
P1003.1d/D11

Annex I
(informative)

Device Control Considerations1

2 I.1 Introduction

3 Realtime systems interact with their physical environment using a variety of dev-
ices4 (such as analog-digital converters, digital-analog converters, counters, and
video5 graphic equipment), which provide a set of services that cannot be fully util-
ized6 in terms of read and/or write semantics.

A7 driver for a special device will normally not be portable between system imple-
mentations,8 but an application that uses such a driver can be made portable if all
functions9 calling the driver are well defined and standardized. Users and integra-
tors10 of realtime systems often add drivers for special devices, and a standardized
function11 format for interfacing with these devices greatly simplifies this process.

This12 section defines a general method for interfacing to the widest possible range
of13 special devices. The term "special device" refers to the hardware; access to the
driver14 for this hardware uses the file abstraction "character special file".

15 I.2 Concepts

16 The term "special device" refers to hardware; access to the driver for this
hardware17 uses the file abstraction "character special file". The implementation
shall18 provide the means to integrate a device driver into the system and provide a
way19 to create a character special file that provides a binding to the device driver
when20 the open() function is called with the name of that character special file.
The21 means available to integrate drivers into the system and the way character
special22 files are created is implementation defined.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

I.2 Concepts 99

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

23 I.3 Definitions

24 ⇒⇒ 2.2.2 General Terms Replace the contents of the subclause designated the
25 definition of "character special file" with the following:

26 I.3.0.1 character special file:

27 A file that refers to a device. One specific type of character special file is a termi-
nal28 device file, whose access is defined in 7.1. Other character special files have no
structure29 defined by this part of ISO/IEC 9945, but they can be accessed as defined
in30 21.

31 ⇒⇒ 2.2.2 General Terms Add the following definition, in the right sorted order:

32 I.3.0.2 driver:

33 A part of the implementation (possibly user supplied) that controls a device
(34 2.2.2.x).

35 I.4 Errors

36 ⇒⇒ 2.4 Error Numbers Add the following error value, in the right sorted order:

37 [EBADCMD] Inappropriate I/O control operation. A control function was
38 attempted for a file or a special file for which the operation
39 was inappropriate. This error is synonymous with [ENOTTY],
40 but shall be used when control operations are inappropriate
41 for a non-TTY device.

42 I.5 Functions

43 ⇒⇒ 22 Device Control Add a new chapter with the following new interface:

44 The following function provides the device control capability:

45 posix_devctl ()
46 Control a Device

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

100 I Device Control Considerations

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D11

47 I.5.1 Control a Device

48 Function: posix_devctl ()

49 I.5.1.1 Synopsis

50 #include <sys/types.h>
#include51 <unistd.h>
#include52 <devctl.h>

int53 posix_devctl(int fildes,
54 int dcmd,
55 void ∗dev_data_ptr,
56 size_t nbyte,
57 int ∗dev_info_ptr);

58 I.5.1.2 Description

59 If the Device Control option is supported: B

60 The posix_devctl () function shall cause the device control command dcmd to
61 be passed to the driver identified by fildes. Associated data shall be passed
62 to and/or from the driver depending on direction information encoded in the
63 dcmd argument, or as implied in the dcmd argument by the design and
64 implementation of the driver.

65 The dev_data_ptr argument shall be a pointer to a buffer that contains data
66 bytes to be passed to the driver and receives data bytes to be passed back
67 from the driver or both.

68 If the data is to be passed to the driver, at least nbyte bytes of associated
69 data shall be made available to the driver; if the data is to be passed from
70 the driver, no more than nbyte bytes shall be passed.

71 If nbyte is zero, the amount of data passed to and/or from the driver is
72 unspecified. This feature is obsolescent, and only provided for compatibility
73 with existing device drivers.

74 The dev_info_ptr argument provides the opportunity to return an addi-
75 tional device information word instead of just a success/failure indication.

76 The set of valid commands, the associated data interpretation, the returned
77 device information word , and the effect of the command on the device are
78 all defined by the driver identified by fildes.

O79 therwise:

80 Either the implementation shall support the posix_devctl () function as
81 described above or this function shall not be provided. B

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

I.5 Functions 101

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

82 I.5.1.3 Returns

83 The posix_devctl () function shall return zero on success and the corresponding
status84 value on failure. The value returned via the dev_info_ptr argument is
driver85 dependent.

