

ISO/IEC JTC1/SC 22/WG 20 N 731

 Date: 1999-12-23

ISO
ORGANISATION INTERNATIONALE DE NORMALISATION

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
���

CEI (IEC)

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE
INTERNATIONAL ELECTROTECHNICAL COMMISSION

���

Title ISO/IEC DIS 14651 - International String Ordering - Method for comparing Character Strings and

Description of the Common Template Tailorable Ordering

 [ISO/CEI DIS 14651 - Classement international de chaînes de caractères - Méthode de

comparaison de chaînes de caractères et description du modèle commun d’ordre de
classement]

Status: Final Draft International Standard
 (**D**R**A**F**T** **D**I**S**)

Reference: SC22/WG20 N 670 (Disposition of comments on FCD 14651.2)

Date: 1999-12-23

Project: 22.30.02.02

Editor: Alain LaBonté
 Gouvernement du Québec
 Secrétariat du Conseil du trésor
 875, Grande Allée Est, Section 3C
 Québec, QC G1R 5R8
 Canada

Email: alb@sct.gouv.qc.ca

ISO/IEC 14651:1999(E) ISO/IEC

 ii

Contents:

FOREWORD ..iv
INTRODUCTION...v
1 Scope...1
2 Conformance ..2
3 Normative References..2
4 Definitions ...4
5 Symbols and abbreviations...5
6 String comparison..5
6.1 Preparation of character strings prior to comparison .. 5
6.2 Key building and comparison .. 5

6.2.1 Preliminary considerations...6
6.2.1.1 Assumptions..6
6.2.1.2 Processing properties ...6

6.2.2 Ordering key formation..7
6.2.2.1 Formation of a subkey with the forward parameter...7
6.2.2.2 Formation of a subkey with the backward parameter ..7
6.2.2.3 Formation of a subkey which uses the forward position parameter ...7

6.2.3 Reference comparison method for ordering character strings ..8
6.3 Common Template Table: formation and interpretation.. 9

6.3.1 BNF syntax rules ...9
6.3.1.1 Keyword usage..10

6.3.2 Well-formedness conditions ..11
6.3.3 Interpretation of tailored tables..13
6.3.4 Evaluation of weight tables..14
6.3.5 Conditions for considering specific table equivalences ...14
6.3.6 Conditions for results to be considered equivalent ..14

6.4 Declaration of a delta .. 15
6.5 Name of the Common Template Table and name declaration.. 16
Annex A -- Common Template Table (normative)...17
Annex B – Tailoring deltas (informative) ..111
B.1 Example 1 – Canadian delta and benchmark ... 111
B.2 Example 2 – Danish delta and benchmark ... 114
B.3 Example 3 – Reversing the order of lower case and upper case letters... 116
B.4 Cyrillic (issue).. 122
C -- Preparation (informative)...124
C.1 General considerations... 124
C.2 Handling of numeral substrings in collation .. 124

C.2.1 Handling of ‘ordinary’ numerals for natural numbers...124
C.2.2 Handling of positional numerals in other scripts...128
C.2.3 Handling of other non-pure positional system numerals or non-positional system numerals (e.g. Roman numerals) ..128
C.2.4 Handling of numerals for whole numbers ...128
C.2.5 Handling of positive positional numerals with fractional parts ...130
C.2.6 Handling of positive positional numerals with fraction parts and exponent parts...131
C.2.8 Handling of date and time of day indications..131
C.2.9 Making numbers less significant than letters...133
C.2.10 Maintaining determinacy...133

C.3 Thai string ordering – a case involving special preparation.. 134
Annex D -- Tutorial on solutions brought by this standard to problems of lexical ordering
(informative)...139
Annex E – BIBLIOGRAPHY (informative) ..148

ISO/IEC ISO/IEC 14651:1999(E)

 iii

FOREWORD
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical

Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint technical committee known
as ISO/IEC JTC1. Draft International Standards adopted by the joint technical committee are circulated to
the national bodies for voting. Publication as an international standard requires approval by at least 75%
of the national bodies that cast a vote.

The ISO/IEC 14651 International Standard has been prepared by the Joint Technical Committee
ISO/IEC JTC1, Information Technology.

ISO/IEC 14651:1999(E) ISO/IEC

 iv

INTRODUCTION
This International Standard provides a method for ordering text data world-wide, and provides a

Common Template Table whose tailoring meets the requirements of given languages and cultures while
retaining reasonable ordering properties for other scripts.

The Common Template Table requires some tailoring in different local environments. However
conformance to this International Standard requires that all deviations from the Template, called "deltas",
be declared to document resultant discrepancies.

This International Standard describes a method to order text data independently of context.

INTERNATIONAL STANDARD ISO/IEC ISO/IEC 14651:1999(E)

1 Scope
This International Standard defines:

- A reference comparison method applicable to two strings in order to determine their respective order
in a sorted list. The method can be applied to strings containing characters from the full repertoire of
ISO/IEC 10646-1. This method is also applicable to subsets of that repertoire, such as those of the
different ISO/IEC 8-bit standard character sets, or any other character set, standardized or private, to
produce ordering results valid (after tailoring) for a given set of languages for each script. This method
uses collation tables derived either from the Common Template Table defined in this International
Standard or from one of its tailorings.

- A reference format, using the Backus-Naur Form (BNF) to describe the Common Template Table
used normatively within this International Standard.

 - A Common Template Table used by the reference comparison method. This table describes an
order for all characters encoded in the first edition of ISO/IEC 10646-1 up to Amendment 7. It allows
for a specification of a fully deterministic ordering. This table enables the specification of an
international string ordering adapted to different cultures, without requiring an implementor to have a
knowledge of all the different scripts already encoded in the UCS.

NOTE 1: This Common Template Table is to be modified to suit the needs of a local environment. The
main benefit, worldwide, is that for other scripts, often no modification may be required and that the order will
remain as consistent as possible and predictable from an international point of view.

NOTE 2: The character repertoire used in this International Standard is equivalent to that of the Unicode
Standard Version 2.1.

- A reference name, representing this particular version of the Common Template Table for use as
a reference for tailoring. In particular, this name implies that the table is linked to a particular stage
of development of the ISO/IEC 10646 Universal multiple-octet coded character set.

- Requirements for a declaration of the differences (delta) between the collation table and the
Common Template Table.

This International Standard does not mandate:

- A specific comparison method; any equivalent method giving the same results is acceptable.

- A specific format for describing or tailoring tables in a given implementation.

- Specific symbols to be used by implementations except the name of the Common Template
Table.

- A specific user interface for choosing options.

- A specific internal format for intermediate keys used in comparisons nor for the table used. The
use of numeric keys is not mandated either.

- A context-dependent ordering.

ISO/IEC 14651:1999(E) ISO/IEC

 2

- Any particular preparation of character strings prior to comparison.

NOTE 1: It is normally necessary to do preparation of character strings prior to comparison even if it is not
prescribed by this International standard (see informative annex C).

NOTE 2: Although no user interface is required to choose options or to specify tailoring of the Common Template
Table, conformance requires always declaring the applicable delta, a declaration of differences with this
table. It is recommended that processes present available tailoring options to users.

2 Conformance
A process is conformant to this International Standard if it meets the requirements prescribed in

subclauses 6.2 to 6.5.

A declaration of conformity to this International Standard shall be accompanied by a statement, either
directly or by reference, of the following:

- the number of levels that the process supports. This number shall be at least three;

- whether the process supports the position parameter;

- whether the process supports the backward parameter and at which level;

-the tailoring delta described in 6.4 and how many levels are defined in the delta.

It is the responsibility of implementors to show how their delta declaration is related to the table syntax
described in 6.3, and how the comparison method they use, if different from the one mentioned in
clause 6, can be considered as giving the same results as those prescribed by the method specified in
clause 6.

3 Normative References
The following standards contain provisions which, through reference in this text, constitute provisions

of this International Standard. At the time of publication, the editions indicated were valid. All standards
are subject to revision, and parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards listed below.

Members of IEC and ISO maintain registers of currently valid International Standards.

- ISO/IEC 10646-1:1993 Information technology -- Universal Multiple-Octet Coded Character Set
(UCS) -- Part 1: Architecture and Basic Multilingual Plane

- ISO/IEC 10646-1:1993/Amd.1:1996 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 1:
Transformation Format for 16 planes of group 00 (UTF-16)

- ISO/IEC 10646-1:1993/Amd.2:1996 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 2: UCS
Transformation Format 8 (UTF-8)

- ISO/IEC 10646-1:1993/Amd.4:1996 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 4

ISO/IEC ISO/IEC 14651:1999(E)

 3

- ISO/IEC 10646-1:1993/Amd.5:1998 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 5: Hangul
syllables

- ISO/IEC 10646-1:1993/Amd.6:1997 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 6: Tibetan

- ISO/IEC 10646-1:1993/Amd.7:1997 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 7: 33
additional characters

- ISO/IEC 10646-1:1993/Amd.9:1997 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 9:
Identifiers for characters

- ISO/IEC 10646-1:1993/Amd.18:1997 Information technology – Universal Multiple-Octet Coded
Character Set (UCS) -- Part 1: Architecture and Basic Multilingual Plane Amendment 18:
Symbols and other characters

NOTE concerning Amendment 18: Only the EURO SIGN and the OBJECT REPLACEMENT CHARACTER from
Amendment 18 are accounted for in Annex A of this International Standard at this time.

ISO/IEC 14651:1999(E) ISO/IEC

 4

4 Definitions
For the purposes of this International Standard, the following definitions apply:

4.1 character string a sequence of characters4.2 collation equivalent to the term “ordering”

4.3 collating symbol a symbol used to specify weights assigned to a collating element

4.4 collation (weighting) table a mapping from collating elements to weighting elements

4.5 collating element a sequence of one or more characters that are considered a single element for
ordering

4.6 delta differences from a given collation table.The given collation table, together with a
given delta, forms a new collation table. Unless otherwise specified in this
International Standard, the term "delta" always refers to differences from the
Common Template Table as defined in this International Standard

4.7 (collation) level the sequence number for a subkey

4.8 ordering a process by which two strings are determined to be in exactly one of the
relationships of less than, greater than, or equal to one another

4.9 ordering key a sequence of subkeys used to determine an order

4.10 (collation) preparation a process in which given character strings are mapped to (other)
character strings logically before the calculation of the ordering key for each of
the strings

4.11 reference comparison method the method for establishing an order between two ordering
keys (see clause 6)

4.12 subkey a sequence of weights computed for a character string for a particular level.

4.13 symbol collating element

4.14 (collation) weight a positive integer value, used in subkeys, reflecting the relative order of collating
elements

4.15 weighting element a list of a given number of weights sequentially ordered by level

5 Symbols and abbreviations
Following ISO/IEC_10646-1 requirement (Amendment 9) characters are referenced as UXXXX where

X stands for any hexadecimal digit (using upper case letters where applicable) and refers to the value of
that character in ISO/IEC 10646-1. This convention is used throughout this International Standard.

In the Common Template Table arbitrary symbols representing weights are used according to the
BNF notation description in 6.3.1.

6 String comparison

ISO/IEC ISO/IEC 14651:1999(E)

 5

6.1 Preparation of character strings prior to comparison
It may be necessary to transform character strings before the reference comparison method is applied

to them (see annex C for an example of such preparation). Although not part of the scope of this
International Standard, preparation may be an important part of the ordering process, as for example in
telephone-book ordering, a complex case in point.

Where applicable, it can be an important part of the prehandling phase to map characters from a non-
UCS encoding scheme to the UCS for input into the reference comparison method. This task can
amongst other things encompass the correct handling of escape sequences in the originating encoding
scheme, the mapping of characters without an allocated UCS codepoint to an application-defined
codepoint in the private zone area and inverting strings which are not stored in logical order. For example,
visual order Arabic code sets must be put into logical order; bibliographic code sets with accents before
base characters require reversal. The resulting string sequence may then have to be remapped into its
original encoding scheme.

NOTE 1: The Common Template Table is designed so that combining sequences and corresponding single
characters (precomposed) will have precisely the same ordering. To avoid inadvertently breaking this
invariant (and in the process breaking Unicode conformance), tailoring should reorder combining
sequences when corresponding characters are reordered. For example, if Ä is reordered after Z, then the
sequence <A>+<combining diaeresis> should also be reordered. To avoid exposing encoding differences
that may be invisible to the end-user, it is recommended that strings be normalized according to Unicode
normalization to achieve this equivalence – see Bibliography, Unicode Technical Report no. 15.

NOTE 2: Escape sequences and control characters constitute very sensitive data to interpret, and it is highly
recommended that preparation should filter out or transform these sequences.

NOTE 3: Since the reference method is a logical statement for the mechanism for string comparison, it does not
preclude an implementation from using a non-UCS character encoding only, as long as it produces results
as if it were using the reference comparison method.

6.2 Key building and comparison

6.2.1 Preliminary considerations
6.2.1.1 Assumptions

The collation table is a mapping from collating elements to weighting elements. In each weighting
element, four levels are described in the Common Template Table. This number of levels can be
extended or reduced (but not below 3 levels) in tailoring.

NOTE: Normally the last level is intended to specify "special" characters, i.e., characters normally not part of the
spelling of words of a language (such as dingbats, punctuation, etc.), sometimes called "ignorable"
characters in the context of computerized ordering.

6.2.1.2 Processing properties

The whole table has specific scanning and ordering properties. These properties may be changed.

The scanning direction (forward or backward) used to process the string is a global property of each
level defined in the table.

