
N3155 - Examples of Undefined Behavior for Annex J.2. 
This	document	describes	the	issues	around	the	development	of	the	[[Examples	of	
undefined	Behavior	for	Annex	J.2.]].	

Legal Issues 

ISO	and	IEC	do	not	recognize	any	licenses	other	than	their	own	and	will	not	honor	any	
other	license	without	a	long,	protracted	series	of	negotiations	with	their	lawyers.	
Therefore,	do	not	submit	proprietary	code,	or	any	code	that	is	attached	to	a	license	that	
must	accompany	the	code,	such	as	the	GNU	Public	License.	This	material	is	intended	to	
become	an	ISO/IEC	document,	so	any	contributions	carry	implicit	permission	to	be	
published	by	ISO	and	IEC.	

Citations 

Many	code	examples	are	external	to	this	document,	in	which	case	they	cite	their	sources.	
The	code	examples	come	from:	

• TS	17961:	ISO/IEC	TS	17961.	Information	Technology—Programming	Languages,	
Their	Environments	and	System	Software	Interfaces—C	Secure	Coding	Rules.	Geneva,	
Switzerland:	ISO,	2012.	
– The	following	subsections	of	Section	5	of	TS	17961	have	no	examples	that	

demonstrate	undefined	behavior:	4,	7,	8,	9,	10	(exception),	11	(example	2),	
12,	16,	17,	18,	19,	21,	24,	25,	38,	39,	42,	43,	46	

• CERT	C	Rule	(published	2016	snapshot	of	SEI	CERT	C	Rule)	(NCCE	=	Noncompliant	
Code	Example)	

• CERT	C	Rec	(recommendations)	

It	is	expected	that	before	final	publication	of	this	document,	all	of	the	code	examples	will	be	
inlined.	The	CERT	code	examples	are	reproduced	with	permission	of	the	owner.	

Development Rules 

Here	are	some	rules	that	the	UB	examples	should	comply	with:	

1. All	examples	on	this	page	should	compile	with	a	popular	compiler	(that	is,	MSVC,	
GCC,	or	Clang)	

2. If	an	example	fails	to	compile	with	a	popular	compiler,	but	does	compile	with	a	more	
obscure	compiler,	then	we	should	note	the	compiler	used,	including	version	
number.	

3. Any	example	that	fails	to	build	under	every	compiler	we	know	of	is	incomplete…we	
should	ideally	find	a	compiler	that	builds	it.	(The	compiler	may	produce	any	
warnings,	but	should	not	produce	any	fatal	errors.)	



4. Finally,	if	we	cannot	produce	an	example	that	compiles,	then	perhaps	that	UB	should	
be	eliminated	and	any	such	code	should	be	ill-formed,	and	require	a	fatal	diagnostic	
in	translation.	

Tasks 

If	you	get	a	few	minutes	to	work	on	this	page,	you	can	do	one	of	two	things:	

• Replace	any	TODO	with	a	suitable	coding	example.	If	you	like	your	example,	then	
add	your	name	(last	name	good	enough)	to	the	‘Reviewers:’	section	right	below	the	
TODO.	

• Review	any	UB	coding	example	and	verify	that	it	is	good	(eg	it	correctly	illustrates	
the	particular	UB).	
– If	you	like	the	example	as	is,	then	add	your	name	to	the	Reviewers	section.	
– If	you	don’t	like	the	example,	then	please	repair	or	replace	the	example.	

• If	you	modify	the	example,	then	add	your	name	to	the	Reviewers	
section	AND	erase	the	other	reviewers	(since	they	haven’t	reviewed	
your	changes	yet).	

• Eventually	we	should	eliminate	all	the	TODOs,	and	every	code	example	should	have	
a	set	of	reviewers	(preferably	3	or	more)	that	approve	of	the	example.	

Statistics 

Total	Number	of	UB”s	in	document:	221	

Total	Number	of	TODO’s:	85	Total	Number	of	Code	Examples	from	TS	17961:	37	Total	
Number	of	Code	Examples	from	CERT	C:	49	Total	Number	of	Original	Code	Examples:	66	

Note	that	the	latter	statistics	total	up	to	237,	and	this	is	because	some	UBs	have	multiple	
code	examples.	

Acknowledgments 

This	document	was	suggested	by	Aaron	Ballman.	

	  



Examples of Undefined Behavior for Annex J.2. 
For	details	about	the	development	of	this	document,	see	[[About	Examples	of	Undefined	
Behavior	For	Annex	J.2.]].	

Format 

The	enumeration	of	UBs	corresponding	to	‘C23’	definitions	are	taken	from	N3149.	

The	term	COMPILABLE	appears	for	some	of	the	UB’s	listed	here.	These	are	UBs	where	we	
cannot	think	of	code	that	both	demonstrates	the	UB	and	compiles	without	errors	in	GCC	or	
Clang.	What	should	we	do	about	these	UBs?	Assuming	no	one	can	provide	a	compiler	that	
builds	such	examples,	perhaps	we	should	state	that	these	UBs	are	obsolete,	or	instead	that	
these	programs	should	be	ill-formed.	

The	format	of	this	document	is	is:	

• C23	UB	Number	
• UB	Definition	
• Examples	
• Reviewers.	

Examples 

1. A “shall” or “shall not” requirement that appears outside of a constraint is violated (Clause 
4). 

See	UB	Example	#4,	which	violates	a	‘shall’	statement.	

Reviewers:	svoboda,	UBSG	

2. A nonempty source file does not end in a new-line character which is not immediately 
preceded by a backslash character or ends in a partial preprocessing token or comment 
(5.1.1.2). 

CERT	C	Rec	MSC04-C	1st	NCCE	

Reviewers:	svoboda	

3. Token concatenation produces a character sequence matching the syntax of a universal 
character name (5.1.1.2). 

CERT	C	Rule	PRE30-C	1st	NCCE	2.1.1	

Reviewers:	svoboda,	s.maddanimath	

4. A program in a hosted environment does not define a function named main using one of 
the specified forms (5.1.2.2.1). 
#include <stdio.h>	
int main(float argc)  // Undefined behavior	



{	
    printf("main argument count:%f\n", argc); 	
    return 0;	
}	

Reviewers:	s.maddanimath,	svoboda,	UBSG	

5. The execution of a program contains a data race (5.1.2.4). 

CERT	C	Rule	CON32-C	1st	NCCE	14.3.1,	CON40-C	1st	NCCE	14.11.1	

Reviewers:	svoboda	

6. A character not in the basic source character set is encountered in a source file, except in 
an identifier, a character constant, a string literal, a header name, a comment, or a 
preprocessing token that is never converted to a token (5.2.1). 

TODO	

Reviewers:	

7. An identifier, comment, string literal, character constant, or header name contains an 
invalid multibyte character or does not begin and end in the initial shift state (5.2.1.1). 
/* In UTF-8 Lowercase n-with-tilde == ñ == U+00F1 == 0xC3 0xB1 == \303 \261 
*/	
const char ma\303ana[] = "tomorrow"; /* invalid UTF-8, missing \261 */	
/* Undefined Behavior if built in UTF-8 locale */	

TODO:	COMPILABLE	EXAMPLE?	

Reviewers:	svoboda,	USBG	

8. The same identifier has both internal and external linkage in the same translation unit 
(6.2.2). 

CERT	C	Rule	DCL36-C	1st	NCCE	3.3.1	

Reviewers:	svoboda,	s.maddanimath	

(Note:	the	following	is	a	different	example	which	is	more	complex)	

static int a;	
int f()	
{	
  int a;	
  {	
     extern int a; // not internal!	
  }	
}	

Reviewers:	uecker	



9. An object is referred to outside of its lifetime (6.2.4). 

CERT	C	Rule	DCL30-C	1st	NCCE	3.1.1,	2nd	NCCE	3.1.4,	3rd	NCCE	3.1.6	CERT	C	Rule	EXP35-C	
1st	NCCE	4.5.1,	2nd	NCCE	4.5.3	

Reviewers:	svoboda,	s.maddanimath	

10. The value of a pointer to an object whose lifetime has ended is used (6.2.4). 

TS17961	5.14	[nullref]	EXAMPLE	5.15	[addrescape]	EXAMPLE	1,	2,	3	

Reviewers:	svoboda	

11. The value of an object with automatic storage duration is used while the object has an 
indeterminate representation (6.2.4, 6.7.10, 6.8). 

