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The specifications of types [u]intmax_t and extended integer types fail to provide the 

extensibility feature for which they are designed. As a consequence, existing “64 bit” 

obsolesinteger types without breaking ABI compatibility. 

This paper deprecates the use of [u]intmax_t as a misleading and useless type and introduces 

 intbasicmax_t and uintbasicmax_t as integer types that are at least as wide as any 

basic integer type. These types replace the use of [u]intmax_t in APIs and elsewhere. 

 intwidest_t and uintwidest_t as greatest-width integer types that will change width 

when larger extended integer types are added to the language. These types should 

not be used in any APIs 

This paper is a revision to N2425 v2 written by Jens Gustedt, under a creative commons 

Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/. It is not 

suggested that the licensor endorses me or my use. 

1. PROBLEM DESCRIPTION 

The interaction between the definition of extended integer types and [u]intmax_t has resulted 

in a lack of extensibility for existing ABI. Platforms that have anchored their specifications for 
the basic integer types and for [u]intmax_t cannot add an extended integer type that is wider 

than their current [u]intmax_t to their specification. As the current text of the C standard 

stands, such an addition would force a redefinition of [u]intmax_t to the wider types. This 

would have the following consequences 

— The parts of the C library that use [u]intmax_t (specific functions but also printf and related 

functions) must be rewritten or recompiled with the new ABI and become binary 
incompatible with existing programs. 

— Programs compiled with the new ABI would be binary incompatible on platforms that have 
not been upgraded. 

— The preprocessor of the implementation must be re-engineered to comply with the 
standard. In particular, there would be severe specification problems for preprocessor 
numbers and their evaluation. E.g., the value of ULLONG_MAX+1 is not expressible as a literal 

in the language proper but would be for the preprocessor. The expression ULLONG_MAX+1 

would evaluate to true in a preprocessor conditional but to 0 (false) in later compilation 

phases. 

Because of these difficulties, the concept of extended integer type is unused by 
implementations. Consequently, the concept of extended integer type has failed as no 
implementation uses it under its original design, and intmax_t is typically defined as long or 

long long even when the implementation supports extended integer types. 

 
This has led to a sensible backlog for platforms such as gcc or clang that provide emulated 128 

bit integer types (__[u]int128_t) on 64 bit platforms. They are not able to provide them as 

“extended integer types” in the sense of the C standard. More and more processor platforms 
even provide rudimentary support of 128 or 256 bit integers in hardware (e.g., Intel’s AVX 

vector unit), so it would be productive to allow implementations to integrate these types into 
existing ABI. 

https://creativecommons.org/licenses/by/4.0/


 
Generally, we should not block implementations that are able to provide exact-width integer 
types for N > 64. These types can be used efficiently for bitsets, UUIDs, cryptography, 
checksums, networking (ipv6) and so forth. They have well-defined standard interfaces in the 
form of ([u]intN_t) with easy to use feature tests. 

2. SUGGESTED CHANGES 

2.1. New example and recommend practice for greatest-width integers  
This proposal introduces the intwidest_t and utinwidest_t as greatest-width integer 

types. These types will change width when larger extended integer types are added to the 

language. Consequently, these types should not be used in any APIs as they could subsequently 

lead to ABI breakage.  

7.20.1.5 Greatest-width integer types 

1 The following type designates a signed integer type capable of representing any value of any 

signed integer type  

intwidest_t 

The following type designates an unsigned integer type capable of representing any value of any 

unsigned integer type: 

uintwidest_t 

These types are required. 

2 The types intwidest_t and uintwidest_t designate a signed and an unsigned integer 

type capable of representing any value of any signed or unsigned integer type, respectively. 

These types are required. 

3 NOTE 1 The intwidest_t and uintwidest_t types are intended to provide a fallback for 

applications that use integers for which they lack specific type information. This mainly 

occurs in two different situations. First, for integers that appear in conditional inclusion: 

(#if expressions, 6.10.1) they provide fallback types that capture the implementation 

specific capabilities during translation phase 4. Second, for some semantic type definitions 

that resolve to implementation specific types there are no special provisions for printf, scanf, 

or similar functions. 

4 Example  An implementation that has historically fixed its greatest width types to a 64 bit 

type, and seeks to add a 128 bit integer exact-width type to its extended integer types, may 

do so by providing types uint128_t, uint_least128_t, uint_least128_t and the 

corresponding signed types and macros of stdint.h and inttypes.h (7.8.1). Implementations 

would need to adjust intwidest_t and uintwidest_t accordingly which would break 

binary compatibility with application APIs which use these types. 

Application code can then query the type and print it by using the appropriate macros 
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Recommended practice  
5 It is recommended that the same set of integer literals is consistently accepted by all 

compilation phases even if intwidest_t is chosen to be wider than signed long 

long int. Implementations and applications should not use the types intwidest_t 

and uintwidest_t to describe application programmable interfaces.285) 

2.2. New type aliases for the widest type pair  
The intbasicmax_t and uintbasicmax_t are introduced by this proposal as integer types that 

are at least as wide as any basic integer type in section 7.20.1.6. These types replace the use 
of [u]intmax_t in APIs and elsewhere.  The [u]intmax_t are misleading and useless types that 

have been deprecated and are no longer mentioned by the standard.  

