
Proposal for C2x

WG14 N2418

Title: Adding the u8 character prefix

Author, affiliation: Aaron Ballman, GrammaTech

Date: 2019-09-02

Proposal category: New features

Target audience: C programmers using the UTF-8 character set

Abstract: C++17 adopted the u8 character literal prefix as complement to u8 string literal prefixes.

Prior art: C++.

Adding the u8 character prefix
Reply-to: Aaron Ballman (aaron@aaronballman.com)

Document No: N2418

Date: 2019-09-02

Summary of Changes
N2418

 Added rationale as to why unsigned char is the correct underlying type

 Clarified that an environment macro is not necessary

 Moved specification of u8 away from the specification of wide character constants

 Added constraints to the proposed wording

N2198

 Original proposal

Introduction and Rationale
In C17, there are four encoding prefix spellings for string literals: u8, u, U, and L, but only three encoding

prefixes for character literals: u, U, and L. C++17 adopted a feature adding the u8 prefix for character

literals to represent a UTF-8 encoding [WG21 N4267]. This is a useful feature that allows a programmer

working in a narrow character set other than ASCII to obtain ASCII characters by using the u8 prefix

because the single code unit UTF-8 encodings are identical to ASCII. It is also makes character literal

prefixes more consistent with string literal prefixes, and aligns the literal syntaxes of C and C++ more

closely.

C++ uses char8_t as the underlying type for a u8 character literal. This proposal proposes using

unsigned char as the underlying type for a u8 character literal because the underlying type for

char8_t in C++ is unsigned char. Should C adopt a char8_t datatype [N2231], it would possibly

pick either unsigned char or uint_least8_t as the underlying type. Using unsigned char for u8

character literals now would then be forward compatible with future harmonization efforts.

All of the other prefixes (L, u, and U) map to an underlying type that has an environment macro specified

in 6.10.8.2. UTF-8 character constants do not require an environment macro because they are defined in

terms of a single UTF-8 code unit.

Proposed Wording
The wording proposed is a diff from the committee draft of ISO/IEC 9899-2017. Green text is new text,

while red text is deleted text.

Modify 6.4.4.4p1:

character-constant:

 ' c-char-sequence '

 L' c-char-sequence '

 u' c-char-sequence '

 U' c-char-sequence '

 encoding-prefixopt ' c-char-sequence '

encoding-prefix: one of
 u8 u U L

Modify 6.4.4.4p2:

An integer character constant is a sequence of one or more multibyte characters enclosed in single-quotes,

as in 'x'. A wide character constant is the same, except prefixed by the letter L, u, or U. A UTF-8

character constant is the same, except prefixed by u8. With a few exceptions detailed later, the elements

of the sequence are any members of the source character set; they are mapped in an implementation-

defined manner to members of the execution character set.

Add the following row to the table in 6.4.4.4p9:

u8 | unsigned char

Add 6.4.4.4p10 to the Constraints section:

10 A UTF-8 character constant shall not contain more than one character (e.g., u8'ab'). The value shall

be representable with a single UTF-8 code unit.

Add 6.4.4.4p12 (after existing p10 in Semantics):

12 A UTF-8 character constant has type unsigned char. The value of a UTF-8 character constant is

equal to its ISO/IEC 10646 code point value, provided that the code point value can be encoded as a

single UTF-8 code unit.

Modify 6.4.5p1:

string-literal:

 encoding-prefixopt " s-char-sequenceopt "

encoding-prefix:
 u8
 u
 U

 L

Acknowledgements
I would like to recognize the following people for their help with this work: Tom Honermann and Robert

Seacord.

References
[WG21 N4267]

Adding u8 character literals. Richard Smith. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2014/n4267.html

[N2231]

char8_t: A type for UTF-8 characters and strings. Tom Honermann. http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n2231.htm

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4267.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4267.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2231.htm
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2231.htm