TS17961	5.35	[uninitref]	EXAMPLE	1,	2	CERT	C	Rule	EXP33-C	4th	NCCE	4.3.9,	CERT	C	Rec	
MSC22-C	3rd	NCCE	

Reviewers:	svoboda,	s.maddanimath	

12. A non-value representation is read by an lvalue expression that does not have character 
type (6.2.6.1). 

TS17961	5.35	[uninitref]	EXAMPLE	3,	4	

Reviewers:	svoboda	

13. A non-value representation is produced by a side effect that modifies any part of the 
object using an lvalue expression that does not have character type (6.2.6.1). 

TODO	

Reviewers:	

14. Two declarations of the same object or function specify types that are not compatible 
(6.2.7). 

TS17961	5.13	[funcdecl]	EXAMPLE	1,	2,	4	

Reviewers:	svoboda	

15. A program requires the formation of a composite type from a variable length array type 
whose size is specified by an expression that is not evaluated (6.2.7). 

TODO	

Reviewers:	



16. Conversion to or from an integer type produces a value outside the range that can be 
represented (6.3.1.4). 

CERT	C	Rule	FLP34-C	1st	NCCE	6.3.1,	FLP36-C	1st	NCCE	6.4.1	

Reviewers:	svoboda	

17. Demotion of one real floating type to another produces a value outside the range that can 
be represented (6.3.1.5). 

CERT	C	Rule	FLP34-C	2nd	NCCE	6.3.3	

Reviewers:	svoboda	

18. An lvalue does not designate an object when evaluated (6.3.2.1). 

TODO	

Reviewers:	

19. A non-array lvalue with an incomplete type is used in a context that requires the value of 
the designated object (6.3.2.1). 

TODO	

Reviewers:	

20. An lvalue designating an object of automatic storage duration that could have been 
declared with the register storage class is used in a context that requires the value of the 
designated object, but the object is uninitialized. (6.3.2.1). 
void f(void) {	
  /* register */ int x;  // address of x not taken, so x could be stored in a 
register	
  int y = x;             // Undefined Behavior	
}	

Reviewers:	svoboda,	uecker	

21. An lvalue having array type is converted to a pointer to the initial element of the array, 
and the array object has register storage class (6.3.2.1). 
void f(void) {	
  register int a[3];	
  int *p = a;	
  a[0] = 1;	
  p[0];  // Undefined Behavior	
}	

Reviewers:	svoboda	



22. An attempt is made to use the value of a void expression, or an implicit or explicit 
conversion (except to void) is applied to a void expression (6.3.2.2). 
void f(void);	
	
(int)f(); // Undefined Behavior	
int i;	
i = f();  // violates constraint of assignment operator	

TODO:	COMPILABLE	EXAMPLE?	

Reviewers:	

23. Conversion of a pointer to an integer type produces a value outside the range that can be 
represented (6.3.2.3). 

TS17961	5.10	[intptrconv]	EXAMPLE	1,2	

Reviewers:	svoboda	

24. Conversion between two pointer types produces a result that is incorrectly aligned 
(6.3.2.3). 

TS17961	5.11	[alignconv]	EXAMPLE	1	

Reviewers:	svoboda	

25. A pointer is used to call a function whose type is not compatible with the referenced type 
(6.3.2.3). 

TS17961	5.6	[argcomp]	EXAMPLE	1	

Reviewers:	svoboda,	s.maddanimath	

26. An unmatched ’ or ” character is encountered on a logical source line during tokenization 
(6.4). 

TODO	

Reviewers:	

27. A reserved keyword token is used in translation phase 7 or 8 for some purpose other than 
as a keyword (6.4.1). 

TODO	

Reviewers:	

28. A universal character name in an identifier does not designate a character whose 
encoding falls into one of the specified ranges (6.4.2.1). 

TODO	



Reviewers:	

29. The initial character of an identifier is a universal character name designating a digit 
(6.4.2.1). 

TODO	

Reviewers:	

30. Two identifiers differ only in nonsignificant characters (6.4.2.1). 

TS17961	5.13	[funcdecl]	EXAMPLE	4	

Reviewers:	svoboda	

31. The identifier __func__ is explicitly declared (6.4.2.2). 
void __func__(void); // Undefined Behavior	

Reviewers:	svoboda	

32. The program attempts to modify a string literal (6.4.5). 

TS17961	5.28	[strmod]	EXAMPLE	1,	2,	3,	4,	5	

Reviewers:	svoboda	

33. The characters ’, \, “, //, or /* occur in the sequence between the < and > delimiters, or 
the characters ’, \, //, or /* occur in the sequence between the” delimiters, in a header name 
preprocessing token (6.4.7). 
#include "dave's_hello.h"	
// Undefined Behavior	

Reviewers:	svoboda	

34. A side effect on a scalar object is unsequenced relative to either a different side effect on 
the same scalar object or a value computation using the value of the same scalar object (6.5). 

CERT	C	Rec	PRE00-C	1st	NCCE,	3rd	NCCE	

Reviewers:	svoboda,	s.maddanimath	

35. An exceptional condition occurs during the evaluation of an expression (6.5). 

TS17961	5.30	[intoflow]	EXAMPLE	1	

Reviewers:	svoboda	

36. An object has its stored value accessed other than by an lvalue of an allowable type (6.5). 

TS17961	5.1	[ptrcomp]	EXAMPLE	

Reviewers:	svoboda	



C18-37. For a call to a function without a function prototype in scope, the number of 
arguments does not equal the number of parameters (6.5.2.2). 

TS17961	5.6	[argcomp]	EXAMPLE	2	

Reviewers:	svoboda,	s.maddanimath	

C18-38. For a call to a function without a function prototype in scope where the function is 
defined with a function prototype, either the prototype ends with an ellipsis or the types of 
the arguments after default argument promotion are not compatible with the types of the 
parameters (6.5.2.2). 

TS17961	5.6	[argcomp]	EXAMPLE	3	

Reviewers:	svoboda,	s.maddanimath	

37. A function is defined with a type that is not compatible with the type (of the expression) 
pointed to by the expression that denotes the called function (6.5.2.2). 

TS17961	5.6	[argcomp]	EXAMPLE	4,	5.13	[funcdecl]	EXAMPLE	3	

Reviewers:	svoboda,	s.maddanimath	

38. A member of an atomic structure or union is accessed (6.5.2.3). 
_Atomic struct {	
  int x;	
} foo;	
foo.x;   // Undefined Behavior	

Reviewers:	uecker,	svoboda	

39. The operand of the unary * operator has an invalid value (6.5.3.2). 
char* p = NULL;	
*p;   // Undefined Behavior	

Reviewers:	svoboda	

40. A pointer is converted to other than an integer or pointer type (6.5.4). 
int main()	
{	
  int *intptr;	
  int intvar;	
  char charvar;	
  intvar = (int) intptr;	
  charvar = (char) intptr; // Undefined Behavior	
  return 0;	
}	

Reviewers:	s.maddanimath,	svoboda	



41. The value of the second operand of the / or % operator is zero (6.5.5). 

TS17961	5.26	[diverr]	EXAMPLE	1	

Reviewers:	svoboda,	s.maddanimath	

42. If the quotient a/b is not representable, the behavior of both a/b and a%b (6.5.5). 

TS17961	5.26	[diverr]	EXAMPLE	2	

Reviewers:	svoboda,	s.maddanimath	

43. Addition or subtraction of a pointer into, or just beyond, an array object and an integer 
type produces a result that does not point into, or just beyond, the same array object (6.5.6). 

TS17961	5.22	[invptr]	EXAMPLE	1	

Reviewers:	svoboda	

44. Addition or subtraction of a pointer into, or just beyond, an array object and an integer 
type produces a result that points just beyond the array object and is used as the operand of 
a unary * operator that is evaluated (6.5.6). 

TS17961	5.22	[invptr]	EXAMPLE	4,	6,	10,	12	

Reviewers:	svoboda	

45. Pointers that do not point into, or just beyond, the same array object are subtracted 
(6.5.6). 

TS17961	5.36	[ptrobj]	EXAMPLE,	CERT	C	Rule	ARR36-C	1st	NCCE	7.3.1	

Reviewers:	svoboda	

46. An array subscript is out of range, even if an object is apparently accessible with the given 
subscript (as in the lvalue expression a[1][7] given the declaration int a[4][5]) (6.5.6). 

TS17961	5.22	[invptr]	EXAMPLE	8	

Reviewers:	svoboda	

47. The result of subtracting two pointers is not representable in an object of type ptrdiff_t 
(6.5.6). 
#include <stdlib.h>	
size_t size = 1 + (SIZE_MAX / 2);	
char* x = malloc(size);	
assert(x != 0);	
char* start = x;	
char* too_far = x + size;	
ptrdiff_t too_big = too_far - start;  // Undefined Behavior	

Reviewers:	svoboda	



48. An expression is shifted by a negative number or by an amount greater than or equal to 
the width of the promoted expression (6.5.7). 

