
ISO/IEC JTC 1/SC 22/WG14

June 9, 2019

N 2394

v 1
Introduce the nullptr constant
proposal for C2x

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

Since more than a decade C++ has already replaced the problematic definition of NULL which might be either

of integer type or void*. By using a new constant nullptr, they achieve a more constrained specification,
that allows much better diagnosis of user code. We propose to integrate this concept into C as far as possible

without putting much strain on implementations.
This is a split-off of N2368 that builds on the approval of the “keywords” patches.

1. INTRODUCTION

The macro NULL that goes back quite early, was meant to provide a tool to specify a null
pointer constant such that it is easily visible and such that it makes the intention of the
programmer to specifier a pointer value clear. Unfortunately, the definition as it is given in
the standard misses that goal, because the constant that is hidden behind the macro can
be of very different nature.
A null pointer constant can be any integer constant of value 0 or such a constant converted
to void*. Thereby several types are possible for NULL. Commonly used are 0 with int, 0L
with long and (void*)0 with void*.

(1) This may lead to surprises when invoking a type-generic macro with a NULL argument.
(2) Conditional expressions such as (1 ? 0 : NULL) and (1 ? 1 : NULL) have different sta-

tus depending how NULL is defined. Whereas the first is always defined, the second is a
constraint violation if NULL has type void*, and defined otherwise.

(3) A NULL argument that is passed to a va_arg function that expects a pointer can have
severe consequences. On many architectures nowadays int and void* have different size,
and so if NULL is just 0, a wrongly sized arguments is passed to the function.

2. POSSIBLE SPECIFICATIONS FOR A MORE RESTRICTIVE NULL POINTER CONSTANT

Because of such problems, C++ has long shifted to a different setting, namely the keyword
nullptr. They use a special type nullptr_t for this constant, which allows to analyze and
constrain the use of the constant more precisely:

— The constant can only be used in specific contexts, namely for conversion to pointer
type, initialization, assignment and equality testing. It cannot be used in arithmetic or
comparison.

— This type cannot be converted to an arithmetic type.
— No object can be created with this type.

In addition, a specific nullptr_t type allows C++ to provide neat overloading facilities
such that optimized versions of functions can be accessed when their argument is a null
pointer constant.
All of this is not strictly necessary for C: we can just define nullptr to be ((void*)0) to
avoid the principal defaults of NULL as mentioned above.

As a matter of fact we see two possible strategies for existing implementations to implement
a nullptr feature:

— Implementations that have also C++ front-ends will want to reuse their code for nullptr
from there. Such an implementation then can provide detailed diagnostics when the con-
stant is used erroneously.

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

N2394:2 Jens Gustedt

— Implementations that have yet no special provisions for null pointer constants besides
NULL and will hesitate to embark on implementing it in a short time frame. For these a
simple cost-effective migration path to C2x should be provided.

Therefore we propose a specification that attempts to bridge the gap between those two
principal strategies:

— We don’t require a special type of nullptr, but only that it is not an arithmetic type.
Thereby, an implementation as predefined macro with expansion ((void*)0) or similar is
legit.

— We forbid the same use cases that C++, but not all of them can be formulated as constraint
violations. In fact, two of the forbidden use cases are not easily detectable at compile time
if nullptr is expanded to ((void*)0) by the preprocessor, namely
— conversion to a non-pointer type, and
— the usage of nullptr and an integer 0 as second and third argument of a conditional

operator.

3. PROPOSED CHANGES

First, we have to anchor nullptr in the syntax. This is not very difficult and requires
additions of nullptr to 6.4.1 p1 and p2, 6.4.4.5 p1, 6.10.8.1 and Annex A.
The most important change is a new clause (6.5.4.4.2) that describes the main properties
of the new constant. In particular it describes the main mechanism according to which it is
used: there is a list of contexts where it appears as if it had a pointer type. This ensures
that in all other contexts (which are not listed) the use of nullptr constitutes a constraint
violation.
Then, some special arrangments are necessary:

(1) For pointer conversion (6.3.2.3) we add it to the list of null pointer constants and insist
that nullptr must not be converted to a non-pointer type.

(2) For default function argument promotions (6.5.2.2) we stipulate that nullptr is replaced
by a null pointer of type void*.

(3) sizeof nullptr is sizeof(void*) (6.5.3.4).
(4) We make special provisions for nullptr constants that are used in equality testing (6.9

p6) and conditional operators (6.5.15).

A second set of changes concern NULL. The new constant nullptr is introduced to phase
this one out, so NULL should be deprecated (7.19 p3, 7.31.12). In the future even existing
usage of NULL should provide all the possible diagnostics, so its expansion should preferably
be set to nullptr (7.19 p5).
In addition, all uses of NULL should be replaced by nullptr. These changes are mainly text
replacement, so we don’t list them in the diffmarks, below.

4. REFERENCE IMPLEMENTATION

To add minimal support for the proposed changes, an implementation would have to add a
definition that is equivalent to the following line to their startup code:

#define nullptr ((void*)0)

At the other end of the spectrum, an implementation that implements nullptr as first-class
construct (e.g by using its existing C++ mechanism) can simply have a definition that is
the the token identity:

#define nullptr nullptr

Introduce the nullptr constant N2394:3

Appendix: pages with diffmarks of the proposed changes
against the keywords proposal N2392.
The following page numbers are from the particular snapshot and may vary once the changes
are integrated.

ISO/IEC 9899:202x (E) working draft — June 9, 2019 keywords..nulls N2394

When an object is said to have a particular type, the type is specified by the lvalue used to designate
the object. A modifiable lvalue is an lvalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

2 Except when it is the operand of the sizeof operator, the unary & operator, the++ operator, the--
operator, or the left operand of the . operator or an assignment operator, an lvalue that does not
have array type is converted to the value stored in the designated object (and is no longer an lvalue);
this is called lvalue conversion. If the lvalue has qualified type, the value has the unqualified version
of the type of the lvalue; additionally, if the lvalue has atomic type, the value has the non-atomic
version of the type of the lvalue; otherwise, the value has the type of the lvalue. If the lvalue has an
incomplete type and does not have array type, the behavior is undefined. If the lvalue designates an
object of automatic storage duration that could have been declared with the register storage class
(never had its address taken), and that object is uninitialized (not declared with an initializer and no
assignment to it has been performed prior to use), the behavior is undefined.

