nodiscard(“should have a reason”)

JeanHeyd Meneide <phdofthehouse@gmail.com>

Isabella Muerte <https://twitter.com/slurpsmadrips/>

October 24th, 2019

Document: N2448

Previous Revisions: n2430

Audience: WG14

Proposal Category: New Features

Target Audience: General Developers, Compiler/Tooling Developers

Latest Revision: https://thephd.github.io/vendor/future cxx/papers/source/n2448.html

Abstract:

Many functions return a value, however, not all function return values are of equal importance to the caller.
The recent [[nodiscard]] attribute allows compilers to issue a diagnostics, but only hands the user a generic
error message. This proposal enhances the [[nodiscard]] attribute in the same manner as the
[[deprecated]] attribute, giving developers the same power to guide their users to better APIs with the aid
of the compiler by providing a string literal attribute argument clause.

1 Introduction

Document N2267 introduced a new attribute [[nodiscard]] in the C2x working paper. This has provided
significant improvements in reminding programmers of the safety issues of discarding the return value of a
function. The [[nodiscard]] attribute has helped prevent a serious class of software bugs, but sometimes it
is hard to communicate exactly why a function is marked as [[nodiscard]] and perhaps what actions should
be taken to rectify the issue.

This paper supplies an addendum to allow a developer to add a string attribute token to let someone provide a
small reasoning or reminder for why a function has been marked [[nodiscard(*'potential memory

leak'™)]].

2 Design Considerations

This paper is an enhancement of a preexisting feature to help programmers provide clarity with their code.
Anything that makes the implementation warn or error should also provide some reasoning or perhaps point
users to a knowledge base or similar to have any questions they have about the reason for the nodiscard
attribute answered.

Consider the following code example, before and after the change:
#define FOO_BASE OxBA51CFOO

#define FOO_LINK_TYPE 1



struct foo { /* ... */ };
[[nodiscard]] int foo_get value(struct foo*);

2.0.1 Status Quo:

[[nodiscard]]

foo* foo_create(int, struct foo*);
[[nodiscard]]

int foo_compare(struct foo*, struct foo*);

// Always > 0
const int kHandles = .._;

int main (int, char*[]) {

foo* foo _handles[kHandles + 1] = { };
foo_handles[0] = foo_create(BASE_FOO, NULL);
for (int 1 = 1; i1 < kHandles; ++i) {
foo_handles[i] = foo_create(FOO_LINK _TYPE, foo_handles[0])
}

/* sometime later */

for (int 1 = 0; i1 < kHandles,
foo_compare(foo_handles[0], foo_handles[i]), foo_get_value(foo_handles[i]) > O;
// ™ warning: function return value marked nodiscard was discarded

++i) {

/* process... */
}

return O;

}
/\ - warning, but it is a generic warning; what exactly went wrong here?

2.0.2 With Proposal:

[[nodiscard("'memory leaked™)]]

struct foo* foo_create(int, struct foo*);
[[nodiscard(*'value of foo comparison unused™)]]
int foo_compare(struct foo*, struct foo*);

// Always > 0
const int kHandles = .._;

int main (int, char*[]) {

struct foo* foo_handles[kHandles + 1] = { };
foo_handles[0] = foo_create(BASE_FOO, NULL);
for (int 1 = 1; i1 < kHandles; ++i) {
foo_handles[i] = foo_create(FOO_LINK _TYPE, foo_handles[0])
}

/* sometime later */

for (int i = 0; 1 < kHandles,
foo_compare(foo_handles[0], foo_handles[i]), foo_get value(foo_handles[i]) > O;



// ™ warning: function return marked nodiscard was discarded - value of foo comparison
unused

++i1) {

/* process... */

}

return O;

}

&/ - warning much more clearly makes it obvious that a comma was used with the return value of
foo_compare, and not &&.

The design is very simple and follows the lead of the deprecated attribute. We propose allowing a string
literal to be passed as an attribute argument clause, allowing for [[nodiscard(*'use the returned token
with lib_foobar')]]. The key here is that there are some nodiscard attributes that have different kinds of
“severity” versus others.

Adding a reason to nodiscard allows implementers of the standard library, library developers, and application
writers to benefit from a more clear and concise error beyond error:<line>: value marked
[[nodiscard]] was discarded. This makes it easier for developers to understand the intent for return
values for the used libraries (and understand from which individual expression errors originate in complex
expressions).

3 Implementation Experience

This is in the official C++ Standard, and has been merged into Clang already as well as merged into GCC. It
would be good to maintain parity with C++ to allow headers that work in both languages to continue to use
the same syntax, since this is going to be an increasingly useful existing practice.

4 Proposed Wording

This proposed wording is currently relative to Working Paper N2385. The intent of this wording is to allow
for the [[nodiscard]] attribute to be able to take a string literal.

4.1 Changes

Rewrite §6.7.11.2 “The nodiscard attribute’’s Constraint subsection as follows:

The nodiscard attribute shall be applied to the identifier in a function declarator or to the
definition of a structure, union, or enumeration type. It shall appear at most once in each attribute
list. If an attribute argument clause is present, it shall have the form:

(.string-literal )

Add a clause just beneath the first clause in the Recommended Practice subsection as follows:

The diagnostic message may include text provided by the string literal within the attribute
argument clause of any nodiscard attribute applied to the name or entity.

Add a third example after the first two in the Recommended Practice subsection as follows:



[[nodiscard("'must check armed state')]]
bool arm_detonator(int);

void call(void) {
arm_detonator(3);
detonate();

b3

A diagnostic for the call to arm detonator using the string_literal "must check

armed state" from the attribute argument clause is encouraged.