86 I.5.1.4 Errors

87 If any of the following conditions occur, the posix_devctl () function shall fail and
shall88 return the corresponding error number:

89 [EBADF] The fildes argument is not a valid open file descriptor.
90 B

91 If the following conditions are detected, the posix_devctl () function shall fail and
shall92 return the corresponding error number:

93 [EBADCMD] The dcmd argument is not valid for this device.

94 [EINTR] The posix_devctl () function was interrupted by a signal.

95 [EINVAL] The nbyte argument is negative, or exceeds an implementation
96 defined maximum, or is less than the minimum number of bytes
97 required for this command.

98 The argument dev_info_ptr is an invalid address, or the argu-
99 ment dev_data_ptr is an invalid address, or the dev_data_ptr +
100 nbytes - 1 is an invalid address.

101 [EPERM] The requesting process does not have sufficient privilege to
102 request the device to perform the specified command.

Driver103 code may detect other errors, but the error numbers returned are driver
dependent.104 See 21.4.9.

If105 the posix_devctl () function fails, the effect of this failed function on the device is
driver106 dependent. Corresponding data might be transferred, partially transferred,
or107 not transferred at all.

108 I.5.1.5 Cross-References

109 close (), 6.3.1; dup(), 6.2.1; fstat (), 5.6.2; open(), 5.3.1; read(), 6.4.1 write(), 6.4.2.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

102 I Device Control Considerations

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D11

110 I.6 Rationale Relating to Device Control

111 An interface to be included in the POSIX standard should improve source code por-
tability112 of application programs. In existing UNIX practice, ioctl() is used to han-
dle113 special hardware. Therefore a general specification of its arguments cannot be
written.114 Based on this fact, many people claim that ioctl() or something close to it
has115 no place in POSIX.

Against116 this perception stands the widespread use of ioctl() to interface to all sorts
of117 drivers for a vast variety of hardware used in all areas of real time and embed-
ded118 computing, such as analog-digital converters, counters and video graphic dev-
ices.119 These devices provide a set of services that cannot be represented or used in
terms120 of read or write system calls.

The121 arguments in favor of ioctl() standardization can be summarized as follows:

Even122 if ioctl() addresses very different hardware, many of these devices are either
actually123 the same, interfaced to different computer systems with different imple-
mentations124 of operating systems, or belong to classes of devices with rather high
commonality125 in their functions, e.g. analog-digital converters or digital-analog con-
verters.126 Growing standardization of the Control and Status Register (CSR) space
of127 these devices allows or will allow exploitation of a growing similarity of control
codes128 and data for these. A general mechanism is needed to control these devices.

In129 all these cases a standardized interface from the application program to drivers
for130 these devices will improve source code portability.

Even131 if control codes and device data have to be changed when porting applica-
tions132 from one system to another, the definition of ioctl() largely improves reada-
bility133 of a program handling special devices. Changes are confined to more clearly
labeled134 places.

A135 driver for a specific device normally cannot be considered portable per se, but an
application136 that uses this driver can be made portable if all interfaces needed are
well137 defined and standardized. Users and integrators of real time systems often
add138 device drivers for specific devices and a standard interface simplifies this pro-
cess.139 Also, device drivers often follow their special hardware from system to sys-
tem.140

141 I.6.1 Existing Practice

142 The ioctl() interface is widely used. It has provided the generality mentioned
above.143 This or a similar interface will build upon the current programming prac-
tice144 and existing code base, both at the application and device driver level.

Existing145 practice encodes into the second parameter information about data size
and146 direction in some systems. An example of such an encoding is BSD’s use of
two147 bits of the command word as read/write bits. However, ioctl() has definite
problems148 with the way that its sometimes optional 3rd parameter can be inter-
p149 reted.

This150 is similar to the existing POSIX.1 fcntl() function, in which the 3rd parameter
can151 be optional for F_GETFD, F_GETFL, an int fildes when used with the F_DUPFD,

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

I.6 Rationale Relating to Device Control 103

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

152 F_SETFD, or F_SETFL commands or a struct flock, when used with the F_GETLK,
153 F_SETLD or F_SETLKWcommands. However, the fcntl() interface defines two dis-

tinct154 and known data types as possible for the 3rd parameter. This is not the case
in155 the ioctl() interface, where many device driver specific structures and com-
mands156 are used.