3 Except when it is the operand of the sizeof operator, or the unary & operator, or is a string literal
used to initialize an array, an expression that has type "array of type" is converted to an expression
with type "pointer to type" that points to the initial element of the array object and is not an lvalue.
If the array object has register storage class, the behavior is undefined.

4 A function designator is an expression that has function type. Except when it is the operand of the
sizeof operator,69) or the unary & operator, a function designator with type "function returning
type" is converted to an expression that has type "pointer to function returning type".

Forward references: address and indirection operators (6.5.3.2), assignment operators (6.5.16),
common definitions <stddef.h> (7.19), initialization (6.7.9), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the sizeof and alignof
operators (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

1 The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers
1 A pointer to void may be converted to or from a pointer to any object type. A pointer to any object

type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

2 For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

3 An integer constant expression with the value 0, or such an expression cast to type void *, is called

::
or

:::
the

::::::::
constant

::::::::
nullptr

::::
are

::
all

:
a null pointer constant.70) If a null pointer constant is converted to

a pointer type, the resulting pointer, called a null pointer, is guaranteed to compare unequal to a
pointer to any object or function.

:
If
:::
the

::::::::
constant

::::::::
nullptr

::
is
::::::::::
converted

::
to

:
a
:::::
type

:::::
other

::::
than

::
a
:::::::
pointer

::::
type,

::::
the

::::::::
behavior

::
is

::::::::::
undefined.

:

4 Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

5 An integer may be converted to any pointer type. Except as previously specified, the result is imple-
mentation-defined, might not be correctly aligned, might not point to an entity of the referenced
type, and might be a trap representation.71)

69)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

70)The obsolescent macro NULL is defined in <stddef.h> (and other headers) as a null pointer constant; see 7.19, but new
code should prefer the keyword nullptr wherever a null pointer constant is specified.

71)The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be consistent with

46 Language § 6.3.2.3

N2394 keywords..nulls working draft — June 9, 2019 ISO/IEC 9899:202x (E)

6.4.1 Keywords
Syntax

1 keyword: one of
alignas
alignof
auto
bool
break
case
char
const
continue
default
do
double
else

enum
extern
false
float
for
goto
if
inline
int
long

::::::::
nullptr
register
restrict

return
short
signed
sizeof
static
static_assert
struct
switch
thread_local
true
typedef
union
unsigned

void
volatile
while
_Atomic
_Complex
_Decimal128
_Decimal32
_Decimal64
_Generic
_Imaginary
_Noreturn

Constraints
2 The keywords

alignas
alignof

bool
false

::::::::
nullptr
static_assert

thread_local
true

are also predefined macro names (6.10.8). None of these shall be the subject of a #define or a
#undef preprocessing directive and their spelling inside expressions that are subject to the # and ##
preprocessing operators is unspecified.74)

Semantics
3 The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as keywords

except in an attribute token, and shall not be used otherwise. The keyword _Imaginary is reserved
for specifying imaginary types.75)

4 The following table provides alternate spellings for certain keywords. These can be used wherever
the keyword can.76)

keyword alternative spelling
alignas _Alignas
alignof _Alignof
bool _Bool
static_assert _Static_assert
thread_local _Thread_local

6.4.2 Identifiers
6.4.2.1 General
Syntax

1 identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

74)The intent of these specifications is to allow but not to force the implementation of the correspondig feature by means of
a predefined macro.

75)One possible specification for imaginary types appears in Annex G.
76)These alternative keywords are obsolescent features and should not be used for new code.

§ 6.4.2.1 Language 49

N2394 keywords..nulls working draft — June 9, 2019 ISO/IEC 9899:202x (E)

Forward references: common definitions <stddef.h> (7.19), the mbtowc function (7.22.7.2), Uni-
code utilities <uchar.h> (7.28).

6.4.4.5 Predefined constants
Syntax

1 predefined-constant:
:::
one

::
of

false
true

::::::
false

::::::::::::
nullptr

:::::::::
true

Description
Some keywords represent constants of a specific value and type.

6.4.4.5.1 The false and true constants
Description

1 The keywords false and true represent constants of type int that are suitable for use as are integer
literals. Their values are 0 for false and 1 for true.86)

6.4.4.5.2 The nullptr constant

:::::::::::
Description

1
:::
The

:::::::::
keyword

::::::::
nullptr

:::::::::
represents

::
a
::::
null

:::::::
pointer

::::::::
constant

::::
that

:::
has

:::
an

::::::::::
unspecified

:::::
type

::::
that

::
is

:::
not

:::
an

:::::::::
arithmetic

:::::
type.

::::::
Unless

:::::::::
specified

:::::::::
otherwise,

::
it
::
is

::
a

:::::::
suitable

::::::::
primary

::::::::::
expression

::::::::
wherever

::
a
::::::::
constant

:::::::
operand

:::
of

:::::::
pointer

:::::
type

::
is

:::::::
allowed

::::
for

::::::::::::
initialization,

:::::::::::
assignment,

:::::::::::
conversion,

::::::::
function

::::::::::
argument,

:::::::
equality

::::::::
testing,

:::
the

::::::::
sizeof

::::::::
operator,

:::::::
logical

::::::::::
operators,

::::
and

:::
as

::
a

::::::::::
controlling

:::::::::::
expression.87)

:
If

:

::::::::
nullptr

::
is

::::
used

::
in

::::
any

:::::
other

::::::::
context,

:::
the

::::::::
behavior

::
is
::::::::::
undefined.88)

2 NOTE
::::::
Because

::
its

::::
type

::
is
:::::::::
unspecified,

:::::
using

:::::::
nullptr

::
as

::
a

::::::::
controlling

::::::::
expression

::
in
::

a
::::::
generic

:::::::
selection

:::
can

::::
lead

::
to

:::::::::
non-portable

::::::
results.

