
Proposal for C23
WG14 2853

Title: The `void`-_which-binds_: typesafe parametric polymorphism
Author, affiliation: Alex Gilding, Perforce
Date: 2021-10-08
Proposal category: New features
Target audience: Compiler/tooling developers, library developers,
application developers

Abstract
C has a built-in mechanism for handling generically-typed data: void *. Unfortunately, this has a

problem: it achieves genericity by simply discarding all type information!

We propose a mechanism to define native functions that are both polymorphic and strongly-typed,
as commonly seen in functional programming languages or those that have adopted functional
idioms. The mechanism does not impose any runtime or ABI burden.

The void-which-binds: type-safe parametric
polymorphism
Reply-to: Alex Gilding (agilding@perforce.com)
Document No: N2853
Revises Document No: N/A
Date: 2021-10-08

Summary of Changes

N2853

• original proposal

Introduction
C can define polymorphic functions by using void *, but this comes at the cost of complete type

erasure.

This means that while a function can be defined to operate on any type of data, it trades the ability
to do so for the lost ability to statically check that the operations it wants to perform on that data are
actually valid for its concrete type. It cannot guarantee that two operands to be compared originate
from the same kind of data, and it cannot even guarantee that the comparison operator intends to
work with them if they are!

In many other languages, expressing the necessary constraints is easy. In many languages
influenced by ML, "type variables" can be used in the function signature; while in C++, templates
can be used to parameterize a function over types (although templates are not parametric in quite
the same way).

We propose a matched pair of two attributes which can appertain to a pointed-to void, which force

the pointer to either bind to a concrete type (for operator implementations), or to bind consistently
with other void pointers within the same top-level function signature. Because these are attributes,

they impose no runtime cost; and if they are removed from a correct program, ensure it will remain
binary-identical to the type-safe version.

Rationale
Other languages, especially those descending from or influenced by ML, have the notion of "type
variables", by which function (and other) types can be parameterized: at the point of use, an
operand type is substituted into the type of the function, and if the same type variable appears in
two places in the function type, it has to have the same binding to a type deduced from the
operands, enforcing type safety.

So in an ML-like or Haskell-like language, a function can have a type like this:

map :: forall a. ([a], (a -> a)) -> [a]

...which we can understand to take some sequence of elements of type a, a callback which

transforms objects of type a to other objects also of type a, and returns another sequence which (we

will assume) contains the results of each transformation. We can't call this function with a callback
that operates on objects of a type not compatible with the objects in the input buffer.

Informatively, a similar C++ signature might be:

template <typename A>
auto map (Seq <A> const &, Function <A (A)> const &) -> Seq <A>;

Though it is important to remember that C++ templates are not functions; they merely instantiate
into monomorphic functions, so this is not the same. Polymorphic functions in Haskell and ML have
a truly polymorphic type for a single identity; the same function can be referenced, passed around,
and still used polymorphically at a distance. This property is also true of C functions that use void

* - they can be referenced by pointer and still applied to different argument types - and is one we

wish to preserve.

To express this idiomatically in C, we'd use void *, and the function signature would probably

look something like:

void map (void * in, void * out, void (* op) (void const *, void *), void * (*
step) (void *));

Nothing prevents us from providing a mistyped op - or even a mistyped step: not even navigating

a polymorphic sequence is assured to make sense!

Surprisingly, this is actually possible to enforce with a lot of supporting verbosity in pure C11.
However, the technique is too verbose and fragile for real-world use and does not scale at all.
Examples are provided at the end of an untyped program which can miscompile, a typechecked C11
program, and an equivalent typechecked program using the void-which-binds.

Proposal
We propose to add two new attributes which can appertain to the type void, when it appears as the

referenced type of a pointer type used as either a function parameter or a function return. These are:

[[bind_var (id)]]
[[bind_type (type)]]

where id is an identifier that introduces a type variable, and type is a concrete type name other

than void (it does not otherwise need to be complete).

The names of these attributes are tentative.

Syntactically, because these appertain to the type void itself, they appear immediately after it in

any given pointer type specifier. They may also appertain to a typedef of void.