An optional property of the last level of comparison is that, before comparing weights of each
"ignorable" character, a comparison on the numeric position of each such character in the two strings
may be effected. This property is known as the position parameter. In other words, for two strings
equivalent at all levels except the last one, the string having an ignorable in the lowest position comes

ISO/IEC 14651:1999(E) ISO/IEC

 6

before the other one. In case ignorables share the same positions, then weights are considered, until a
difference is found). This processing is optional and is not necessary to claim conformance.

NOTE: The scanning direction (forward or backward) is not normally related to the natural writing direction of
scripts. The scanning direction applies to the logical sequence of the coded character string.

 According to ISO/IEC 10646, for scripts written right to left, such as Arabic, the lowest positions in the
logical sequence of characters correspond to the rightmost characters of a string (from the point of view of
their natural presentation sequence). Conversely, for the Latin script, written left to right, the lowest
positions in the logical sequence of characters correspond to the leftmost characters of the string (from the
point of view of their natural presentation sequence).

 Scanning forward starts with the lowest position in the logical sequence, while scanning backward starts
from the highest position, independently of the presentation sequence. The scanning direction for ordering
purposes is a global property of each level described in the table.

 In ISO/IEC 10646-1, the Arabic script is artificially separated into two pseudoscripts: 1) the logical, intrinsic
Arabic, coded independently of shapes, and 2) the Arabic presentation forms. Both allow the complete
coding of Arabic, but intrinsic Arabic is normally preferred for better processing, while presentation-form
Arabic is preferred by some presentation-oriented applications. ISO/IEC 10646-1 does not prescribe that
the presentation forms be coded in any specific order and in some implementations, the coded order for
the latter is exactly the opposite of the one used for “intrinsic Arabic”. It is therefore eventually advisable
that prehandling be used to make sure that coded Arabic presentation forms and other coded Arabic
characters be fed to the comparison method in the same logical order.

A tailored table may be separated into sections for ease of tailoring. Each section is then assigned a
name consistent with the specification in subclause 6.3.1. One of the tailoring possibilities is to assign a
given order to each section and to change the relative order of an entire section relative to other sections.

6.2.2 Ordering key formation

When two strings are compared to determine their relative order, the two strings are first broken up
into a sequence of collating elements taking account of multi-character collating elements using
"collating_element" statement in a tailored table. Then a sequence of m intermediary subkeys is
formed out of a character string, where m is the number of levels described in a tailored collation
weighting table. The following subclauses describe the formation of an ordering key.

Each ordering key is a sequence of subkeys. Each subkey is a list of numeric weights formed by
successively appending each of the weights assigned to corresponding characters at a given level. There
are three types of subkeys, subkeys using the "forward" parameter, subkeys using the backward
parameter and subkeys using the forward position parameter. Subkeys that use the position
parameter may only occur at the last level. Support of the position parameter is not required for
conformance but shall be declared if used.

The special keyword "IGNORE" as a weight indicates that when strings are compared using the
weights at the level where "IGNORE" is specified, the collating element shall be ignored; i.e., as if the
string did not contain the collating element.

If there are no weights corresponding to a character of the input string, then the character is
undefined. Undefined characters are ordered with respect to defined characters as if they were given the
weight “UNDEFINED“ at any particular level in the Common Template Table. If there is no weight
assigned to symbol “UNDEFINED“ in the table, then the table is interpreted as if there were one at the very
end. The ordering of undefined characters with respect to other undefined characters is not specified in
this standard.

NOTE: there are two common treatments of undefined characters. The first is to sort among them as if their level-
one weight differences were based upon their UCS character code. The second is to sort them as if they all

ISO/IEC ISO/IEC 14651:1999(E)

 7

had the same level-one weight, and their second-level weights were the same as their UCS character
codes.

6.2.2.1 Formation of a subkey with the forward parameter

Subkeys with the forward parameter are formed in the following way at a particular level:

During forward scanning of each character of the input character string, one or more weights are
obtained. These weights are obtained by matching the UCS value of each character, expressed as a
hexadecimal string, against a corresponding symbol prefixed with “U” in a tailored collation weighting
table, and then evaluating the weight or weights associated with that level.These weights are appended to
the end of the subkey.

6.2.2.2 Formation of a subkey with the backward parameter

Subkeys with the backward parameter are formed by forming a subkey with the forward parameter
at a particular level, then reversing that subkey.

6.2.2.3 Formation of a subkey which uses the forward position parameter

Subkeys using the forward position parameter are formed at a particular level in the following
way:

During forward scanning of each collating element of the input character string, two weights are
appended to the end of the subkey. The first weight corresponds to the logical position in the original
character string of the collating element being processed. The second weight corresponds to the weight
assigned to that collating element at the subkey’s level in the table.

NOTE: In the Common Template Table, levels generally have the following characteristics, although the purpose of
each level is not absolute:

Level 1: This level generally corresponds to the set of common letters of the alphabets for that script, if the script is
alphabetic, and to the set of common characters of the script if the script is ideographic or syllabic.

Level 2: This level generally corresponds to diacritical marks affecting each basic character of the script. For some
languages, letters with diacritics are always considered an integral part of the basic letters of the alphabet,
and are not considered at this second level, but rather at the first. For example, in Spanish, N TILDE is
considered a basic letter of the Latin script. Therefore, tailoring for Spanish will change the definition of N
TILDE from "the weight of an N in the first level and the weight of a TILDE in the second level" to "the
weight of an N TILDE (placed after N and before O) in the first level, and indication of the absence of a
diacritic in the second level". For some characters, variant letter shapes are also dealt with on level 2. An
example of this is ß, the LATIN LETTER SHARP S, which is treated as equivalent to ss on level 1, but
traditionally distinguished from it on level 2.

Level 3: This level generally corresponds to case distinctions or, mainly in non-Latin scripts, to distinctions based
on variant character shapes.

Level 4: This level generally corresponds to weighting differences that are less significant than those at the other
levels.

6.2.3 Reference comparison method for ordering character strings

The following describes the reference comparison method:

1. In considering a table describing weights (each instance a of weight is noted wt(a) below) at m
levels (an instance of a subkey at a given level b is noted sk(b) below) for each of n characters in
the implementation character set, build an ordering key for each of two arbitrary character strings

ISO/IEC 14651:1999(E) ISO/IEC

 8

being compared, according to the algorithm of key formation described in sub-clause 6.2.2of this
International Standard.

2. An ordering key x is less than an ordering key y at level s where 1ΡΡΡΡsΡΡΡΡn if and only if there exists
some integer i where 1ΡΡΡΡiΡΡΡΡs such that xsk(i)< ysk(i) and xsk(i)= ysk(i) for all integers j where 1ΡΡΡΡjΡΡΡΡi.

 An ordering key x is greater than an ordering key y if and only if y is less than x;

 An ordering key x is equal to an ordering key y if neither x is less than y nor y is less than x.

3. A subkey v of length lv is less than a subkey w of length lw if and only if lv=0 and lw>0 or if there
exists some integer p where pΡΡΡΡlv and pΡΡΡΡ lw such that for all integers q, where 1ΡΡΡΡqΡΡΡΡp,
vwt(q)=wwt(q) and either lv=p and lwΣΣΣΣp and vwt(p)=wwt(p) or vwt(p)<wwt(p).

 A subkey v is greater than a subkey w if and only if w is less than v ;

 A subkey v is equal to a subkey w if neither v is less than w nor w is less than v.

The table used in this reference comparison method is the result of the numeric interpretation of the
symbols in a tailored table.

6.3 Common Template Table: formation and interpretation
This clause specifies:

- the syntax used to form the Common Template Table in annex A of this International Standard
or a tailored table based upon the Common Template Table

- conditions of well-formedness of a table using this syntax

- interpretation of tables formed using this syntax

- conditions for considering two tables as equivalent

- conditions for considering comparison results as equivalent

6.3.1 BNF syntax rules

Definitions between <angle brackets> make use of terms not defined in this BNF syntax, and assume
general English usage.

Other conventions:
 * indicates 0 or more repetitions of a token or a group of tokens
 + indicates 1 or more repetitions of a token or a group of tokens
 ? indicates optional occurrence of a token or a group of tokens (0 or 1 occurrences)
 parentheses are used to group tokens
 production rules are terminated by a semicolon
 comments start with a % character on a separate line

ISO/IEC ISO/IEC 14651:1999(E)

 9

% Define collation tables as sequences of lines.
weight_table = common_template_table | tailored_table ;
tailored_table = table_line+ ;
common_template_table = simple_line+ ;

% Define the line types.
table_line = simple_line | tailoring_line ;
tailoring_line = (section_definition | reorder_after | reorder_end |

reorder_section_after | order_start | order_end)
line_completion ;

simple_line = (symbol_definition | weight_assignment | collating_element)?
line_completion ;

% Define the tailoring syntax.
order_start = 'order_start' space+ multiple_level_direction (',position')?

;
order_end = ’order_end’ ;
multiple_level_direction = direction (semicolon direction)* ;
direction = ’forward’ | ’backward’ ;
reorder_section_after = 'reorder-section-after' space+ section_identifier

space+ target_symbol ;
reorder_after = ’reorder-after’ space+ target_symbol ;
reorder_end = ’reorder-end’ ;
target_symbol = symbol ;
section_definition = section_definition_simple | section_definition_list ;
section_definition_list = ’section’ space+ section_identifier space+

symbol_list ;
section_definition_simple = ’section’ space+ section_identifier ;
section_identifier = identifier ;
symbol_list = symbol_element (semicolon symbol_element)* ;

% Define the basic syntax for collation weighting.
collating_element = ’collating-element’ space+ symbol space+ ’from’ space+

quoted_symbol_sequence ;
weight_assignment = simple_weight | symbol_weight ;
simple_weight = symbol_element ;
symbol_weight = symbol_element space+ weight_list ;

symbol_definition = ('collating-symbol' space+ symbol_element) |
'UNDEFINED' ;

weight_list = level_token (semicolon level_token)* ;
level_token = symbol_group | ’IGNORE’ ;
symbol_group = symbol_element | quoted_symbol_sequence ;
quoted_symbol_sequence = ’"’ symbol+ ’"’ ;
symbol_element = symbol | symbol_range ;
symbol_range = symbol ’..’ symbol ;
symbol = simple_symbol | ucs_symbol ;
ucs_symbol = (’<U’ four_digit_hex_string ’>’) | (’<U-’

eight_digit_hex_string ’>’) ;
simple_symbol = ’<’ identifier ’>’ ;

% Define low-level tokens used by the rest of the syntax.
identifier = (letter | digit) id_part* ;
id_part = letter | digit | ’-’ | ’_’ ;
line_completion = space* comment? EOL ;
comment = comment_char character* ;
eight_digit_hex_string = hex_upper hex_upper hex_upper hex_upper hex_upper

hex_upper hex_upper hex_upper ;
four_digit_hex_string = hex_upper hex_upper hex_upper hex_upper ;
hex_numeric_string = hex_upper+ ;
space = ’ ’ | <TAB> ;
semicolon = ’;’ ;
comment_char = ’%’ ;
letter = ’a’ | ’b’ | ’c’ | ’d’ |’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’ | ’k’ |

’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’
| ’w’ | ’x’ | ’y’ | ’z’ | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ |

ISO/IEC 14651:1999(E) ISO/IEC

 10

’G’ | ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’ | ’Q’
| ’R’ | ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’ ;

hex_upper = ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | digit ;
digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ ;
EOL = <end-of-line in the text conventions in use> ;
character = <any member of the repertoire of the encoded character set in

use, not including any characters used to delimit the end of
lines> ;

6.3.1.1 Keyword usage
The following keywords were inherited from POSIX locale syntax. The original usage of these keywords is as
follows:

collating-element Define a collating-element symbol representing a multicharacter

collating element. This keyword is optional.
order_start Define collation rules. This statement is followed by one or more

collation order statements, assigning character collation values
and collation weights to collating elements.

order_end Specify the end of the collation-order statements.
reorder-after Redefine collating rules. Specify after which collating element the

redefinition of collation order shall take order. This statement is
followed by one or more collation order statements, reassigning
character collation values and collation weights to collating
elements.

reorder-end Specify the end of the "reorder-after" collating order statements.
reorder-section-after Redefine the order of sections. This statement is followed by one

or more section symbols, reassigning character collation values
and collation weights to collating elements.

reorder-section-end Specify the end of the "reorder-sections" section order statements.

6.3.2 Well-formedness conditions

WF1. Any simple_symbol occurring in a weight_list shall occur in a symbol_definition in the same
symbol_weight in which the weight_list occurs, or in a symbol_weight or symbol_definition that occurs
earlier in the sequence of lines that constitute a weight_table.

NOTE: All simple_symbols shall be “defined” before they are “used”.

WF2. No symbol that occurs in a symbol_definition in a weight_table that contains no tailoring_line’s
may occur in another symbol_definition in the same weight_table.

NOTE: Duplication of collation weighting symbols is prohibited. This is true for the Common Template Table itself,

and must also remain true for a tailored_table, once the results of all reordering of lines has been applied.

WF3. All weight_list’s in a tailored_table shall contain the same number of level_token’s. An empty
level_token shall be interpreted as the collating_element itself.
NOTE: A tailorable table shall be consistent in its use of levels throughout.

WF4. A tailored_table shall contain one order_start statement..

NOTE: This statement shall appear after symbol_definition entries and before the symbol_weight entries.

WF5. A multiple_level_direction in a tailored_table shall contain the same number of direction’s as the
number of level_token’s of any weight_list in that tailored_table.

ISO/IEC ISO/IEC 14651:1999(E)

 11

NOTE: Any order_start shall have the same number of levels as is generally used in the table.

WF6. If a level_token in a weight_list consists of a symbol_group, all successive level_token’s in that
weight_list shall also consist of a symbol_group.

NOTE: ‘IGNORE’ shall not be used at a level after an explicit symbol for a weighting.