CERT	C	Rule	INT34-C	1st	NCCE	5.5.1,	2nd	NCCE	5.5.3,	3rd	NCCE	5.5.5	

Reviewers:	svoboda	

49. An expression having signed promoted type is left-shifted and either the value of the 
expression is negative or the result of shifting would not be representable in the promoted 
type (6.5.7). 

CERT	C	Rule	INT32-C	6th	NCCE	5.3.8.1,	CERT	C	Rule	INT34-C	2nd	NCCE	5.5.3	

Reviewers:	svoboda	

50. Pointers that do not point to the same aggregate or union (nor just beyond the same 
array object) are compared using relational operators (6.5.8). 
struct {	
  int x;	
  int y;	
} a, b;	
if (&a.y < &b.y) {  // Undefined Behavior	
  // ...	
}	

Reviewers:	uecker,	svoboda	

51. An object is assigned to an inexactly overlapping object or to an exactly overlapping 
object with incompatible type (6.5.16.1). 

TODO	

Reviewers:	

52. An expression that is required to be an integer constant expression does not have an 
integer type; has operands that are not integer constants, named constants, compound literal 
constants, enumeration constants, character constants, predefined constants, sizeof 
expressions whose results are integer constants, alignof expressions, or immediately-cast 
floating constants; or contains casts (outside operands to sizeof and alignof operators) other 
than conversions of arithmetic types to integer types (6.6). 

TODO	

Reviewers:	



53. A constant expression in an initializer is not, or does not evaluate to, one of the following: 
a named constant, a compound literal constant, an arithmetic constant expression, a null 
pointer constant, an address constant, or an address constant for a complete object type plus 
or minus an integer constant expression (6.6). 

TODO	

Reviewers:	

54. An arithmetic constant expression does not have arithmetic type; has operands that are 
not integer constants, floating constants, named and compound literal constants of 
arithmetic type, character constants, predefined constants, sizeof expressions whose results 
are integer constants, or alignof expressions; or contains casts (outside operands to sizeof or 
alignof operators) other than conversions of arithmetic types to arithmetic types (6.6). 

TODO	

Reviewers:	

55. The value of an object is accessed by an array-subscript [], member-access . or ->, address 
&, or indirection * operator or a pointer cast in creating an address constant (6.6). 

TODO	

Reviewers:	

56. An identifier for an object is declared with no linkage and the type of the object is 
incomplete after its declarator, or after its init-declarator if it has an initializer (6.7). 

TODO	

Reviewers:	

57. A function is declared at block scope with an explicit storage-class specifier other than 
extern (6.7.1). 

TODO	

Reviewers:	

58. A structure or union is defined without any named members (including those specified 
indirectly via anonymous structures and unions) (6.7.2.1). 

TODO	

Reviewers:	

59. An attempt is made to access, or generate a pointer to just past, a flexible array member 
of a structure when the referenced object provides no elements for that array (6.7.2.1). 

CERT	C	Rule	ARR30-C	5th	NCCE	7.1.10	



Reviewers:	svoboda	

60. When the complete type is needed, an incomplete structure or union type is not 
completed in the same scope by another declaration of the tag that defines the content 
(6.7.2.3). 

TODO:	COMPILABLE	EXAMPLE?	

Reviewers:	

61. An attempt is made to modify an object defined with a const-qualified type through use 
of an lvalue with non-const-qualified type (6.7.3). 

CERT	C	Rule	EXP40-C	1st	NCCE	4.9.1	

Reviewers:	svoboda	

62. An attempt is made to refer to an object defined with a volatile-qualified type through 
use of an lvalue with non-volatile-qualified type (6.7.3). 

CERT	C	Rule	EXP32-C	1st	NCCE	4.2.1	

Reviewers:	svoboda,	s.maddanimath	

63. The specification of a function type includes any type qualifiers (6.7.3). 
typedef int fun_t(int);	
const fun_t f;  // Undefined Behavior	

Reviewers:	uecker,	svoboda	

64. Two qualified types that are required to be compatible do not have the identically 
qualified version of a compatible type (6.7.3). 

TODO	

Reviewers:	

65. An object which has been modified is accessed through a restrict-qualified pointer to a 
const-qualified type, or through a restrict-qualified pointer and another pointer that are not 
both based on the same object (6.7.3.1). 

TS17961	5.33	[restrict]	EXAMPLE	1,	2,	CERT	C	Rule	EXP43-C	2st	NCCE	4.11.2.1,	3rd	NCCE	
4.11.2.3,	5th	NCCE	4.11.4.1	

Reviewers:	svoboda	

66. A restrict-qualified pointer is assigned a value based on another restricted pointer whose 
associated block neither began execution before the block associated with this pointer, nor 
ended before the assignment (6.7.3.1). 

CERT	C	Rule	EXP43-C	1st	NCCE	4.11.1.1,	4th	NCCE	4.11.3.1,	6th	NCCE	4.11.5.1	



Reviewers:	svoboda	

67. A function with external linkage is declared with an inline function specifier, but is not 
also defined in the same translation unit (6.7.4). 
extern inline int foo(int x);  // Undefined Behavior	

Reviewers:	svoboda	

68. A function declared with a _Noreturn function specifier returns to its caller (6.7.4). 
#include <stdnoreturn.h>	
_Noreturn void f(void) {	
  return;  // Undefined Behavior at run-time	
}	

Reviewers:	uecker,	svoboda	

69. The definition of an object has an alignment specifier and another declaration of that 
object has a different alignment specifier (6.7.5). 

TODO	

Reviewers:	

70. Declarations of an object in different translation units have different alignment specifiers 
(6.7.5). 

TODO	

Reviewers:	

71. Two pointer types that are required to be compatible are not identically qualified, or are 
not pointers to compatible types (6.7.6.1). 

TODO	

Reviewers:	

72. The size expression in an array declaration is not a constant expression and evaluates at 
program execution time to a nonpositive value (6.7.6.2). 

TODO	

Reviewers:	

73. In a context requiring two array types to be compatible, they do not have compatible 
element types, or their size specifiers evaluate to unequal values (6.7.6.2). 

CERT	C	Rule	EXP39-C	4th	NCCE	4.8.7	

Reviewers:	s.maddanimath	



74. A declaration of an array parameter includes the keyword static within the [ and ] and the 
corresponding argument does not provide access to the first element of an array with at least 
the specified number of elements (6.7.6.3). 

TODO	

Reviewers:	

75. A storage-class specifier or type qualifier modifies the keyword void as a function 
parameter type list (6.7.6.3). 
void f(const void);	
void g(register void);  // Undefined Behavior	

TODO:	COMPILABLE	EXAMPLE?	

Reviewers:	

76. In a context requiring two function types to be compatible, they do not have compatible 
return types, or their parameters disagree in use of the ellipsis terminator or the number and 
type of parameters (after default argument promotion, when there is no parameter type list) 
(6.7.6.3). 

TODO	

Reviewers:	

77. A declaration for which a type is inferred contains a pointer, array, or function declarators 
(6.7.9). 

TODO	

Reviewers:	

78. A declaration for which a type is inferred contains no or more than one declarators 
(6.7.9). 

TODO	

Reviewers:	

79. The value of an unnamed member of a structure or union is used (6.7.10). 

TODO	

Reviewers:	

80. The initializer for a scalar is neither a single expression, an empty initializer, nor a single 
expression enclosed in braces (6.7.10). 

TODO	

Reviewers:	



81. The initializer for a structure or union object is neither an initializer list nor a single 
expression that has compatible structure or union type (6.7.10). 

TODO	

Reviewers:	

82. The initializer for an aggregate or union, other than an array initialized by a string literal, 
is not a brace-enclosed list of initializers for its elements or members (6.7.10). 

TODO	

Reviewers:	

83.A function definition that does not have the asserted property is called by a function 
declaration or a function pointer with a type that has the unsequenced or reproducible 
attribute (6.7.12.7). 

TODO	

Reviewers:	

84. An identifier with external linkage is used, but in the program there does not exist exactly 
one external definition for the identifier, or the identifier is not used and there exist multiple 
external definitions for the identifier (6.9). 

TODO	

Reviewers:	

C18-87. An adjusted parameter type in a function definition is not a complete object type 
(6.9.1). 
// no previous definition of struct foo	
void f(struct foo x) {}   // Undefined Behavior	

TODO:	COMPILABLE	EXAMPLE?	

Reviewers:	

85. A function that accepts a variable number of arguments is defined without a parameter 
type list that ends with the ellipsis notation (6.9.1). 