157 I.6.2 Relationship to ioctl() and the Perceived Needs for Improvement.

158 POSIX.1 documents, in Annex B.7, the perceived deficiencies in existing implemen-
tations159 of the ioctl() function. This discussion is in the context of those ioctl()
commands160 used to implement terminal control. The POSIX.1 working group
decided161 that, since the set of such control operations was fairly well defined, suit-
able162 encapsulations such as tcsetattr (), tcsendbreak (), and tcdrain () could be
standardized.163 These interfaces, while successfully standardizing portable termi-
nal164 control operations, are not extensible to arbitrary user-supplied devices. The

165 posix_devctl () interface replaces the various ioctl() implementations with a stan-
dard166 interface which captures the extensibility of ioctl(), but avoids several of the
de167 ficiencies:

168 — The major problem with ioctl() is that the third argument is a generic
169 pointer to a memory object which varies in both size and type according to
170 the second command argument. It is not unprecedented in POSIX, or stan-
171 dards in general, for a function to accept a generic pointer; consider the
172 ANSI C library functions fgets() and fread(), or the POSIX functions read()
173 and mmap(). However, in all such instances, the generic pointer must be
174 accompanied by a user-specified size argument which specifies the size of
175 the pointed-to object. Unlike the Ada language, it is, and has always been,
176 the C programmer’s responsibility to ensure that these two arguments form
177 a consistent specification of the passed object. But traditional ioctl() imple-
178 mentations do not allow the user to specify the size of the pointed-to object;
179 that size is instead fixed implicitly by the specified command (passed as
180 another argument). The posix_devctl () interface improves upon ioctl() in
181 that it allows the user to specify the object size, thereby restoring the fami-
182 liar C paradigm for passing a generic object by pointer/size pair.

183 — A secondary problem with ioctl() is that the third argument is sometimes
184 permitted to be interpreted as an integer (int). This is non-portable to sys-
185 tems where sizeof(void ∗) != sizeof(int), not to mention a gross abuse of type
186 casts. The posix_devctl () interface clearly requires the dev_data_ptr argu-
187 ment to be a pointer.

188 — A related problem with ioctl() is that the direction(s) in which data are
189 transferred to/from the pointed-to object is neither specified explicitly as an
190 argument (as with mmap()), nor implied by the ioctl() function (as with
191 read()/ write(), fread()/ fwrite(), or fgets()/ fputs()). Instead, the direction is
192 implied by the command argument. In traditional implementations, only
193 the device driver knows the interpretation of the commands and whether
194 data is to be transferred to or from the pointed-to object. But in networked
195 implementations, generic portions of the operating system may need to
196 know the direction to ensure that data are passed properly between a client

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

104 I Device Control Considerations

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D11

197 and a server, separately from device driver concerns. Two implementation-
198 specific solutions to this problem are: a) to always assume data needs to be
199 transferred in both directions; and b) to encode the implied direction into
200 the command word along with the fixed data size. The posix_devctl () inter-
201 face already provides the implementation with an explicit size parameter;
202 since the direction is already known implicitly to both the application and
203 the driver, and since workable methods exist for implementations to ascer-
204 tain that direction if required, this perceived problem is strictly an imple-
205 mentation issue, and solvable without further impact on the interface.

206 — Finally, posix_devctl () improves upon ioctl() by adopting the new style of
207 error return, avoiding all the problems errno brings to multi-threaded
208 applications. Because the driver-specific information carried by the non-
209 error return values of ioctl() still potentially needs to be passed to the appli-
210 cation, posix_devctl () adds the dev_info_ptr argument to specify where this
211 information should be stored.

212 I.6.3 Which Changes to ioctl() Are Acceptable?

213 Any change in the definition of ioctl() has to be perceived as a clear improvement
by214 the community of people touched by this change. We have to be aware that
drivers215 for normal peripherals are typically written by highly specialized profes-
sionals.216 Drivers for the special devices are very often written by the end-user or
by217 the hardware designer, sometimes with fairly limited software literacy. Any
interface218 definition which can be seen as overly complicated will simply not be
a219 ccepted.

Nevertheless,220 a few simple and useful improvements to ioctl() are possible, justify-
ing221 also the change of name from ioctl() to devctl().

The222 major change is the addition of the size of the device data. For enhanced com-
patibility223 with existing ioctl() implementations, this size may be specified as zero;
in224 this case the amount of data passed is unspecified. (This allows a macro
de225 finition of ioctl() which converts it into a posix_devctl () call.)

The226 method of indicating error return values differs from traditional ioctl() imple-
mentations,227 but it does not preclude the construction of posix_devctl () as a macro
built228 upon ioctl().