Both of these attributes add constraints which restrict which pointer types the given parameter or
return value may be converted to without an explicit cast.

Effectively both of these attributes add virtual qualifiers that associate with the pointed-to type and
therefore cannot be discarded except by explicit cast-off.

bind_type

The simpler attribute is bind_type. This adds the constraints that the pointer with the annotated

referenced type can only implicitly convert to or from a (suitably qualified) pointer to type, or be

assigned to another (suitably qualified) pointer to void with the same annotation.

For example:

void [[bind_type (float)]] const *
float_op_impl (void [[bind_type (float)]] const * p1, void [[bind_type (float)]]
* p2)
{
 float const * fp1 = p1; // OK, bound type
 float * fp2 = p2; // OK

 int const * ip1 = p1; // new constraint violation
 void const * vp1 = p1; // new constraint violation
 int const * ip2 = p2; // new constraint violation
 void const * vp2 = p2; // new constraint violation

 fp2 = p1; // (existing constraint violation)

 ip2 = (int *)p2; // OK, explicit cast
 vp2 = (void *)p2; // OK, explicit cast-off of bind_type

 return fp1; // OK, bound type
 return vp1; // new constraint violation
 return (float const *)ip1; // ...OK at least by these rules

 return p1; // OK, same bind_type
}

This attribute is not intended to be used in polymorphic functions themselves, but rather in the
operators passed to the polymorphic function, which are monomorphic in themselves but usually
will require a signature that explicitly works with void * (because int * (*) (int *) and

void * (*) (void *) are not convertible or guaranteed to have similar representations), in

order to be passed to the actual polymorphic function.

bind_var

This attribute is used on the parameters and return type of the actual polymorphic function. It is also
appertained to the parameters and return type of any callback operators accepted by the
polymorphic function, within its own signature.

bind_var adds the constraint that whatever the referenced types of the pointers that are converted

to or from void * in the argument types and returned value conversion, must be consistent

between all void pointers annotated with the same id, within each instance of a call to that

function.

In other words it introduces a type variable and all void * annotated with the same type variable

must convert to or from the same pointer type.

For example:

void [[bind_var (A)]] *
select_first (void [[bind_var (A)]] * a, void [[bind_var (A)]] * b, void
[[bind_var (B)]] * c)

{
 return a; // OK, a must have bound to an A*
 return b; // OK, b must have bound to an A*
 return c; // new constraint violation, c may have bound to a different type
}

int * ip;
float * fp;

ip = select_first (ip, ip, fp); // OK, a and b are both A
fp = select_first (fp, fp, ip); // same

ip = select_first (ip, ip, ip); // OK, A and B can both be the same, it just
doesn't know that

ip = select_first (fp, fp, ip); // new constraint violation, mismatched A
between return/param
select_first (ip, fp, fp); // new constraint violation, mismatched A
between params 1 & 2

The two attributes combine: bind_var can bind its type variable to the type named in a

bind_type annotation, to allow operator callbacks to be type-checked against data arguments to a

higher-order polymorphic function:

void map (
 void [[bind_var (A)]] * in
 , void [[bind_var (A)]] * out
 , void (* op) (void [[bind_var (A)]] const *, void [[bind_var (A)]] *)
 , void [[bind_var (A)]] * (* step) (void [[bind_var (A)]] *)
);

In this declaration of a polymorphic map (implementation is in the Examples section), all of the
void * type components have been annotated as having to bind to the same concrete object type.

Therefore:

int i1[10], i2[10];
float f1[10], f2[10];

void int_op (void [[bind_type (int)]] const *, void [[bind_type (int)]] *);
void [[bind_type (int)]] int_step (void [[bind_type (int)]] *);

void float_op (void [[bind_type (float)]] const *, void [[bind_type (float)]]
*);
void [[bind_type (float)]] float_step (void [[bind_type (float)]] *);

map (i1, i2, int_op, int_step); // OK, all void * bind to int *
map (f1, f2, float_op, float_step); // OK, all void * bind to float *

map (i1, i2, float_op, float_step); // new constraint violation - operator types
do not match data
map (i1, f2, int_op, float_step); // new constraint violation - operator and
data types mismatch