:::::::::::::::::::::
Recommended practice

3
:::::::::
Although

::
a

::::::::
possible

:::::::::::::::
implementation

:::
of

::::::::
nullptr

:::
is

:::
as

::
a

::::::::::
predefined

:::::::
macro

::::
that

:::::::::
expands

:::
to

:

:::::::::::
((void*)0),

::::::::::::::::
implementations

::::
are

:::::::::::
encouraged

::
to

:::::::::::
implement

::::::::
nullptr

:::::
with

::
a
:::::
type

::::
that

::
is

::::
not

::
a

:::::
scalar

:::::
type,

:::::
that

::
is

::::::::::::
incompatible

:::
to

::::
any

:::::
other

:::::
type

::::
and

:::::
such

::::
that

:::
no

:::::::
objects

::
of

::::
that

:::::
type

::::
can

:::
be

:::::::
formed.

:::::
They

:::::::
should

::::::::
diagnose

:::
the

::::
use

::
of

::::::::
nullptr

:

—
::
in

::::
any

::::::
context

::::::
where

:::
its

::::
use

:
is
:::::::::::
undefined;

—
::
as

:::
the

:::::::::::
controlling

::::::::::
expression

::
of

::
a

:::::::
generic

::::::::
selection,

:::::::
unless

::::
that

:::::::
generic

::::::::
selection

::
is
:::::
itself

::::
not

:::::::::
evaluated

::
or

:::
the

:::::::::
resulting

::::
type

::
of

::::
the

::::::::::
expression

::
is

:::::::::::
independent

:::
of

:::
the

::::::::
effective

::::::
choice;

:

—
::
in

:
a
::::::::::
conversion

:::
to

:
a
:::::
type

::::
that

::
is

:::
not

:
a
:::::::
pointer

:::::
type;

:

—
::
as

:
a
:::::::
second

:::
or

::::
third

::::::::
operand

:::
of

:
a
:::::::::::
conditional

::::::::
operator

::
if

:::
the

:::::
other

::::::::
(second

::
or

::::::
third)

::::::::
operand

:::
has

::::::::::
arithmetic

::::
type.

:

6.4.5 String literals
Syntax

1 string-literal:
encoding-prefixopt " s-char-sequenceopt "

encoding-prefix:
u8

86)Thus, the keywords false and true are usable in preprocessor directives.
87)

:::
Thus

:::::::
nullptr

::::
may

::
or

:::
may

:::
not

::::
have

::::::
pointer

::::
type,

::
but

::
if
:
it
:::::::

appears
:
in
::::

one
:
of
:::

the
:::::
listed

::::::
contexts

:
it
:::::::

behaves
::
as

:
if
::
it

:::
had

:::::
pointer

::::
type.

88)
:
In
::::::::

particular
:::
this

:::::::
prohibits

:::
the

:::
use

::
of

::::::
nullptr

:::
for

:::
any

::::
type

::
of

::::::::
arithmetic

::::::::
operation,

:::::::
relational

:::::::::
comparison,

::
or
::

in
:::

an

:::::::
operation

:::
that

::::::
requires

::
an

:::::
lvalue.

§ 6.4.5 Language 59

ISO/IEC 9899:202x (E) working draft — June 9, 2019 N2394

u
U
L

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote ", backslash \, or new-line character
escape-sequence

Constraints
2 A sequence of adjacent string literal tokens shall not include both a wide string literal and a UTF–8

string literal.

Description
3 A character string literal is a sequence of zero or more multibyte characters enclosed in double-quotes,

as in "xyz". A UTF–8 string literal is the same, except prefixed by u8. A wide string literal is the same,
except prefixed by the letter L, u, or U.

4 The same considerations apply to each element of the sequence in a string literal as if it were in an
integer character constant (for a character or UTF–8 string literal) or a wide character constant (for a
wide string literal), except that the single-quote’ is representable either by itself or by the escape
sequence \’, but the double-quote " shall be represented by the escape sequence \".

Semantics
5 In translation phase 6, the multibyte character sequences specified by any sequence of adjacent

character and identically-prefixed string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens has an encoding prefix, the resulting multibyte character
sequence is treated as having the same prefix; otherwise, it is treated as a character string literal.
Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the treatment
of the resulting multibyte character sequence are implementation-defined.

6 In translation phase 7, a byte or code of value zero is appended to each multibyte character sequence
that results from a string literal or literals.89) The multibyte character sequence is then used to
initialize an array of static storage duration and length just sufficient to contain the sequence. For
character string literals, the array elements have type char, and are initialized with the individual
bytes of the multibyte character sequence. For UTF–8 string literals, the array elements have type
char, and are initialized with the characters of the multibyte character sequence, as encoded in
UTF–8. For wide string literals prefixed by the letter L, the array elements have type wchar_t
and are initialized with the sequence of wide characters corresponding to the multibyte character
sequence, as defined by the mbstowcs function with an implementation-defined current locale.
For wide string literals prefixed by the letter u or U, the array elements have type char16_t or
char32_t, respectively, and are initialized with the sequence of wide characters corresponding
to the multibyte character sequence, as defined by successive calls to the mbrtoc16, or mbrtoc32
function as appropriate for its type, with an implementation-defined current locale. The value of a
string literal containing a multibyte character or escape sequence not represented in the execution
character set is implementation-defined.

7 It is unspecified whether these arrays are distinct provided their elements have the appropriate
values. If the program attempts to modify such an array, the behavior is undefined.

8 EXAMPLE 1 This pair of adjacent character string literals

89)A string literal might not be a string (see 7.1.1), because a null character can be embedded in it by a \0 escape sequence.