WF7. Any section_identifier occurring in a reorder_section_after shall occur in a section_definition
which occurs earlier in the sequence of table_lines that constitutes a tailored_table. All
section_identifiers shall be “defined” before they are “used”.

WF8. No two section_definition_entrys in a tailored_table shall contain the same values in their
section_identifiers.

NOTE: Multiple definition of sections is prohibited; section_identifiers shall be unique.

WF9. Each reorder_after in a tailored_table shall be followed at a later point in that tailored table by a
reorder_end or another reorder_after.

WF10. A tailored_table shall contain one order_start and one order_end.

WF11. No reorder_section_after shall contain a target_symbol whose value is the same as any
symbol in the section_definition_list whose section_identifier is the same as the section_identifier in
that reorder_section_after.

NOTE: A section shall not be reordered after a line which the section itself contains; attempts at recursive relocation

of lines are prohibited.

WF12. Any symbol_range shall contain two symbol’s which meet the following conditions: Each
symbol shall contain a common prefix; the portions of identifier of each symbol following the common
prefix shall be a hex_numeric_string; and when interpreted as numeric values, the hex_numeric_string
of the first symbol shall be less than the hex_numeric_string of the second symbol. The positive
integral difference between the hex_numeric_string of the second symbol, interpreted as a numeric
value, and the hex_numeric_string of the first symbol, interpreted as a numeric value, constitutes the
range of values of the symbol_range.

NOTE: A well-formed symbol_range is of a form such as <S4E00>..<S9FA5>, where the common prefix is “S”, and

the rest of the identifier portion of each symbol is a hex_numeric_string.

WF13. Any symbol_weight which contains more than one symbol_range shall contain only
symbol_range’s that meet the following requirement: Each symbol_range following the first
symbol_range shall have the same number of values in the range as that of the first symbol_range.

NOTE: This condition guarantees that all expanded ranges will be well-formed, since for any one symbol_weight, all

of the range expansions will have the same number of values.

ISO/IEC 14651:1999(E) ISO/IEC

 12

6.3.3 Interpretation of tailored tables

I1. A section consists either 1) of the list of simple_lines which contain a symbol_definition whose
value is equal to any symbol contained in the symbol_list in a section_definition_list_entry, or 2) of the
list of simple_line’s following a section_definition_simple in a tailored_table.

NOTE: A section is defined 1) by a specific symbol_list, or 2) by taking all the lines following the section_definition

until another tailoring line such as an order_start, a reorder_section_after, another section_definition, or the
end of the entire table is encountered.

I2. A simple_line consisting of a symbol_definition containing a symbol_range is equivalent to a
sequence of simple_line’s, each containing a symbol in place of the symbol_range, where the symbol
for each successive simple_line is generated by concatenating a hex_numeric_string to the common
prefix of the symbol_range, in numeric order, starting with the hex value associated with the
hex_numeric_string of the first symbol, and ending with the hex value associated with the
hex_numeric_string of the second symbol. The hex_numeric_string concaneted to the common prefix
must contain the same number of digits as the hex_numeric_string of the first symbol. The number of
simple_line’s thus generated is equal to the number of symbols in the symbol_range.

NOTE: A symbol_definition of the form “collating-symbol <S0301>..<S0303>” is equivalent to the three lines:

collating-symbol <S0301>
collating-symbol <S0302>
collating-symbol <S0303>

I3. A simple_line consisting of a symbol_weight containing one or more symbol_range’s is equivalent
to a sequence of simple_line’s, where each symbol_range has been expanded into a sequence of
symbol’s, as described in I2 for symbol_definition’s.

NOTE: A symbol_weight of the form “<U2000>..<U2002> <S0301>..<S0303>;<BLANK>;<MIN>;

<U2000>..<U2002>” is equivalent to the three lines:
<U2000> <S0301>;<BLANK>;<MIN>;<U2000>
<U2001> <S0302>;<BLANK>;<MIN>;<U2001>
<U2002> <S0303>;<BLANK>;<MIN>;<U2002>

I4a. A tailored_table containing a reorder_after is equivalent to the tailored_table where:
1) have been removed all table_line’s that were ahead of the reorder_after and that contained

symbol_definition’s whose symbol matches the symbol of any symbol_definition in the table_line’s
between the reorder_after and reorder_end,

2) have been reordered the table_lines between that reorder_after and the first subsequent
reorder_end to immediately follow the first table_line in the tailored_table containing a
symbol_definition whose symbol is the same as the target_symbol in the reorder_after, and

3) have been removed that reorder_after and that reorder_end.

NOTE: Move the block of lines between the reorder_after and the reorder_end to follow the target_symbol, delete

any prior lines that duplicate the symbol_definition’s of the reordered lines, and remove the reorder_after
and reorder_end themselves.

I4b.: When a tailored_table contains multiple groups of lines to be reordered, the table is interpreted by
processing each reorder_after sequentially, starting from the first line of the table.

NOTE: Subsequent line reorderings may impact lines that themselves were reordered by prior reorderings.

ISO/IEC ISO/IEC 14651:1999(E)

 13

I5. A tailored_table containing a section_reorder_after is equivalent to the tailored_table with the
section associated with that section-reorder_after reordered (in the same relative order as the
table_lines have in that section) to immediately follow the last table_line in the tailored_table containing
a symbol_definition whose symbol is the same as the target_symbol in the section_reorder_after, and
with that section_reorder_after removed.

I6. A weight_table is said to be in normal form when it contains no reorder_after’s or
section_reorder_after’s.

NOTE: A tailored_table can be put into normal form by the operations implied by I4 and I5.

6.3.4 Evaluation of weight tables

E1. A weight_table in normal form is said to be evaluated when each weight_assignment in the
weight_table is mapped to a positive integer value (a weight) such that those values increase
monotonically by the order in which the weight_assignment’s occur in the weight_table.

NOTE 1:The table_line’s of the weight_table are first mapped to the set of positive integers, by sequential order in

the table. This mapping defines an ordered set of line numbers. The weight_assignment’s are then
mapped to a set of positive integers (weights) that varies monotonically with the set of line numbers.

NOTE 2: this does not restrict the starting number for the weight of the first weight_assignment, nor does it require
that the numbers for these weights be immediately consecutive.

E2. An evaluated weight_table is said to be collation-element-weighted when each simple_symbol
occurring in each weight_list in that evaluated weight_table has been mapped to the weight which
corresponds to the weight_assignment which contains the same simple_symbol.
NOTE 1: Each weight_list can be interpreted as containing either symbol’s mapped to integral weight values, or as

instances of the string ‘IGNORE’. At this point the mathematical injection of strings can be defined using
the weight_table. The string ‘IGNORE’ is equivalent to an empty list of weight symbols.

NOTE 2: In a tailored table the value of any hex_numeric_string associated with a symbol typically does not reflect
the numeric weighting of the symbol.

6.3.5 Conditions for considering specific table equivalences

A weight_table W1 and a weight_table W2 are said to be equivalent at a particular level if any
comparison of strings using those tables up to that level results in the same ordering.
NOTE: If one takes two strings, builds keys for each based on W1 and compares them, one should always get the

same results as when one builds keys for those strings based on W2 and compares them.

6.3.6 Conditions for results to be considered equivalent

An implementation of international string ordering is conformant with this International Standard if for
any set of strings S defined on a repertoire R, the implementation can duplicate the same
comparisons as those resulting from comparison of the numbers from an injection constructed
according to the rules of clause 6.2.3 of this International Standard.

ISO/IEC 14651:1999(E) ISO/IEC

 14

6.4 Declaration of a delta
Tailoring shall be based upon the Common Template Table described in annex A. Tailoring may be

accomplished using any syntax that is equivalent to the one described in this International Standard.

NOTE: For example, ISO/IEC DTR 14652, uses a compatible extension of the syntax used in this International
Standard for tailoring A tailoring delta can also be expressed using the syntax of the Unicode collation
algorithm (see Bibliography - Unicode Technical Report no. 10). It has also been demonstrated that a
tailoring delta can also be expressed using an XML-conformant markup scheme.

Any declaration of conformance to this International Standard shall be accompanied with a declaration
of the differences between the collation weighting table and the Common Template Table. A delta shall
contain the equivalent of:

1. At least one valid order_start entry described in clause 6.3.1; an unlimited number of sections
containing an order_start entry and an order_end entry may be declared.

2. The number of levels used for comparison.

3. The list of symbol_definition weights (as defined in 6.2.1) added and after which symbol_definition
entry each insertion is made.

4. The list of simple_line entries (as defined in 6.2.1) deleted or inserted, referencing after which
simple_line entry in the Common Template Table the insertions are made

NOTE: It is recommended that a delta should not be bigger than necessary.

In cases where a process has provision to allow the end-user to tailor the table himself or herself, a
statement of conformance shall indicate which of the 4 elements of the previous list are tailorable and
which of those 4 elements are not tailorable. For those which are not tailorable, the delta of fixed
elements relative to the Common Template Table shall be declared.

NOTE: The declaration may use a different syntax from the one specified in 6.3 provided that the relationship with
this syntax can be reasonably established. For example, the following declarations are valid:

 "Collate U+00E5 after U+007A at the primary level.
 Collate U+00E4 after U+00E5 at the primary level. "

 or

 "The primary alphabet order is modified so that in all cases z < å < ä"

 These two notations can reasonably be considered to be equivalent to the more precise expressions
(which also give weights at levels 2 and 3):

******************* THOSE PARAGRAPHS IN PINK TO BE MODIFIED BY KEN ******************

 reorder-after <S007A>
 <U00E5> <U00E5>;<BLANK>;<MIN>
 reorder-end

 reorder-after <S00E5>
 <U00E4> <U00E4>;<BLANK>;<MIN>
 reorder-end

6.5 Name of the Common Template Table and name declaration
Whenever the Common Template Table is referred externally as a base point in a given context,

whether in a process, contract, or procurement requirement, it shall be referenced using the name

ISO/IEC ISO/IEC 14651:1999(E)

 15

ISO14651_1999_TABLE1. If another name is used due to practical constraints, a declaration of
conformance shall indicate how the correspondence between this other name and the name
ISO14651_1999_TABLE1 is taken care of.

The use of a defined name is necessary to manage the different stages of development of this table.
This follows from the nature of the reference character repertoire, for which development will be ongoing
for a number of years or even decades.

ISO/IEC 14651:1999(E) ISO/IEC

 16

Annex A -- Common Template Table (normative)
In this ordering table, a number of characters and scripts of the world are missing, due to the fact that

those characters or scripts have not yet been encoded in the reference character set repertoire, ISO/IEC
10646-1 (Universal multiple-octet coded Character Set, or UCS) at time of the preparation of this
International Standard.

It is the intent of ISO/IEC to include the ordering of those scripts explicitly in the Common Template
Table when data becomes available, by way of amendments to this International Standard. If the
Common Template Table is not tailored for unspecified characters, then an implicit order is assigned in
the following table, which may not meet the user requirements of a particular community. Any delta with
this table shall be declared in a statement of conformance to this International Standard as per the
specifications of the conformance clause.

Name used for referring to this table in this version of this International standard:
ISO14651_1999_TABLE1

*********** TEXT TO BE MODIFIED WHEN WE KNOW THE PERMANENT URL OF THE MACHINE_READABLE
TABLE ON ITTF SITE *******

NOTE: Some lines in the following table spill in presentation because of long line lengths. An eventual machine-
readable table using this format shall be corrected to avoid this minor presentation problem. In case of
doubt a copy of the source file (which does not present this presentation problem as it is a machine-
readable file) is available from the SC22/WG20 convenor or from the editor of this International Standard.
At time of publishing of the International Standard, it is currently the intent that the machine-readable table
will be assigned a permanent URL which will be refered in the final document in addition to being
reproduced fully in the International Standard.

ISO/IEC ISO/IEC 14651:1999(E)

 17

% escape_char /
�% comment_char %

ISO/IEC 14651:1999(E) ISO/IEC

 18

ISO/IEC ISO/IEC 14651:1999(E)

 19

�% LC_COLLATE

ISO/IEC 14651:1999(E) ISO/IEC

 20

ISO/IEC ISO/IEC 14651:1999(E)

 21

�% Decomment the lines above to create a 14652-style
% LC_COLLATE definition.

************************ THE FULL TABLE COMES AROUND HERE********************
UNDEFINED % For all unsupported characters to be treated as unweighted.

% order_end

% END LC_COLLATE

% Decomment the line above to create a 14652-style
% LC_COLLATE definition.

ISO/IEC 14651:1999(E) ISO/IEC

 22

ISO/IEC ISO/IEC 14651:1999(E)

 23

Annex B – Tailoring deltas (informative)

B.1 Example 1 – Canadian delta and benchmark
This annex describes benchmark 1, based on Canadian standard CAN/CSA Z243.4.1-1998 (and -

1992). The delta that precedes the benchmark has been simplified for illustration here; a larger delta is
required, mainly for special characters, for full conformance to this Canadian standard, and is given here
as an example only, limited to what is required for the benchmark. For complete information the Canadian
standard CAN/CSA Z243.4.1 should be consulted. The example’s specifications are to be performed
using the Common Template Table of annex A, with the following delta:

1. Processing properties:
order_start <TABLE>;forward;backward;forward;forward,position
2. Number of levels unchanged to 4.
3. No symbol change.
4. No other insertion, deletion or redefinition than:

- æ sorted as if it were separate letters "ae" at level 1. The letters "ae" are distinguished at
level 2 from the character "æ" and are sorted before it. Upper case is distinguished from
lower case at level 3.

- ð sorted as if it were the letter "d" at level 1. The letter "ð" is distinguished at level 2 from
the letter "d" and is sorted after it. Upper case is distinguished from lower case at level 3.