TODO:	COMPILABLE	EXAMPLE?	

Reviewers:	

86. The } that terminates a function is reached, and the value of the function call is used by 
the caller (6.9.1). 

CERT	C	Rule	MSC37-C	1st	NCCE	15.4.1,	2nd	NCCE	15.4.3,	3rd	NCCE	15.4.3.1	

Reviewers:	svoboda	



87. An identifier for an object with internal linkage and an incomplete type is declared with a 
tentative definition (6.9.2). 

TODO	

Reviewers:	

88. A non-directive preprocessing directive is executed (6.10). 

TODO	

Reviewers:	

89. The token defined is generated during the expansion of a #if or #elif preprocessing 
directive, or the use of the defined unary operator does not match one of the two specified 
forms prior to macro replacement (6.10.1). 

TODO	

Reviewers:	

90. The #include preprocessing directive that results after expansion does not match one of 
the two header name forms (6.10.2). 

TODO	

Reviewers:	

91. The character sequence in an #include preprocessing directive does not start with a letter 
(6.10.2). 

TODO	

Reviewers:	

92. There are sequences of preprocessing tokens within the list of macro arguments that 
would otherwise act as preprocessing directives (6.10.4). 

CERT	C	Rule	PRE32-C	1st	NCCE	2.3.1	

Reviewers:	svoboda	

93. The result of the preprocessing operator # is not a valid character string literal (6.10.4.2). 

TODO	

Reviewers:	

94. The result of the preprocessing operator ## is not a valid preprocessing token (6.10.4.3). 

TODO	

Reviewers:	



95. The #line preprocessing directive that results after expansion does not match one of the 
two well-defined forms, or its digit sequence specifies zero or a number greater than 
2147483647 (6.10.5). 

TODO	

Reviewers:	

96. A non-STDC #pragma preprocessing directive that is documented as causing translation 
failure or some other form of undefined behavior is encountered (6.10.7). 

TODO	

Reviewers:	

97. A #pragma STDC preprocessing directive does not match one of the well-defined forms 
(6.10.7). 

TODO	

Reviewers:	

98. The name of a predefined macro, or the identifier defined, is the subject of a #define or 
#undef preprocessing directive (6.10.9). 

TODO	

Reviewers:	

99. An attempt is made to copy an object to an overlapping object by use of a library 
function, other than as explicitly allowed (e.g., memmove) (Clause 7). 

CERT	C	Rule	EXP43-C	4th	NCCE	4.11.3.1	

Reviewers:	svoboda	

100. A file with the same name as one of the standard headers, not provided as part of the 
implementation, is placed in any of the standard places that are searched for included source 
files (7.1.2). 

CERT	C	Rec	PRE04-C	1st	NCCE	

Reviewers:	svoboda	

101. A header is included within an external declaration or definition (7.1.2). 

TODO	

Reviewers:	



102. A function, object, type, or macro that is specified as being declared or defined by some 
standard header is used before any header that declares or defines it is included (7.1.2). 

TODO	

Reviewers:	

103. A standard header is included while a macro is defined with the same name as a 
keyword (7.1.2). 

TODO	

Reviewers:	

104. The program attempts to declare a library function itself, rather than via a standard 
header, but the declaration does not have external linkage (7.1.2). 

CERT	C	Rule	DCL37-C	4th	NCCE	3.4.7	

Reviewers:	svoboda,	s.maddanimath	

105. The program declares or defines a reserved identifier, other than as allowed by 7.1.4 
(7.1.3). 

TS17961	5.44	[resident]	EXAMPLE	1,	2,	4,	6,	8	

Reviewers:	svoboda	

106. The program removes the definition of a macro whose name begins with an underscore 
and either an uppercase letter or another underscore (7.1.3). 
#undef __STDC_UTF_32__	
// Undefined Behavior	

Reviewers:	svoboda	

107. An argument to a library function has an invalid value or a type not expected by a 
function with a variable number of arguments (7.1.4). 
#include <stdio.h>	
	
printf("Hello, %s!\n", 123);  // Undefined Behavior	

Reviewers:	svoboda	

108. The pointer passed to a library function array parameter does not have a value such that 
all address computations and object accesses are valid (7.1.4). 

TS17961	5.20	[libptr]	EXAMPLE	1,	2,	3,	4,	5.22	[invptr]	EXAMPLE	13,	5.31	[nonnullcs]	
EXAMPLE	2,	5.37	[taintstrcpy]	EXAMPLE,	5.40	[taintformatio]	EXAMPLE	2	

Reviewers:	svoboda	



109. The macro definition of assert is suppressed to access an actual function (7.2). 

CERT	C	Rule	MSC38-C	1st	NCCE	15.5.1	

Reviewers:	svoboda	

110. The argument to the assert macro does not have a scalar type (7.2). 
#include <assert.h>	
	
int a[5];	
assert(a);  // Undefined Behavior	

Reviewers:	svoboda	

111. The CX_LIMITED_RANGE, FENV_ACCESS, or FP_CONTRACT pragma is used in any context 
other than outside all external declarations or preceding all explicit declarations and 
statements inside a compound statement (7.3.4, 7.6.1, 7.12.2). 

TODO	

void f(void)	
{	
  int a;	
  #pragma FP_CONTRACT OFF	
}	

Reviewers:	uecker	

112. The value of an argument to a character handling function is neither equal to the value 
of EOF nor representable as an unsigned char (7.4). 

TS17961	5.32	[chrsgnext]	EXAMPLE	

Reviewers:	svoboda	

113. A macro definition of errno is suppressed to access an actual object, or the program 
defines an identifier with the name errno (7.5). 

TS17961	5.44	[resident]	EXAMPLE	1,	CERT	C	Rule	MSC38-C	2nd	NCCE	15.5.3	

Reviewers:	svoboda	

114. Part of the program tests floating-point status flags, sets floating-point control modes, or 
runs under non-default mode settings, but was translated with the state for the 
FENV_ACCESS pragma “off” (7.6.1). 

TODO	

Reviewers:	



115. The exception-mask argument for one of the functions that provide access to the 
floating-point status flags has a nonzero value not obtained by bitwise OR of the floating-
point exception macros (7.6.4). 

TODO	

Reviewers:	

116. The fesetexceptflag function is used to set floating-point status flags that were not 
specified in the call to the fegetexceptflag function that provided the value of the 
corresponding fexcept_t object (7.6.4.5). 

TODO	

Reviewers:	

117. The argument to fesetenv or feupdateenv is neither an object set by a call to fegetenv or 
feholdexcept, nor is it an environment macro (7.6.6.3, 7.6.6.4). 

TODO	

Reviewers:	

118. The value of the result of an integer arithmetic or conversion function cannot be 
represented (7.8.2.1, 7.8.2.2, 7.8.2.3, 7.8.2.4, 7.24.6.1, 7.24.6.2, 7.24.1). 

TODO	

Reviewers:	

119. The program modifies the string pointed to by the value returned by the setlocale 
function (7.11.1.1). 

TS17961	5.29	[libmod]	EXAMPLE	1	

Reviewers:	svoboda	

120. A pointer returned by the setlocale function is used after a subsequent call to the 
function, or after the calling thread has exited (7.11.1.1). 
#include <locale.h>	
	
char *locale1 = setlocale(LC_ALL, "");	
assert(locale1);	
/* ... */	
char *locale2 = setlocale(LC_ALL, "");	
int size = strlen(locale1);  // Undefined Behavior	

Reviewers:	svoboda	



121. The program modifies the structure pointed to by the value returned by the localeconv 
function (7.11.2.1). 

TS17961	5.29	[libmod]	EXAMPLE	2	

Reviewers:	svoboda	

122. A macro definition of math_errhandling is suppressed or the program defines an 
identifier with the name math_errhandling (7.12). 

TODO	

Reviewers:	

123. An argument to a floating-point classification or comparison macro is not of real floating 
type (7.12.3, 7.12.17). 

TODO	

Reviewers:	

124. A macro definition of setjmp is suppressed to access an actual function, or the program 
defines an external identifier with the name setjmp (7.13). 
#include <setjmp.h>	
	
int setjmp(char* foo);  // Undefined Behavior	

Reviewers:	svoboda	

125. An invocation of the setjmp macro occurs other than in an allowed context (7.13.2.1). 

CERT	C	Rec	MSC22-C	1st	NCCE	

Reviewers:	svoboda	

126. The longjmp function is invoked to restore a nonexistent environment (7.13.2.1). 

CERT	C	Rec	MSC22-C,2nd	NCCE	

Reviewers:	svoboda	

127. After a longjmp, there is an attempt to access the value of an object of automatic 
storage duration that does not have volatile-qualified type, local to the function containing 
the invocation of the corresponding setjmp macro, that was changed between the setjmp 
invocation and longjmp call (7.13.2.1). 