60 Language § 6.4.5

ISO/IEC 9899:202x (E) working draft — June 9, 2019 N2394

6 If the expression that denotes the called function has a type that does not include a prototype, the
integer promotions are performed on each argument,

::::::::
nullptr

::
is

:::::::::
converted

::
to

::::::
void*,

:
and arguments

that have type float are promoted to double. These are called the default argument promotions. If
the number of arguments does not equal the number of parameters, the behavior is undefined. If
the function is defined with a type that includes a prototype, and either the prototype ends with
an ellipsis (, ...) or the types of the arguments after promotion are not compatible with the types
of the parameters, the behavior is undefined. If the function is defined with a type that does not
include a prototype, and the types of the arguments after promotion are not compatible with those
of the parameters after promotion, the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the corresponding
unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or void.

7 If the expression that denotes the called function has a type that does include a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding parameters,
taking the type of each parameter to be the unqualified version of its declared type. The ellipsis
notation in a function prototype declarator causes argument type conversion to stop after the last
declared parameter. The default argument promotions are performed on trailing arguments.

8 No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

9 If the function is defined with a type that is not compatible with the type (of the expression) pointed
to by the expression that denotes the called function, the behavior is undefined.

10 There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls)
that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.107)

11 Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions.

12 EXAMPLE In the function call

(*pf[f1()]) (f2(), f3() + f4())

the functions f1, f2, f3, and f4 can be called in any order. All side effects have to be completed before the function pointed
to by pf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.6.3), function definitions
(6.9.1), the return statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

1 The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

2 The first operand of the-> operator shall have type "pointer to atomic, qualified, or unqualified
structure" or "pointer to atomic, qualified, or unqualified union", and the second operand shall
name a member of the type pointed to.

Semantics
3 A postfix expression followed by the . operator and an identifier designates a member of a structure

or union object. The value is that of the named member,108) and is an lvalue if the first expression is

107)In other words, function executions do not "interleave" with each other.
108)If the member used to read the contents of a union object is not the same as the member last used to store a value in the

object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called "type punning"). This might be a trap representation.

68 Language § 6.5.2.3

ISO/IEC 9899:202x (E) working draft — June 9, 2019 N2394

struct t2 { int m; };
int f(struct t1 *p1, struct t2 *p2)
{

if (p1->m < 0)
p2->m = -p2->m;

return p1->m;
}
int g()
{

union {
struct t1 s1;
struct t2 s2;

} u;
/* ... */
return f(&u.s1, &u.s2);

}

Forward references: address and indirection operators (6.5.3.2), structure and union specifiers
(6.7.2.1).

6.5.2.4 Postfix increment and decrement operators
Constraints

1 The operand of the postfix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Semantics
2 The result of the postfix++ operator is the value of the operand. As a side effect, the value of the

operand object is incremented (that is, the value 1 of the appropriate type is added to it). See the
discussions of additive operators and compound assignment for information on constraints, types,
and conversions and the effects of operations on pointers. The value computation of the result is
sequenced before the side effect of updating the stored value of the operand. With respect to an
indeterminately-sequenced function call, the operation of postfix++ is a single evaluation. Postfix
++ on an object with atomic type is a read-modify-write operation with memory_order_seq_cst
memory order semantics.111)

3 The postfix-- operator is analogous to the postfix++ operator, except that the value of the operand
is decremented (that is, the value 1 of the appropriate type is subtracted from it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals
Constraints

1 The type name shall specify a complete object type or an array of unknown size, but not a variable
length array type.

2 All the constraints for initializer lists in 6.7.9 also apply to compound literals.

111)Where a pointer to an atomic object can be formed and E has integer type, E++ is equivalent to the following code
sequence where T is the type of E:

T *addr = &E;
T old = *addr;
T new;
do {

new = old + 1;
} while (!atomic_compare_exchange_strong(addr, &old, new));

with old being the result of the operation.
Special care is necessary if E has floating type; see 6.5.16.2.

70 Language § 6.5.2.5

N2394 working draft — June 9, 2019 ISO/IEC 9899:202x (E)

Semantics
3 A postfix expression that consists of a parenthesized type name followed by a brace-enclosed list of

initializers is a compound literal. It provides an unnamed object whose value is given by the initializer
list.112)

4 If the type name specifies an array of unknown size, the size is determined by the initializer list as
specified in 6.7.9, and the type of the compound literal is that of the completed array type. Otherwise
(when the type name specifies an object type), the type of the compound literal is that specified by
the type name. In either case, the result is an lvalue.

5 The value of the compound literal is that of an unnamed object initialized by the initializer list. If
the compound literal occurs outside the body of a function, the object has static storage duration;
otherwise, it has automatic storage duration associated with the enclosing block.

6 All the semantic rules for initializer lists in 6.7.9 also apply to compound literals.113)

7 String literals, and compound literals with const-qualified types, need not designate distinct ob-
jects.114)

8 EXAMPLE 1 The file scope definition

int *p = (int []){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the second, four. The
expressions in this compound literal are required to be constant. The unnamed object has static storage duration.

9 EXAMPLE 2 In contrast, in

void f(void)
{

int *p;
/*...*/
p = (int [2]){*p};
/*...*/

}

p is assigned the address of the first element of an array of two ints, the first having the value previously pointed to by p and
the second, zero. The expressions in this compound literal need not be constant. The unnamed object has automatic storage
duration.

10 EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects created using
compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

11 EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}

12 EXAMPLE 5 The following three expressions have different meanings:

"/tmp/fileXXXXXX"
(char []){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

112)Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and
the result of a cast expression is not an lvalue.
113)For example, subobjects without explicit initializers are initialized to zero.
114)This allows implementations to share storage for string literals and constant compound literals with the same or

overlapping representations.

§ 6.5.2.5 Language 71

ISO/IEC 9899:202x (E) working draft — June 9, 2019 keywords..nulls N2394

equivalent to (0==E).

6.5.3.4 The sizeof and alignof operators
Constraints

1 The sizeof operator shall not be applied to an expression that has function type or an incomplete
type, to the parenthesized name of such a type, or to an expression that designates a bit-field member.
The alignof operator shall not be applied to a function type or an incomplete type.