- þ sorted as if it were separate letters "th" at level 1. The letters "th" are distinguished at
level 2 from the letter "þ" and are sorted before it. Upper case is distinguished from lower
case at level 3.

Alternate formal ISO/IEC DTR 14652 tailoring equivalent

************* Ken to provide changes to this paragraph in pink ****************

% copy ISO14651_1999_TABLE1
reorder_after <SFFFF>
order_start forward;backward;forward;forward,position
reorder-after <U00C6>
<U00E6> <S6CD><S72D>;<COMPAT><COMPAT>;<MIN><MIN>;IGNORE % <ae>
<U00C6> <S6CD><S72D>;<COMPAT><COMPAT>;<CAP><CAP>;IGNORE % <AE>
reorder-after <U1E0E>
<U00F0> <S705>;<COMPAT>;<MIN>;IGNORE % <d->
<U00D0> <S705>;<COMPAT>;<CAP>";IGNORE % <D->
reorder-after <U2122>
<U00FE> <S88B><S781>;<COMPAT><COMPAT>;<MIN><MIN>;IGNORE % <th>
<U00DE> <S88B><S781>;<COMPAT><COMPAT>;<CAP><CAP>;IGNORE % <TH>
reorder-end

ISO/IEC 14651:1999(E) ISO/IEC

 24

1 Unordered list (required test as per Canadian standard CAN/CSA Z243.4.1-1998 plus
additions)

ou
lésé
péché
vice-président
9999
OÙ
haïe
coop
caennais
lèse
dû
air@@@
côlon
bohème
gêné
meðal
lamé
pêche
LÈS
vice versa
C.A.F.
Þorsmörk
cæsium
resumé
Bohémien
co-op
pêcher
les
CÔTÉ
résumé
Ålborg
cañon
du
haie
pécher
Mc Arthur
cote
colon
l'âme
resume
élève
Þorvarður

Canon
lame
Bohême
0000
relève
gène
casanier
élevé
COTÉ
relevé
Grossist
vice-presidents' offices
Copenhagen
côte
McArthur
Mc Mahon
Aalborg
Größe
vice-president's offices
cølibat
PÉCHÉ
COOP
@@@air
VICE-VERSA
gêne
CO-OP
révélé
révèle
çà et là
MacArthur
Noël
île
aïeul
Île d'Orléans
nôtre
notre
août
NOËL
@@@@@
L'Haÿ-les-Roses
CÔTE
COTE

côté
coté
aide
air
vice-president
modelé
Thorvardur
MODÈLE
maçon
MÂCON
pèche
pêché
medalovoïde
pechère
ode
péchère
œil

ISO/IEC ISO/IEC 14651:1999(E)

 25

2 List with required results as per Canadian standard CAN/CSA Z243.4.1-1998

@@@@@
0000
9999
Aalborg
aide
aïeul
air
@@@air
air@@@
Ålborg
août
bohème
Bohême
Bohémien
caennais
cæsium
çà et là
C.A.F.
Canon
cañon
casanier
cølibat
colon
côlon
coop
co-op
COOP
CO-OP
Copenhagen
cote
COTE
côte
CÔTE
coté
COTÉ
côté
CÔTÉ
du
dû
élève
élevé
gène
gêne

gêné
Größe
Grossist
haie
haïe
île
Île d'Orléans
lame
l'âme
lamé
les
LÈS
lèse
lésé
L'Haÿ-les-Roses
MacArthur
MÂCON
maçon
medal
meðal
McArthur
Mc Arthur
Mc Mahon
MODÈLE
modelé
Noël
NOËL
notre
nôtre
ode
œil
ou
OÙ
ovoïde
pèche
pêche
péché
PÉCHÉ
pêché
pécher
pêcher
pechère
péchère

relève
relevé
resume
resumé
résumé
révèle
révélé
Þorsmörk
Thorvardur
Þorvarður
vice-president
vice-président
vice-president's offices
vice-presidents' offices
vice versa
VICE-VERSA

ISO/IEC 14651:1999(E) ISO/IEC

 26

B.2 Example 2 – Danish delta and benchmark

The following is a Danish delta tailoring example. This formal specification
corresponds to Danish standard DS 377 and to "Retskrivningsordbogen", the
Danish orthography specification. The repertoire used assumes the exclusion
of combining characters.

************ Ken to provide changes in the following pink lines **********

% This tailoring is in accordance with Danish Standard DS 377 (1980)
% and the Danish Orthography Dictionary (Retskrivningsordbogen, 1986).
% It is also in accordance with Greenlandic orthography.

% Define a collating element for a-ring.

collating-element <AA>

% Define collating elements for sequences of a+a

collating-element <A-A> from "<U0041><U0041>"
collating-element <A-a> from "<U0041><U0061>"
collating-element <a-A> from "<U0061><U0041>"
collating-element <a-a> from "<U0061><U0061>"

% Make capital letters sort before lowercase
% Note that this simple tailoring only impacts basic letters.
% To also make capital letters in compatibility characters sort
% before lowercase, a slightly more complex tailoring is required.

reorder-after <CAP>
<MIN>

% Reorder a-diaeresis, o-stroke, and a-ring at the end of the alphabet, after z.

reorder-after <S8E5> % ezh with curl (after z)
<S6D3> % ae
<S80D> % o-stroke
<AA> % a-ring

% A list of reweighting statements to deal with specific
% Danish behavior. All of these define or redefine weight_list's,
% and so the entire block can simply be reordered after the
% last entry in the table.

reorder-after <SFFFF>

order_start forward;backward;forward;forward,position

% Space, hyphen-minus, and solidus are a primary weight
% before any letter or digit, with hyphen-minus and solidus
% given a secondary difference from the weight for space.

<U0020> <S209>;<BASE>;<MIN>;<U0020> % SPACE
<U002D> <S209>;"<BASE><VRNT1>";"<MIN><MIN>";<U002D> % HYPHEN-MINUS
<U002F> <S209>;"<BASE><VRNT2>";"<MIN><MIN>";<U002F> % SOLIDUS

% The letter kra (for Greenlandic) is equated to a lowercase q,
% with a secondary difference to distinguish it from q itself.

<U0138> <S829>;"<BASE><VRNT1>";"<MIN><MIN>";<U0138> % LATIN SMALL LETTER KRA

% The letter thorn is treated as a sequence of t + h, with a variant weight
% at the secondary level (comparable to the treatment of sharp-s).

<U00DE> "<S875><S773>";"<BASE><VRNT1><BASE>";"<CAP><MIN><CAP>";<U00DE> % LATIN CAPITAL LETTER
THORN

ISO/IEC ISO/IEC 14651:1999(E)

 27

<U00FE> "<S875><S773>";"<BASE><VRNT1><BASE>";"<MIN><MIN><MIN>";<U00FE> % LATIN SMALL LETTER THORN

% The letters u-diaeresis and u-double-acute are given the same primary
% weight as y, with unique variant weights at the secondary level.

<U00DC> <S8BD>;"<BASE><VRNT1>";"<CAP><MIN>";<U00DC> % LATIN CAPITAL LETTER U WITH DIAERESIS
<U00FC> <S8BD>;"<BASE><VRNT1>";"<MIN><MIN>";<U00FC> % LATIN SMALL LETTER U WITH DIAERESIS
<U0170> <S8BD>;"<BASE><VRNT2>";"<CAP><MIN>";<U0170> % LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
<U0171> <S8BD>;"<BASE><VRNT2>";"<MIN><MIN>";<U0171> % LATIN SMALL LETTER U WITH DOUBLE ACUTE

% The letters o-diaeresis and o-double-acute are given the same primary
% weight as o-slash, with unique variant weights at the secondary level.

<U00D6> <S80D>;"<BASE><VRNT1>";"<CAP><MIN>";<U00D6> % LATIN CAPITAL LETTER O WITH DIAERESIS
<U00F6> <S80D>;"<BASE><VRNT1>";"<MIN><MIN>";<U00F6> % LATIN SMALL LETTER O WITH DIAERESIS
<U0150> <S80D>;"<BASE><VRNT2>";"<CAP><MIN>";<U0150> % LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
<U0151> <S80D>;"<BASE><VRNT2>";"<MIN><MIN>";<U0151> % LATIN SMALL LETTER O WITH DOUBLE ACUTE

% The letter a-ring is weighted following the letter o-slash (see above)

<U00C5> <AA>;<BASE>;<CAP>;<U00C5> % LATIN CAPITAL LETTER A WITH RING
<U00E5> <AA>;<BASE>;<CAP>;<U00E5> % LATIN SMALL LETTER A WITH RING
<U01FA> <AA>;"<BASE><AIGUT>";"<CAP><MIN>";<U01FA> % LATIN CAPITAL LETTER A WITH RING ABOVE AND
ACUTE
<U01FB> <AA>;"<BASE><AIGUT>";"<MIN><MIN>";<U01FB> % LATIN SMALL LETTER A WITH RING ABOVE AND
ACUTE

% The sequences of letters a+a are weighted a secondary variants of a-ring

<A-A> <AA>;"<BASE><VRNT1>";"<CAP><CAP>";<U0041><U0041> % AA
<A-a> <AA>;"<BASE><VRNT1>";"<CAP><MIN>";<U0041><U0061> % Aa
<a-A> <AA>;"<BASE><VRNT1>";"<MIN><CAP>";<U0061><U0041> % aA
<a-a> <AA>;"<BASE><VRNT1>";"<MIN><MIN>";<U0061><U0061> % aa

reorder-end

% End of the Danish tailoring

Benchmark 2 for Danish

A/S
ANDRE
ANDRÉ
ANDREAS
AS
CA
ÇA
CB
ÇC
DA
ÐA
DB
ÐC
DSB
D.S.B.
DSC
EKSTRA-ARBEJDE
EKSTRABUD
EKSTRAARBEJDE
HØST
HAAG
HÅNDBOG

HAANDVÆRKSBANKEN
Karl
karl
NIELS JØRGEN
NIELS-JØRGEN
NIELSEN
RÉE, A
REE, B
RÉE, L
REE, V
SCHYTT, B
SCHYTT, H
SCHÜTT, H
SCHYTT, L
SCHÜTT, M
ß
SS
SSA
STORE VILDMOSE
STOREKÆR
STORM PETERSEN
STORMLY

THORVALD
THORVARDUR
ÞORVARÐUR
THYGESEN
VESTERGÅRD, A
VESTERGAARD, A
VESTERGÅRD, B
ÆBLE
ÄBLE
ØBERG
ÖBERG

ISO/IEC 14651:1999(E) ISO/IEC

 28

B.3 Example 3 – Reversing the order of lower case and upper case
letters

The following is a simple tailoring example to show how to reverse
the order of uppercase versus lowercase from the order specified
in the Common Tailorable Template Table.

********* Ken to provide changes in the following pink lines ***********

% Make uppercase letters sort before lowercase
% and scanning of accents done forward at level 2.
% To do this correctly,
% first an order_start is inserted to make the delta conformant.
% Then, the entire range of tertiary weight symbols
% <MIN>..<CIRCLE> are moved after <CIRCLECAP>, so that they order after
% <CAP> <WIDECAP> <COMPATCAP <FONTCAP> <CIRCLECAP> in the same
% relative order with respect to themselves. This has the effect of
% also making all the compatibility uppercase letters sort before
% their respective compatibility lowercase letters. (For example,
% U+24B6 CIRCLED LATIN CAPITAL LETTER A will sort before
% U+24D0 CIRCLED LATIN SMALL LETTER A.

reorder_after <SFFFF>
order_start forward;forward;forward;forward,position
reorder-after <CIRCLECAP>
<MIN>
<WIDE>
<COMPAT>

<CIRCLE>

reorder-end

% End of the uppercase/lowercase tailoring

ISO/IEC ISO/IEC 14651:1999(E)

 29

ISO/IEC 14651:1999(E) ISO/IEC

 30

B.4 Cyrillic (issue)

*************** Ken, do we keep this finally, after discussion ******************

IMPORTANT NOTE.

 In accordance with the disposition of comments on the second FCD of ISO/IEC 14651, there is a
known issue on Cyrillic in the Common Template Table that needs to be solved before the DIS.
The common template table is mostly self-generated from character properties described in tables
detained by the Unicode consortium. This led to known and manageable mismatches between
this table and actual Cyrillic sorting practice in particular in Russia.

 On one hand it is known that the current template table for Cyrillic does not sort Russian correctly
for some letters affected by a basic diacritic. The following delta makes the appropriate
corrections.

 On the other hand defining equivalence of sorting for combining sequences is still an issue whose
solution is known but which was not solved on time to obey to optimum FCD ballot deadline
constraints.