 

7.20.1.6 Greatest basic-width integer types  

 

1 The types intbasicmax_t and uintbasicmax_t designate a signed and an unsigned integer 

type, respectively, that are at least as wide as any basic integer type, the types 

 
 char16_t int_least64_t size_t wchar_t 
 char32_t  ptrdiff_t uint_fast64_t wint_t 

 int_fast64_t sig_atomic_t uint_least64_t 

 

and, provided they exist, intptr_t and uintptr_t. These types are required. 
 

2 Note 1 The intbasicmax_t and uintbasicmax_t types are intended to represent 

values of all types listed above and also the exact-width integer types for all N≤ 64. 
3 Note 2 Extended integer types that are not referred by the above list and that are wider 

than signed long long int may also be wider than intbasicmax_t. The intbasicmax_t 

and intwidest_t types may then be different.  

4 Note 3 The intwidest_t and uintwidest_t types are intended to provide a fallback for 

applications that deal with extended integer types that are potentially wider than 

intbasicmax_t or uintbasicmax_t. 
Recommended practice  
5 Unless some typedef in the library clause otherwise enforces, it is recommended to resolve 

intbasicmax_t to long or long long int and uintbasicmax_t to the corresponding 

unsigned counterpart. It is recommended that the same set of integer literals is 

consistently accepted by all compilation phases, even if greatest-width types are chosen 

that are wider than long long int. 

#include <stdint.h> 
#include <stdio.h> 
#include <inttypes.h> 
#ifdef UINT128_MAX // ok, because #ifdef  

typedef uint128_t bitset; 
#else  

typedef uint_least64_t bitset; 
#endif  

int main(void) { 
  bitset all = -1; 
  printf("the largest set is %#"PRIXMAX "\n", (uintwidest_t) all); 
} 



2.3. Tighten the rules for least and fast minimum-width integer types 

To be fully operational, some macros (_MAX etc) must be added to the text for <stdint.h>. 

These additions are straightforward and can be seen in the Appendix 

2.4. Eliminating [u]intmax_t from standard interfaces 
To avoid such situations where implementations get stuck because of early ABI choices, this 
proposal replaces the use of [u]intmax_t in all interfaces that use these types with the use of 

[u]intbasicmax_t typedefs. 

 
This works because intmax_t is currently defined as either long int or long long int in existing 

implementations. Recommended practice is to typedef [u]intbasicmax_t to these same real 

types as to not alter the ABI. This leaves implementations free to add support for extended 
integer types and change the widths of [u]intwidest_t to accommodate these changes.  

 
These interfaces in the C standard are 
imaxabs 
imaxdiv 
strtoimax 

strtoumax 
wcstoimax 
wcstoumax 

compoundn 
pown  
rootn 

fromfp  
fromfpx 

ufromfp 
ufromfpx 

 
Only the first six appear already in a published version of the standard. Because [u]intmax_t 

has never been used in the field with types other than long int or long long int, these functions 

are all code duplication and the long long int interface could clearly have worked all along. 

 
This proposal does not include the inclusion of type-generic functions but does nothing to 
prevent them from being proposed in the future. 

2.5. Formatted input/output functions 

Another goal of this proposal is to preserve developer’s ability to perform formatted I/O with 
programmer-defined integer types by converting signed programmer-defined integer types 
and unsigned programmer-defined integer types to the appropriately signed greatest width 
type. This is a useful feature and common idiom on which substantial existing code depends.  
 
The j length modifier will be used to represent the size of the [u]intbasicmax_t types 

going forward to retain the same size as existing implementations. This again means that no 
existing code needs to change. 
 
This code can be rewritten to can be rewritten to replace [u]intmax_t with 

[u]intbasicmax_t at the developer’s leisure. 

 

  uint_least64_t bitset all = -1; 

  printf("the largest set is %ju\n", (uintbasicmax_t) all); 

Greatest-width types can be used in formatted input/output functions by using the format 
specifiers defined in 7.8.1.  For example: 
 
  uint128_t bitset all = -1; 

  printf("the largest set is %#"PRIXWIDESTMAX"\n", (uintwidest_t) all); 

The PRI and SCN macros can specify the exact width of the type by using specific bit-width 

conversion specifiers in a manner that can be understood by both the implementation and 

the library. If the library doesn’t support the specified extended type, the formatted input or 

output function can return an error. 



This is accomplished using a length modified. It uses a lowercase letter because uppercase 

letters are reserved for implementation extensions, and avoiding the letters used in the 

standard and various TRs leaves bqvwy.  In this case, we decided to use 'w' might be better 

than 'b' in that it would leave 'b' available for supporting binary output in future. 128-bit 

integers, for example, will look like this: 

  uint128_t bitset all = -1; 

  printf("the largest set is %w128d\n", all); 

A w followed by a decimal number following d, i, o, u, x, or X conversion specifier specifies 

that the conversion specifier applies to an exact-width integer type argument of exactly N 

bits; or that a following n conversion specifier applies to a pointer to an exact-width integer 

type argument of exactly N bits. 