Semantics
2 The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the

parenthesized name of a type. The size is determined from the type of the operand. The result
is an integer. If the type of the operand is a variable length array type, the operand is evaluated;
otherwise, the operand is not evaluated and the result is an integer constant.

3 The alignof operator yields the alignment requirement of its operand type. The operand is not
evaluated and the result is an integer constant. When applied to an array type, the result is the
alignment requirement of the element type.

4 When sizeof is applied to an operand that has type char, unsigned char, or signed char, (or a
qualified version thereof) the result is 1. When applied to an operand that has array type, the result
is the total number of bytes in the array.116) When applied to an operand that has structure or union
type, the result is the total number of bytes in such an object, including internal and trailing padding.

:::::
When

::::::::
applied

::
to

:::
the

::::::::
nullptr

::::::::
constant

:::
the

::::::
result

::
is

:::::::::::::::
sizeof(void*).

:

5 The value of the result of both operators is implementation-defined, and its type (an unsigned
integer type) is size_t, defined in <stddef.h> (and other headers).

6 EXAMPLE 1 A principal use of the sizeof operator is in communication with routines such as storage allocators and I/O
systems. A storage-allocation function might accept a size (in bytes) of an object to allocate and return a pointer to void. For
example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The implementation of the alloc function presumably ensures that its return value is aligned suitably for conversion to a
pointer to double.

7 EXAMPLE 2 Another use of the sizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]

8 EXAMPLE 3 In this example, the size of a variable length array is computed and returned from a function:

#include <stddef.h>

size_t fsize3(int n)
{

char b[n+3]; // variable length array
return sizeof b; // execution time sizeof

}

int main()
{

size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;

}

Forward references: common definitions <stddef.h> (7.19), declarations (6.7), structure and union
specifiers (6.7.2.1), type names (6.7.7), array declarators (6.7.6.2).

116)When applied to a parameter declared to have array or function type, the sizeof operator yields the size of the adjusted
(pointer) type (see 6.9.1).

74 Language § 6.5.3.4

N2394 keywords..nulls working draft — June 9, 2019 ISO/IEC 9899:202x (E)

Semantics
4 The == (equal to) and != (not equal to) operators are analogous to the relational operators except for

their lower precedence.121) Each of the operators yields 1 if the specified relation is true and 0 if it is
false. The result has type int. For any pair of operands, exactly one of the relations is true.

5 If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values
of complex types are equal if and only if both their real parts are equal and also their imaginary parts
are equal. Any two values of arithmetic types from different type domains are equal if and only
if the results of their conversions to the (complex) result type determined by the usual arithmetic
conversions are equal.

6
:
If
:::::
both

::
of

:::
the

:::::::::
operands

:::
are

::::
null

:::::::
pointer

::::::::::
constants,

::::
they

::::::::
compare

::::::
equal.

:

7 Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If one operand is a
pointer to an object type and the other is a pointer to a qualified or unqualified version of void, the
former is converted to the type of the latter.

8 Two pointers compare equal if and only if both are null pointers, both are pointers to the same object
(including a pointer to an object and a subobject at its beginning) or function, both are pointers to
one past the last element of the same array object, or one is a pointer to one past the end of one array
object and the other is a pointer to the start of a different array object that happens to immediately
follow the first array object in the address space.122)

9 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6.5.10 Bitwise AND operator
Syntax

1 AND-expression:
equality-expression

AND-expression & equality-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the result
is set if and only if each of the corresponding bits in the converted operands is set).

6.5.11 Bitwise exclusive OR operator
Syntax

1 exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression

Constraints
2 Each of the operands shall have integer type.

121)Because of the precedences, a<b == c<d is 1 whenever a<b and c<d have the same truth-value.
122)Two objects can be adjacent in memory because they are adjacent elements of a larger array or adjacent members

of a structure with no padding between them, or because the implementation chose to place them so, even though they
are unrelated. If prior invalid pointer operations (such as accesses outside array bounds) produced undefined behavior,
subsequent comparisons also produce undefined behavior.

§ 6.5.11 Language 79

N2394 keywords..nulls working draft — June 9, 2019 ISO/IEC 9899:202x (E)

6.5.15 Conditional operator
Syntax

1 conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

Constraints
2 The first operand shall have scalar type.

3 One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have the same structure or union type;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

—
::::
both

:::::::::
operands

:::
are

:::::::::
nullptr;

— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void.

4 If either of the second or third operands has decimal floating type, the other operand shall not have
standard floating type, complex type, or imaginary type.

Semantics
5 The first operand is evaluated; there is a sequence point between its evaluation and the evaluation

of the second or third operand (whichever is evaluated). The second operand is evaluated only if
the first compares unequal to 0; the third operand is evaluated only if the first compares equal to 0;
the result is the value of the second or third operand (whichever is evaluated), converted to the type
described below.123)

6 If both the second and third operands have arithmetic type, the result type that would be determined
by the usual arithmetic conversions, were they applied to those two operands, is the type of the
result. If both the operands have structure or union type, the result has that type. If both operands
have void type, the result has void type.

7
:
If
:::::

both
::::
the

:::::::
second

::::
and

:::::
third

:::::::::
operands

:::
are

:::::::::
nullptr

:::
the

::::::
result

::::
has

:::
the

::::::
same

:::::
type

::::
and

:::::
value

:::
as

:

::::::::
nullptr.

:::::::::::
Otherwise,

::
if
::::::

either
:::

of
:::
the

:::::::
second

:::
or

:::::
third

:::::::::
operands

::
is
:::::::::
nullptr,

:::::
and

:::
the

::::::
other

::
is

:::
an

::::::
integer

::::::::
constant

::::::::::
expression

::
of

::::::
value

:
0
::::
the

::::::::
behavior

::
is

::::::::::
undefined.124)

8 If both the second and third operands are pointers or one is a null pointer constant and the other
is a pointer, the result type is a pointer to a type qualified with all the type qualifiers of the types
referenced by both operands. Furthermore, if both operands are pointers to compatible types or to
differently qualified versions of compatible types, the result type is a pointer to an appropriately
qualified version of the composite type; if one operand is a null pointer constant, the result has the
type of the other operand; otherwise, one operand is a pointer to void or a qualified version of void,
in which case the result type is a pointer to an appropriately qualified version of void.