 It is the intent that after the third FCD ballot, this issue will be solved by consensus before the DIS
is published. This is expected to be the main issue remaining before the DIS ballot and the ballot
period should allow sufficient time for a discussion leading to the optimum solution, whether this
will be done via a delta of by manual modification of the self-generated table

reorder-after <U04C0>

<U04D1> <S95B>;<BASE>;<MIN>;<U04D1> % CYRILLIC SMALL LETTER A WITH BREVE
"<U0430><U0306>" <S95B>;<BASE>;<MIN>;"<U0430><U0306>" % CYRILLIC SMALL LETTER A with COMBINING BREVE
<U04D0> <S95B>;<BASE>;<CAP>;<U04D0> % CYRILLIC CAPITAL LETTER A WITH BREVE
"<U0410><U0306>" <S95B>;<BASE>;<CAP>;"<U0410><U0306>" % CYRILLIC CAPITAL LETTER A with COMBINING BREVE
<U04D3> <S95C>;<BASE>;<MIN>;<U04D3> % CYRILLIC SMALL LETTER A WITH DIAERESIS
"<U0430><U0308>" <S95C>;<BASE>;<MIN>;"<U0430><U0308>" % CYRILLIC SMALL LETTER A with COMBINING DIAERESIS
<U04D2> <S95C>;<BASE>;<CAP>;<U04D2> % CYRILLIC CAPITAL LETTER A WITH DIAERESIS
"<U0410><U0308>" <S95C>;<BASE>;<CAP>;"<U0410><U0308>" % CYRILLIC CAPITAL LETTER A with COMBINING DIAERESIS

<U04DB> <S95F>;<BASE>;<MIN>;<U04DB> % CYRILLIC SMALL LETTER SCHWA WITH DIAERESIS
"<U04D9><U0308>" <S95F>;<BASE>;<MIN>;"<U04D9><U0308>" % CYRILLIC SMALL LETTER SCHWA with COMBINING DIAERESIS
<U04DA> <S95F>;<BASE>;<CAP>;<U04DA> % CYRILLIC CAPITAL LETTER SCHWA WITH DIAERESIS
"<U04D8><U0308>" <S95F>;<BASE>;<CAP>;"<U04D8><U0308>" % CYRILLIC CAPITAL LETTER SCHWA with COMBINING
DIAERESIS

<U0453> <S983>;<BASE>;<MIN>;<U0453> % CYRILLIC SMALL LETTER GJE
"<U0433><U0301>" <S983>;<BASE>;<MIN>;"<U0433><U0301>" % CYRILLIC SMALL LETTER GHE with COMBINING ACUTE ACCENT
<U0403> <S983>;<BASE>;<CAP>;<U0403> % CYRILLIC CAPITAL LETTER GJE
"<U0413><U0301>" <S983>;<BASE>;<CAP>;"<U0413><U0301>" % CYRILLIC CAPITAL LETTER GHE with COMBINING ACUTE
ACCENT

<U04D7> <S98B>;<BASE>;<MIN>;<U04D7> % CYRILLIC SMALL LETTER IE WITH BREVE
"<U0435><U0306>" <S98B>;<BASE>;<MIN>;"<U0435><U0306>" % CYRILLIC SMALL LETTER IE with COMBINING BREVE
<U04D6> <S98B>;<BASE>;<CAP>;<U04D6> % CYRILLIC CAPITAL LETTER IE WITH BREVE
"<U0415><U0306>" <S98B>;<BASE>;<CAP>;"<U0415><U0306>" % CYRILLIC CAPITAL LETTER IE with COMBINING BREVE

<U04C2> <S993>;<BASE>;<MIN>;<U04C2> % CYRILLIC SMALL LETTER ZHE WITH BREVE
"<U0436><U0306>" <S993>;<BASE>;<MIN>;"<U0436><U0306>" % CYRILLIC SMALL LETTER ZHE with COMBINING BREVE
<U04C1> <S993>;<BASE>;<CAP>;<U04C1> % CYRILLIC CAPITAL LETTER ZHE WITH BREVE
"<U0416><U0306>" <S993>;<BASE>;<CAP>;"<U0416><U0306>" % CYRILLIC CAPITAL LETTER ZHE with COMBINING BREVE
<U04DD> <S994>;<BASE>;<MIN>;<U04DD> % CYRILLIC SMALL LETTER ZHE WITH DIAERESIS
"<U0436><U0308>" <S994>;<BASE>;<MIN>;"<U0436><U0308>" % CYRILLIC SMALL LETTER ZHE with COMBINING DIAERESIS
<U04DC> <S994>;<BASE>;<CAP>;<U04DC> % CYRILLIC CAPITAL LETTER ZHE WITH DIAERESIS
"<U0416><U0308>" <S994>;<BASE>;<CAP>;"<U0416><U0308>" % CYRILLIC CAPITAL LETTER ZHE with COMBINING DIAERESIS

<U04DF> <S99B>;<BASE>;<MIN>;<U04DF> % CYRILLIC SMALL LETTER ZE WITH DIAERESIS
"<U0437><U0308>" <S99B>;<BASE>;<MIN>;"<U0437><U0308>" % CYRILLIC SMALL LETTER ZE with COMBINING DIAERESIS
<U04DE> <S99B>;<BASE>;<CAP>;<U04DE> % CYRILLIC CAPITAL LETTER ZE WITH DIAERESIS
"<U0417><U0308>" <S99B>;<BASE>;<CAP>;"<U0417><U0308>" % CYRILLIC CAPITAL LETTER ZE with COMBINING DIAERESIS

<U04E5> <S9A7>;<BASE>;<MIN>;<U04E5> % CYRILLIC SMALL LETTER I WITH DIAERESIS
"<U0438><U0308>" <S9A7>;<BASE>;<MIN>;"<U0438><U0308>" % CYRILLIC SMALL LETTER I with COMBINING DIAERESIS
<U04E4> <S9A7>;<BASE>;<CAP>;<U04E4> % CYRILLIC CAPITAL LETTER I WITH DIAERESIS
"<U0418><U0308>" <S9A7>;<BASE>;<CAP>;"<U0418><U0308>" % CYRILLIC CAPITAL LETTER I with COMBINING DIAERESIS
<U04E3> <S9A8>;<BASE>;<MIN>;<U04E3> % CYRILLIC SMALL LETTER I WITH MACRON

ISO/IEC ISO/IEC 14651:1999(E)

 31

"<U0438><U0304>" <S9A8>;<BASE>;<MIN>;"<U0438><U0304>" % CYRILLIC SMALL LETTER I with COMBINING MACRON
<U04E2> <S9A8>;<BASE>;<CAP>;<U04E2> % CYRILLIC CAPITAL LETTER I WITH MACRON
"<U0418><U0304>" <S9A8>;<BASE>;<CAP>;"<U0418><U0304>" % CYRILLIC CAPITAL LETTER I with COMBINING MACRON
<U0457> <S9AB>;<BASE>;<MIN>;<U0457> % CYRILLIC SMALL LETTER YI
"<U0456><U0308>" <S9AB>;<BASE>;<MIN>;"<U0456><U0308>" % CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I with COMBINING
DIAERESIS
<U0407> <S9AB>;<BASE>;<CAP>;<U0407> % CYRILLIC CAPITAL LETTER YI
"<U0406><U0308>" <S9AB>;<BASE>;<CAP>;"<U0406><U0308>" % CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I with
COMBINING DIAERESIS
<U0439> <S9AC>;<BASE>;<MIN>;<U0439> % CYRILLIC SMALL LETTER SHORT I
"<U0438><U0306>" <S9AC>;<BASE>;<MIN>;"<U0438><U0306>" % CYRILLIC SMALL LETTER I with COMBINING BREVE
<U0419> <S9AC>;<BASE>;<CAP>;<U0419> % CYRILLIC CAPITAL LETTER SHORT I
"<U0418><U0306>" <S9AC>;<BASE>;<CAP>;"<U0418><U0306>" % CYRILLIC CAPITAL LETTER I with COMBINING BREVE

<U04E7> <S9EC>;<BASE>;<MIN>;<U04E7> % CYRILLIC SMALL LETTER O WITH DIAERESIS
"<U043E><U0308>" <S9EC>;<BASE>;<MIN>;"<U043E><U0308>" % CYRILLIC SMALL LETTER O with COMBINING DIAERESIS
<U04E6> <S9EC>;<BASE>;<CAP>;<U04E6> % CYRILLIC CAPITAL LETTER O WITH DIAERESIS
"<U041E><U0308>" <S9EC>;<BASE>;<CAP>;"<U041E><U0308>" % CYRILLIC CAPITAL LETTER O with COMBINING DIAERESIS
<U04EB> <S9F0>;<BASE>;<MIN>;<U04EB> % CYRILLIC SMALL LETTER BARRED O WITH DIAERESIS
"<U04E9><U0308>" <S9F0>;<BASE>;<MIN>;"<U04E9><U0308>" % CYRILLIC SMALL LETTER BARRED O with COMBINING
DIAERESIS
<U04EA> <S9F0>;<BASE>;<CAP>;<U04EA> % CYRILLIC CAPITAL LETTER BARRED O WITH DIAERESIS
"<U04E8><U0308>" <S9F0>;<BASE>;<CAP>;"<U04E8><U0308>" % CYRILLIC CAPITAL LETTER BARRED O with COMBINING
DIAERESIS

<U045C> <SA13>;<BASE>;<MIN>;<U045C> % CYRILLIC SMALL LETTER KJE
"<U043A><U0301>" <SA13>;<BASE>;<MIN>;"<U043A><U0301>" % CYRILLIC SMALL LETTER KA with COMBINING ACUTE ACCENT
<U040C> <SA13>;<BASE>;<CAP>;<U040C> % CYRILLIC CAPITAL LETTER KJE
"<U041A><U0301>" <SA13>;<BASE>;<CAP>;"<U041A><U0301>" % CYRILLIC CAPITAL LETTER KA with COMBINING ACUTE
ACCENT

<U045E> <SA17>;<BASE>;<MIN>;<U045E> % CYRILLIC SMALL LETTER SHORT U
"<U0443><U0306>" <SA17>;<BASE>;<MIN>;"<U0443><U0306>" % CYRILLIC SMALL LETTER U with COMBINING BREVE
<U040E> <SA17>;<BASE>;<CAP>;<U040E> % CYRILLIC CAPITAL LETTER SHORT U
"<U0423><U0306>" <SA17>;<BASE>;<CAP>;"<U0423><U0306>" % CYRILLIC CAPITAL LETTER U with COMBINING BREVE
<U04F1> <SA18>;<BASE>;<MIN>;<U04F1> % CYRILLIC SMALL LETTER U WITH DIAERESIS
"<U0443><U0308>" <SA18>;<BASE>;<MIN>;"<U0443><U0308>" % CYRILLIC SMALL LETTER U with COMBINING DIAERESIS
<U04F0> <SA18>;<BASE>;<CAP>;<U04F0> % CYRILLIC CAPITAL LETTER U WITH DIAERESIS
"<U0423><U0308>" <SA18>;<BASE>;<CAP>;"<U0423><U0308>" % CYRILLIC CAPITAL LETTER U with COMBINING DIAERESIS
<U04F3> <SA19>;<BASE>;<MIN>;<U04F3> % CYRILLIC SMALL LETTER U WITH DOUBLE ACUTE
"<U0443><U030B>" <SA19>;<BASE>;<MIN>;"<U0443><U030B>" % CYRILLIC SMALL LETTER U with COMBINING DOUBLE ACUTE
ACCENT
<U04F2> <SA19>;<BASE>;<CAP>;<U04F2> % CYRILLIC CAPITAL LETTER U WITH DOUBLE ACUTE
"<U0423><U030B>" <SA19>;<BASE>;<CAP>;"<U0423><U030B>" % CYRILLIC CAPITAL LETTER U with COMBINING DOUBLE ACUTE
ACCENT
<U04EF> <SA1A>;<BASE>;<MIN>;<U04EF> % CYRILLIC SMALL LETTER U WITH MACRON
"<U0443><U0304>" <SA1A>;<BASE>;<MIN>;"<U0443><U0304>" % CYRILLIC SMALL LETTER U with COMBINING MACRON
<U04EE> <SA1A>;<BASE>;<CAP>;<U04EE> % CYRILLIC CAPITAL LETTER U WITH MACRON
"<U0423><U0304>" <SA1A>;<BASE>;<CAP>;"<U0423><U0304>" % CYRILLIC CAPITAL LETTER U with COMBINING MACRON
<U04AF> <SA1C>;<BASE>;<MIN>;<U04AF> % CYRILLIC SMALL LETTER STRAIGHT U
<U04AE> <SA1C>;<BASE>;<CAP>;<U04AE> % CYRILLIC CAPITAL LETTER STRAIGHT U

<U04F5> <SA4F>;<BASE>;<MIN>;<U04F5> % CYRILLIC SMALL LETTER CHE WITH DIAERESIS
"<U0447><U0308>" <SA4F>;<BASE>;<MIN>;"<U0447><U0308>" % CYRILLIC SMALL LETTER CHE with COMBINING DIAERESIS
<U04F4> <SA4F>;<BASE>;<CAP>;<U04F4> % CYRILLIC CAPITAL LETTER CHE WITH DIAERESIS
"<U0427><U0308>" <SA4F>;<BASE>;<CAP>;"<U0427><U0308>" % CYRILLIC CAPITAL LETTER CHE with COMBINING DIAERESIS

<U04F9> <SA78>;<BASE>;<MIN>;<U04F9> % CYRILLIC SMALL LETTER YERU WITH DIAERESIS
"<U044B><U0308>" <SA78>;<BASE>;<MIN>;"<U044B><U0308>" CYRILLIC SMALL LETTER YERU with COMBINING DIAERESIS
<U04F8> <SA78>;<BASE>;<CAP>;<U04F8> % CYRILLIC CAPITAL LETTER YERU WITH DIAERESIS
"<U042B><U0308>" <SA78>;<BASE>;<CAP>;"<U042B><U0308>" % CYRILLIC CAPITAL LETTER YERU with COMBINING DIAERESIS

<U0477> <SAAF>;<BASE>;<MIN>;<U0477> % CYRILLIC SMALL LETTER IZHITSA WITH DOUBLE GRAVE ACCENT
"<U0475><U030F>" <SAAF>;<BASE>;<MIN>;"<U0475><U030F>" % CYRILLIC SMALL LETTER IZHITSA with COMBINING DOUBLE
GRAVE ACCENT
<U0476> <SAAF>;<BASE>;<CAP>;<U0476> % CYRILLIC CAPITAL LETTER IZHITSA WITH DOUBLE GRAVE ACCENT
"<U0474><U030F>" <SAAF>;<BASE>;<CAP>;"<U0474><U030F>" % CYRILLIC CAPITAL LETTER IZHITSA with COMBINING DOUBLE
GRAVE ACCENT

end-reorder

ISO/IEC 14651:1999(E) ISO/IEC

 32

C -- Preparation (informative)

C.1 General considerations

Preparation is necessary only for modification and/or duplication of original strings to render them
context-independent prior to the comparison phase. Examples are:

- duplication of a string such as "41" for as it is spelled out in different languages (Irish
Gaelic, German, English, and French):

daichead a haon

einundvierzig

forty-one

quarante-et-un

- removal or rotation of characters that are a nuisance for special requirements of
ordering; for example, removing articles in sorting book names as in

 Tale of two cities, A

- transformation of abbreviated data into a fuller form; for example, transformation of
"McArthur" to give "MacArthur"

- transformation of numbers so that the result will be ordered in numerical order, as
opposed to positional order (see below). Numeric ordering is particularly delicate and
requires special consideration in many cases.