CERT	C	Rec	MSC22-C	3rd	NCCE	

Reviewers:	svoboda	



128. The program specifies an invalid pointer to a signal handler function (7.14.1.1). 
#include <signal.h>	
	
void *handler = NULL;	
signal(handler, SIG_IGN);  // Undefined Behavior	

Reviewers:	svoboda	

129. A signal handler returns when the signal corresponded to a computational exception 
(7.14.1.1). 

CERT	C	Rule:	SIG35-C,1st	NCCE	

Reviewers:	svoboda	

130. A signal handler called in response to SIGFPE, SIGILL, SIGSEGV, or any other 
implementation-defined value corresponding to a computational exception returns 
(7.14.1.1). 

CERT	C	Rule	SIG35-C	1st	NCCE	12.4.1	

Reviewers:	svoboda	

131. A signal occurs as the result of calling the abort or raise function, and the signal handler 
calls the raise function (7.14.1.1). 

TS17961	5.5	[asyncsig]	EXAMPLE	2,	CERT	C	Rule	SIG30-C	3rd	NCCE	12.1.5	

Reviewers:	svoboda	

132. A signal occurs other than as the result of calling the abort or raise function, and the 
signal handler refers to an object with static or thread storage duration that is not a lock-free 
atomic object other than by assigning a value to an object declared as volatile sig_atomic_t, 
or calls any function in the standard library other than the abort function, the _Exit function, 
the quick_exit function, the functions in <stdatomic.h> (except where explicitly stated 
otherwise) when the atomic arguments are lock-free, the atomic_is_lock_free function with 
any atomic argument, or the signal function (for the same signal number) (7.14.1.1). 

TS17961	5.3	[accsig]	EXAMPLE,	5.5	[asyncsig]	EXAMPLE	1,	3	

Reviewers:	svoboda	

133. The value of errno is referred to after a signal occurred other than as the result of calling 
the abort or raise function and the corresponding signal handler obtained a SIG_ERR return 
from a call to the signal function (7.14.1.1). 

CERT	C	Rule	ERR32-C	1st	NCCE	13.2.1	

Reviewers:	svoboda	



134. A signal is generated by an asynchronous signal handler (7.14.1.1). 

CERT	C	Rule	SIG30-C	2nd	NCCE	12.1.3	

Reviewers:	svoboda	

135. The signal function is used in a multi-threaded program (7.14.1.1). 

CERT	C	Rule	CON37-C	1st	NCCE	14.8.1	

Reviewers:	svoboda	

136. A function with a variable number of arguments attempts to access its varying 
arguments other than through a properly declared and initialized va_list object, or before the 
va_start macro is invoked (7.16, 7.16.1.1, 7.16.1.4). 
#include <stdio.h>	
#include <stdarg.h>	
	
void f(int last, ...) {	
  va_list args;	
  int number = va_arg(args, int);  // Undefined Behavior	
  va_start( args, last);           // oops, should precede va_args!	
  printf("The number is %d\n", number);	
  va_end(args);	
}	
	
int main() {	
  f(1, 2, 3);	
  return 0;	
}	

Reviewers:	svoboda	

137. The macro va_arg is invoked using the parameter ap that was passed to a function that 
invoked the macro va_arg with the same parameter (7.16). 
#include <stdio.h>	
#include <stdarg.h>	
	
void g(va_list args) {	
  int number = va_arg(args, int);	
  printf("The first variadic number is %d\n", number);	
}	
	
void f(int last, ...) {	
  va_list args;	
  va_start( args, last);	
  g(args);	
  int number = va_arg(args, int);  // Undefined Behavior	
  printf("The next variadic number is %d\n", number);	
  va_end(args);	



}	
	
void main() {	
  f(1, 2, 3);	
}	

Reviewers:	svoboda	

138. A macro definition of va_start, va_arg, va_copy, or va_end is suppressed to access an 
actual function, or the program defines an external identifier with the name va_copy or 
va_end (7.16.1). 
#include <stdarg.h>	
	
// Undefined Behavior	
#undef va_arg	

Reviewers:	svoboda	

139. The va_start or va_copy macro is invoked without a corresponding invocation of the 
va_end macro in the same function, or vice versa (7.16.1, 7.16.1.2, 7.16.1.3, 7.16.1.4). 
#include <stdarg.h>	
	
void f(int last, ...) {	
  va_list args;	
  va_start( args, last);	
  /* Undefined Behavior, missing va_end(args) */	
}	

Reviewers:	svoboda	

140. The va_arg macro is invoked when there is no actual next argument, or with a specified 
type that is not compatible with the promoted type of the actual next argument, with certain 
exceptions (7.16.1.1). 

CERT	C	Rec	DCL10-C	1st	NCCE,	CERT	C	Rule	MSC39-C	1st	NCCE	15.6.1	

Reviewers:	svoboda	

141. The type parameter to the va_arg macro does not name an object type (7.16.1.1). 
#include <stdio.h>	
#include <stdarg.h>	
	
int main() {	
  int x[] = {1, 2};	
  int y[] = {3, 4};	
  my_printf("My data", x, y);	
}	
	
void my_printf(const char* prefix, ...) {	
  va_list args;	



  int *x;	
  int *y;	
  va_start( args, prefix);	
  x = va_arg(  args, int*);   /* OK */	
  y = va_arg(  args, int[2]); /* Undefined Behavior */	
  va_end( args);	
  printf("%s: [%d, %d], [%d, %d]\n", prefix, x[0], x[1], y[0], y[1]);	
}	

Reviewers:	svoboda,	UBSG	

142. Using a null pointer constant in form of an integer expression as an argument to a … 
function and then interpreting it as a void* or char* (7.16.1.1). 

CERT	C	Rec	DCL10-C	1st	NCCE,	CERT	C	Rule	MSC39-C	1st	NCCE	15.6.1	

Reviewers:	svoboda	

143. The va_copy or va_start macro is invoked to initialize a va_list that was previously 
initialized by either macro without an intervening invocation of the va_end macro for the 
same va_list (7.16.1.2, 7.16.1.4). 
#include <stdarg.h>	
	
void f(int last, ...) {	
  va_list args;	
  va_start( args, last);	
  va_start( args, last);   // Undefined Behavior	
  va_end(args);	
}	

Reviewers:	svoboda	

144. The va_start macro is invoked with additional arguments that include unbalanced 
parentheses, or unrecognized preprocessing tokens (7.16.1.4). 

CERT	C	Rec	DCL10-C	1st	NCCE,	CERT	C	Rule	MSC39-C	1st	NCCE	15.6.1	

Reviewers:	svoboda	

C18-145. The parameter parmN of a va_start macro is declared with the register storage class, 
with a function or array type, or with a type that is not compatible with the type that results 
after application of the default argument promotions (7.16.1.4). 
#include <stdio.h>	
#include <stdarg.h>	
	
void f(int last, ...) {	
  register int wrong = 0;	
  va_list args;	
  va_start( args, wrong);  // Undefined Behavior	
  int number = va_arg(args, int);  // Undefined Behavior, no arg!	



  printf("The next variadic number is %d\n", number);	
  va_end(args);	
}	

Reviewers:	svoboda	

145. The macro definition of a generic function is suppressed to access an actual function 
(7.17.1, 7.18). 

TODO	

Reviewers:	

146. The type parameter of an offsetof macro defines a new type (7.21). 

TODO	

Reviewers:	

147. When program execution reaches an unreachable() macro invocation (7.21.1). 

TODO	

Reviewers:	

148. Arbitrarily copying or changing the bytes of or copying from a non-null pointer into a 
nullptr_t object and then reading that object (7.21.2). 

TODO	

Reviewers:	

149. The member-designator parameter of an offsetof macro is an invalid right operand of 
the . operator for the type parameter, or designates a bit-field (7.21). 

TODO	

Reviewers:	

150. The argument in an instance of one of the integer-constant macros is not a decimal, 
octal, or hexadecimal constant, or it has a value that exceeds the limits for the corresponding 
type (7.22.4). 

TODO	

Reviewers:	

151. A byte input/output function is applied to a wide-oriented stream, or a wide character 
input/output function is applied to a byte-oriented stream (7.23.2). 
#include <stdio.h>	
#include <wchar.h>	
	



int main() {	
  FILE* in = fopen("foo.txt", "r");	
	
  wchar_t wide_line[80];	
  fgetws(wide_line, sizeof(wchar_t) * sizeof(wide_line), in);	
  // the stream is now oriented for wide characters	
  wprintf(L"The first line is: %ls", wide_line);	
	
  char line[80];	
  fgets(line, sizeof(line), in);  // Undefined behavior	
  printf("The second line is: %s", line);	
	
  return 0;	
}	

Reviewers:	svoboda	

152. Use is made of any portion of a file beyond the most recent wide character written to a 
wide-oriented stream (7.23.2). 