Finally, if a polymorphic function is called from within another polymorphic function, the type
variables bind to the type variables of the void * pointers passed directly to it, rather than to

void:

// yikes
void map2 (
 void [[bind_var (A)]] * in1

 , void [[bind_var (A)]] * out1
 , void (* op1) (void [[bind_var (A)]] const *, void [[bind_var (A)]] *)
 , void [[bind_var (A)]] * (* step1) (void [[bind_var (A)]] *)

 , void [[bind_var (B)]] * in2
 , void [[bind_var (A)]] * out2
 , void (* op2) (void [[bind_var (B)]] const *, void [[bind_var (B)]] *)
 , void [[bind_var (B)]] * (* step2) (void [[bind_var (B)]] *)
) {
 map (in1, out1, op1, step1); // OK, all void * bind to A *
 map (in2, out2, op2, step2); // OK, all void * bind to B *

 map (in1, out1, op2, step2); // new constraint violation - operator types do
not match data
 map (in1, out2, op1, step2); // new constraint violation - operator and data
types mismatch
}

We would propose that the bind_var attribute apply immediately to the functions qsort and

bsearch in stdlib.h.

Alternatives
The names and exact placement of the attributes can be subject to further discussion. In practice we
expect that users would wrap them inside macros anyway, for instance:

#define Void(T) void [[bind_var (T)]]
#define Bind(T) void [[bind_type (T)]]

void map (
 Void (A) * in
 , Void (A) * out
 , void (* op) (Void (A) const *, Void (A) *)
 , Void (A) * (* step) (Void (A) *)
);

void int_op (Bind (int) const *, Bind (int) *);

Overloads and _Generic do not provide a suitable alternative to this feature. The ad-hoc

polymorphism provided by _Generic operates on a fixed set of known types. The operator name

that it can be used to construct is a second-class language feature that does not have a single
address. To pass such an operator around, it must be deconstructed somehow and a non-generic
overload selected.

This functionality is completely orthogonal; where an ad-hoc polymorphic "overloaded" function
provides different suitable implementations for a number of different types, a parametrically
polymorphic function is completely unaware of the concrete type of its arguments and always
provides the exact same implementation regardless of it.

Templates are similarly orthogonal: they do not create a first-class polymorphic language feature
(remaining polymorphic when passed by value), but instantiate into separate monomorphic
functions. They can also specialize, which betrays the principle of always providing the exact same
body implementation down to the instruction level.

Impact
The implementation impact is lower than it seems.

Firstly, there is no ABI impact whatsoever from this feature. Because the constraints are applied by
attributes, they do not change the representation type of the pointers to generic data, which remain
void * at all times. There is no binary difference between a program that chooses to make use of

this typechecking feature and one that does not.

This is different from C++, where a template function instantiates into multiple implementations
with semantically separate identities and which all have different signature types. There remains
only one polymorphic function, with one type, and whose type remains polymorphic even after it is
referenced indirectly.

This follows directly from the principle that a correct program with standard attributes remains
correct and has the exact same observable meaning if the attributes are removed.

Secondly, if polymorphic type checking proves too difficult for a smaller implementation, since
these constraints are onyl introduced by attribute - the implementation can choose to be unable to
diagnose violations of the constraints and will still be conforming, because it will always compile a
correct program to exactly the same meaning as a higher-end compiler that does understand the
attributes. Therefore, implementations are eased-in to needing to support polymorphism, and do not
need to provide full checking in order to conform.

It is possible and entirely plausible that only analysis tools and not primary compilers would ever
bother to implement the constraints for these attributes.

Thirdly, implementation experience with Helix QAC suggests that ML-style type inference with
unification is "not too difficult" for a small team (one) to implement in a short amount of time. We
found that C could easily be extended with backpropagating inferred pointer types, which are used
to drive a number of different type-based (proprietary) analyses. (In QAC these properties are
mostly inferred from usage rather than specified explicitly by user attributes.)

ML subset compilers are frequently implemented as student projects, so this is a widely understood
feature in the broader compiler community.