C.2 Handling of numeral substrings in collation
A numeral is a string representing a number. The examples here deal with numerals which

represent values in R, the real numbers, or subsets of R, as these have a predetermined order.
Only decimal numerals are dealt with in the examples given here.

The presentation below will first give positional system decimal numerals for natural numbers
using the digits 0-9. It will progress to numerals for whole numbers, numerals with a fraction part,
a fraction part and an exponent. There is also a brief discussion on numerals with digits from
other scripts, scripts which sometimes uses another syntax with digits for numerals (such as Hàn
numerals), and Roman numerals. There are circumstances where digits do not represent
numeral values, such as in part numbers. These cases are not discussed below. Caution:
preparatory steps have undesirable consequences in some cases such as the ordering of
telephone numbers in telephone books, and should be avoided in those cases.

C.2.1 Handling of ‘ordinary’ numerals for natural numbers

The Common Template Table has no means of sorting strings with numbers in such a way
that the resulting order reflects the number values represented by the numerals. For example,
given the following randomly-arranged strings:

 Release 1
 Release 20

ISO/IEC ISO/IEC 14651:1999(E)

 33

 Release 12
 Release 2
 Release 9

the method described in the this International Standard yields the following list of “sorted”
strings:

 Release 1
 Release 12
 Release 2
 Release 20
 Release 9

(It is sufficient simply to look positionally at just the first digit in each numeral to see why this
ordering results.) A more acceptable ordering is:

 Release 1
 Release 2
 Release 9
 Release 12
 Release 20

The Common Template Table defined in this International Standard cannot be tailored to give
this result. However, preparation can be done prior to the basic collation step to achieve the
desired results when numeric value order is desired. The prepared strings are normally not
presented to the user; only the original strings are. The prepared strings are normally only used
for the collation key construction. A simple, but not very general, way of preparing numerals for
natural ordering is to pad them with zeroes to a given number of digits. If one pads the numerals
in our original example strings up to three digits, the following will result:

 Release 001
 Release 020
 Release 012
 Release 002
 Release 009

Using the Common Template Table defined in this International Standard one then obtains
the strings in a better order (here showing the strings as they are after preparation, which are
normally not shown in the result):

 Release 001
 Release 002
 Release 009
 Release 012
 Release 020

However, there are two problems with this approach:

1. One must determine beforehand a (usually small) number of digits to pad up to. If the
number of digits to pad up to is too large, the strings after preparation can become rather
long, especially if there are several numerals in each string. If the number of digits to pad
up to is too small, however, the risk is greater that there are actually occurring numerals
with more digits than one has padded up to, which results in partially getting back to the
original situation, where the numerals’ values are not taken entirely into account.

2. Determinacy is lost, if some of the original numerals were already partially zero-padded.
For example, if the original strings were:

ISO/IEC 14651:1999(E) ISO/IEC

 34

 Release 01
 Release 1

the strings after preparation are identical, and the end result (as the user would normally
see it) could be either

 Release 01
 Release 1

or

 Release 1
 Release 01

and the relative order may come out differently for different occurrences of numerals, or
different runs of the collation process applying the same rules. Indeterminacy in collation
is not desirable.

There are many ways to deal with these problems. The following is one such way.

To each maximal digit subsequence prepend a fixed-number-of-digits numeral which
represents the original number of digits in the numeral. For most cases a two-digit count would
suffice (allowing up to 99 digits in the original integer numerals). For example, given the original
strings:

 Release 1
 Release 01
 Release 20
 Release 12
 Release 2
 Release 09
 Release 9

One obtains after this preparation the following strings:

 Release 011
 Release 0201
 Release 0220
 Release 0212
 Release 012
 Release 0209
 Release 019

Which would be collated by the basic mechanism of this International Standard to:

 Release 011
 Release 012
 Release 019
 Release 0201
 Release 0209
 Release 0212
 Release 0220

As normally presented to the user:

ISO/IEC ISO/IEC 14651:1999(E)

 35

 Release 1
 Release 2
 Release 9
 Release 01
 Release 09
 Release 12
 Release 20

This particular method puts numerals with a like original number of digits close to each other,
even if the actual value represented is smaller due to the original zero-padding. If the
represented values should be kept close together, one should instead duplicate the numeral: first
a count of digits for the leading-zero-stripped numeral, the leading-zero-stripped numeral itself,
followed by the original numeral. The duplication is needed to get determinacy relative to the
original strings. For example, using the same original strings as above:

 Release 011 1
 Release 011 01
 Release 0220 20
 Release 0212 12
 Release 012 2
 Release 019 09
 Release 019 9

Which would be collated by the basic mechanism of this standard to:

 Release 011 01
 Release 011 1
 Release 012 2
 Release 019 09
 Release 019 9
 Release 0212 12
 Release 0220 20

As normally presented to the user:

 Release 01
 Release 1
 Release 2
 Release 09
 Release 9
 Release 12
 Release 20

The originally zero-padded numerals consistently come before the numeral without (or with
less) original zero-padding. The preparation processing could move the original numerals (in
order of occurrence) to the very end of each string, if one wants to give the original zero-padding
lesser significance than the text following the numerals.

The presence of several natural numerals in each string causes no additional problem.

Taking care of the natural number numerals is in most cases sufficient, and it is
recommended that it be included as part of the usual preparation of strings to be collated.
However such preparation is not required by this International Standard.

ISO/IEC 14651:1999(E) ISO/IEC

 36

C.2.2 Handling of positional numerals in other scripts

ISO/IEC 10646 encodes decimal digits for a number of scripts. In most cases these are used
in a positional system, just like 0-9 usually are. However, one should not regard a sequence of
numerals mixed from different scripts as a single numeral; rather, one should consider each
maximal substring of digits of the same script to be a numeral.

C.2.3 Handling of other non-pure positional system numerals or non-positional
system numerals (e.g. Roman numerals)

Chinese and some other languages can use decimal digits (in the Hàn script, for instance)
interspersed with ideographs for “one thousand”, “ten”, etc. If such numerals are to be collated
according to the value they represent, one can proceed as above, adding a step just after the
initial duplication: convert the copy to the corresponding positional system numeral in the syntax
used here for whole numerals.

Roman numerals, if handled, can be handled in a similar fashion to that described above.
Duplicate, and replace the first copy with the same natural number expressed in the decimal
positional system. E.g. “Louis V”, where the V is determined to be a Roman numeral, can be
modified to “Louis 5 V”.

Caveat: In this case human interactive intervention or an expert system may be required, as
in the following example involving the French language: CHAPITRE DIX might mean CHAPTER
10 or CHAPTER 509 ("dix" is the French word for 10, it is also the Roman numeral for 509).

C.2.4 Handling of numerals for whole numbers

If negative whole numbers are also to be sorted according to their value, there are a number
of issues to be considered. Most frequently, negative whole values are given numerals that begin
with a negation sign. The negation sign may be HYPHEN-MINUS U+002D (caveat: this
character may represent a true hyphen, rather than a negation), or MINUS SIGN U+2212. But
there are other conventions also, like using a SOLIDUS U+002F or a PERCENT SIGN U+0025
to indicate negativeness; or the negation indicator can come after the digits rather than before; or
negativeness can be indicated by putting the digits between parenthesis, and/or putting the digits
in a contrasting color (often red). In the examples here, only the case that negativeness is
indicated by an immediately prepended MINUS SIGN is dealt with. Positiveness is indicated by
either the absence of a MINUS SIGN, or the presence of a PLUS SIGN U+002B.

 Temperature: –9 °C
 Temperature: 0 °C
 Temperature: –14 °C
 Temperature: 05 °C
 Temperature: +5 °C
 Temperature: –0 °C
 Temperature: –09 °C
 Temperature: 105 °C
 Temperature: +05 °C
 Temperature: 5 °C

One preparation to get an acceptable and determinate order for numerals (in this syntax) for
whole numbers is as follows (actual implementations should do something equivalent, but more
efficient):

3. Duplicate the numerals in the string (including sign indications), putting the ‘original’ ones
(not to be touched by the following steps) in order of original occurrence at the end or the
string, leaving the copies at the original positions. This step ensures determinacy.

ISO/IEC ISO/IEC 14651:1999(E)

 37

4. Ensure that all of the copies have an explicit initial sign indicator.

5. Remove leading zeroes in the copies of the numerals (systematically either leaving one
zero digit for zero or representing 0 by the empty string of digits); alternatively, let all
numeral copies have exactly one leading zero.

6. Between the sign indicator and the digits in the copies of the numerals, insert a (two-digit)
count of how many digits there were (after removing the leading zeroes).

7. Do 9’s complement on each digit in each copy of a negated numeral. 9’s complement of
a digit that individually represents the value x, is 9–x. That is, 9’s complement of 0 is 9, of
9 is 0, of 5 is 4, etc.

8. Done with this (part of the) preparation.

For the basic collation step, use a tailoring of the template given in this standard, namely, a
tailoring where the PLUS SIGN and the MINUS SIGN are significant at the same level as the
digits, and where the MINUS SIGN has less weight than the PLUS SIGN. (In the example below,
it is assumed that the weight of PLUS SIGN is less than the weight of 0, but this is not a
prerequisite for getting an acceptable ordering.)

Our example strings after this prehanding:

 Temperature: –980 °C –9
 Temperature: +00 °C 0
 Temperature: –9785 °C –14
 Temperature: +015 °C 05
 Temperature: +015 °C +5
 Temperature: –99 °C –0
 Temperature: –980 °C –09
 Temperature: +03105 °C 105
 Temperature: +015 °C +05
 Temperature: +015 °C 5

Sort these, using the basic mechanism of this standard:

 Temperature: –9785 °C –14
 Temperature: –980 °C –09
 Temperature: –980 °C –9
 Temperature: –99 °C –0
 Temperature: +00 °C 0
 Temperature: +015 °C +05
 Temperature: +015 °C +5
 Temperature: +015 °C 05
 Temperature: +015 °C 5
 Temperature: +03105 °C 105

As presented to the user:

 Temperature: –14 °C
 Temperature: –09 °C
 Temperature: –9 °C
 Temperature: –0 °C
 Temperature: 0 °C
 Temperature: +05 °C
 Temperature: +5 °C
 Temperature: 05 °C

ISO/IEC 14651:1999(E) ISO/IEC

 38

 Temperature: 5 °C
 Temperature: 105 °C

This preparation results in a determinate ordering of strings which may have numerals for
whole numbers in them (also if there are several such numerals in some of the strings), such that
the numerals are ordered according to the integer value they represent.

The process for other syntaxes for whole numbers can be similar. Just add a step to convert
the copies to the syntax used here for whole numbers.

This technique for handling negative numerals can be used also for numerals with a fractional
part, and so on (see below).

C.2.5 Handling of positive positional numerals with fractional parts

The method presented above can easily be adapted to the case where fraction parts may
occur and are to be taken into account. A problem is, however, that the characters often used to
delimit the integer part from the fraction part are also used for other purposes. The separator
character is generally either FULL STOP U+002E, or COMMA U+002C. These characters also
have other uses, also in conjunction with digits.

For the example, assume that FULL STOP is used (only) as a fraction part delimiter.

Do as above, but count only the digits in the integer part of the numeral for the count of digits
to be prepended. The fraction part delimiter character can be removed.

For example:

 –12.34

 12.34

 3.1415

 3.14

After preparation:

 –978765 –12.34

 +021234 12.34

 +013.1415 3.1415

 +01314 3.14

After sorting:

 –978765 –12.34

 +01314 3.14

 +0131415 3.1415

 +021234 12.34

As presented to the user:

 –12.34

 3.14

 3.1415

 12.34

ISO/IEC ISO/IEC 14651:1999(E)

 39

C.2.6 Handling of positive positional numerals with fraction parts and
exponent parts

For very large, or very small, values, one often uses formats like 2.5*107 (to illustrate just one
possible way of writing these for the purposes of the examples here). Here there is already an
exponent, which must be combined with the “number of integer part digits” (here: digits before
the decimal point), by adding those two numbers to get a resulting fixed-number-of-digits
exponent to prepend just before the first digit. For this example, with a three-digit exponent: we
get +00825. One problem here is that the resulting exponent may be negative. To handle this,
use an exponent bias. For a three-digit exponent a bias of 500 may be suitable, which gives us
for this example numeral: +50825, and for the numeral 2.5*10–7 we get +49425. Negative values
are handled as before, with 9’s complement. –2.5*107 gives –49174, and –2.5*10–7 gives –
50574.

This method should be familiar to anyone with knowledge about (radix 10) floating point
arithmetic.

