Re-revised suggested TC for CFP DR 13
N2213

Submitter: C FP group
Submission Date: 2018-03-16
Source: WG14
Reference Document: N2202, TS 18661-3
Subject: Type-generic macros for functions that round result to narrower type

Summary

This document revises the suggested TC for TS 18661-3 DR 13 presented in N2202.

After N2202 was posted, Joseph Myers sent the following message:

Joseph Myers
(SC22WG14.14921) Floating-point DR#13 and integer arguments to type-generic macros
To: SC22 WG14

I believe these comments all still apply to the version of the DR
resolution in N2202: it still determines a type, but says nothing about
what function is determined from that type (needed to cover dadd(f, f)
which needs to call daddl to stay compatible with TS 18661-1, for example
- the type determined is float, but what function is determined from it?).

--
Joseph S. Myers
joseph@codesourcery.com

On Thu, 23 Nov 2017, Joseph Myers wrote:

Looking at the latest proposed DR resolution

This resolution changes text that partially determines a function called
by type-generic macros such as dadd, to text that determines a type. Does
it then result in a call to a function whose parameters have that type? I
don’t see anything saying so, but it’s possible I’ve missed some text in
the complicated sequence of (C11 amended by 18661-1 amended by 18661-2
amended by 18661-3 amended by DR#9 amended by DR#13 as modified by this
proposed change to the resolution of DR#13).

In any case, there needs to be "something" about choosing a function whose
arguments have a wider type than the one determined from the types of the
arguments (subject to whatever’s needed to keep things well-defined in the
case of integer arguments, if desired), because of the dadd(f, f) case,
which is clearly specified in TS 18661-1 to call the function daddl, and
is included as an example there - as there isn’t any dadd function with
float or double arguments. A correction to TS 18661-3 should not have the
effect of invalidating something that was valid with TS 18661-1.

--
Joseph S. Myers
joseph@codesourcery.com
The 23 Nov message Joseph Myers refers to had been overlooked and the valid issue it raises was not considered in the preparation of N2202. The suggested TC below revises the one in N202 to address this issue. The changes to the suggested TC in N2202 are the additions of the last bullet and the last three examples.

With the approach suggested here, rounding of arguments might occur. For example, \texttt{f32xsqrt(f32x)} invokes \texttt{f32xsqrtf64x(f32x)} if \texttt{__Float64x} is supported, else \texttt{f32xsqrtf64}. Thus, if \texttt{__Float64x} is not supported and \texttt{__Float32z} is wider than \texttt{__Float64}, the argument \texttt{f32x} will be rounded to \texttt{__Float64}. We didn’t see a way to avoid such roundings without unduly complicating the specification and/or breaking with the overall approach in C and the other parts of TS 18661. Note that the cases where argument rounding might occur do not represent the intended use of the macros: to round result to narrower type.

The macros that round results to narrower type differ from other \texttt{tgmath.h} macros in that the type of the expanded expression can be determined by the macro prefix, rather than by the argument types. We considered directly specifying that these macros produce their result with at most one rounding (after appropriately converting integer type arguments), and leaving the function to be called, or other manner of computation, to the implementation. We rejected this approach because it was inconsistent with the rest of the specification in \texttt{tgmath.h}.

Suggested Technical Corrigendum

In clause 15, after the change to 7.25#6, add:

Change 7.25#6a from:

\[
\text{[6a] The functions that round result to a narrower type have type-generic macros whose names are obtained by omitting any suffix from the function names. Thus, the macros with } f \text{ or } d \text{ prefix are:}
\]

\[
\begin{array}{lll}
dadd & fmul & ffma \\
dadd & dmul & dfma \\
fsub & fdiv & fsqrt \\
dsub & ddiv & dsqrt
\end{array}
\]

and the macros with \texttt{d32} or \texttt{d64} prefix are:

\[
\begin{array}{lll}
d32add & d32mul & d32fma \\
d64add & d64mul & d64fma \\
d32sub & d32div & d32sqrt \\
d64sub & d64div & d64sqrt
\end{array}
\]

All arguments are generic. If any argument is not real, use of the macro results in undefined behavior. If the macro prefix is \texttt{f} or \texttt{d}, use of an argument of decimal floating type results in undefined behavior. If the
macro prefix is \texttt{d32} or \texttt{d64}, use of an argument of standard floating type results in undefined behavior. The function invoked is determined as follows:

— If any argument has type \texttt{Decimal128}, or if the macro prefix is \texttt{d64}, the function invoked has the name of the macro, with a \texttt{d128} suffix.

— Otherwise, if the macro prefix is \texttt{d32}, the function invoked has the name of the macro, with a \texttt{d64} suffix.

— Otherwise, if any argument has type \texttt{long double}, or if the macro prefix is \texttt{d}, the function invoked has the name of the macro, with an \texttt{l} suffix.