9 EXAMPLE The common type that results when the second and third operands are pointers is determined in two independent
stages. The appropriate qualifiers, for example, do not depend on whether the two pointers have compatible types.

10 Given the declarations

123)A conditional expression does not yield an lvalue.
124)

:
If
:::
the

::::
other

::::::
operand

:::
has

:::::::
arithmetic

::::
type

:::
but

:
is
:::
not

::::::
constant

::::
and

:
0,
:
a
::::::::
constraint

:
is
:::::::
violated.

§ 6.5.15 Language 81

ISO/IEC 9899:202x (E) working draft — June 9, 2019 keywords..nulls N2394

6.10.8 Predefined macro names
1 The values of the predefined macros listed in the following subclauses194) (except for __FILE__ and

__LINE__) remain constant throughout the translation unit.

2 None of these macro names, nor the identifier defined, shall be the subject of a #define or a #undef
preprocessing directive. Any other predefined macro names shall begin with a leading underscore
followed by an uppercase letter or a second underscore.

3 The implementation shall not predefine the macro__cplusplus, nor shall it define it in any standard
header.

Forward references: standard headers (7.1.2).

6.10.8.1 Mandatory macros
1 In addition to the keywords

alignas
alignof

bool
false

::::::::
nullptr
static_assert

thread_local
true

which are object-like macros that expand to unspecified tokens, the following macro names shall be
defined by the implementation.

__DATE__ The date of translation of the preprocessing translation unit: a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the value is
less than 10. If the date of translation is not available, an implementation-defined valid
date shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).195)

__LINE__ The presumed line number (within the current source file) of the current source line (an
integer constant).195)

__STDC__ The integer constant 1, intended to indicate a conforming implementation.

__STDC_HOSTED__ The integer constant 1 if the implementation is a hosted implementation or the
integer constant 0 if it is not.

__STDC_VERSION__ The integer constant yyyymmL.196)

__TIME__ The time of translation of the preprocessing translation unit: a character string literal of
the form "hh:mm:ss" as in the time generated by the asctime function. If the time of
translation is not available, an implementation-defined valid time shall be supplied.

Forward references: the asctime function (7.27.3.1).

6.10.8.2 Environment macros
1 The following macro names are conditionally defined by the implementation:

__STDC_ISO_10646__ An integer constant of the form yyyymmL (for example, 199712L). If this
symbol is defined, then every character in the Unicode required set, when stored in an
object of type wchar_t, has the same value as the short identifier of that character. The
Unicode required set consists of all the characters that are defined by ISO/IEC 10646, along
with all amendments and technical corrigenda, as of the specified year and month. If
some other encoding is used, the macro shall not be defined and the actual encoding
used is implementation-defined.

194)See "future language directions" (6.11.10).
195)The presumed source file name and line number can be changed by the #line directive.
196)See Annex M for the values in previous revisions. The intention is that this will remain an integer constant of type
long int that is increased with each revision of this document.

146 Language § 6.10.8.2

N2394 keywords..nulls working draft — June 9, 2019 ISO/IEC 9899:202x (E)

7.19 Common definitions <stddef.h>
1 The header <stddef.h> defines the following macros and declares the following types. Some are

also defined in other headers, as noted in their respective subclauses.

2 The types are

ptrdiff_t

which is the signed integer type of the result of subtracting two pointers;

size_t

which is the unsigned integer type of the result of the sizeof operator;

max_align_t

which is an object type whose alignment is the greatest fundamental alignment; and

wchar_t

which is an integer type whose range of values can represent distinct codes for all members of the
largest extended character set specified among the supported locales; the null character shall have
the code value zero. Each member of the basic character set shall have a code value equal to its
value when used as the lone character in an integer character constant if an implementation does
not define __STDC_MB_MIGHT_NEQ_WC__.

3 The macros are

NULL

:::::
which

::::::::
expands

:::
to

::
an

:::::::
imple

::::
men

::
ta

:::::::::::
tion-defined

::::
null

:::::::
pointer

:::::::::
constant;286)

:::
and

:

:: ::: ::::::::
offsetof

:
(type

:
,
:
member-designator

:
)

which expands to an integer constant expression that has type size_t, the value of which is the
offset in bytes, to the subobject (designated by member-designator), from the beginning of any object
of type type. The type and member designator shall be such that given

static type t;

then the expression &(t. member-designator) evaluates to an address constant. If the specified type
defines a new type or if the specified member is a bit-field, the behavior is undefined.

Recommended practice
4 The types used for size_t and ptrdiff_t should not have an integer conversion rank greater than

that of signed long int unless the implementation supports objects large enough to make this
necessary.

:

5
:::
The

::::::
macro

:::::
NULL

:::::::
should

:::::::
expand

::
to

:::::::::
nullptr .

286)
:::
The

:::
NULL

:::::
macro

::
is

::
an

::::::::
obsolescent

::::::
feature.

§ 7.19 Library 253

ISO/IEC 9899:202x (E) working draft — June 9, 2019 keywords..nulls N2394

7.31.10 Alignment <stdalign.h>
1 The header <stdalign.h> together with its defined macros __alignas_is_defined and

__alignas_is_defined is an obsolescent feature.

7.31.11 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined

in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_

and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

2 The macro ATOMIC_VAR_INIT is an obsolescent feature.

7.31.12 Common definitions <stddef.h>
1

:::
The

::::::
macro

:::::
NULL

::
is

:::
an

::::::::::
obsolescent

::::::::
feature.

7.31.13 Boolean type and values <stdbool.h>
1 The header <stdbool.h> together with its defined macro __bool_true_false_are_defined is an

obsolescent feature.

