
ISO/IEC JTC 1/SC 22/WG14

October 12, 2018

N 2303

v 1
intmax t, a way out
Ease the definition of extended integer types

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

The specifications of types [u]intmax_t and extended integer types lack to provide the extensibility feature

for which they are designed. As a consequence existing “64 bit” implementations are not able to add standard
conforming interfaces to their 128 bit or 256 bit integer types without breaking ABI compatibility.

—
A previous version of this proposal has been discussed in message SC22WG14.15569 and the depending

thread on the WG14 reflector.

1. PROBLEM DESCRIPTION

The interaction between the definition of extended integer types and [u]intmax_t has re-
sulted in a lack of extensibility for existing ABI. Platforms that fixed their specifications
for the basic integer types and for [u]intmax_t cannot add an extended integer type that
is wider than their current [u]intmax_t to their specification. As the current text of the
C standard stands, such an addition would force a redefintion of [u]intmax_t to the wider
types. This would have the following consequences:

— The parts of the C library that use [u]intmax_t (specific functions but also printf and
friends) must be rewritten or recompiled with the new ABI and become binary incompat-
ible with existing programs.

— Programs compiled with the new ABI would be binary incompatible on platforms that
have not been upgraded.

— The preprocessor of the implementation must be re-engineered to comply to the standard.
In particular, there would occur severe specification problems for preprocessor numbers
and their evaluation. E.g the value of ULLONG_MAX+1 is not expressible as a literal in the
language proper but would be for the preprocessor. The expression ULLONG_MAX+1 would
evaluate to true in a preprocessor conditional but to 0 (false) in later compilation phases.

As a consequence of these difficulties the concept of “extended integer type” is merely
unused by implementations. I have not heard of any implementation that uses this concept.
So as it stands this idea of “extended integer type” is basically a failure, nobody uses it,
and intmax_t is usually just long or long long.
This has lead to a sensible backlog for platforms such as gcc or clang that provide emulated
128 bit integer types (__[u]int128_t) on 64 bit platforms. They are not able to provide
them as “extended integer types” in the sense of the C standard. More and more processor
platforms even provide rudimentary support of 128 or 256 bit integers in hardware (e.g In-
tel’s AVX vector unit), so it would really be productive to give more slack to implementations
to integrate these types into existing ABI.
Generally, we should not block implementations that are able to provide exact-width integer
types for N > 64. These types can for example be used efficiently for bitsets, UUIDs,
cryptography, checksums or networking (ipv6). They have well-defined standard interfaces
in the form of ([u]intN_t) with easy to use feature tests.
Also, current restrictions make it impossible to add bignum integer types as proper integer
types to implementations, because their value range can never be covered by a type with a
fixed bit representation.

© 2018 Jens Gustedt. Distributed under a Creative Commons Attribution 4.0 International License



N2303:2 Jens Gustedt

2. SUGGESTED CHANGE

I suggest to change the specification of [u]intmax_t such that they are only at least as wide
as any integer type used by the standard. Thereby the greatest-width types do not have to
cover all integer types, in particular not extended integer types that might be added later
to an ABI.
The change to the standard can be isolated in 7.20.1.15:

7.20.1.5 Greatest-width integer types
The following type designates a signed integer type capable of representing any

value of any
:::::::
required signed integer type:

intmax_t

The following type designates an unsigned integer type capable of representing
any value of any

:::::::
required unsigned integer type:

uintmax_t

These types are required.

:::::::
Note 1:

:::::::
These

:::::
types

::::
are

::::::::
intended

:::
to

:::::::
provide

::
a
::::::::

fallback
::::

for
:::::::::::
applications

:::
in

::::::::
situations

::::::
where

:::::
they

::::
deal

::::
with

:::::::
integers

:::
for

::::::
which

:::::
there

:::
are

:::
no

::::::
special

::::::::::
provisions

::
for

::::::::
printf,

::::::
scanf

:::
or

:::::::
similar

::::::::::
functions.

