
1

Defer Mechanism for C

© 2020 Robert C. Seacord

Robert C. Seacord

2

Agenda

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Strict Aliasing

Pointer Provenance

Optimization Suggestions

C11 Analyzability Annex

Summary and Recommendations

3

Defer Mechanism

The defer mechanism can restore a previously known property or invariant

that is altered during the processing of a code block.

• useful for paired operations, where one operation is performed at the start

of a code block and the paired operation is performed before exiting the

block.

• pattern is common in

• resource management

• Synchronization

• outputting balanced strings (e.g., parenthesis or HTML).

© 2020 Robert C. Seacord

4

Resource Management

Examples of C standard library functions that acquire resources include:

• allocated storage: malloc, calloc, realloc, aligned_alloc, strdup, strndup

• streams: fopen, freopen

• temporary file: tmpfile

• threads: thrd_create

• thread specific storage: tss_create

• condition variable: cnd_init

• condition variable: cnd_wait

• mutexes: mtx_init, mtx_lock, mtx_timedlock, mtx_trylock

5

Differing Behaviors

Resource Can

Fail

Reports

Failure

Released on

Thread Exit

Released on

Program Exit

Allocated storage: free ✔ ✗ ✗ ✔

Thread-specific storage key: tss_delete ✔ ✔ ✗ ✔

Thread-specific storage: destructor ✔ ✗ ✔ ✔

File pointer: fclose ✔ ✔ ✗ ✔

File: remove ✔ ✔ ✗ ✗

6

Security Concerns

A denial-of-service (DoS) attack occurs when legitimate users are unable to

access information systems, devices, or other network resources resulting

from the actions of an adversary.

DoS attacks attempts frequently take the form of a resource-exhaustion attack

that makes a computer resource unavailable or insufficiently available to the

application.

Double Free vulnerabilities can be exploited to execute arbitrary code with the

permissions of a vulnerable process.

A common source of this error are developers who deallocate memory while

handling an error condition but then deallocate it again during normal cleanup

procedures.

7

Defer Statement

A defer statement defers the execution of a deferred statement until the
containing guarded block terminates

Deferred statement is sequenced in last-in-first out (LIFO) order after all
statements just before the guarded block terminates.

The defer statement may be introduced into the grammar as follows:

statement:

attribute-specifier-sequenceopt defer-statement

defer-statement:

defer statement

A block can contain multiple defer statements.

8

Stack Unwinding

Before the normal processing of the termination event, the C library functions
exit and thrd_exit trigger an execution of all deferred statements for the
current thread by unwinding the stack.

Deferred statements shall not

• include return statements.

• call functions that may result in termination of the current thread or the
whole program execution other than by calling the panic or abort
functions.

• contain a goto or longjmp that targets a location outside the deferred
statement

• contain a label or call to setjmp that are the target of a goto statement or
longjmp call, respectively, outside the deferred statement.

9

Should defer statements be static or dynamic?

How many times and in what exact order should deferred statements be executed?

The dynamic approach matches programmer expectations based on control flow:

{
if (x) defer whatever(x);

int i;

for (i = 0; i < n; i++) {

printf("up: %d\n", i);

defer printf("down: %d\n", i--);

}

}

deferred only if x evaluates to a

non-zero value at runtime

Pushed for each iteration of the loop in which
the defer statements are encountered

10

Dynamic Approach

Resources are allocated at runtime

• additional runtime overhead

• operations might fail

Loops may also be constructed with goto statements and labels, as long as

they do not exit the deferred or guarded block

11

Static approach

Statically allocate resources at compile time

• eliminate the possibility that deferred statements may fail at runtime

The compiler provides a slot for each deferred statement in the same way that
it would for an unconditional defer.

A defer statement records if it has been triggered or not.

If reached, the deferred statements are executed once at the end of the
corresponding block.

If the loop is not entered, the deferred statement is not executed.

deferred statements are executed in reverse lexical order.

12

Should object values be captured?

Identifiers accessed by the deferred statement must be visible within the defer

statement and its scope extended to at least the end of the guarded block.

Should object values accessed in deferred statements should be captured

when the deferred statement is encountered or their latest values read when

the deferred statements are evaluated?

Lambdas with copy and reference semantics would be a great solution that is

not yet available for C.