7.31.14 Integer types <stdint.h>
1 Typedef names beginning with int or uint and ending with _t may be added to the types defined

in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX, _MIN,
_WIDTH, or _C may be added to the macros defined in the <stdint.h> header.

7.31.15 Input/output <stdio.h>
1 Lowercase letters may be added to the conversion specifiers and length modifiers in fprintf and

fscanf. Other characters may be used in extensions.

2 The use of ungetc on a binary stream where the file position indicator is zero prior to the call is an
obsolescent feature.

7.31.16 General utilities <stdlib.h>
1 Function names that begin with str or wcs and a lowercase letter may be added to the declarations

in the <stdlib.h> header.

2 Invoking realloc with a size argument equal to zero is an obsolescent feature.

7.31.17 String handling <string.h>
1 Function names that begin with str, mem, or wcs and a lowercase letter may be added to the

declarations in the <string.h> header.

7.31.18 Date and time <time.h>
Macros beginning with TIME_ and an uppercase letter may be added to the macros in the <time.h>
header.

7.31.19 Threads <threads.h>
1 Function names, type names, and enumeration constants that begin with either cnd_, mtx_, thrd_,

or tss_, and a lowercase letter may be added to the declarations in the <threads.h> header.

7.31.20 Extended multibyte and wide character utilities <wchar.h>
1 Function names that begin with wcs and a lowercase letter may be added to the declarations in the

<wchar.h> header.

2 Lowercase letters may be added to the conversion specifiers and length modifiers in fwprintf and
fwscanf. Other characters may be used in extensions.

386 Library § 7.31.20

ISO/IEC 9899:202x (E) working draft — June 9, 2019 keywords..nulls N2394

Annex A
(informative)

Language syntax summary

1 NOTE The notation is described in 6.1.

A.1 Lexical grammar
A.1.1 Lexical elements

(6.4) token:
keyword
identifier
constant
string-literal
punctuator

(6.4) preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator

each non-white-space character that cannot be one of the above

A.1.2 Keywords

(6.4.1) keyword: one of
alignas
alignof
auto
bool
break
case
char
const
continue
default
do
double
else

enum
extern
false
float
for
goto
if
inline
int
long

::::::::
nullptr
register
restrict

return
short
signed
sizeof
static
static_assert
struct
switch
thread_local
true
typedef
union
unsigned

void
volatile
while
_Atomic
_Complex
_Decimal128
_Decimal32
_Decimal64
_Generic
_Imaginary
_Noreturn

A.1.3 Identifiers

(6.4.2.1) identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

(6.4.2.1) identifier-nondigit:
nondigit
universal-character-name

other implementation-defined characters

388 Language syntax summary § A.1.3

N2394 keywords..nulls working draft — June 9, 2019 ISO/IEC 9899:202x (E)

(6.4.4.3) enumeration-constant:
identifier

(6.4.4.4) character-constant:
’ c-char-sequence ’
L’ c-char-sequence ’
u’ c-char-sequence ’
U’ c-char-sequence ’

(6.4.4.4) c-char-sequence:
c-char
c-char-sequence c-char

(6.4.4.4) c-char:
any member of the source character set except

the single-quote ’, backslash \, or new-line character
escape-sequence

(6.4.4.4) escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

(6.4.4.4) simple-escape-sequence: one of
\’ \" \? \\
\a \b \f \n \r \t \v

(6.4.4.4) octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

(6.4.4.4) hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A.1.5.1 Predefined constants

(6.4.4.5) predefined-constant:
:::
one

:::
of

false
true

::::::
false

::::::::::::
nullptr

:::::::::
true

A.1.6 String literals

(6.4.5) string-literal:
encoding-prefixopt " s-char-sequenceopt "

(6.4.5) encoding-prefix:
u8
u
U
L

(6.4.5) s-char-sequence:
s-char
s-char-sequence s-char

§ A.1.6 Language syntax summary 391

N2394 keywords..nulls working draft — June 9, 2019 ISO/IEC 9899:202x (E)

Annex J
(informative)

Portability issues

1 This annex collects some information about portability that appears in this document.

J.1 Unspecified behavior
1 The following are unspecified:

— The manner and timing of static initialization (5.1.2).

— The termination status returned to the hosted environment if the return type of main is not
compatible with int (5.1.2.2.3).

— The values of objects that are neither lock-free atomic objects nor of type
volatile sig_atomic_t and the state of the floating-point environment, when the
processing of the abstract machine is interrupted by receipt of a signal (5.1.2.3).

— The behavior of the display device if a printing character is written when the active position is
at the final position of a line (5.2.2).

— The behavior of the display device if a backspace character is written when the active position
is at the initial position of a line (5.2.2).

— The behavior of the display device if a horizontal tab character is written when the active
position is at or past the last defined horizontal tabulation position (5.2.2).

— The behavior of the display device if a vertical tab character is written when the active position
is at or past the last defined vertical tabulation position (5.2.2).

— How an extended source character that does not correspond to a universal character name
counts toward the significant initial characters in an external identifier (5.2.4.1).

— Many aspects of the representations of types (6.2.6).

— The value of padding bytes when storing values in structures or unions (6.2.6.1).

— The values of bytes that correspond to union members other than the one last stored into
(6.2.6.1).

— The representation used when storing a value in an object that has more than one object
representation for that value (6.2.6.1).

— The values of any padding bits in integer representations (6.2.6.2).

— Whether certain operators can generate negative zeros and whether a negative zero becomes a
normal zero when stored in an object (6.2.6.2).

—
:::
The

:::::
type

::
of

:::
the

::::::::
nullptr

::::::::
constant

::::
(??).

:

— Whether two string literals result in distinct arrays (6.4.5).

— The order in which subexpressions are evaluated and the order in which side effects take place,
except as specified for the function-call (), &&, ||, ?:, and comma operators (6.5).

— The order in which the function designator, arguments, and subexpressions within the argu-
ments are evaluated in a function call (6.5.2.2).

— The order of side effects among compound literal initialization list expressions (6.5.2.5).