There is some relevant implementation experience. Microsoft printf has I32 and I64 for this 

purpose.  The use of I is in the space reserved for implementation extensions and other 

implementations use I for other things, but it's still relevant experience should we wish to 

support w<width> for that purpose. Microsoft also uses 'w' in extensions, but only with string 

and character formats so that wouldn't conflict in any way with a standard use of 'w'. 

3. IMPACT 

3.1. Existing code 

Existing code that invokes a standard library function that use a [u]intmax_t type will 

continue to work unchanged as the interfaces that use these types will continue to use the 
same real underlying types.   

3.1. Existing implementations 

With such a change of the C standard, no existing ABIs would have to change, and the 
preprocessor support for integer expressions could remain unchanged. Because the concept 
of extended integer types is basically not yet used by implementations, there would also be 
no impact on the existing code base on existing implementations, even if they chose to extend 
their ABI by some wider integer types. 

3.2. Existing of ABI’s 

This change allows platforms to add specifications of extended integer types more easily. In 
particular 128 or 256 bit types can be added to 64 bit ABI as long as a conforming naming 
scheme is chosen. Many implementations do so already in various forms and with nonuniform 
syntax. With this change they could typedef their extended type to uint128_t, say, and provide 

the corresponding macros UINT128_MAX, UINT128_C, PRId128 etc. There is no need to extend 

the language to describe additional integer types (such as long long long), to add new number 

literals (-1ULLL) or to add printf conversion characters for these in the C standard. The use of 

implementation specific names (__int128 or __int128_t) and implementation specific format 

specifiers ("%Q") is largely sufficient if appropriately mapped by <stdint.h> typedef and 

macros. 

3.3 C++ Compatibility 

C++ is that they mangle type in their external symbols. However, [u]intmax_t are still 

typedefs in C++ and mangle the same as their underlying types.  



3.3 Fundamental Type for N-bit integers 

This proposal could potentially have some interactions with N2472 Adding Fundamental 

Type for N-bit integers. Supporting these types as extended integer types as proposed 

would likely mean that the greatest width types would need to be as wide as these types.  

We're currently in the process of adding a parameterized family of integer types of any bit-

width up to our implementation limit (currently 16M).  
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Foreword 

1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 

Commission) form the specialized system for worldwide standardization. National bodies that are member 

of ISO or IEC participate in the development of International Standards through technical committees 

established by the respective organization to deal with particular fields of technical activity. ISO and IEC 

technical committees collaborate in fields of mutual interest. Other international organizations, 

governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of 

information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 

2 The procedures used to develop this document and those intended for its further maintenance are 
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the 
different types of document should be noted. This document was drafted in accordance with the editorial 
rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). 

3 Attention is drawn to the possibility that some of the elements of this document may be the subject of 
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details 
of any patent rights identified during the development of the document will be in the Introduction and/or 
on the ISO list of patent declarations received (see www.iso.org/patents). 

4 Any trade name used in this document is information given for the convenience of users and does not 

constitute an endorsement. 

5 For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions 

related to conformity assessment, as well as information about ISO’s adherence to the World Trade 

Organization (WTO) principles in the Technical Barriers to Trade (TBT), see the following URL 

www.iso.org/iso/foreword.html. 

6 This document was prepared by Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee 

SC 22, Programming languages, their environments and system software interfaces. 

7 This fifth edition cancels and replaces the fourth edition, ISO/IEC 98992018. Major changes from the 

previous edition include 

— remove obsolete sign representations and integer width constraints 

added the intwidest_t and uwidestmax_t greatest-width integer types and deprecated the use of 

intmax_t and uintmax_t 

— added the intbasicmax_t and uintbasicmax_t and allow extended integer types to be wider than these 

types 

— added a one-argument version of _Static_assert — 

harmonization with ISO/IEC 9945 (POSIX) 

• extended month name formats for strftime  

• • integration of functions memccpy, strdup, strndup — harmonization with floating point 

standard IEC 60559 

• integration of binary floating-point technical specification TS 18661-1 

• integration of decimal floating-point technical specification TS 18661-2 

• integration of decimal floating-point technical specification TS 18661-4a 



 

Library 

— the macro DECIMAL_DIG is declared obsolescent 

— added version test macros to certain library headers 

— added the attributes feature 

— added nodiscard, maybe_unused and deprecated attributes 8 A 

complete change history can be found in Annex M. 

 7.8 Format conversion of integer types <inttypes.h> 

1 The header <inttypes.h> includes the header <stdint.h> and extends it with additional facilities provided by 

hosted implementations. 

2 It declares functions for manipulating greatest-width integers and converting numeric character strings to 

greatest-width integers, and it declares the type 

imaxdiv_t 

which is a structure type that is the type of the value returned by the imaxdiv function. For each type 
declared in <stdint.h>, it defines corresponding macros for conversion specifiers for use with the formatted 
input/output functions.1) 

Forward references integer types <stdint.h> (7.20), formatted input/output functions (7.21.6), 

formatted wide character input/output functions (7.29.2). 