:::
In

::::::::::
particular,

:::::
they

::::
are

:::::::::
intended

:::
to

::::::::
represent

::::::
values

:::
of

::::
all

:::::
basic

:::::::
integer

::::::
types

:::
as

:::::
well

:::
as

::::::::::
char16_t,

::::::::::
char32_t,

::::::::::
ptrdiff_t,

:::::::::::::
sig_atomic_t,

:::::::
size_t,

::::::::
wchar_t,

:::::::
wint_t,

:::
the

::::::::::::
minum-width

::::
and

::::::
fasted

::::::
integer

:::::
types

:::
for

:::::::::::::::
N = 8, 16, 32, 64,

::::
and,

:::::::::
provided

::::
they

:::::
exist,

:::::::::
intptr_t,

::::::::::
uintptr_t

:::
and

:::::::::::
exact-width

:::::::
integer

:::::
types

:::
for

::::::::::::::::
N = 8, 16, 32, 64.

:::::::
Note 2:

:::
It

::::::
follows

:::::
from

:::
the

::::::::::
definitions

::::
that

:::::::::::::
greatest-width

:::::::
integer

:::::
types

:::
are

:::
at

::::
least

:::
64

:::
bit

:::::
wide.

:

:::::::
Note 3:

:::::::::
Extended

:::::::
integer

:::::
types

::::
that

:::
are

::::
not

:::::::
referred

:::
by

:::
the

:::::
above

::::
list

:::
and

:::::
that

::::
have

::::::
values

:::
not

::::::::::::
representable

:::
by

:::::::::
long long

::
or

:::::::::::::::::::
unsigned long long,

::::::::::::
respectively,

::::
need

::::
not

::
be

::::::::::::
representable

:::
by

::::
the

::::::::::::
greated-width

::::::
types.

:

::::::::::::::::::::::::
Recommended practice:

::::::
Unless

:::::
some

::::::::
typedef

::
in

::::
the

::::::
library

::::::
clause

::::::::
enforces

:::::::::
otherwise,

::
it

::
is

:::::::::::::
recommended

::
to

:::::::
resolve

:::::
these

::::::
types

::
to

:::::
long

:::
or

::::::::::
long long

::::
and

:::
the

:::::::::::::
corresponding

:::::::::
unsigned

:::::::::::
counterpart.

::
It
::
is
:::::::::::::

recommended
:::::
that

:::
the

:::::
same

::::
set

::
of

:::::::
integer

:::::::
literals

::
is

:::::::::::
consistently

:::::::::
accepted

:::
by

:::
all

:::::::::::
compilation

::::::::
phases,

::::
even

:::
if

:::::::::::::
greatest-width

:::::
types

:::
are

:::::::
chosen

::::
that

:::
are

::::::
wider

::::
than

:::::::::::
long long.

3. IMPACT

3.1. Existing implemenations and code

With such a change of the C standard, no existing ABI would have to change, and the
preprocessor support for integer expressions could remain unchanged.
Since the concept of extended integer types is basically not yet used by implementations,
there would also be no impact on the existing code base on existing implementations, even
if they chose to extend their ABI by some wider integer types.

3.2. Extensibility of ABI’s

This change allows platforms to add specifications of extended integer types more easily. In
particular 128 or 256 bit types can be added to 64 bit ABI as long as a conforming naming



intmax t, a way out N2303:3

scheme is chosen. Many implementations do so already in various forms and with non-
uniform syntax. With this change they could just typedef their extented type to uint128_t,
say, and provide the corresponding macros UINT128_MAX, UINT128_C, PRId128 etc.
There is no need to extend the language to describe additional integer types (such as long
long long), to add new number literals (-1ULLL) or to add printf conversion characters for
these in the C standard. The use of implementation specific names (__int128 or __int128_t)
and implementation specific format specifiers ("%Q") is largely sufficient if appropriately
mapped by <stdint.h> typedef and macros.
This change can also be seen as a first step such that a bignum type can be added as a
new integer type to any implementation that sees need for it. A second would the be to
relax constraints about the representation of extended integer types, or to introduce a third
category (besides basic and extended) of “unbounded integer types”, or so.


	Problem description
	Suggested change
	Impact
	Existing implemenations and code
	Extensibility of ABI's