TODO	(but	this	may	be	removed	from	C23	as	of	@sei-svoboda’s	clarity	request	n3064)	

153. The value of a pointer to a FILE object is used after the associated file is closed (7.23.3). 

CERT	C	Rule	FIO46-C	1st	NCCE	10.12.1	

Reviewers:	svoboda	

154. The stream for the fflush function points to an input stream or to an update stream in 
which the most recent operation was input (7.23.5.2). 
#include <stdio.h>	
	
FILE* f = fopen("foo", "r");	
fflush(f);  // Undefined Behavior	

Reviewers:	svoboda	

155. The string pointed to by the mode argument in a call to the fopen function does not 
exactly match one of the specified character sequences (7.23.5.3). 
#include <stdio.h>	
	
FILE* f = fopen("foo", "read");  // Undefined Behavior	

Reviewers:	svoboda	



156. An output operation on an update stream is followed by an input operation without an 
intervening call to the fflush function or a file positioning function, or an input operation on 
an update stream is followed by an output operation with an intervening call to a file 
positioning function (7.23.5.3). 

TS17961	5.27	[ioileave]	EXAMPLE	

Reviewers:	svoboda	

157. An attempt is made to use the contents of the array that was supplied in a call to the 
setvbuf function (7.23.5.6). 
#include <stdio.h>	
	
#define SIZE 1024	
char buf[SIZE];	
FILE _file = fopen("foo", "r");	
if (file == 0 ||	
    setvbuf(file, buf, buf ? IOFBF : IONBF, SIZE) != 0) {	
  /* Handle error */	
}	
/* ... */	
buf[0] = '\0';  // Undefined Behavior	

Reviewers:	svoboda	

158. There are insufficient arguments for the format in a call to one of the formatted 
input/output functions, or an argument does not have an appropriate type (7.23.6.1, 
7.23.6.2, 7.31.2.1, 7.31.2.2). 

TS17961	5.45	[invfmtstr]	EXAMPLE,	CERT	C	Rec	DCL10-C	2nd	NCCE	

Reviewers:	svoboda	

159. The format in a call to one of the formatted input/output functions or to the strftime or 
wcsftime function is not a valid multibyte character sequence that begins and ends in its 
initial shift state (7.23.6.1, 7.23.6.2, 7.29.3.5, 7.31.2.1, 7.31.2.2, 7.31.5.1). 
#include <stdio.h>	
#include <locale.h>	
	
setlocale(LC_ALL, "UTF-8");	
/* In UTF-8: the Euro symbol == '€' == U+20AC == \xE2 \x82 \xAC == \342 \202 
\254 */	
const char s[] = {'\xE2', '\0'};  // invalid UTF-8	
printf(s);   // Undefined Behavior in UTF-8 locale	

Reviewers:	svoboda,	UBSG	



160. In a call to one of the formatted output functions, a precision appears with a conversion 
specifier other than those described (7.23.6.1, 7.31.2.1). 
#include <stdio.h>	
	
void f(char c) {	
  printf("%.3c", c);  // Undefined Behavior	
}	

Reviewers:	svoboda	

161. A conversion specification for a formatted output function uses an asterisk to denote an 
argument-supplied field width or precision, but the corresponding argument is not provided 
(7.23.6.1, 7.31.2.1). 
#include <stdio.h>	
	
void f(int i) {	
  printf("%*iX", i);  // Undefined Behavior	
}	

Reviewers:	svoboda	

162. A conversion specification for a formatted output function uses a # or 0 flag with a 
conversion specifier other than those described (7.23.6.1, 7.31.2.1). 
#include <stdio.h>	
	
void f(char* s) {	
  printf("%0s", s);  // Undefined Behavior	
}	

Reviewers:	svoboda	

163. A conversion specification for one of the formatted input/output functions uses a length 
modifier with a conversion specifier other than those described (7.23.6.1, 7.23.6.2, 7.31.2.1, 
7.31.2.2). 
#include <stdio.h>	
	
void f(int* pi) {	
  printf("%lp", pi);  /* 'l' not defined for %p */ }	

Reviewers:	svoboda	

164. An s conversion specifier is encountered by one of the formatted output functions, and 
the argument is missing the null terminator (unless a precision is specified that does not 
require null termination) (7.23.6.1, 7.31.2.1). 

TS17961	5.31	[nonnullcs]	EXAMPLE	1	

Reviewers:	svoboda	



165. An n conversion specification for one of the formatted input/output functions includes 
any flags, an assignment-suppressing character, a field width, or a precision (7.23.6.1, 
7.23.6.2, 7.31.2.1, 7.31.2.2). 
#include <stdio.h>	
	
void f(int* pi) {	
  printf("%-n", pi);  // Undefined Behavior	
}	

Reviewers:	svoboda	

166. A % conversion specifier is encountered by one of the formatted input/output functions, 
but the complete conversion specification is not exactly %% (7.23.6.1, 7.23.6.2, 7.31.2.1, 
7.31.2.2). 
#include <stdio.h>	
	
void f(void) {	
  printf("%-%");  // Undefined Behavior	
}	

Reviewers:	svoboda	

167. An invalid conversion specification is found in the format for one of the formatted 
input/output functions, or the strftime or wcsftime function (7.23.6.1, 7.23.6.2, 7.29.3.5, 
7.31.2.1, 7.31.2.2, 7.31.5.1). 
#include <stdio.h>	
	
void f(int i) {	
  printf("%q", i);  /* %q not defined */	
}	

Reviewers:	svoboda	

168. The number of characters or wide characters transmitted by a formatted output function 
(or written to an array, or that would have been written to an array) is greater than INT_MAX 
(7.23.6.1, 7.31.2.1). 
#include <stdio.h>	
	
void f(int i) {	
  printf("%*iX", INT_MAX, i);  // Undefined Behavior	
}	

Reviewers:	svoboda	

169. The number of input items assigned by a formatted input function is greater than 
INT_MAX (7.23.6.2, 7.31.2.2). 
#include <stdio.h>	
#include <limits.h>	
#include <stdarg.h>	



	
/* Assume this function is called with >INT_MAX arguments */	
void f(int unused, ...) {	
  va_list args;	
  va_start( args, unused);	
	
  static unsigned int size = (unsigned int) INT_MAX + 1U;	
	
  char format_string[size*2 + 1]; // will be "%c%c%c..."	
  for (unsigned int i = 0; i < size; i++) {	
    format_string[i] = '%';	
    format_string[i+1] = 'c';	
  }	
  format_string[size*2] = '\0';	
	
  vscanf(format_string, args);    // Undefined Behavior	
}	

Reviewers:	svoboda	

170. The result of a conversion by one of the formatted input functions cannot be 
represented in the corresponding object, or the receiving object does not have an 
appropriate type (7.23.6.2, 7.31.2.2). 

CERT	C	Rec	INT05-C	1st	NCCE	

Reviewers:	svoboda	

171. A c, s, or [ conversion specifier is encountered by one of the formatted input functions, 
and the array pointed to by the corresponding argument is not large enough to accept the 
input sequence (and a null terminator if the conversion specifier is s or [) (7.23.6.2, 7.31.2.2). 

TS17961	5.40	[taintformatio]	EXAMPLE	1	

Reviewers:	svoboda	

172. A c, s, or [ conversion specifier with an l qualifier is encountered by one of the formatted 
input functions, but the input is not a valid multibyte character sequence that begins in the 
initial shift state (7.23.6.2, 7.31.2.2). 
#include <stdio.h>	
#include <locale.h>	
	
setlocale(LC_ALL, "UTF-8");	
/* In UTF-8: the Euro symbol == '€' == U+20AC == \xE2 \x82 \xAC == \342 \202 
\254 */	
const char invalid[] = {'\xE2', '\0'};  // invalid UTF-8	
char c;	
sscanf(invalid, "%c", &c);  // Undefined Behavior in UTF-8 locale	

Reviewers:	svoboda	



173. The input item for a %p conversion by one of the formatted input functions is not a value 
converted earlier during the same program execution (7.23.6.2, 7.31.2.2). 
#include <stdio.h>	
	
char addr[] = "0x12345678"; // not produced by this code	
void* ptr;	
sscanf( addr, "%p", &ptr);  // Undefined Behavior	

Reviewers:	svoboda	

174. The vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, vsscanf, vfwprintf, vfwscanf, 
vswprintf, vswscanf, vwprintf, or vwscanf function is called with an improperly initialized 
va_list argument, or the argument is used (other than in an invocation of va_end) after the 
function returns (7.23.6.8, 7.23.6.9, 7.23.6.10, 7.23.6.11, 7.23.6.12, 7.23.6.13, 7.23.6.14, 
7.31.2.5, 7.31.2.6, 7.31.2.7, 7.31.2.8, 7.31.2.9, 7.31.2.10). 
#include <stdio.h>	
#include <stdarg.h>	
	
void f(int first, int last, ...) {	
  va_list args;	
  va_start( args, first);          // oops, not last fixed arg	
  vprintf("Hello, %s\n", args);    // Undefined Behavior	
}	

Reviewers:	svoboda	

175. The contents of the array supplied in a call to the fgets or fgetws function are used after 
a read error occurred (7.23.7.2, 7.31.3.2). 