7.8.1  Macros for format specifiers 
1 Each of the following object-like macros expands to a character string literal containing a conversion specifier, 

possibly modified by a length modifier, suitable for use within the format argument of a formatted 

input/output function when converting the corresponding integer type. These macro names have the 

general form of PRI (character string literals for the fprintf and fwprintf family) or SCN (character string literals 

for the fscanf and fwscanf family),2) followed by the conversion specifier, followed by a name corresponding 

to a similar type name in 7.20.1. In these names, N represents the width of the type as described in 7.20.1. 

For example, PRIdFAST32 can be used in a format string to print the value of an integer of type int_fast32_t. 

2  The fprintf macros for signed integers are:  

PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdWIDESTMAX: PRIdPTR 

PRIiN PRIiLEASTN PRIiFASTN PRIiMAX PRIiWIDESTMAX: PRIiPTR 

3  The fprintf macros for unsigned integers are:  

PRIoN PRIoLEASTN PRIoFASTN PRIoMAX PRIoWIDESTMAX: PRIoPTR 

PRIuN PRIuLEASTN PRIuFASTN PRIuMAX PRIuWIDESTMAX: PRIuPTR 

PRIxN PRIxLEASTN PRIxFASTN PRIxMAX PRIxWIDESTMAX: PRIxPTR 

PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXWIDESTMAX: PRIXPTR 

4  The fscanf macros for signed integers are:  

SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdWIDESTMAX: SCNdPTR 

SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiWIDESTMAX: SCNiPTR 

5  The fscanf macros for unsigned integers are: 

SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoWIDESTMAX: SCNoPTR 

SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuWIDESTMAX: SCNuPTR 

SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxWIDESTMAX: SCNxPTR 

 

                                                           
1 ) See "future library directions" (7.31.6). 

2 ) Separate macros are given for use with fprintf and fscanf functions because, in the general case, different format specifiers might be 

required for fprintf and fscanf, even when the type is the same. 

§ 7.8.1 



 

 

6 For each type that the implementation provides in <stdint.h>, the corresponding fprintf macros shall be 

defined and the corresponding fscanf macros shall be defined unless the implementation does not have a 

suitable fscanf length modifier for the type. 
7 EXAMPLE 

#include <inttypes.h>  

#include <wchar.h>   

i n t  m a i n ( v o i d )             
{  

  uintbasicmax_t i = UINTBASICMAX_MAX;  // this type always exists  

  wprintf(L"The largest integer value is %020"  PRIxMAX " \ n", i) ;  

  wprintf(L"The largest extended integer value is %#" PRIxMAX " \ n", i) ;  

  uint widest _t j = UINT WIDEST_MAX; // this type always exists  

  wprintf(L"The  largest extended integer value is %#" PRIx WIDESTMAX " \ n", j) ;  

  return 0;                                                                        

} 

 7.8.2 Functions for greatest-width integer types 

7.8.2.1 The imaxabs function 

Synopsis 

1 

Description 

2 The imaxabs function computes the absolute value of an integer j. If the result cannot be represented, the 

behavior is undefined.233) 

Returns 

3 The imaxabs function returns the absolute value. 

7.8.2.2 The imaxdiv function 

Synopsis 

1 

Description 

2 The imaxdiv function computes numer / denom and numer % denom in a single operation. 

Returns 

3 The imaxdiv function returns a structure of type imaxdiv_t comprising both the quotient and the remainder. 
The structure shall contain (in either order) the members quot (the quotient) and rem (the remainder), each 
of which has type intbasicmax_t. If either part of the result cannot be represented, the behavior is undefined. 

7.8.2.3 The strtoimax and strtoumax functions Synopsis 

1 

 
233) The absolute value of the most negative number may not be representable. 

#include <inttypes.h>  

intmax_t imaxabs(intmax_t j); 
intbasicmax_t imaxabs(intbasicmax_t j); 

#include <inttypes.h>  

imaxdiv_t imaxdiv(intmax_t numer, intmax_t denom); 
imaxdiv_t imaxdiv(intbasicmax_t numer, intbasicmax_t denom);  

#include <inttypes.h>  

intmax_t strtoimax(const char * restrict nptr, char ** restrict endptr, int base); 
uintmax_t strtoumax(const char * restrict nptr, char ** restrict endptr, int base); 
intbasicmax_t strtoimax(const char *restrictnptr,  char ** restrict endptr, int base); 
uintbasicmax_t strtoumax(const char *restrictnptr,  char ** restrict endptr, int base); 



 

Library 

2 The strtoimax and strtoumax functions are equivalent to the strtol, strtoll, strtoul, and strtoull functions, except 

that the initial portion of the string is converted to intbasicmax_t and uintbasicmax_t representation, 

respectively. 

Returns 

3 The strtoimax and strtoumax functions return the converted value, if any. If no conversion could be performed, 

zero is returned. If the correct value is outside the range of representable values, INTMAX_MAX 

INTBASICMAX_MAX, INTMAX_MIN INTBASICMAX_MIN, or UINTMAX_MAX UINTBASICMAX_MAX is returned 

(according to the return type and sign of the value, if any), and the value of the macro ERANGE is stored in 

errno. 