229 I.6.4 Rationale for the dev_info_ptr

230 The working group felt that it was important to preserve the current ioctl() func-
tionality231 of allowing a device driver to return some arbitrary piece of information
instead232 of just a success/failure indication. Such information might be, for exam-
ple,233 the number of bytes received, the number of bytes that would not fit into the
bu234 ffer pointed at by dev_data_ptr, the data type indication, or the device status.
Current235 practice for device drivers and ioctl() usage allows such a device depen-
dent236 return value. Thus the concept of an additional output argument,

237 dev_info_ptr, was born.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

I.6 Rationale Relating to Device Control 105

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

238 I.6.5 Rationale for No direction Argument

239 The initial specification for posix_devctl () contained an additional argument which
speci240 fied the direction of data flow — to the driver and/or from the driver. This
argument241 was later removed for the following reasons:

242 — The argument was redundant. Most (if not all) existing implementations
243 encode the direction data either explicitly or implicitly in the command
244 word.

245 — The argument increased the probability of programming errors, since it
246 must be made to agree with the direction information already encoded or
247 implied in the command word or an error would occur.

248 — The only real use of the argument would be if new drivers were written
249 which supported generic commands such as TRANSFER_CONTROL_DATA,
250 which was modified by the direction argument to indicate in which direction
251 the data should be transferred. This is contrary to current practice which
252 uses command pairs such as GET_CONTROL_DATA, and PUT_CONTROL_DATA.

253 — The primary purpose of the direction argument was to allow higher levels of
254 the system to identify the direction of data transfers, particularly in the
255 case of remote devices, without having to understand all the commands of
256 all the devices on the system. We believe that implementations which need
257 to ascertain the direction of data transfer from a command word will define
258 a consistent convention for encoding the direction into each command word,
259 and all device drivers supplied by the user must adhere to this convention.
260 A standard convention may be defined in the future when device driver
261 interface standardization is undertaken.

Thus262 the data direction argument was removed.

263 I.6.6 Rationale for Not Defining the Direction Encoding in the command
264 Word

265 Consideration was given to defining the direction encoding in the command word,
but266 was rejected. No particular benefit was seen to a pre-defined encoding, as long
as267 the encoding was used consistently across the entire implementation and was
well268 known to the implementation.

In269 addition, although only one encoding (BSD’s) was known among the members of
the270 small working group, it could not be ruled out that other encodings already
exist,271 and no reason for precluding these encodings was seen.

Finally,272 system or architectural constraints might make a chosen standard encod-
ing273 difficult to use on a given implementation.

Thus,274 this standard does not define a direction encoding. Specifying a standard
encoding275 is actually a small part of a larger and more contentious objective, that of
specifying276 a complete set of interfaces for portable device drivers; if a future
amendment277 to this standard specifies such interfaces, the issue of device control
direction278 encoding will necessarily be addressed as part of that specification.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

106 I Device Control Considerations

Part 1: SYSTEM API—Amd.d:Additional Realtime Extensions[C Language] P1003.1d/D11

279 I.6.7 Recommended Practice for Handling Data Size Errors

280 In the event that the data from the device are too large to fit into the specified
bu281 ffer, as much data as will fit should be transferred, and the error posted. The
remaining282 data will aid in debugging.

283 I.6.8 Recommended Practice for nbyte == 0

284 The feature which permits an unspecified amount of control data to be transferred
if285 nbyte is zero is obsolescent, and exits only for compatibility with existing device
driver286 usage of ioctl(), i.e. the device driver always transfers an amount of data
implied287 by the command. Newly developed device drivers should always honor the
a288 pplication’s nbyte argument or return the error [EINVAL] if the argument is an
unacceptable289 value. Such a device driver should interpret a zero value of nbyte as
no290 data to be transferred.

291 I.6.9 Recommended Practice for Driver Detected Errors

292 If the driver detects the following error conditions, it is recommended that the
293 posix_devctl () function fail and return the corresponding error number:

294 [EAGAIN] The control operation could not complete successfully because
295 the device was in use by another process or the driver was
296 unable to carry out the request due to an outstanding operation
297 in progress.

298 [EBADCMD] The driver determined that the dcmd argument is not valid for
299 this device or subdevice.

300 [EINVAL] The arguments dev_dta_ptr and nbyte define a buffer too small
301 to hold the data expected by or to be returned by this driver.

302 [EIO] The control operation could not complete successfully because
303 the driver detected a hardware error.

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

I.6 Rationale Relating to Device Control 107

P1003.1d/D11 INFORMATION TECHNOLOGY—POSIX

Copyright  1998 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

108 I Device Control Considerations