Proposed wording
Changes are proposed against the wording in C2x draft n2596. Bolded text is new text.

Modify 6.7.11 "Attributes":

Modify 6.7.11.1 to add the two new standard attribute names:

The identifier in a standard attribute shall be one of:
bind_type
bind_var
deprecated
fallthrough
maybe_unused
nodiscard

Note that 6.7.11.1 paragraph 3 and note 166 remain true for the new attributes without changes.

Add two new sections after 6.7.11.5:

6.7.11.6 The bind_type attribute

Constraint

The bind_type attribute shall be applied to the void referenced type of a pointer in
the return or parameter types of a function declaration or function pointer, or to the
void referenced type of the pointer type of a local variable within a function that uses
bind_type in its signature.

bind_type requires an argument clause, which shall have the form (type-name)

Semantics

The bind_type attribute indicates that while a pointer has the concrete type of a
pointer to void, it is constrained to only allow implicit conversions to or from a
suitably-qualified pointer to type, where type is specified by the type-name.
Conversions to any other pointer types without an explicit cast are prohibited.

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the
value 202111L when given bind_type as the pp-tokens operand.

Recommended Practice

Implementations should use bind_type on the parameters and return values of
callback functions that internally operate on a single type, but use pointers to void in
their signature in order to be callable from a generic higher-order function.

This attribute allows the usage of the callback to be type-checked against its operating
type in addition to the forced signature type.

EXAMPLE

This callback is intended to be passed to qsort to sort an array of float values. Its
operating parameter types are float pointers, but the signature of qsort requires them
to be declared as pointers to void:

int float_compare (const void [[bind_type (float)]] * l
 , const void [[bind_type (float)]] * r) {
 const float * fl = l;
 const float * fr = r;

 return *fl < *fr ? -1
 : *fl > *fr ? +1
 : 0;
}

6.7.11.7 The bind_var attribute

Constraint

The bind_var attribute shall be applied to the void referenced type of a pointer in
the return or parameter types of a function declaration or function pointer, or to the
void referenced type of the pointer type of a local variable within a function that uses
bind_var in its signature.

bind_var requires an argument clause, which shall have the form (identifier)

Semantics

The bind_var attribute indicates that while a pointer has the concrete type of a
pointer to void, it is constrained to only allow assignment within a function body to or
from a suitably-qualified pointer to void that has been annotated with the same
ident, where ident is specified by the identifier.

Conversions to any other pointer types, including a pointer to un-attributed void,
without an explicit cast are prohibited within the body of the function that introduces
the binding.

Implicit conversion from another object pointer type in the argument list, or to another
object pointer type in the return, are permitted at the function's call site. In all cases
where two attributed pointers to void in the function signature have the same
identifier, they shall only convert to or from the same pointer to object type footnote).

The __has_c_attribute conditional inclusion expression (6.10.1) shall return the
value 202111L when given bind_var as the pp-tokens operand.

footnote) there is no restriction against two attributed pointers to void with different
idents converting to or from the same type outside the function, but internally the
function shall treat them as unrelated.

Recommended Practice

Implementations should use bind_var in the parameters and return values of a
polymorphic function to indicate that two separate generic pointers in its signature are
intended to work on the same concrete type for any given invocation.

This attribute allows usage of the polymorphic function to be type-checked against the
concrete types of its arguments and destination, as well as the expected types to be
operated on by any callback operators passed to it.

EXAMPLE

This polymorphic function returns a reference to an element within the first buffer, It
may not return a reference to an element within the second buffer.

int i1[10];
float f1[10];

void [[bind_var (A)]] * first (void [[bind_var (A)]] * p1
 , void [[bind_var (B)]] * p2) {
 return p1; // correct
 // return p2; // constraint violation

}

int * ip = first (i1, f1); // OK
float * fp = first (f1, i1); // OK
ip = first (i1, i1); // also OK, the function just doesn't know A and
B are compatible here
fp = first (i1, f1); // constraint violation, A and A do not match

qsort is a polymorphic function that needs to accept a compare function that will
work on its working array, so the following signature communicates this:

void my_qsort (void [[bind_var (T)]] * base
 , size_t nmemb
 , size_t size
 , int (*compar)(const void [[bind_var (T)]] *
 , const void [[bind_var (T)]] *));)

my_qsort (f1, 10, sizeof (float), float_compare); // OK
my_qsort (i1, 10, sizeof (int), float_compare); // constraint
violation, A and A do not match