Forward references the strtol, strtoll, strtoul, and strtoull functions (7.22.1.7). 

7.8.2.4 The wcstoimax and wcstoumax functions Synopsis 

1 

Description 

2  The wcstoimax and wcstoumax functions are equivalent to the wcstol, wcstoll, wcstoul, and wcstoull functions 

except that the initial portion of the wide string is converted to intbasicmax_t and uintbasicmax_t 

representation, respectively. 

Returns 

3  The wcstoimax function returns the converted value, if any. If no conversion could be performed, zero is 

returned. If the correct value is outside the range of representable values, INTMAX_MAX INTBASICMAX_MAX, 

INTMAX_MIN INTBASICMAX_MIN, or UINTMAX_MAX UINTBASICMAX_MAX is returned (according to the return 

type and sign of the value, if any), and the value of the macro ERANGE is stored in errno. 

Forward references the wcstol, wcstoll, wcstoul, and wcstoull functions (7.29.4.1.3).  

#include <stddef.h> // for wchar_t 
#include <inttypes.h>  

intmax_t wcstoimax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base); 
uintmax_t wcstoumax(const wchar_t *restrict nptr, wchar_t **restrict endptr, int base); 
intbasicmax_t wcstoimax(const wchar_t *restrictnptr, wchar_t **restrict endptr, int base); 
uintbasicmax_t wcstoumax(const wchar_t *restrictnptr,  wchar_t **restrict endptr, int base); 



 

 

 7.20 Integer types <stdint.h> 

1 The header <stdint.h> declares sets of integer types having specified widths, and defines corresponding sets 

of macros.3) It also defines macros that specify limits of integer types corresponding to types defined in 

other standard headers. 

2 Types are defined in the following categories 

— integer types having certain exact widths; 

— integer types having at least certain specified widths; 

— fastest integer types having at least certain specified widths; 

— integer types wide enough to hold pointers to objects; — 

integer types having greatest width. 

(Some of these types may denote the same type.) 

3 Corresponding macros specify limits of the declared types and construct suitable constants. 4 For 
each type described herein that the implementation provides,4) <stdint.h> shall declare that typedef name 
and define the associated macros. Conversely, for each type described herein that the implementation does 
not provide, <stdint.h> shall not declare that typedef name nor shall it define the associated macros. An 
implementation shall provide those types described as "required", but need not provide any of the others 
(described as "optional"). 

5 The feature test macro __STDC_VERSION_STDINT_H__ expands to the token yyyymmL. 

 7.20.1 Integer types 
1 When typedef names differing only in the absence or presence of the initial u are defined, they shall denote 

corresponding signed and unsigned types as described in 6.2.5; an implementation providing one of these 

corresponding types shall also provide the other. 

2 In the following descriptions, the symbol N represents an unsigned decimal integer with no leading zeros 

(e.g., 8 or 24, but not 04 or 048). 

 7.20.1.1 Exact-width integer types 

1 The typedef name intN_t designates a signed integer type with width N and no padding bits. Thus, int8_t 

denotes such a signed integer type with a width of exactly 8 bits. 

2 The typedef name uintN_t designates an unsigned integer type with width N and no padding bits. Thus, 

uint24_t denotes such an unsigned integer type with a width of exactly 24 bits. 

3 These types are optional. However, if an implementation provides integer types with widths of 8, 16, 32, or 

64 bits, and no padding bits, it shall define the corresponding typedef names. 

 7.20.1.2 Minimum-width integer types 

1 The typedef name int_leastN_t designates a signed integer type with a width of at least N, such that no 
signed integer type with lesser size has at least the specified width. Thus, int_least32_t denotes a signed 
integer type with a width of at least 32 bits. 

2 The typedef name uint_leastN_t designates an unsigned integer type with a width of at least N, such that no 

unsigned integer type with lesser size has at least the specified width. Thus, uint_least16_t denotes an 

unsigned integer type with a width of at least 16 bits. 

                                                           
3 ) See "future library directions" (7.31.12). 
4 ) Some of these types might denote implementation-defined extended integer types. 

 



 

 

3 If either of the types int_least N_t or uint_leastN_t are provided, the other is provided, too, and they are the 

corresponding signed and unsigned types of each other. If the types int_leastN_t and int_leastM_t are 

provided for N < M, the width of the former is less than or equal to the width of the latter. 

4 The following types are required 

int_least8_t int_least16_t 
int_least32_t int_least64_t 

uint_least8_t 
uint_least16_t 
uint_least32_t 
uint_least64_t 

as are the types int_leastN_t and uint_leastN_t for all N for which the exact-width types intN_t and uintN_t 

are provided. All other types of this form are optional. 

 7.20.1.3 Fastest minimum-width integer types 

1 Each of the following types designates an integer type that is usually fastest5) to operate with among all 

integer types that have at least the specified width. 

2 The typedef name int_fastN_t designates the fastest signed integer type with a width of at least N. The 

typedef name uint_fastN_t designates the fastest unsigned integer type with a width of at least N. 

