C9X Addition Designated Initializers WG14/N494 X 3J11/95-095

10

15

20

25

David Piosser (dfp@neell.com)
David Keaton (dmk@dmk.com)

8 December1995

1. Introduction
1.1 Purpose

This document specifies the form and interpretation of a pieeson to the language portion of the C
standard to provide important additional flexibility to initializers.

1.2 Scope

This document, althoughxtending the C standard, still falls within the scope of that standard, and thus
follows all rules and guidelines of that standard except where explicitly noted herein.

1.3 References
1. ISO/IEC9899:1990Programming Languges — C

All references to the ISO C standard will be presented as subclause nuFdseezample, §6.4
references constant expressions.

1.4 Rationale

Designated initializers pwide a mechanism for initializing sparse arrays, a practice common in
numerical programmingThey add useful functionality that alreadyists in Fortran so that programmers
migratingto C need not suffer the loss of a program-text-saving notational feature.

This feature also allows initialization of sparse structures, common in systems programmingwand allo
initialization of unions via anmember regadless of whether or not it is the first member.

Designated initializers intgate easily into the C grammar and do not impogeadditional run-time
overhead on a usex’rogram. Theiiinitial C implementation appeared in a compiler by Ken Thompson at
AT&T Bell Laboratories.

2. Language
2.1 Designated Initializers

The syntax for initializers in 86.5.7 is changed to the following, and the constraints and semantics are
augmented by the followinb:

Syntax
initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

1. The = punctuator that ends the designation is unnecessacyly speaking. The redundancan help an implementation
recover from syntactic errors, and also simplifiey émture extensions in this area (such as some form of repetition).

C9X Addition Designated Initializers WG14/N494 X3J11/95-095

initializer-list:
designatio%pt initializer
initializer-list , des;ignatior(%pt initializer
designation:
5 designator-list =

designator-list:
designator
designator-list designator

designator:
10 [constant-expression
identifier
Constraints
No initializer shall attempt to provide a value for an object not contained within the entity being
initialized ?
15 If a designator has the form

[constant-expression

then the current object (defined below) shalleharay type and thex@ression shall be an integral constant
expression. Ithe array is of unknown size,yanonnegative value is valid.

If a designator has the form
20 . identifier

then the current object (defined below) shalWeharucture or union type and the identifier shall be a
member of that type.

Semantics

Each brace-enclosed initializer list has an assoc@atednt object When no designations are present,

25 subobject®f the current object are initialized in order according to the type of the current object: array
elements in increasing subscript ord@ructure members in declaration ordamd the first member of a
union® In contrast, a designation causes the following initializer to begin initialization of the subobject
described by the designatotnitialization then continues forward in orddregnning with the ngt
subobject after that described by the desigrfator.

30 Each designator list bgins its description with the current object associated with the closest-
surrounding brace pairEach item in the designator list (in order) specifies a particular member of its
current object and changes the current object for the next designatoy)(ifoape that membér The
current object that results at the end of the designator list is the subobject to be initialized bywiregfollo
initializer.

2. This replaces the former first constraint of “There shall be no more initializers in an initializer list than there are
objects to be initialized.

3.If the initializer list for a subagggete or contained union does notgbe with a left brace, its subobjects are
initialized as usual, but the subaggpe or contained union does not become the current object: current objects are
associated only with brace-enclosed initializer lists.

4. After a union member is initialized, the next object is not thet member of the union; instead, it is the next subobject of
an object containing the union.

5.Thus, a designator can only specify a strict subobject of thegagmr union that is associated with the surrounding
brace pair Note, too, that each separate designator list is independent.

C9X Addition Designated Initializers WG14/N494 X3J11/95-095

The initialization shall occur in initializer list ordesach initializer provided for a particular subobject
overriding ary previously listed initializer for the same subobject; all subobjects that are not initialized
explicitly shall be initialized implicitly the same as objects thatehsatic storage duration.

If an array of unknown size is initialized, its size is determined by the largeseihdement with an
5 explicit initializer.®

Examples
Arrays can be initialized to correspond to the elements of an enumeration by using designators:

enum { Mem_One, Mem_Two, /*...*/ };
const char *nm|[] = {

10 [Mem_Two] = "Mem Two",
[Mem_One] = "Mem One",
1*..*
3

Structure members can be initialized to nonzero values without depending on their order:
15 div_tanswer={.quot=2, .rem=-1};

Designators can be used to provide explicit initialization when unadorned initializer lists might be
misunderstood:

struct { int a[3], b; } w[] = {[0].a = {1}, [1].a[0] =2 };
Space can be “allocatédrom both ends of an array by using a single designator:

20 int a[MAX] = {
1,3,5 7,9, [MAX-5]=8,6,4,2,0
3

In the abwe, if MAXis greater than ten, there will be some zero-valued elements in the middle; if it is less
than ten, some of the values provided by the firstifitializers will be eerridden by the second five.

25 Finally any member of a union can be initialized:

union { /*..*/ }u ={.any_member =42 };

6. This encompasses the former “size determined by the number of initidlizees’