— The order in which the operands of an assignment operator are evaluated (6.5.16).

— The alignment of the addressable storage unit allocated to hold a bit-field (6.7.2.1).

§ J.1 Portability issues 471

N2394 keywords..nulls working draft — June 9, 2019 ISO/IEC 9899:202x (E)

— An attempt is made to use the value of a void expression, or an implicit or explicit conversion
(except to void) is applied to a void expression (6.3.2.2).

— Conversion of a pointer to an integer type produces a value outside the range that can be
represented (6.3.2.3).

— Conversion
:
of

:::::::::
nullptr

::
to

:
a
:::::
type

::::
that

::
is

:::
not

::
a

::::::
pointer

:::::
type

::::::::
(6.3.2.3).

—
::::::::::
Conversion

:
between two pointer types produces a result that is incorrectly aligned (6.3.2.3).

— A pointer is used to call a function whose type is not compatible with the referenced type
(6.3.2.3).

— An unmatched’ or " character is encountered on a logical source line during tokenization
(6.4).

— A reserved keyword token is used in translation phase 7 or 8 for some purpose other than as a
keyword (6.4.1).

— A universal character name in an identifier does not designate a character whose encoding
falls into one of the specified ranges (6.4.2.1).

— The initial character of an identifier is a universal character name designating a digit (6.4.2.1).

— Two identifiers differ only in nonsignificant characters (6.4.2.1).

— The identifier __func__ is explicitly declared (6.4.2.2).

— The program attempts to modify a string literal (6.4.5).

— The characters’ , \, ", //, or /* occur in the sequence between the< and > delimiters, or the
characters’ , \, //, or /* occur in the sequence between the " delimiters, in a header name
preprocessing token (6.4.7).

— A side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object (6.5).

— An exceptional condition occurs during the evaluation of an expression (6.5).

— An object has its stored value accessed other than by an lvalue of an allowable type (6.5).

— For a call to a function without a function prototype in scope, the number of arguments does
not equal the number of parameters (6.5.2.2).

— For a call to a function without a function prototype in scope where the function is defined with
a function prototype, either the prototype ends with an ellipsis or the types of the arguments
after default argument promotion are not compatible with the types of the parameters (6.5.2.2).

— For a call to a function without a function prototype in scope where the function is not defined
with a function prototype, the types of the arguments after default argument promotion are
not compatible with those of the parameters after promotion (with certain exceptions) (6.5.2.2).

— A function is defined with a type that is not compatible with the type (of the expression)
pointed to by the expression that denotes the called function (6.5.2.2).

— A member of an atomic structure or union is accessed (6.5.2.3).

— The operand of the unary* operator has an invalid value (6.5.3.2).

— A pointer is converted to other than an integer or pointer type (6.5.4).

— The value of the second operand of the / or % operator is zero (6.5.5).

— If the quotient a/b is not representable, the behavior of both a/b and a%b (6.5.5).

§ J.2 Portability issues 475

ISO/IEC 9899:202x (E) working draft — June 9, 2019 keywords..nulls N2394

— Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that does not point into, or just beyond, the same array object (6.5.6).

— Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that points just beyond the array object and is used as the operand of a unary
* operator that is evaluated (6.5.6).

— Pointers that do not point into, or just beyond, the same array object are subtracted (6.5.6).

— An array subscript is out of range, even if an object is apparently accessible with the given
subscript (as in the lvalue expression a[1][7] given the declaration int a[4][5]) (6.5.6).

— The result of subtracting two pointers is not representable in an object of type ptrdiff_t
(6.5.6).

— An expression is shifted by a negative number or by an amount greater than or equal to the
width of the promoted expression (6.5.7).

— An expression having signed promoted type is left-shifted and either the value of the expres-
sion is negative or the result of shifting would not be representable in the promoted type
(6.5.7).

— Pointers that do not point to the same aggregate or union (nor just beyond the same array
object) are compared using relational operators (6.5.8

:
).

:

—
:::::
Either

:::
of

:::
the

:::::::
second

::
or

:::::
third

:::::::::
operands

::
of

::
a
::::::::::
conditional

:::::::::
operator

::
is

::::::::
nullptr,

::::
and

::::
the

:::::
other

::
is

::
an

:::::::
integer

::::::::
constant

::::::::::
expression

::
of

:::::
value

::
0
::::::
(6.5.15).

— An object is assigned to an inexactly overlapping object or to an exactly overlapping object
with incompatible type (6.5.16.1).

— An expression that is required to be an integer constant expression does not have an integer
type; has operands that are not integer constants, enumeration constants, character constants,
sizeof expressions whose results are integer constants, alignof expressions, or immediately-
cast floating constants; or contains casts (outside operands to sizeof and alignof operators)
other than conversions of arithmetic types to integer types (6.6).

— A constant expression in an initializer is not, or does not evaluate to, one of the following: an
arithmetic constant expression, a null pointer constant, an address constant, or an address
constant for a complete object type plus or minus an integer constant expression (6.6).

— An arithmetic constant expression does not have arithmetic type; has operands that are not
integer constants, floating constants, enumeration constants, character constants, sizeof
expressions whose results are integer constants, or alignof expressions; or contains casts
(outside operands to sizeof or alignof operators) other than conversions of arithmetic types
to arithmetic types (6.6).

— The value of an object is accessed by an array-subscript [], member-access . or-> , address &,
or indirection* operator or a pointer cast in creating an address constant (6.6).

— An identifier for an object is declared with no linkage and the type of the object is incomplete
after its declarator, or after its init-declarator if it has an initializer (6.7).

— A function is declared at block scope with an explicit storage-class specifier other than extern
(6.7.1).

— A structure or union is defined without any named members (including those specified
indirectly via anonymous structures and unions) (6.7.2.1).

— An attempt is made to access, or generate a pointer to just past, a flexible array member of a
structure when the referenced object provides no elements for that array (6.7.2.1).

476 Portability issues § J.2

	Introduction
	Possible specifications for a more restrictive null pointer constant
	Proposed changes
	Reference implementation