3 If either of the types int_fastN_t or uint_fastN_t are provided, the other is provided, too, and they are the 

corresponding signed and unsigned types of each other. If the types int_fastN_t and int_fastM_t are provided 

for N < M, the width of the former is less than or equal to the width of the latter. 

4 The following types are required 
int_fast8_t int_fast16_t 
int_fast32_t int_fast64_t 

uint_fast8_t 
uint_fast16_t 
uint_fast32_t 
uint_fast64_t 

as are the types int_fastN_t and uint_fastN_t for all N for which the exact-width types intN_t and uintN_t are 

provided. All other types of this form are optional. 

 7.20.1.4 Integer types capable of holding object pointers 

1 The following type designates a signed integer type with the property that any valid pointer to void can be 
converted to this type, then converted back to pointer to void, and the result will compare equal to the 
original pointer 

intptr_t 

The following type designates an unsigned integer type with the property that any valid pointer to void can 

be converted to this type, then converted back to pointer to void, and the result will compare equal to the 

original pointer 

uintptr_t 

These types are optional. 

 7.20.1.5 Greatest-width integer types 

 

                                                           
5 )The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear grounds for choosing one 

type over another, it will simply pick some integer type satisfying the signedness and width requirements. 

 



 

 

6 The following type designates a signed integer type capable of representing any value of any signed integer 

type  

intmax_t 

intwidest_t 

The following type designates an unsigned integer type capable of representing any value of any unsigned 

integer type: 

uintmax_t 

uintwidest_t 

These types are required. 

7 The types intwidest_t and uintwidest_t designate a signed and an unsigned integer type 

capable of representing any value of any unsigned integer type: respectively that are at least as wide 

as any integer type defined by the header <stdint.h>. These types are required. 

8 NOTE 1 The intwidest_t and uintwidest_t types are intended to provide a fallback for 

applications that use integers for which they lack specific type information. This mainly occurs in two 

different situations. First, for integers that appear in conditional inclusion: (#if expressions, 6.10.1) 

they provide fallback types that capture the implementation specific capabilities during translation 

phase 4. Second, for some semantic type definitions that resolve to implementation specific types there 

are no special provisions for printf, scanf, or similar functions. 

9 Example  An implementation that has historically fixed its type intwidest_t and uintwidest_t 

to a 64 bit type, and seeks to add a 128 bit integer exact-width type to its extended integer types, may 

do so by providing types uint128_t, uint_least128_t, uint_least128_t and the corresponding 

signed types and macros of stdint.h and inttypes.h (7.8.1). Implementations would need to adjust 

intwidest_t and uintwidest_t accordingly which would break binary compatibility with 

application APIs which use these types. 

Application code can then query the type and print it by using the appropriate macros 

1 
2 
3 
4 
5 
6 
7 
8 
9 
 
 

Recommended practice  

#include <stdint.h> 
#include <stdio.h> 
#include <inttypes.h> 
#ifdef UINT128_MAX // ok, because #ifdef  

typedef uint128_t bitset; 
#else  

typedef uint_least64_t bitset; 
#endif  

int main(void) { 
  bitset all = -1; 
  printf("the largest set is %#"PRIXMAX "\n", (uintwidest_t) all); 
} 



 

 

10 It is recommended that the same set of integer literals is consistently accepted by all 

compilation phases even if intwidest_t is chosen to be wider than signed long long int. 

Implementations and applications should not use the types intwidest_t and uintwidest_t to 

describe application programmable interfaces.285) 

 

7.20.1.6 Greatest basic-width integer types  
7 The types intbasicmax_t and uintbasicmax_t designate a signed and an unsigned integer type, 

respectively, that are at least as wide as any basic integer type, the types 

 
 char16_t int_least64_t size_t wchar_t 
 char32_t  ptrdiff_t uint_fast64_t wint_t 

        int_fast64_t sig_atomic_t uint_least64_t 

 

and, provided they exist, intptr_t and uintptr_t. These types are required. Additionally defined are 
the types intmax_t and uintmax_t which are obsolescent aliases for intbasicmax_t and 

uintbasicmax_t. 
 

8 Note 1 The intbasicmax_t and uintbasicmax_t types are intended to represent values of 

all types listed above and also the exact-width integer types for all N≤ 64. 
9 Note 2 Extended integer types that are not referred by the above list and that are wider than 

signed long long int may also be wider than intbasicmax_t. The intbasicmax_t and 

intwidest_t types may then be different.  

10 Note 3 The intwidest_t and uintwidest_t types are intended to provide a fallback for 

applications that deal with extended integer types that are potentially wider than 

intbasicmax_t or uintbasicmax_t. 
Recommended practice  
11 Unless some typedef in the library clause otherwise enforces, it is recommended to resolve 

intbasicmax_t to long or long long int and uintbasicmax_t to the corresponding unsigned 

counterpart. It is recommended that the same set of integer literals is consistently accepted by all 
compilation phases, even if greatest-width types are chosen that are wider than long long int. 

