
Proposal for C23 
WG14	N2806	
	
Title:	 	 	 5.2.4.2.2	cleanup	(N2672	update)	
Author,	affiliation:	 C	FP	group	
Date:	 	 	 2021-08-21	
Proposal	category:	 Editorial	
Reference:	 	 N2596,	N2672	
	
	
This	paper	is	a	minor	update	to	N2672.	Vincent	Lefevre	sent	email	to	CFP	pointing	
out	an	error	in	the	definition	of	normalized	float-point	number	(shown	below),	
namely	that	“all	possible	k	digits”	isn’t	meaningful	since	k	is	just	the	index	in	the	
model	formula.	The	suggested	changes	below	include	a	simpler	definition	that	fixes	
the	error.	Otherwise,	what	follows	is	unchanged	from	N2672.	
		
5.2.4.2.2	begins	with:	
	

[1]	The	characteristics	of	floating	types	are	defined	in	terms	of	a	model	that	
describes	a	representation	of	floating-point	numbers	and	values	that	provide	
information	about	an	implementation’s	floating-point	arithmetic.21)	

	
The	second	“that”	refers	back	to	“characteristics”,	which	isn’t	clear	from	the	
sentence	structure.	The	suggested	changes	below	offer	a	clarification.	
	
5.2.4.2.2	also	has:	
	

[4]	Floating	types	shall	be	able	to	represent	zero	(all	fk	==	0)	and	all	
normalized	floating-point	numbers	(f1	>	0	and	all	possible	k	digits	and	e	
exponents	result	in	values	representable	in	the	type).	In	addition,	floating	
types	may	be	able	to	contain	other	kinds	of	floating-point	numbers,22)	such	
as	negative	zero,	subnormal	floating-point	numbers	(x	≠	0,	e	=	emin,	f1	=	0)	and	
unnormalized	floating-point	numbers	(x	≠	0,	e	>	emin,	f1	=	0),	and	values	that	
are	not	floating-point	numbers,	such	as	infinities	and	NaNs.	…	

	
[5]	An	implementation	may	give	zero	and	values	that	are	not	floating-point	
numbers	(such	as	infinities	and	NaNs)	a	sign	or	may	leave	them	unsigned.	
Wherever	such	values	are	unsigned,	any	requirement	in	this	document	to	
retrieve	the	sign	shall	produce	an	unspecified	sign,	and	any	requirement	to	
set	the	sign	shall	be	ignored.	
	

In	[4]	it	would	be	more	straightforward	to	just	say	zeros	may	be	signed	or	unsigned.		
	
Since	[4]	already	allows	negative	zero,	[5]’s	saying	zeros	may	have	a	sign	is	
redundant.		
	



At	this	level	of	abstraction	(values,	not	bit	representations),	it	would	be	better	to	
avoid	mentioning	signed	NaNs.	The	IEC	60559	levels	of	abstraction	(see	3.2)	do	not	
have	signed	NaNs	at	Level	3	which	most	closely	matches	the	abstraction	of	the	C	
model	in	5.2.4.2.2.	IEC	60559	does	not	interpret	the	sign	bit	of	NaNs	at	the	bit	
representation	level.	The	footnote	in	the	suggested	changes	is	intended	to	help	with	
ambiguities	about	levels	of	abstraction	(values	vs	bit	representations).	
	
The	second	sentence	of	[5]	is	not	consistent	with	other	specification	in	C.	For	
example,	regarding	signbit,	footnote	253	says	“…	If	zero	is	unsigned,	it	is	treated	
as	positive.”	(Wording	for	signbit	is	problematic,	which	is	addressed	in	a	separate	
proposal.)		
	
In	[5]	is	the	only	use	of	“retrieve”	in	the	N2596.	The	term	“get”	is	used	in	the	
specification	of	payload	functions	(F.10.13)	and	“get”	pairs	nicely	with	“set”	which	
appears	later	in	the	same	sentence	in	[5].	
	
In	[4],	“=”	should	be	used	instead	of	“==”.	
	
The	suggested	changes	below	address	these	issues.		
	
Suggested	changes:	
	
Changes	for	5.2.4.2.2:	
	

[1]	The	characteristics	of	floating	types	are	defined	in	terms	of	a	model	that	
describes	a	representation	of	floating-point	numbers	and	allows	other	
values.	The	characteristics	that	provide	information	about	
an	implementation’s	floating-point	arithmetic.21)	
…	
	
[4]	Floating	types	shall	be	able	to	represent	signed	zeros	or	an	unsigned	zero	
(all	fk	==	0)	and	all	normalized	floating-point	numbers	(all	x	with	f1	>	0	and	all	
possible	k	digits	and	e	exponents	result	in	values	representable	in	the	type).	
In	addition,	floating	types	may	be	able	to	contain	other	kinds	of	floating-point	
numbers,22)	such	as	negative	zero,	subnormal	floating-point	numbers	(x	≠	0,	
e	=	emin,	f1	=	0)	and	unnormalized	floating-point	numbers	(x	≠	0,	e	>	emin,	f1	=	
0),	and	values	that	are	not	floating-point	numbers,	such	as	infinities	and	
NaNs	NaNs	and	(signed	or	unsigned)	infinities.	…	
	
[5]	An	implementation	may	give	zero	and	values	that	are	not	floating-point	
numbers	(such	as	infinities	and	NaNs)	a	sign	or	may	leave	them	unsigned.	
Wherever	such	values	are	unsigned,	any	requirement	in	this	document	to	
retrieve		get	the	sign	shall	produce	an	unspecified	sign,	and	any	requirement	
to	set	the	sign	shall	be	ignored,	unless	specified	otherwise.*)	

	



*)	Bit	representations	of	floating-point	values	might	include	a	sign	bit,	even	if	
the	value	can	be	regarded	as	unsigned.	IEC	60559	NaNs	are	such	values.		