Modify 7.22.5.1 "The bsearch function", paragraph 1, to include bind_var in the signature:

#include <stdlib.h>
void * bsearch (const void [[bind_var (T)]] *key
 , const void [[bind_var (T)]] *base
 , size_t nmemb
 , size_t size
 , int (*compar)(const void [[bind_var (T)]] *
 , const void [[bind_var (T)]] *));

Modify 7.22.5.2 "The qsort function", paragraph 1, to include bind_var in the signature:

#include <stdlib.h>
void qsort (void [[bind_var (T)]] *base
 , size_t nmemb
 , size_t size
 , int (*compar)(const void [[bind_var (T)]] *
 , const void [[bind_var (T)]] *));

Modifications to the text of 7.22.5 are not required.

References
• C23 n2596
• Parametric polymorphism
• Towards type-checked polymorphism

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2596.pdf
https://gist.github.com/Leushenko/ad2db35940a77d7dc8575cf9744402f9
https://en.wikipedia.org/wiki/Parametric_polymorphism

Examples

Example 1: untyped
// basic array mapper
// we can use it with mis-typed arguments

typedef void (* Mutate) (void *, void *);
typedef void * (* Step) (void *);

void addOneInt (void * in, void * out) { *(int *)out = *(int *)in +
1; }
void addOneFloat (void * in, void * out) { *(float *)out = *(float *)in +
1.0f; }

void * step_float (void * p) { return (float *)p + 1; }
void * step_int (void * p) { return (int *)p + 1; }

int ia[10];
float fa[10];

void map (void * array_in, void * array_out, int size, Mutate mut, Step step) {
 void * in = array_in;
 void * out = array_out;
 for (int i = 0; i < size; ++ i, in = step (in), out = step (out)) {
 mut (in, out);
 }
}

void incrArrays (void) {
 map (ia, ia, 10, addOneInt, step_int);
 map (fa, fa, 10, addOneFloat, step_float);

 // oh no: this also compiles, because of void*
 map (fa, fa, 10, addOneInt, step_float);
 map (ia, fa, 10, addOneInt, step_float);
 map (ia, fa, 10, addOneInt, step_float);
 map (ia, ia, 10, addOneInt, step_float);
 map (fa, fa, 10, addOneInt, step_int);

 map (ia, ia, 10, addOneFloat, step_int);
 map (ia, fa, 10, addOneFloat, step_int);
 map (ia, ia, 10, addOneFloat, step_int);
 map (ia, ia, 10, addOneFloat, step_int);
 map (ia, ia, 10, addOneFloat, step_float);
}

Example 2: semiautomatic typechecking with brittle verbosity (C11)
// basic array mapper
// enhanced with type checking despite accepting arrays of any type - checks
// that the operand kind of the mapped function matches the array element type
// i.e. map :: ([T], T -> T) -> [T]

typedef void (* Mutate) (void *, void *);
typedef void * (* Step) (void *);

void addOneInt (void * in, void * out) { *(int *)out = *(int *)in +
1; }
void addOneFloat (void * in, void * out) { *(float *)out = *(float *)in +
1.0f; }

void * step_float (void * p) { return (float *)p + 1; }
void * step_int (void * p) { return (int *)p + 1; }

int ia[10];
float fa[10];

void map_impl (void * array_in, void * array_out, int size, Mutate mut, Step
step) {
 void * in = array_in;
 void * out = array_out;
 for (int i = 0; i < size; ++ i, in = step (in), out = step (out)) {
 mut (in, out);
 }
}

#define FunctionDescriptor(Type, Func) union { Func func; Type T; }

#define same_type(A, B) _Generic(1 ? (A) : (B) \
 , void *: 0 \
 , void const *: 0 \
 , void volatile *: 0 \
 , void const volatile *: 0 \
 , default: 1)
#define check_same_type(A, B) _Static_assert (same_type (A, B), "types must
match");