TODO	

Reviewers:	

176. The n parameter is negative or zero for a call to fgets or fgetws. (7.23.7.2, 7.31.3.2). 

TODO	

Reviewers:	

177. The file position indicator for a binary stream is used after a call to the ungetc function 
where its value was zero before the call (7.23.7.10). 

TODO	

Reviewers:	

178. The file position indicator for a stream is used after an error occurred during a call to the 
fread or fwrite function (7.23.8.1, 7.23.8.2). 

TODO	



Reviewers:	

179. A partial element read by a call to the fread function is used (7.23.8.1). 

TODO	

Reviewers:	

180. The fseek function is called for a text stream with a nonzero offset and either the offset 
was not returned by a previous successful call to the ftell function on a stream associated 
with the same file or whence is not SEEK_SET (7.23.9.2). 

TODO	

Reviewers:	

181. The fsetpos function is called to set a position that was not returned by a previous 
successful call to the fgetpos function on a stream associated with the same file (7.23.9.3). 

TS17961	5.41	[xfilepos]	EXAMPLE	

Reviewers:	svoboda	

182. A non-null pointer returned by a call to the calloc, malloc, realloc, or aligned_alloc 
function with a zero requested size is used to access an object (7.24.3). 
#include <stdlib.h>	
#include <assert.h>	
	
size_t size = 0;	
int _array = (int_) malloc(size * sizeof(int));	
assert(array);	
array[0] = 123;  // out-of-bounds write	

Reviewers:	svoboda	

183. The value of a pointer that refers to space deallocated by a call to the free or realloc 
function is used (7.24.3). 

TS17961	5.2	[accfree]	EXAMPLE	1,2,3	

Reviewers:	svoboda	

184. The pointer argument to the free or realloc function is unequal to a null pointer and does 
not match a pointer earlier returned by a memory management function, or the space has 
been deallocated by a call to free or realloc (7.24.3.3, 7.24.3.7). 

TS17961	5.23	[dblfree]	EXAMPLE	1,	2,	TS17961	5.34	[xfree]	EXAMPLE	1,	2	

Reviewers:	svoboda	



185. The value of the object allocated by the malloc function is used (7.24.3.6). 
#include <stdio.h>	
#include <stdlib.h>	
	
unsigned char* p = malloc(10);	
if (p != 0) {	
  printf("p[0] is %c\n", p[0]);  // Undefined Behavior	
}	

Reviewers:	svoboda	

186. The values of any bytes in a new object allocated by the realloc function beyond the size 
of the old object are used (7.24.3.7). 

CERT	C	Rule	EXP33-C	5th	NCCE	4.3.11	

Reviewers:	svoboda,	s.maddanimath	

187. The program calls the exit or quick_exit function more than once, or calls both functions 
(7.24.4.4, 7.24.4.7). 

CERT	C	Rule	ENV32-C	1st	NCCE	11.3.1	

Reviewers:	svoboda	

188. During the call to a function registered with the atexit or at_quick_exit function, a call is 
made to the longjmp function that would terminate the call to the registered function 
(7.24.4.4, 7.24.4.7). 

CERT	C	Rule	ENV32-C	2nd	NCCE	11.3.3	

Reviewers:	svoboda	

189. The string set up by the getenv or strerror function is modified by the program (7.24.4.6, 
7.26.6.3). 

TS17961	5.29	[libmod]	EXAMPLE	3,	4	

Reviewers:	svoboda	

190. A signal is raised while the quick_exit function is executing (7.24.4.7). 

TODO	

Reviewers:	

191. A command is executed through the system function in a way that is documented as 
causing termination or some other form of undefined behavior (7.24.4.8). 

TODO	

Reviewers:	



192. A searching or sorting utility function is called with an invalid pointer argument, even if 
the number of elements is zero (7.24.5). 

TODO	

Reviewers:	

193. The comparison function called by a searching or sorting utility function alters the 
contents of the array being searched or sorted, or returns ordering values inconsistently 
(7.24.5). 

TODO	

Reviewers:	

194. The array being searched by the bsearch function does not have its elements in proper 
order (7.24.5.1). 

TODO	

Reviewers:	

195. The current conversion state is used by a multibyte/wide character conversion function 
after changing the LC_CTYPE category (7.24.7). 

fscanf()	is	defined	is	in	C23	s7.23.6.2.	Example	6,	(paragraph	23)	in	this	section	describes	a	
hypothetical	encoding	with	shift	states,	which	we	will	use	for	this	example:	

#include <stdio.h>	
#include <stdlib.h>	
#include <wchar.h>	
#include <memory.h>	
#include <locale.h>	
	
char str[50];	
wchar_t wstr[50];	
memset(wstr, 0, sizeof(wstr));	
int counter = 0;	
setlocale(LC_CTYPE, "HYPO");                // Use hypoothetical encoding	
/* Suppose standard input contains the single line: ↑□X□Y↓ */	
fgets(str, sizeof(str), stdin);             // str == "↑□X□Y↓"	
counter += mbtowc(wstr, str, 4);            // wstr == "□X", upper state	
setlocale(LC_CTYPE, "C");                   // state changed	
counter += mbtowc(wstr, &str[counter], 4);  // Undefined Behavior	

Reviewers:	svoboda	

196. A string or wide string utility function is instructed to access an array beyond the end of 
an object (7.26.1, 7.31.4). 

CERT	C	Rule	STR38-C	1st	NCCE	8.6.1,	2nd	NCCE	8.6.2,	3rd	NCCE	8.6.4	



Reviewers:	svoboda	

197. A string or wide string utility function is called with an invalid pointer argument, even if 
the length is zero (7.26.1, 7.31.4). 
#include <string.h>	
	
char* c = 0;	
int length = strlen(c); // Undefined Behavior	

Reviewers:	svoboda	

198. The contents of the destination array are used after a call to the strxfrm, strftime, 
wcsxfrm, or wcsftime function in which the specified length was too small to hold the entire 
null-terminated result (7.26.4.5, 7.29.3.5, 7.31.4.4.4, 7.31.5.1). 

TODO	

Reviewers:	

199. A sequence of calls of the strtok function is made from different threads (7.26.5.9). 
#include <string.h>	
#include <threads.h>	
	
int bar(void*) {	
  char *t = strtok(NULL, "#,"); // Undefined Behavior	
  return t[0];	
}	
	
	
char str[] = "?a???b,,,#c";	
char *t = strtok(str, "?");	
thrd_t thr;	
if (thrd_success != thrd_create(&thr, bar, 0)) {	
  /* Handle error */	
}	
	
t = strtok(NULL, ","); // Undefined behavior	
	
int retval;	
if (thrd_success != thrd_join(thr, &retval)) {	
  /* Handle error */	
}	

Reviewers:	svoboda,	CliveP,	robin-rowe	

200. The first argument in the very first call to the strtok or wcstok is a null pointer (7.26.5.9, 
7.31.4.6.7). 
#include <string.h>	
	
static char str[] = "?a???b,,,#c";	



char *t;	
t = strtok(NULL, "?");  // Undefined Behavior	

Reviewers:	svoboda	

201. A pointer returned by the strerror function is used after a subsequent call to the 
function, or after the calling thread has exited (7.26.6.3). 
#include <stdio.h>	
#include <errno.h>	
	
char* inval = strerror(EINVAL);	
char* perm = strerror(EPERM);	
printf("Invalid: %s\n", inval); /* Undefined Behavior, invalidated by perm */	
printf("Permission: %s\n", perm);	

Reviewers:	svoboda	

202. The type of an argument to a type-generic macro is not compatible with the type of the 
corresponding parameter of the selected function (7.27). 

