JTC1/SC22/WG14 N920 Date: September 20. 2000 Page 1

IMPROVED
COMPILE TIME CONFIGURATION

Proposal for a new work item

Author : Jan Kristoffersen, Denmark, jkristof@ramtex.dk

Background

Ten years ago programmers typically wrote code which should only be compiled with
one specific compiler using one specific operating system and be running at one
specific hardware platform.

Today the situation is the nearly the opposite. It is common that programmers write
source modules which should be compiled with different compilers, should be compiled
for different operating systems and/or for different hardware platforms.

This, together with increasing demands for shorter time to market, reduced development
and maintenance cost, plus the fact that systematic software reuse had become more
widespread, creates a growing demand for more flexible compile time configuration
possibilities in C.

In particular there is a requirement for that multiple configuration parameters can be
used to “shape” a source module at compile time for a particular environment without
the risk of making the source module incomprehensive or difficult to maintain.

The current standard only give a programmer two choices, to use multiple (nearly
identical) C modules or to use preprocessing directives like #if #else #endif

As an increasing number of compiler, system and environment combinations have to be
supported maintenance become a nightmare if multiple parallel versions of source files
must exist to handle the configuration cases. If preprocessing directives are used for
configuration management the source code tend to become much more unreadable and
incomprehensive.

It may be possible to handle multi environment configuration by use of third party
configuration or preprocessing tools, however in practice this is often a very
cumbersome solution and definitely a very poor substitute for having more flexible
compile time configuration methods supported by the C language itself.

Therefore it is proposed that the committee adapt “Improved compile time configuration”
as a new work item.

JTC1/SC22/WG14 N920 Date: September 20. 2000 Page 2
A proposed solution

A relatively simple way to improve compile time configuration considerably is to
introduce a new kind of selection statements were the controlling expression is
evaluated after translation phase 4 and before the existing translation phase 5. Code
blocks not selected are skipped from further processing.

For the sake of the discussion let us call the new selection statements compile time
selectors : _if and _switch.

Example:
_if (<const expression at conpile tine>)
/* If expression is true this code block is visible */
}
_else

/* If expression is true this code block is skipped */

_switch (<const expression at conpile tine>)
_case <const val ue> :

/* If switch expression is equal to the case | abel this code
block is visible, otherwise it is skipped */

_defaul t:

/* This code block is visible if no other case | abels nmatch,
otherwise it is skipped */
}

}

To handle compile time selectors section 5.1.1.2, Translation phase 4 should be
modified to:

4a. Preprocessing directives are executed, macro invocations are expanded, and
_Pragma unary operator expressions are executed. If a character sequence that
matches the syntax of a universal character name is produced by token
concatenation (6.10.3.3), the behavior is undefined. A #include preprocessing
directive causes the named header or source file to be processed from phase 1
through phase 4a, recursively.

4b. All preprocessing directives are then deleted. Constant expressions in compile time
selectors are evaluated and code blocks not selected are deleted.

JTC1/SC22/WG14 N920 Date: September 20. 2000 Page 3

There is several advantage with this solution:
- It can be used both inside function bodies and inside macro bodies (unlike #if)

- Configurable C modules can be made more readable by use of macro
functions without the runtime penalties associated with function calls.

- Macros can now use configuration parameters to select between
different flavors of implementations at compile time.

- It promotes the use of parameter based configuration to make configuration
simpler and more easily portable.

- It solve the problem we have today that a compile time configuration
become unnecessary complex if the number of instances where a
macros is used grow significantly.

- It promotes the idea with parameter based configuration which is to
move the burden from the person who are doing the configuration (and
may have little expertise) to the programmer / implementer (which have
the expertise).

- The _switch statement is much more readable than the use of various
combinations of #if preprocessing directives which are the alternative today.
Maintenance become easier.

- It is possible to have compile time configuration in macros and still write strongly
conforming code. Functions and identifiers used in the code block not selected
by the constant expression need not be declared nor defined.

(If if (<constant expression>) was used for the same purpose one will get code
that only works if the compiler does not produce diagnostics in the presence of
several items of undefined behavior).

- It does not break existing code.

This solution example above is just one way that compile time configuration can be
improved, other solutions may be just as versatile. The important issue here is that the
committee should take a step towards codifying an existing and growing requirement
from the market place.