Thus:

 2.5*10–7
 –2.5*107
 2.5*107
 –2.5*10–7

After preparation (including a duplicate of the original, for determinacy):

 +49425 2.5*10–7
 –49174 –2.5*107
 +50825 2.5*107
 –50574 –2.5*10–7

After sorting:

 –49174 –2.5*107
 –50574 –2.5*10–7
 +49425 2.5*10–7
 +50825 2.5*107

As presented to the user:
 –2.5*107

 –2.5*10–7
 2.5*10–7
 2.5*107

C.2.8 Handling of date and time of day indications

Going a bit beyond plain numerals, date and time-of-day indications often employ numerals
(as well as names for months, weekdays, etc.) for the parts of the date and time-of-day
indication. It is not uncommon to want to sort this kind of information also when it occurs within
strings.

The preparation needed to obtain date and time-of-day indications, of some predetermined
syntaxes, sorted according to point in time is similar to what has been described above.

1. Duplicate all date and time-of-day indications to maintain determinacy of collation when the
original strings differ, but point in time identical. Leave the originals at the end of the strings,
untouched by the following steps.

2. Convert the copies of the date and time indications to the same calendar system, if there are several
calendar (sub)systems used and handled. The calendar (sub)system converted to, must be suitable

ISO/IEC 14651:1999(E) ISO/IEC

 40

for being able to get proper time order. We will here use the Gregorian calendar system and the
subsystem of year, month, day-of-month.

3. Put the date and time-of-day elements in order of decreasing significance (to the resolution taken
into account). Full year, month, day-of-month, hour, minute, second, fraction of second.

4. Use a 24-hour/day clock for the time-of-day indications. Remove A.M. or P.M. indications, if
present and handled, in the date-time indication copies.

5. Use the UTC time zone for the date and time-of-day indications. Remove time zone indications, if
present, in the date-time indication copies.

6. Use month numbers, rather than month names. Use two digits each for month, day-of-month, hour,
minute, second.

7. Use full year number representation, as many digits as needed. Take abbreviations into account so
that the full year number is used. E.g. ‘98’ might denote year 98 or year 1998, or 1898, etc. No
indeterminacy regarding year due to abbreviations like these may be present after the preparation
step.

8. For years AD, use an initial PLUS SIGN. For years BC, use an initial MINUS SIGN. Remove the
original AD or BC indication from the copies. (To nitpick, year n BC should be represented by
year (1–n), which is less or equal to zero if n is positive.)

9. For the year indications, insert between the sign indication and the first digit for the year indication
a digit telling how many digits there are in the full year indication. One digit for this should suffice.

10. For negative years, replace the each digit in the year indication (including the digit telling the
number of digits in the original full year indication) with its 9’s complement digit.

11. Make sure the textual format for all of the date indication copies is the same (paying attention to
hyphens, spaces, etc.). (This is most easily accomplished by printing them in the same format from
an internal, non-string, representation.)

12. Alternatively, use a number indicating the point of time on a linear time scale (for example, hours,
milliseconds, or days from a predetermined point in time), to the resolution desired, and handle this
as an ordinary numeral (see above).

13. Done with this (part of the) preparation.
14. For the basic collation step, use a tailoring of the template given in this standard. Use a tailoring

where the PLUS SIGN and the MINUS SIGN are significant at the same level as the digits, and
where the MINUS SIGN has less weight than the PLUS SIGN.

For example:

 Dated: July 19, 1955, at 1 p.m. GMT
 Dated: January, 20 BC
 Dated: Sept. 20, 1995, at 1 p.m. PST
 Dated: 11-june/345 AD

After preparation:

 Dated: +41955-07-19T13:00Z July 19, 1955, at 1 p.m. GMT
 Dated: –780-01 January, 20 BC
 Dated: +1995-09-20T10:00Z Sept. 20, 1995, at 1 p.m. PST
 Dated: +3345-06-11 11-june/345 AD

After sorting:

 Dated: –780-01 January, 20 BC
 Dated: +3345-06-11 11-june/345 AD
 Dated: +41955-07-19T13:00Z July 19, 1955, at 1 p.m. GMT
 Dated: +41995-09-20T10:00Z Sept. 20, 1995, at 1 p.m. PST

As presented to the user:

 Dated: January, 20 BC
 Dated: 11-june/345 AD
 Dated: July 19, 1955, at 1 p.m. GMT
 Dated: Sept. 20, 1995, at 1 p.m. PST

ISO/IEC ISO/IEC 14651:1999(E)

 41

C.2.9 Making numbers less significant than letters

In many cases numerals preceding letters should be considered as less significant than the
following alphabetic part. But the Common Template Table specifies digits to be level 1
significant. To make numerals less significant than letters, either tailor the weight table so that
numerals are ignored at level 1 (but significant at level 2 or 3), or alternatively leave them
significant at level 1, but prepare the strings so that numerals are moved to the end of the string
or moved to a less significant field. When doing such a move, one must pay attention not to map
different strings to identical strings (or identical string fields), so that determinacy is maintained
(see C.2.10).

Some examples where it is appropriate to consider numerals as less significant than letters:
Street or block names with one or more numbers to indicate where in the street/block, if
that/those number(s) precede the street or block name (common for example in the US and in
Japan); chemical compound names which have prepended numerals, e.g., 1,2-diclorobenzol.

C.2.10 Maintaining determinacy

As noted above in several cases, part of the string has been duplicated to maintain
determinacy in collation, when the original strings are different, but when preparation may
otherwise turn different strings into identical strings.

This method of duplication for determinacy can be used more generally, so if there are
several preparations affecting different parts of the strings, one may simply duplicate the original
strings to begin with, and only perform the preparation (without additional duplication) on the first
half of the “doubled” string.

One disadvantage with just concatenating the two copies is that the base letters of the second
half of the “doubled” string count as more significant than the accents and case of the resulting
first half of the “doubled” string. This International Standard has no mechanism for handling this
in a better way, where the “original” (the second half of the “doubled” string) would count as less
significant than the entire first half of the “doubled” string. This may be handled better by having
the original and copy in different ‘fields’, and construct the collation key by combining the full keys
for each ‘field’. Such processing is beyond the scope of this International Standard, however.

Note that the string after preparation is used only for the collation key construction. The
original string is not intended to be retrievable from the modified string, though this is possible
with this way of attaining determinacy. The strings to be presented to the user are the original, by
preparation untouched, strings.

Maintenance of determinacy when some of the original strings to be collated are identical, is
out of the scope of this International Standard. A collation processor should, however, document
if it is ‘stable’ (maintaining initial relative order of identical strings) or not. This is useful to know
when collating on one field of multi-field data.

ISO/IEC 14651:1999(E) ISO/IEC

 42

C.3 Thai string ordering – a case involving special preparation

Thai Ordering Principle

The widely accepted standard for Thai lexicographical ordering is defined in the Royal Institute
Dictionary 2525 B.E. Edition (1982 A.D.), the official standard Thai dictionary. The ordering
principles are:

Words are ordered alphabetically, not phonetically. Consonants order is:

�

� �� �� �� �� �� �� �	 �
 �� �� �
 �� �� �� �� �� �� ���� �

� �� �� �� ��

� �� �� �� �� � �! �" �# �$ �% �% & �' �(�(& �) �* �+ �, �

- �. �/ �0

(% �% & �(�(& are vowels and ligatures, but put in the order according to the
sounds they represent.)

Vowels are also ordered by written forms, not by sounds. Vowels order is:

1 ���2 ��3 ���4 ���5 ���6 ���7 ���8 ���9 ���: �; �< �= �> �?

(/ �) �# are always ordered as consonants, although they sometimes act as vowels.)
Consonants always precede vowels. String comparison is performed from left to right,
considering initial consonants before vowels in the same syllable.
Tones and diacritics are normally ignored, unless all other parts are equal, in which case the
order is:

�

@A ��@B ��@C ��@D ��@E

Here is an ordering example:

� �

� $ $ "

� $ $ " F

-

� $ 1 < # B �

� $ 3 �

� 1 ; � �� F

� 2 �

� C 3)

� 4

� 5 �

� 6 B

� 7 E �

� 9 �

� : �

; � C �

ISO/IEC ISO/IEC 14651:1999(E)

 43

; � ' C 3

; � ' 6 #)

; � C 3

; � 3 1

; � 6 B #)

; � 6 D # 1

; � 8 / �

< � �

< � 1

= � �

= � $ E �

> � ' C

? � B

? � '

� C �

� � 3 �

� C 3 �

� C 3 � G

� C 3 � � $ 1

� 3 �

� C 3 � � 7 C

�

� C 3 � �) 3

� C 3 � G �

� : G

� C 3 � ; � 5

�

� C 3 � / / �

; � �

; � A �

; � B �

; � A �

< � A �

< � B �

< � C �

< � C � �) 3

< � A � � 2 �

< � B � � 2 �

< � �

� $ $! @

� $ $! F

	 9 " � '

	 9 H � '

� 3 #

; � B 3

; �$

� ' 3 �

� : ' ; � ' C

3

� : ' ; � ' C

3 I

� : ' ; � ' C

3 � : ' � $ 1

- " B / "

� C 3

� C 4

� 6 C

� 9 �- ' �

� 9 � @- ' �

� 3

� B 3

� C 3

� D 3

� E 3

� 3 �

� 2 �

I � �I

� �5 � # F

B / �

$ / �

% � � 5 F

% + 6

ISO/IEC 14651:1999(E) ISO/IEC

 44

% & + 6

' ' 5 � 3

(& � 3

) �

* 3 '

- $ 5 ! 9 ��

2 #

- % � 2 #

- ' �

< - � B

< - B �

< - � "

< - � -) �

< - �

< - "

/ 3 �

0 3

ISO/IEC ISO/IEC 14651:1999(E)

 45

Algorithmic Aspect

The above principle, with appropriate character code assignment such as TIS-620 and ISO/IEC 10646,
almost allows C standard library function strcmp() to collate Thai strings without much more complication,
except:

Leading vowels (� ���� ���� ���� ���� ���	
���
�
�������
�	����	���
�

�����������), which are written before consonants, must be considered after the initial
consonant. Therefore, the rearrangement is needed before comparison.

Diacritics and tone marks (��� ���� ���� ���� ���� ���� ��� ���!) must be ignored in the
first pass, and be considered at later pass if the first pass yields equality.

And these are the only two mandatory requirements for Thai string collation algorithms. No syllable
structure nor word boundary analysis is required, as Thai lexicons are ordered alphabetically, not
phonetically.

Leading Vowel Rearrangement

To fullfill this requirement, either a preprocessing or collating-element grouping is required. The
preprocessor scans the string once and swaps every leading vowel with its succeeding letter. The
preprocessed string is then passed to the normal weight calculation process. Another way to manage this
is by means of collating-element formation. Every possible pair of leading vowel and consonant is defined
as a collating-element, whose weight equals to that of the rearranged substring.
Note that the rearrangement of a leading vowel is simply performed with its immediate succeeding
consonant. No consonant cluster analysis is needed. Indeed, doing so would result in ambiguities or yield
a different order than that specified in the Royal Institute Dictionary. For example:

1. Ambiguities. The problem with ambiguity is illustrated by the word “� " # $ ”. It has two potential
pronunciations: either as a two-syllable word, “phe-la” (meaning “time”), or as a one-syllable word, “phlao”
(meaning “axle” or “abate”). A rearrangement algorithm which follows the distinct pronunciation of the

potential cluster ‘" # ’ in this string would result in distinct keys, “" � # $ ” and “" # � $ ”,
and therefore different weights, which are equally legal. Both words need to have the same weight to be
sortable, however.

2. Non-conforming Ordering. To illustrate the difference in ordering caused by the treatment of consonant

clusters, consider these words, shown in conforming order: “� " # , � " # % , � " & ”. The

correct rearrangement ignores any clusters and results in the following: “" � # ��" � # % ��

" � & ”, which sorts in the order shown.

ISO/IEC 14651:1999(E) ISO/IEC

 46

If, however, pairs of consonants that form legal clusters were grouped as single collation elements
(regardless of actual pronunciation where the potential pronunciation is ambiguous), then the results of

rearrangement would be “<" # >� ��<" # >� % ��" � & ”, which would yield the (non-

conforming) ordering “� " & ��� " # ��� " # % ”.
Again, if actual clusters were grouped as single collation elements (with some disambiguation effort), then
the results of rearrangement would be

“" � # ��<" # >� % ��" � & ”, which would yield the (non-conforming) ordering

“� " # ��� " & ��� " # % ”.

The Multiple Levels of Character Weights

The second requirement of the algorithm, relating to the treatment of diacritics and tone marks, implies
multiple levels of weights. Tone marks and diacritics must be ignored in the first level, and weigh more
than consonants and vowels in the second level.

There are ten Thai decimal digits (' �(�) �* �+ �, �- �. �/ �0), each semantically
equivalent to Arabic digit 0-9, respectively. Their weights are then equal to their corresponding Arabic
digits in the first level, and are different in the second level, to distinguish languages.

When punctuation marks (1 �2 �3 �4 �5 �6) are concerned, another level of weights is required
for them. This corresponds to the fourth level in the Common Template Table. In string ordering,
punctuation marks are less significant than any tone marks and diacritics, and must be ignored in all the
first three levels.

For example, “7 � $ % 2 , 7 � $ % 8 9 , 7 � $ % 2 �: ; 2 ,

7 � $ % < = > ” is a valid order in the Royal Institute Dictionary. In the first level, the

considered weights are 7 $ % , 7 $ % 8 9 , 7 $ % : ; , 7 $ % < = > �
respectively.

The third level is not defined for Thai string ordering, but is reserved for tailoring.