13

Last Value

{

char *ptr = malloc(SZ);

defer free(ptr);

// ...

ptr = realloc(ptr, SZ * 2);

// ...

}
The latest value stored in
ptr is passed to free.

14

Captured Values

{

struct s *ptr = malloc(sizeof(struct s) * 10);

defer free(ptr);

for (int i = 0; i < 10; ++i) f(ptr++);

}

if (function_which_sets_errno())

defer printf("%d", errno);

Assumes ptr is captured.

Assumes errno is captured.

Capture pairs better with the dynamic approach.

15

User Expectations “study” / Twitter Poll

If C added "deferred statements" that execute just before the block exits, what

would you expect the output of this code block to be?

{

int i = 0;

defer printf("%d", ++i);

i = 12;

}

The results from 387 responses show a 2:1 preference for the value being

read at the time the deferred statements are executed (66.9%) rather than

when the defer statement encountered (33.1%).

C++ programmers more likely to

assume captured values

16

Do we want a guard keyword?

An explicit guard keyword allows the following code to be written:

guard {

void *ptr = malloc(12);

if (ptr) {

defer free(ptr);

// Use ptr

}

// Use ptr some more

} // free ptr here

17

All Scopes Guarded

The previous example can be rewritten without the guard keyword as follows:

{

void *ptr = malloc(12);

defer if (ptr) free(ptr);

if (ptr) {

// Use ptr

}

// Use ptr some more

} // conditional free ptr here

18

Comparison

Making the guarded block explicit

• is strictly more expressive

• allows the programmer more control over when the deferred statements are

evaluated.

The explicit syntax adds an additional keyword.

Guarding all scopes

• provides a more terse syntax

• eliminates any issues with introducing a new keyword

• familiar for C++ programmers

19

Panic and recover

The primary purpose of defer is to manage the release of resources.

The primary purpose of a panic/recover mechanism is error handling.

Panic/recover depend on the defer mechanism to release resources, but defer

is separable from panic/recover.

Panic/recover are similar to throw/catch in C++ while defer is similar to RAII.

20

Panic

A panic may potentially be the result of a trap, such as an invalid arithmetic operation

or the result of invoking either of the following forms of the panic macro:

#include <stddefer.h>

typedef int (*panic_handler_t)(int);

_Noreturn void panic(int code);

_Noreturn void panic(int code, panic_handler_t handler);

The panic macro indicates an abnormal execution condition and will unwind the

caller's stack (see Appendix I) and execute all deferred statements registered in that

stack frame.

21

The recover function

Once execution starts inside a deferred statement, the condition that leads

there can be investigated by invoking the recover function.

The recover function returns an integer value that indicates the reason the

deferred statement is executing.

If the return value is equal to zero, the execution of the deferred statement is

the result of the regular termination of the guarded block caused by reaching

the } that terminates the block, execution of a break or return statement, the

invocation of the exit or thrd_exit functions, or by a call to panic with a zero

value.

In that case, processing of deferred statements continues as if the recover

function had not been called.

22

The recover function

If the recover function returns a value other than zero, the thread or program

is panicking.

In this case, processing of deferred statements stops with the termination of

the current deferred statement.

Once a non-zero error condition has been recovered, the responsibility for the

condition is passed to the application.

A new panic can be triggered by calling either form of the panic macro.

23

Recover Example 1

void g(int i) {

if (i > 3) {

puts("Panicking!");

panic(i);

}

guard {

defer {

printf("Defer in g = %d.\n", i);

}

printf("Printing in g = %d.\n", i);

g(i+1);

}

}

24

Recover Example 2

void f() {

guard {

defer {

puts("In defer in f");

fflush(stdout);

int err = recover();

if (err != 0) {

printf("Recovered in f = %d\n", err);

fflush(stdout);

}

}

puts("Calling g.");

g(0);

puts("Returned normally from g.");

}

}

Calling g.

Printing in g = 0.

Printing in g = 1.

Printing in g = 2.

Printing in g = 3.

Panicking!

Defer in g = 3.

Defer in g = 2.

Defer in g = 1.

Defer in g = 0.

In defer in f

Recovered in f = 4

Returned normally from f.

Output

25

Questions

Do we want a defer statement?

Should defer statements be static or dynamic?

Should object values be captured?

Should it be determined by scope alone?

Do we want a panic/recover mechanism?

© 2020 Robert C. Seacord 25