TODO	

Reviewers:	

203. Arguments for generic parameters of a type-generic macro are such that some argument 
has a corresponding real type that is of standard floating type and another argument is of 
decimal floating type (7.27). 

TODO	

Reviewers:	

204. Arguments for generic parameters of a type-generic macro are such that neither 
<math.h> and <complex.h> define a function whose generic parameters have the determined 
corresponding real type (7.27). 

TODO	

Reviewers:	

205. A complex argument is supplied for a generic parameter of a type-generic macro that 
has no corresponding complex function (7.27). 

TODO	

Reviewers:	

206. A decimal floating argument is supplied for a generic parameter of a type-generic macro 
that expects a complex argument (7.27). 

TODO	



Reviewers:	

207. A standard floating or complex argument is supplied for a generic parameter of a type-
generic macro that expects a decimal floating type argument (7.27). 

TODO	

Reviewers:	

208. A non-recursive mutex passed to mtx_lock is locked by the calling thread (7.28.4.3). 
#include <threads.h>	
	
mtx_t m;	
if (thrd_success != mtx_init(&m, mtx_plain)) {	
  /* Handle error */	
}	
	
if (thrd_success != mtx_lock(&m)) {	
  /* Handle error */	
}	
	
if (thrd_success != mtx_lock(&m)) {  /* Undefined Behavior */	
  /* Handle error */	
}	
	
mtx_destroy(&m);	

Reviewers:	svoboda	

209. The mutex passed to mtx_timedlock does not support timeout (7.28.4.4). 
#include <threads.h>	
#include <time.h>	
	
mtx_t m;	
if (thrd_success != mtx_init(&m, mtx_plain)) { /* oops, should be mtx_timed 
*/	
  /* Handle error */	
}	
	
struct timespec ts;	
if (0 == timespec_get(&ts, TIME_UTC)) {	
  /* Handle error */	
}	
ts.tv_sec += 1; /* 1 second from now */	
	
if (thrd_success != mtx_timedlock(&m, &ts)) { /* Undefined Behavior */	
  /* Handle error */	
}	
	
mtx_destroy(&m);	



Reviewers:	svoboda	

210. The mutex passed to mtx_unlock is not locked by the calling thread (7.28.4.6). 
#include <threads.h>	
	
mtx_t m;	
if (thrd_success != mtx_init(&m, mtx_plain)) {	
  /* Handle error */	
}	
	
if (thrd_success != mtx_unlock(&m)) {   /* Undefined Behavior */	
  /* Handle error */	
}	
	
mtx_destroy(&m);	

Reviewers:	svoboda	

211. The thread passed to thrd_detach or thrd_join was previously detached or joined with 
another thread (7.28.5.3, 7.28.5.6). 

CERT	C	Rule	CON39-C	1st	NCCE	14.10.1	

Reviewers:	svoboda	

212. The tss_create function is called from within a destructor (7.28.6.1). 
#include <threads.h>	
	
void destructor(void* arg) {	
  tss_t key;	
  if (thrd_success != tss_create(&key, 0)) { /* Undefined Behavior */	
    /* Handle error */	
  }	
}	
	
int func(void*) {	
  tss_t key;	
  if (thrd_success != tss_create(&key, destructor)) {	
    /* Handle error */	
  }	
  static char str[] = "Hello";	
  tss_set(key, str);	
  return 0;	
}	
	
int foo(void*) {	
  thrd_t thr;	
  if (thrd_success != thrd_create(&thr, func, 0)) {	
    /* Handle error */	
  }	



	
  int retval;	
  if (thrd_success != thrd_join(thr, &retval)) {	
    /* Handle error */	
  }	
  return 0;	
}	

Reviewers:	svoboda	

213. The key passed to tss_delete, tss_get, or tss_set was not returned by a call to tss_create 
before the thread commenced executing destructors (7.28.6.2, 7.28.6.3, 7.28.6.4). 
#include <threads.h>	
	
void destructor(void* arg) {	
  tss_t key;	
  if (thrd_success != tss_create(&key, 0)) { /* Undefined Behavior */	
    /* Handle error */	
  }	
}	
	
int func(void*) {	
  tss_t key;	
  static char str[] = "Hello";	
  tss_set(key, str); /* Undefined Behavior, key not initialized by 
tss_create() */	
  return 0;	
}	
	
int foo(void*) {	
  thrd_t thr;	
  if (thrd_success != thrd_create(&thr, func, 0)) {	
    /* Handle error */	
  }	
	
  int retval;	
  if (thrd_success != thrd_join(thr, &retval)) {	
    /* Handle error */	
  }	
  return 0;	
}	

Reviewers:	svoboda	

214. An attempt is made to access the pointer returned by the time conversion functions 
after the thread that originally called the function to obtain it has exited (7.29.3). 
#include <stdio.h>	
#include <threads.h>	
#include <time.h>	



	
char* now = 0;	
	
int bar(void*) {	
  time_t n1;	
  if ((time_t) -1 == time(&n1)) {	
    /* Handle error */	
  }	
  struct tm* n2 = localtime(&n1);	
  now = asctime(n2);	
  return 0;	
}	
	
void foo(void) {	
  thrd_t thr;	
  if (thrd_success != thrd_create(&thr, bar, 0)) {	
    /* Handle error */	
  }	
	
  int retval;	
  if (thrd_success != thrd_join(thr, &retval)) {	
    /* Handle error */	
  }	
	
  printf("The time is %s\n", now); /* Undefined Behavior */	
}	

Reviewers:	svoboda	

215. At least one member of the broken-down time passed to asctime contains a value 
outside its normal range, or the calculated year exceeds four digits or is less than the year 
1000 (7.29.3.1). 

CERT	C	Rule	MSC33-C	1st	NCCE	15.3.1	

Reviewers:	svoboda	

216. The argument corresponding to an s specifier without an l qualifier in a call to the 
fwprintf function does not point to a valid multibyte character sequence that begins in the 
initial shift state (7.31.2.11). 
#include <wchar.h>	
#include <locale.h>	
	
setlocale(LC_ALL, "UTF-8");	
/* In UTF-8: the Euro symbol == '€' == U+20AC == \xE2 \x82 \xAC == \342 \202 
\254 */	
const char invalid[] = {'\xE2', '\0'};   // invalid UTF-8	
fwprintf(stdout, L"The string is %ls\n", invalid);	
/* Undefined Behavior in UTF-8 locale */	



Reviewers:	svoboda	

217. In a call to the wcstok function, the object pointed to by ptr does not have the value 
stored by the previous call for the same wide string (7.31.4.6.7). 
#include <wchar.h>	
#include <stdio.h>	
	
wchar_t input[20] = L"foo bar baz";	
wchar_t* buffer;	
wchar_t* token = wcstok(input, L" ", &buffer);	
while (token) {	
  wprintf(L"%ls\n", token);	
  wcscpy(buffer, input);             // buffer changed	
  token = wcstok(0, L" ", &buffer);  // Undefined Behavior	
}	

Reviewers:	svoboda	

218. An mbstate_t object is used inappropriately (7.31.6). 

CERT	C	Rule	EXP33-C	3rd	NCCE	4.3.7	

Reviewers:	svoboda,	s.maddanimath	

219. The value of an argument of type wint_t to a wide character classification or case 
mapping function is neither equal to the value of WEOF nor representable as a wchar_t 
(7.32.1). 
#include <wctype.h>	
	
int main() {	
  int flag = iswalpha(WINT_MIN);	
  // Undefined Behavior if sizeof(wchar_t) < sizeof(wint_t)	

Reviewers:	svoboda	

220. The iswctype function is called using a different LC_CTYPE category from the one in 
effect for the call to the wctype function that returned the description (7.32.2.2.1). 

See	UB	191	for	background	on	LC_CTYPE	categories.	(editor;	UB	191	of	which	version?)	

#include <wchar.h>	
#include <locale.h>	
	
int f(wint_t wc) {	
  wctype_t alpha = wctype("alpha");	
  setlocale(LC_CTYPE, "C");     // state changed	
  return iswctype(wc, alpha);   // Undefined Behavior	
}	

Reviewers:	svoboda	



221. The towctrans function is called using a different LC_CTYPE category from the one in 
effect for the call to the wctrans function that returned the description (7.32.3.2.1). 
#include <wchar.h>	
#include <wctype.h>	
#include <locale.h>	
	
wint_t f(wint_t wc) {	
  wctype_t lower = wctrans("tolower");	
  setlocale(LC_CTYPE, "C");     // state changed	
  return towctrans(wc, lower);  // Undefined Behavior	
}	

Reviewers:	svoboda	