 

 7.20.2 Widths of specified-width integer types 
1 The following object-like macros specify the width of the types declared in <stdint.h>. Each macro name 

corresponds to a similar type name in 7.20.1. 

2 Each Unless specified otherwise, each instance of any defined macro shall be replaced by a constant 
expression suitable for use in #if preprocessing directives. Its implementation-defined value shall be equal 
to or greater than the value given below, except where stated to be exactly the given value. An 
implementation shall define only the macros corresponding to those typedef names it actually 
provides.286) 

 7.20.2.1 Width of exact-width integer types 

1 
 

 

285) This document does not use them further in any of its clauses. 
286) The exact-width and pointer-holding integer types are optional. 

INTN_WIDTH exactly N 
UINTN_WIDTH exactly N 



 

 

 7.20.2.2 Width of minimum-width integer types 

1 

 7.20.2.3 Width of fastest minimum-width integer types 

1 

 7.20.2.4 Width of integer types capable of holding object pointers 

1 

 7.20.2.5 Width of greatest-width integer types 

1 

 7.20.2.6 Width of greatest basic-width integer types  

1 

2 The INTMAX_WIDTH and UINTMAX_WIDTH macros are obsolescent features. 

 7.20.3 Width of other integer types 
3 The following object-like macros specify the width of integer types corresponding to types defined in other 

standard headers. 

4 Each instance of these macros shall be replaced by a constant expression suitable for use in #if preprocessing 

directives. Its implementation-defined value shall be equal to or greater than the corresponding value given 

below. An implementation shall define only the macros corresponding to those typedef names it actually 

provides.6) 

                                                           
6 ) A freestanding implementation need not provide all of these types. 

INT_LEASTN_WIDTH exactly UINT_LEASTN_WIDTH 
UINT_LEASTN_WIDTH N 

INT_FASTN_WIDTH exactly UINT_FASTN_WIDTH 
UINT_FASTN_WIDTH N 

INTPTR_WIDTH exactly UINTPTR_WIDTH 
UINTPTR_WIDTH 16 

INTMAX_WIDTH INTWIDEST_WIDTH exactly UINTMAX_WIDTH UINTWIDEST_WIDTH 

UINTMAX_WIDTH UINTWIDEST_WIDTH 64 

INTBASICMAX_WIDTH exactly UINTBASICMAX_WIDTH 
UINTBASICMAX_WIDTH 64 
INTMAX_WIDTH INTBASICMAX_WIDTH 
UINTMAX_WIDTH UINTBASICMAX_WIDTH 



 

 

 7.20.3.1 Width of ptrdiff_t 

1 

1 

1 

1 

 7.20.3.5 Width of wint_t 

1 

 7.20.4 Macros for integer constants 
1 The following function-like macros expand to integer constants suitable for initializing objects that have 

integer types corresponding to types defined in <stdint.h>. Each macro name corresponds to a similar type 

name in 7.20.1.2 or 7.20.1.5. For types wider than uintbasicmax_t, the macros shall only be defined if the 

implementation provides integer literals for the type that are suitable to be used in #if preprocessing 

directives. Otherwise, the definition of these macros is mandatory for any of the types that are provided by 

the implementation. 

2 The argument in any instance of these macros shall be an unsuffixed integer constant (as defined in 6.4.4.1) 

with a value that does not exceed the limits for the corresponding type. 

3 Each invocation of one of these macros shall expand to an integer constant expression suitable for use in 
#if preprocessing directives. The type of the expression shall have the same type as would an expression of 
the corresponding type converted according to the integer promotions. The value of the expression shall 
be that of the argument. 

 7.20.4.1 Macros for minimum-width integer constants 

1 The If defined, the macro INTN_C(value) expands to an integer constant expression corresponding to the 

promoted type int_leastN_t. The If defined, the macro UINTN_C(value) expands to an integer constant 

expression corresponding to the promoted type uint_leastN_t. For example, if 

2 EXAMPLE If uint_least64_t is a name for the type unsigned long long int, then UINT64_C(0x123) might expand to the integer constant 

0x123ULL. 

 7.20.4.2 Macros for greatest-width integer constants 

1 The following macro expands to an integer constant expression having the value specified by its argument 

and the type intmax_t intwidest_t 

INTMAX_C INTWIDEST_C(value) 

PTRDIFF_WIDTH 17 

7.20.3.2 Width of sig_atomic_t 
 

SIG_ATOMIC_WIDTH 8 

7.20.3.3 Width of size_t 
 

SIZE_WIDTH 16 

7.20.3.4 Width of wchar_t 
 

WCHAR_WIDTH 8 

WINT_WIDTH  16 



 

 

The following macro expands to an integer constant expression having the value specified by its argument 

and the type uintmax_t uintwidest_t 

UINTMAX_C UINTWIDEST_C (value) 

The INTMAX_C and UINTMAX_C macros are obsolescent features. 