ISO/IEC ISO/IEC 14651:1999(E)

 47

Annex D -- Tutorial on solutions brought by this standard to problems
of lexical ordering (informative)

Why aren't existing standard codes, character by character comparisons, and commercial sort programs
appropriate for sorting, and what must be done to solve the problem? For clarity, this discussion will start with
the Latin script.

i. Sorting, in any language using the Latin script, including English, using standard ISO/IEC 646
coding, does not follow traditional dictionary sequence, which is the minimum the average user
needs.

 Example: Sorting the list "august", "August", "container", "coop","co-op", "Vice-president", "Vice
versa" gives the following order, if ISO/IEC 646 coding is used and a simple sort following binary
order is performed:

 August
 Vice versa
 Vice-president
 august
 co-op
 container
 coop

 This ordering is obviously incorrect.

ii. Transforming lower case to upper case and removing special characters yields a sorted list
acceptable to users, but also yields unpredictable results.

 Example: Sorting the list "August", "august", "coop", "co-op" gives the following order:

 August
 august
 coop
 co-op

 Sorting the same list with a different initial order, say, "august", "co-op", "August", "coop" may give a
different order with this method:

 august
 August
 co-op
 coop

iii. If accented characters are introduced using for example any ISO/IEC 8-bit character set, the same
problems encountered in examples i and ii above are amplified but they share the same causes.

iv. If tables are reorganized to make all related characters contiguous, one might think that a simplified
single-character sort would result, but this does not work either. Take upper and lower case
unaccented letters as an example. If code position 01 is assigned to "a", code position 02 assigned

ISO/IEC 14651:1999(E) ISO/IEC

 48

to "A", code position 03 to "b", code position 04 to "B" and so on, a list sorted directly according to
these rearranged values will yield the following:

 Sorted Internal
 List Values

 aaaa 01010101
 abbb 01030303
 Aaaa 02010101
 Abbb 02030303

 This is also predictable, but remains obviously incorrect for any country with regard to cultural

expectations.

v. The only solution is to decompose the initial data in a way which will respect traditional lexical order,

and at the same time ensure absolute predictability. For the Latin script, this necessitates at least
four levels:

 1. The first decomposition renders information to be sorted case-insensitive and insensitive to

diacritical marks, removing all special characters (which have no pre-established traditional order.

 An example using English:

 "résumé" (’curriculum vitae’) becomes "resume" (‘begin again’), without any accent.

 An example using French:

 "Vice-légation" becomes "vicelegation", with no accent, no upper case and no hyphen.

 An example using German:

 "groß" becomes "gross", with the sharp-s being converted to double-s to render it case

insensitive.

 In some languages including Spanish or Nordic languages, some extra letters are added to the 26

fixed letters of the English, French and German alphabets, which are not ordered according to the
expectations of those languages. This demonstrates the need for adaptability.

 2. The second decomposition breaks ties on quasi-homographs, that is, strings that differ only

because they have different diacritical marks. In English, "resumé" and "résumé" are quasi-
homographs. Traditional English lexical order requires that "resume" always comes before "résumé"
(which sorting using only the first level would not guarantee). In this case, the tradition does not
explicitly specify whether "resumé" should come before "résumé", though this would seem logical:
most English and German dictionaries only state that unaccented words precede the accented words
- However German dictionary generally employ the German standard DIN 5007, which states more
precise rules.

 Here another characteristic is introduced. In French, because of the large number of multiple

quasi-homograph groups formed of more than 2 instances, the most important dictionaries follow the
following rule: accents are generally not taken into account for sorting, but in case of homographic
ties, the last difference in the word determines the correct order between two given words, a priority
order being then assigned to each type of accent. According to this, "coté" should be sorted after

ISO/IEC ISO/IEC 14651:1999(E)

 49

"côte" but before "côté". This is easy to implement with “backwards” tailoring: a number is assigned
to each character of the data to be sorted, representing either a letter with an accent or a letter with
no accent at all, but these numbers are stacked instead of being added to a linear list: in other
words, the resulting string is made starting from the last character of the original data and processing
in a backwards direction.

 Example: to obtain an order respecting this rule: "cote, "côte", "coté", "côté", numbers could be

assigned indicating respectively "****", "**c*", "a***", "a*c*", where "*" means no accent, "a" means
acute accent, "c" circumflex accent. Here this scheme is sufficient to break the tie correctly at this
second level.

 3. The third decomposition breaks ties for quasi-homographs which differ only because upper-case

and lower-case characters are used. This time, the tradition is well established in German
dictionaries, where lower case always precedes upper case in homographs, while the tradition is not
well established in French dictionaries, which generally use only accented capital letters for common
word entries. In known French dictionaries where upper and lower case letters are mixed, the
capitals generally come first, though this is not an established and stated rule, because there are
numerous exceptions. English has no monolithic practice for this, a bit like French. So for a Common
Template it is advisable to use the well-established German tradition, if one wants to group the
largest possible number of languages together without affecting others. Note that in Denmark, upper
case is specified to precede lower case, a different but well-established rule. This is a second fact
which demonstrates the need for adaptability in the model used in this International Standard.

 Example: to have the following order: "august", "August", numbers could be assigned indicating

respectively "llllll", "ulllll", where "l" means lower case and "u" upper case.

 4. The fourth decomposition breaks the final tie which, in general, does not correspond to any strong

tradition, namely, the tie between quasi-homographs differing only because they contain special
characters. Breaking this tie is essential to ensure the absolute predictability of ordering as well as
enabling the ordering of strings composed only of special characters. Since the traces of special
characters were removed from the original data to form the three first orders of decomposition,
simply putting them sequentially in the fourth order of decomposition would mean that their position
would be lost. These positions are quite important to solve remaining ties and in consequence the
original positions of these special characters must be retained: two quasi-homographs could each
contain a common special character in different positions and thus be strictly different (example:
"ab*cd" is different from "a*bcd" despite they share one and only one common special character).

 Example: to obtain the following order: "coop", "co-op", "coop-", numbers could be assigned

respectively according to the following pattern: "d", "d3-" and "d5-", where "d" is an ever-present
delimiter separating this decomposition from the first three in case all four decompositions are to be
concatenated to form a single sorting key based on numeric values (see discussion in the next
paragraph). "3-" means a hyphen in position 3 of the original string. "5-" means a hyphen in position
5, and so on.

 These four decompositions can be structured using a four-level key, concatenating the subkeys from

the highest significance to the lowest. If the coded assignment of numbers is done properly, instead
of necessitating a cumbersome exception process for dealing with homographs, all decompositions
may be made at once and resulting strings concatenated and passed through a standard ordering
program sorting in numeric order. To attain this result, it is sufficient that the numbers chosen for the
first decomposition code set be greater than numbers chosen for the second one, the second one's
greater than the third one's, and that the delimiter chosen for the fourth decomposition be less than
the lowest possible number coded elsewhere for the sort (a delimiter called logical zero), in which
case no restriction applies to the content of the fourth decomposition. An easier implementation

ISO/IEC 14651:1999(E) ISO/IEC

 50

might just choose to put the lowest value possible as a delimiter between each subkey, in which
case no restriction ever applies.

 This method was fully described with tables in Règles du classement alphabétique en langue

française et procédure informatisée pour le tri, Alain LaBonté, Ministère des Communications du
Québec, 1988-08-19, ISBN 2-550-19046-7.

 Reduction techniques have been designed to considerably shorten space requirements. As no

implementation is required to use specific numbers for weights and neither reduction nor
compression is required, this issue is outside the scope of this International Standard. Nevertheless,
it is interesting to note that implementation can be optimized. This has been improved over time and
is easy to accomplish, some methods being more efficient than others.

 A public-domain reduction technique is described in details (with numerous examples) in Technique

de réduction - Tris informatiques à quatre clés, Alain LaBonté, Ministère des Communications du
Québec, 1989-06 (ISBN 2-550-19965-0).

vi. For a number of languages, the Common Template presented in this standard will need to be

adapted, both in the table values for the four orders of keys (which can require redefining characters
or introducing multicharacter collating elements into the table) and in the potential context analysis
processing necessary to achieve culturally correct results for users of these languages. To illustrate
this (without discussing context analysis which is not necessary in what follows), examples of
dictionary sequences are given here for two languages which native order is not in the Common
Template table:

 Traditional Spanish (where "ch" is greater than "cu" and "ña" is greater than "no"):
 cuneo<cúneo<chapeo<nodo<ñaco

 (Comparative French/English/German sort:
 chapeo<cuneo<cúneo<ñaco<nodo)

 Danish (where "a" is less than "c", "cz" is less than "cæ" and "cø", and "aa" is equivalent to "å", which

is greater than "z", even in cases where it is pronounced differently):
 Alzheimer<czar<cæsium<cølibat< Aachen<Aalborg<Århus

 (Comparative French/English/German sort:
 Aachen<Aalborg< Alzheimer<Århus<cæsium<cølibat<czar)

ISO/IEC ISO/IEC 14651:1999(E)

 51

Annex E – BIBLIOGRAPHY (informative)

The following standards and documents are considered relevant to this standard, in addition to the normative
references.

CAN/CSA Z243.4.1-1998 – Canadian Alphanumeric Ordering Standard – A National Standard of Canada,
Canadian Standards Association

CAN/CSA Z243.230-1998 – Minimum Canadian Software Localisation Conventions – A National Standard of
Canada

DS 377 (1980) – DS 377:1980 Alfabetiseringsregler – Dansk Standard

ISO/IEC 646, Information technology – ISO 7-bit coded character set for information interchange

ISO/IEC 2022, Information technology – Code extension techniques

ISO/IEC 6937, Information technology – Coded character sets for text communication

ISO/IEC 8859-1, Information technolog – 8-bit single-byte coded graphic character sets --
Part 1: Latin alphabet No. 1

ISO/IEC 8859-1, Information technology – 8-bit single-byte coded graphic character sets --
Part 15: Latin alphabet No. 9

ISO/IEC 9945-2, Information Technology – Portable Operating System Interface (POSIX) -
 Part 2: Shell and Utilities
ISO/IEC DTR 14652, Information Technology -- Specification Method for Cultural Conventions

Règles du classement alphabétique en langue française et procédure informatisée pour le tri, Conseil du
trésor du Québec – URL: http://www.tresor.gouv.qc.ca/doc/classm.htm

Retskrivningsordbogen – 2nd edition 1996, Dansk Sprognævn & Aschehoug Dansk Forlag A/S

Technique de réduction - Tris informatiques à quatre clés, Conseil du trésor du Québec –
URL: http://www.tresor.gouv.qc.ca/doc/techtri.htm

The Unicode Standard, Version 2.0, The Unicode Consortium, Addison Wesley Developers Press, ISBN 0-
201-48345-9

Unicode Technical Report no. 8, The Unicode Standard, Version 2.1, The Unicode Consortium –
URL: http://www.unicode.org/unicode/reports/tr8/

Unicode Technical Report no. 10, Unicode Collation Algorithm, The Unicode Consortium –
URL: http://www.unicode.org/unicode/reports/tr10/

Unicode Technical Report no. 15, Unicode Normalization Forms, The Unicode Consortium –
URL: http://www.unicode.org/unicode/reports/tr15/

ISO/IEC 14651:1999(E) ISO/IEC

 52

END OF THIS INTERNATIONAL STANDARD

	FOREWORD
	INTRODUCTION
	1
	1 Scope
	2 Conformance
	3 Normative References
	4 Definitions
	5 Symbols and abbreviations
	6 Requirements6 String comparison
	6.1 Preparation of character strings prior to comparison
	6.2 Key building and comparison
	6.2.1 Preliminary considerations
	6.2.1.1 Assumptions
	6.2.1.2 Processing properties

	6.2.2 Ordering Key key formation
	6.2.2.1 Formation of a subkey with the forward parameter
	6.2.2.2 Formation of a subkey with the backward parameter
	6.2.2.3 Formation of a subkey which uses the forward position parameter

	6.2.3 Reference comparison method resulting infor ordering two character strings

	6.3 Common Template Table: formation and interpretation
	6.3.1 BNF syntax rules
	6.3.1.1 Keyword usage

	6.3.2 Well-formedness conditions
	6.3.3 Interpretation of tailored tables
	6.3.4 Evaluation of weight tables
	6.3.4 5 Conditions for considering specific table equivalences
	6.3.56 Conditions for results to be considered equivalent

	6.4 Declaration of a delta
	6.5 Name of the Common Template Table and name declaration

	Annex A -- Common Template Table (normative)
	Annex B – Tailoring deltas (informative)
	B.1 Example 1 – Canadian delta and benchmark
	B.2 Example 2 – Danish delta and benchmark
	B.3 Example 3 – Reversing the order of lower case and upper case letters
	B.4 Thai string ordering – a case involving special preparation
	
	
	
	
	Algorithmic Aspect

	B.5 4 Cyrillic (issue)

	C -- Preparation (informative)
	C.1 General considerations
	C.2 Handling of numeral substrings in collation
	C.2.1 Handling of ‘ordinary’ numerals for natural numbers
	C.2.2 Handling of positional numerals in other scripts
	C.2.3 Handling of other non-pure positional system numerals or non-positional system numerals (e.g. Roman numerals)
	C.2.4 Handling of numerals for whole numbers
	C.2.5 Handling of positive positional numerals with fractional parts
	C.2.6 Handling of positive positional numerals with fraction parts and exponent parts
	C.2.8 Handling of date and time of day indications
	C.2.9 Making numbers less significant than letters
	C.2.10 Maintaining determinacy

	C.3 Thai string ordering – a case involving special preparation
	
	
	
	
	Algorithmic Aspect

	Annex D -- Tutorial on solutions brought by this standard to problems of lexical ordering (informative)
	Annex E -- Description of a collating sequence definition (informative)
	Annex F E – BIBLIOGRAPHY (informative)