— Otherwise, the function invoked has the name of the macro (with no suffix).

to:

[6a] The functions that round result to a narrower type have type-generic macros whose names are obtained by omitting any suffix from the function names. Thus, the macros with \texttt{f} or \texttt{d} prefix are:

\begin{align*}
\texttt{fadd} & \quad \texttt{fmul} & \quad \texttt{ffma} \\
\texttt{dadd} & \quad \texttt{dmul} & \quad \texttt{dfma} \\
\texttt{fsub} & \quad \texttt{fdiv} & \quad \texttt{fsqrt} \\
\texttt{dsub} & \quad \texttt{ddiv} & \quad \texttt{dsqrt}
\end{align*}

and the macros with \texttt{fM}, \texttt{fMx}, \texttt{dM}, or \texttt{dMx} prefix are:

\begin{align*}
\texttt{fMadd} & \quad \texttt{fMmul} & \quad \texttt{dMfma} \\
\texttt{fMsub} & \quad \texttt{fMdiv} & \quad \texttt{dMsqrt} \\
\texttt{fMmul} & \quad \texttt{fMxma} & \quad \texttt{dMxadd} \\
\texttt{fMdiv} & \quad \texttt{fMxqrt} & \quad \texttt{dMxsub} \\
\texttt{fMfma} & \quad \texttt{dMadd} & \quad \texttt{dMxmul} \\
\texttt{fMsqrt} & \quad \texttt{dMsub} & \quad \texttt{dMxdiv} \\
\texttt{fMxadd} & \quad \texttt{dMmul} & \quad \texttt{dMxma} \\
\texttt{fMxsub} & \quad \texttt{dMdiv} & \quad \texttt{dMxqrt}
\end{align*}

All arguments are generic. If any argument is not real, use of the macro results in undefined behavior. If the macro prefix is \texttt{f} or \texttt{d}, use of an argument of interchange or extended floating type results in undefined behavior. If the macro prefix is \texttt{fM}, or \texttt{fMx}, use of an argument of standard or decimal floating type results in undefined behavior. If the macro prefix is \texttt{dM} or \texttt{dMx}, use of an argument of standard or binary floating type results in undefined behavior. The function invoked is determined as follows:
— Arguments that have integer type are regarded as having type `double` if
the macro prefix is `f` or `d`, as having type `Float64` if the macro prefix
is `fM` or `fMx`, and as having type `Decimal64` if the macro prefix is `dM`
or `dMx`.

— If the function has exactly one generic parameter, the type determined
is the type of the argument.

— If the function has exactly two generic parameters, the type determined
is the type determined by the usual arithmetic conversions (6.3.1.8)
applied to the arguments.

— If the function has three generic parameters, the type determined is the
type determined by applying the usual arithmetic conversions twice,
first to the first two arguments, then to that result type and the third
argument.

— If no function with the given prefix has the parameter type determined
above, the parameter type is determined from the prefix as follows:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>double</td>
</tr>
<tr>
<td>d</td>
<td>long double</td>
</tr>
<tr>
<td>fM</td>
<td>_FloatMx if supported, else _FloatN for minimum N > M</td>
</tr>
<tr>
<td>fMx</td>
<td>_FloatNx for minimum N > M if supported, else _FloatN for minimum N > M</td>
</tr>
<tr>
<td>dM</td>
<td>_DecimalMx if supported, else _DecimalN for minimum N > M</td>
</tr>
<tr>
<td>dMx</td>
<td>_DecimalNx for minimum N > M if supported, else _DecimalN for minimum N > M</td>
</tr>
</tbody>
</table>

In clause 15, at the end of the text appended to the table in 7.25#7, further append:

```plaintext
fsub(d, ld)      fsub1
f32add(f64x, f64) f32addf64x
d32xsqrt(n)      d32xsqrd64
def32mul(f128, f32x) f32mulf128 if _Float128 is at least as wide as _Float32x, or f32mulf32x if _Float32x is wider than _Float128
f32fma(f32x, n, f32x) f32fmaf64 if _Float64 is at least as wide as _Float32x, or f32fmaf32x if _Float32x is wider than _Float64
ddiv(ld, f128)    undefined
f32fma(f64, d, f64) undefined
fmul(dc, d)       undefined
f32add(f32, f32)  f32addf32x(f32, f32)
```
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>f32sqrt(f32)</code></td>
<td><code>f32sqrtf64x(f32)</code> if <code>_Float64x</code> is supported, else <code>f32sqrtf64</code></td>
</tr>
<tr>
<td><code>f64div(f32x, f32x)</code></td>
<td><code>f64divf64x(f32x, f32x)</code> if <code>_Float64x</code> is supported, else <code>f64divf128</code></td>
</tr>
</tbody>
</table>