7.20.4.3 Macros for greatest basic-width integer constants 

1 The following macro expands to an integer constant expression having the value specified by its argument 

and the type intbasicmax_t 

INTBASICMAX_C(value) 

The following macro expands to an integer constant expression having the value specified by its argument 

and the type uintbasicmax_t 

UINTBASICMAX_C(value) 

 7.20.5 Maximal and minimal values of integer types 
1 For all integer types for which there is a macro with suffix _WIDTH holding the width, maximum macros with 

suffix _MAX and, for all signed types, minimum macros with suffix _MIN are defined as by 5.2.4.2. If it is 

unspecified if a type is signed or unsigned and the implementation has it as an unsigned type, a minimum 

macro with extension _MIN, and value 0 of the corresponding type is defined.  

2 The INTMAX_MAX, INTMAX_MIN, and UINTMAX_MAX macros are obsolescent aliases for 

INTBASICMAX_MAX, INTBASICMAX_MIN, and UINTBASICMAX_MAX, respectively. 

7.21.6.1 The fprintf function 
…  

j  Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t intbasicmax_t or 

uintmax_t intbasicmax_t argument; or that a following n conversion specifier applies to a pointer to 

an intmax_t intbasicmax_t argument.  

wN  Specifies that a following d, i, o, u, x, or X conversion specifier applies to an exact-width integer type 

argument of exactly N bits; or that a following n conversion specifier applies to a pointer to an exact-

width integer type argument of exactly N bits. 

…  

7.21.6.2 The fscanf function 
…  

j  Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with 

type pointer to intmax_t intbasicmax_t or uintmax_t intbasicmax_t. 

wN  Specifies that a following d, i, o, u, x, or X, or n conversion specifier applies to a pointer to an exact-

width integer type argument of exactly N bits. 

…  



 

 

7.29.2.1 The fwprintf function 

…  

j  Specifies that a following d, i, o, u, x, or X conversion specifier applies to an intmax_t 

intbasicmax_t or uintmax_t intbasicmax_t argument; or that a following n conversion specifier 

applies to a pointer to an intmax_t intbasicmax_t argument. 

wN  Specifies that a following d, i, o, u, x, or X conversion specifier applies to an exact-width integer type 

argument of exactly N bits; or that a following n conversion specifier applies to a pointer to an exact-

width integer type argument of exactly N bits. 

…  

7.29.2.2 The fwscanf function 
…  

j  Specifies that a following d, i, o, u, x, X, or n conversion specifier applies to an argument with 

type pointer to intmax_t intbasicmax_t or uintmax_t intbasicmax_t. 

wN  Specifies that a following d, i, o, u, x, or X, or n conversion specifier applies to a pointer to an exact-

width integer type argument of exactly N bits. 

…  

7.31.17 Greatest-width integer types 

1 The intmax_t and uintmax_t types are obsolescent aliases for intbasicmax_t and 

uintbasicmax_t. Using intmax_t and uintmax_t types in an API is an obsolescent feature. 

2 The INTMAX_WIDTH and UINTMAX_WIDTH macros are obsolescent aliases for INTBASICMAX_WIDTH and 

UINTBASICMAX_WIDTH.  

3 The INTMAX_C and UINTMAX_C macros are obsolescent aliases for INTBASICMAX_C and 

UINTBASICMAX_C. 

4 The INTMAX_MAX, INTMAX_MIN, and UINTMAX_MAX macros are obsolescent aliases for 

INTBASICMAX_MAX, INTBASICMAX_MIN, and UINTBASICMAX_MAX, respectively. 

Annex M 

(informative) 

Change History 

 M.1 Fifth Edition 

1 Major changes in this fifth edition (__STDC_VERSION__yyyymmL) include 

— remove obsolete sign representations and integer width constraints 

— added the intbasicmax_t and uintbasicmax_t and allow extended integer types to be wider than these 

types 

— added a one-argument version of _Static_assert — 

harmonization with ISO/IEC 9945 (POSIX) 



 

 

• extended month name formats for strftime • integration of functions memccpy, strdup, 

strndup — harmonization with floating point standard IEC 60559 

• integration of binary floating-point technical specification TS 18661-1 

• integration of decimal floating-point technical specification TS 18661-2 

• integration of decimal floating-point technical specification TS 18661-4a 

— the macro DECIMAL_DIG is declared obsolescent 

— added version test macros to certain library headers 

— added the attributes feature 

— added nodiscard, maybe_unused and deprecated attributes 

 M.2 Fourth Edition 

1 There were no major changes in the fourth edition (__STDC_VERSION__201710L), only technical corrections and 

clarifications. 

 M.3 Third Edition 

1 Major changes in the third edition (__STDC_VERSION__201112L) included 

— conditional (optional) features (including some that were previously mandatory) 

— support for multiple threads of execution including an improved memory sequencing model, atomic 

objects, and thread-local storage (<stdatomic.h> and <threads.h>) 

— additional floating-point characteristic macros (<float.h>) 

— querying and specifying alignment of objects (<stdalign.h>, <stdlib.h>) 

— Unicode characters and strings (<uchar.h>) (originally specified in ISO/IEC TR 197692004) 

— type-generic expressions 

— static assertions 

— anonymous structures and unions 

— no-return functions 

— macros to create complex numbers (<complex.h>) 

— support for opening files for exclusive access 


