are however other
problems:

1. Can they be de�ned su�ciently generally?

2. How can their existence bemade known toworking
groups? Many generic base standards are not
limited in applicability to a single subcommittee.
The full bene�ts will be realized only if they are
known and used when appropriate by the whole
of JTC1.

3. Can they be de�ned in time for use by working
groups?

4. How can agreement be reached on such standards?
It is often the case that the simpler the topic, the
more di�cult it is to reach agreement.

5. How can the de�nition and dissemination of these
standards be �nanced? ISO receives the bulk of
its income from the sale of standards. ISO cannot
therefore a�ord to give standards away free. But
generic base standards are only of bene�t if they

are made easily available to working groups, and
then adopted by them.

A few solutions which would improve the develop-
ment and e�ectiveness of IT standards are:

1. JTC1 to insist on the adoption of existing generic
base standards.

2. JTC1 to study generic base standards: (1) to
identify suitable areas of standardization, (2) to
consider ways to ensure their adoption.

3. JTC1 or DISC to educate new (and existing) WG
conveners and project editors.

4. JTC1 to adopt such technology as it becomes
available.

5. ISO/IEC Secretariat to publish standards in
computer-readable form so that they can anal-
ysed easily and so that particular instantiations
and bindings can be incorporated easily into new
standards.

JTC1 acts only at the bequest of its members so BSI
(prompted by DISC) will require to take the initiative.

Many of these solutions would cost money. This
could be raised in various ways, for example, by requir-
ing (1) a contribution to the cost of standardization by
every National Body voting in support of a new work
items, or (2) an annual subscription by each member
of a Working Group. The latter suggestion would be
new in ISO and JTC1, but is already followed in USA
where membership is open, but requires a fee to cover
the cost of circulating papers, etc.

Acknowledgements

This work is based on a report [14] prepared for and
supported by UK Department of Trade and Industry,
InformationandManufacturing Technologies Division.

References

[1] ANSI X3.159-1989.American National Standard
for information systems | Programming Lan-
guage C.AmericanNational Standards Institute,
New York, USA. 1989.

[2] BSI (British Standards Institution). BS
6154:1981 Method of de�ning | syntactic meta-
language. 1981. ISBN 0-580-12530-0.

[3] BSI IST/5/19 (British Standards Institution |
VDM{SL panel). VDM Speci�cation language
proto-standard | draft. 8 August 1992.

[4] J.Dawes.TheVDM{SLReferenceGuide, Pitman
Publishing, London. 1991. ISBN 0-273-03151-1.

[5] ISO/IEC Directives | Part 3. Drafting and
presentation of International Standards. Interna-
tionalOrganization for Standardization, Geneva,
1989.

[6] ISO 2382. Data processing | vocabulary.
ISO/IEC Copyright O�ce, Geneva.

[7] ISO 6373:1984.Data processing | Programming
languages | Minimal BASIC. ISO Copyright
O�ce, Geneva. 1984.

[8] ISO 8859-1:1987, Information Processing| 8-bit
single-byte coded graphic character sets | Part
1: ISO Latin Alphabet No. 1 (ISO Latin-1).
ISO/IEC Copyright O�ce, Geneva. 1987.

[9] ISO/IEC 10206:1991. Information technology |
Programming languages | Extended Pascal.
ISO/IEC Copyright O�ce, Geneva. 1991.

[10] ISO/IEC TR 12382:1989. Permuted index of the
vocabulary of information processing. ISO/IEC
Copyright O�ce, Geneva. 1989.

[11] ISO/IEC JTC1 SC22N1303 (= Second ISO/IEC
CD 10514). Modula-2 { Committee Draft 2.
International Organization for Standardization,
December 1992.

[12] ISO/IEC SC22 WG17 N110 (=ISO/IEC CD
13211-1 : 1993(E)). Prolog Part 1, General Core
{ Committee Draft. International Organization
for Standardization, and National Physical Lab-
oratory, Teddington, March 1993.

[13] P. Naur (editor), J. W. Backus, F. L. Bauer,
J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois,
J. H. Wegstein, A. van Wijngaarden,
M. Woodger. \Report on the Algorithmic Lan-
guageALGOL60,"Comm.ACM,Vol. 3, pp. 299-
314, 1960.
Also published by Regnecentralen (Copenhagen,
1960) and elsewhere.

[14] R. S. Scowen. Generic base standards | Final
report. SEG C1 N10 (DITC Software Engi-
neering Group), National Physical Laboratory,
Teddington, Middlesex, UK. January 1993.

10 INFORMATIVE ANNEX A |
Document history

10.1 Changes

This paper, based on the deliverable �nal report
for SEG 1991-92 work package C1, was submitted and
accepted for SESS'93 (Software Engineering Standards
Symposium 1993).

This revision (5 May 1993) takes account of com-
ments byGraemeParkin, adds a reference toModula-2,
and tightens the text in a few places.

A revision (16 April 1993) has been reformatted to
follow the IEEE layout and shortened in order to �t
the maximumpermitted 10 pages.

The main deletion is Annex A of the submitted
paper which showed in outline the structure of ISO and
ISO/IEC JTC1. Further changes must not increase
the size.

NOTE | This annex is not part of the conference
paper.

10.2 Document history

Author(s): R S Scowen.

Date: 5 May 1993

Files: /usr/users/rss/r246.tex

Work packages: ??

Status: Draft

Document type: Paper accepted for conference
SESS'93.

Cross-references: SEG C1 N10.

Circulation: AJM, NDN, GIP, DS, BAW, RSS.

Action: None.

10.3 Plans

1. To send to IEEE for publication in the conference
proceedings.

