
WG14 N909 1

Preprocessor improvements for
better configuration possibilities and

increased source code portability
with performance critical systems.

Proposal for a work item

1. Scope

As the C language has matured over the years and the C compilers have become
better to generate efficient code it has become common practice to write
performance critical code in C. With the increased use of embedded processor in
electronic products, and the tendency towards making multiple version of the same
product, there is a increasingly demand for making performance critical source code
adaptable to multiple execution environments.

Configuration based on memory instantiated parameters causes server penalties in
the form of increased execution time and memory footprint. Such a configuration
method is usually not an acceptable solution in performance critical systems.
Instead the right driver functionality must be picked at compile time based on
defined configuration parameters.

This paper propose a new work item for investigating how better support for compile
time configuration can be implemented in the language.

2. Rationale

The C standard currently lacks good features for selecting the right code based on
configuration parameter definitions without any runtime penalty.

Especially the standard lacks features for efficient parameter based selection at
compile time between different function implementations within the same
compilation unit.

To illustrate this and in order to find a possible solution let us first consider this
example:

Example 1

 #define uint16_t int
 char array1[4] = {0x12,0x34,0x56,0x78};

 // Fetch method 1
 inline uint16_t use_method_1(int index)
 {
 return array1[index] * 256 + array1[index+1];
 }

WG14 N909 2

 // Fetch method 2
 uint16_t use_method_2(int index, int size)
 {
 return (array1[(index * size)+1] * 256 + array1[index * size]);
 }

 // Select method using a function parameter
 uint16_t getval(char method, int idx)
 {
 if (method == 0)
 return use_method_1(idx);
 else
 return use_method_2(idx, 2);
 }

 #define METHOD1 0
 #define METHOD2 1
 uint16_t val[4];

 void my_func(void)
 {
 val[0] = getval(METHOD1, 0); // 0x1234
 val[1] = getval(METHOD1, 1); // 0x3456
 val[2] = getval(METHOD2, 0); // 0x3412
 val[3] = getval(METHOD2, 1); // 0x7856
 }

Selection between different code fragments (different functions) is based on some
configuration parameters evaluated at runtime. The problem with respect to
performance is the code size and time overhead caused by each of the getval
function calls.

This is an unacceptable solution in performance critical systems.

Execution performance in the example above could be optimized with respect to
execution speed by making getval inline or by converting it to a function macro like:

Example 2

 // Version selected by a macro parameter
 #define getval(method, idx) \
 (\
 (method == 0) ? \
 use_method_1(idx) \
 : \
 use_method_2(idx, 2) \
)

Inline functions and macros are inadequate
Approaches like example 2 will however often create the problem that “dead code” is
generated in every instantiation of the macro for the configuration alternatives not
selected by the configuration parameter.

This is an unacceptable solution in many embedded systems where small memory
foot prints a requirement. (The programmer must rely on that the compiler has an
aggressive optimizer which is able to remove dead code)

WG14 N909 3

3. A possible solution

For the discussion lets assume that this code is legal:

Example 3:
 // Version selected by a function parameter
 #define getval(method, idx) \
 (\
 #if (method == 0) \
 use_method_1(idx) \
 #else \
 use_method_2(idx,2) \
 #endif \
)

The advantages with solutions along this line are that we get the best of several
worlds:
- Optimal execution speed.
- Prevention of dead code generation at the source level (instead of relying on

compiler optimization)
- With #if, #else, #endif having macro scope different code alternatives can be

selected by configuration parameters in each macro instantiation.

Another advantage by this approach is that external modules with “dead code” does
not have to exist just to satisfy the linker:

Example 4

 // Fetch method 1
 inline uint16_t use_method_1(int index)
 {
 return array1[index] * 256 + array1[index+1];
 }

 // Fetch method 2
 extern uint16_t use_method_2(int index, int size)

 // Version selected by a function parameter
 #define getval(method, idx) \
 { \
 #if (method == 0) \
 use_method_1(idx); \
 #else \
 use_method_2(idx,2); \
 #endif \
 }

 #define METHOD1 0
 #define METHOD2 1
 uint16_t val[4];

 void my_func(void)
 {
 val[0] = getval(METHOD1, 0); // 0x1234
 val[1] = getval(METHOD1, 1); // 0x3456
 }

Only METHOD1 is used. If getval had been implemented as in example 2 then
use_method_2() had to be defined even though it is never used by the actual
configuration.

WG14 N909 4

The macro approach also makes compile time configuration much more elegant as
individual configuration parameters for each “instantiation” of the same macro can
be collected in a single configuration header file.

 Example 5

 // Configuration header file
 #define DEVICE1_METHOD 0
 #define DEVICE1_CONSTANT 1

 #define DEVICE2_METHOD 1
 #define DEVICE2_CONSTANT 0
 #define DEVICE2_CONSTANT1 2

 #define DEVICE3_METHOD 0
 #define DEVICE3_CONSTANT 2

 // header file
 #define getval(device) \
 (\
 #if (device##_METHOD == 0) \
 use_method_1(device##_CONSTANT) \
 #else \
 use_method_2(device##_CONSTANT, \
 device##_CONSTANT1) \
 #endif \
)

 // Driver module
 void my_func(void)
 {
 val[0] = getval(DEVICE1); // use_method_1, inlined
 val[1] = getval(DEVICE2); // use_method_2, function call
 val[2] = getval(DEVICE3); // use_method_1, inlined
 }

Furthermore the configuration parameters and configuration dependent code can be
completely isolated from the driver code itself. This enable new methods to be used
without the need to make modification to the driver source code itself. Maintenance
therefore become much simpler.

Jan Kristoffersen
Member of Danish Standard