#define check_array_size

#define map(in, out, size, mut, step) do { \
 check_same_type ((in), (out)); \
 \
 check_same_type ((in), &(mut).T); \
 check_same_type ((in), &(step).T); \
 \
 map_impl ((in), (out), (size), (mut).func, (step).func); \
} while (0)

typedef FunctionDescriptor (int, Mutate) MutInt;
typedef FunctionDescriptor (int, Step) StepInt;
typedef FunctionDescriptor (float, Mutate) MutFloat;
typedef FunctionDescriptor (float, Step) StepFloat;

MutInt addOneInt_g;
StepInt stepInt_g;

MutFloat addOneFloat_g;

StepFloat stepFloat_g;

void incrArrays (void) {
 map (ia, ia, 10, addOneInt_g, stepInt_g);
 map (fa, fa, 10, addOneFloat_g, stepFloat_g);

 // no longer compile!
 // map (fa, fa, 10, addOneInt, step_float);
 // map (ia, fa, 10, addOneInt, step_float);
 // map (ia, fa, 10, addOneInt, step_float);
 // map (ia, ia, 10, addOneInt, step_float);
 // map (fa, fa, 10, addOneInt, step_int);

 // map (ia, ia, 10, addOneFloat, step_int);
 // map (ia, fa, 10, addOneFloat, step_int);
 // map (ia, ia, 10, addOneFloat, step_int);
 // map (ia, ia, 10, addOneFloat, step_int);
 // map (ia, ia, 10, addOneFloat, step_float);
}

Example 3: polymorphic typechecking with void-which-binds
// basic array mapper
// enhanced with type checking despite accepting arrays of any type - checks
// that the operand kind of the mapped function matches the array element type
// i.e. map :: ([T], T -> T) -> [T]

#define Auto(T) void [[bind_var (T)]]
#define Bind(T) void [[bind_type (T)]]

#define Mutate(T, N) void (* N) (Auto (T) *, Auto (T) *)
#define Step(T, N) Auto (T) * (* N) (Auto (T) *)

void addOneInt (Bind (int) * in, Bind (int) * out) { *(int *)out =
*(int *)in + 1; }
void addOneFloat (Bind (float) * in, Bind (float) * out) { *(float *)out =
*(float *)in + 1.0f; }

Bind (float) * step_float (Bind (float) * p) { return (float *)p + 1; }
Bind (int) * step_int (Bind (int) * p) { return (int *)p + 1; }

int ia[10];
float fa[10];

void map (Auto (A) * array_in, Auto (A) * array_out, int size, Mutate(A, mut),
Step (A, step)) {
 Auto (A) * in = array_in;
 Auto (A) * out = array_out;
 for (int i = 0; i < size; ++ i, in = step (in), out = step (out)) {
 mut (in, out);
 }
}

void incrArrays (void) {
 map (ia, ia, 10, addOneInt, step_int);
 map (fa, fa, 10, addOneFloat, step_float);

 // no longer compile!
 // map (fa, fa, 10, addOneInt, step_float);
 // map (ia, fa, 10, addOneInt, step_float);
 // map (ia, fa, 10, addOneInt, step_float);
 // map (ia, ia, 10, addOneInt, step_float);
 // map (fa, fa, 10, addOneInt, step_int);

 // map (ia, ia, 10, addOneFloat, step_int);
 // map (ia, fa, 10, addOneFloat, step_int);
 // map (ia, ia, 10, addOneFloat, step_int);
 // map (ia, ia, 10, addOneFloat, step_int);
 // map (ia, ia, 10, addOneFloat, step_float);
}

	Abstract
	The void-which-binds: type-safe parametric polymorphism
	Summary of Changes
	N2853

	Introduction
	Rationale
	Proposal
	bind_type
	bind_var

	Alternatives
	Impact
	Proposed wording
	References
	Examples
	Example 1: untyped
	Example 2: semiautomatic typechecking with brittle verbosity (C11)
	Example 3: polymorphic typechecking with void-which-binds

