
SC 22/WG 14/N2166
Title: Evaluation Formats
Author: Willem Wakker
Date: September 2017

Problem summary

1. The concept of 'evaluation format' is not well (if at all) defined in C11; the only description of the concept
is in 5.2.4.2.2p9. As this concept influences the language (it has direct consequence for the effect of the
usual arithmetic conversions and possibly overrides the effect of floating suffixes) it should be properly
defined in Clause 6 - Language rather than being hidden in Clause 5 – Environment.

2. 5.2.4.2.2p9 reads (C11, might be changed by DR 500):

Except for assignment and cast (which remove all extra range and precision), the values yielded
by operators with floating operands and values subject to the usual arithmetic conversions and of
floating constants are evaluated to a format whose range and precision may be greater than
required by the type.

The question is: to what circumstances does the word may refer? When does this happen and when not?
Does this refer to the various values of FLT_EVAL_METHOD or, for instance, to different types of
expressions? This needs to be clarified.

3. The above sentence from 5.2.4.2.2p9 includes floating constants. The implied effect of this is that, for

instance, float constants like 0.3f are silently interpreted as 0.3l. This effect is not mentioned or

referred to in 6.4.4.2 where the syntax of the floating-suffix is defined, thereby leaving the programmer in
the dark. The reason to include floating constants here seems to be: 'constants with more range and
precision gives better results'. This 'the compiler knows better' approach might 'help' sloppy or ignorant

programmers but punishes the precise programmer who now has to write (float)0.3f to get what he

wants. This all contradicts one of the basic principles of the C language: 'Trust the programmer'!
Furthermore it seems that the C++ standard (being even less clear on this issue than the C standard) does
not include floating constants in the wider evaluation format, so there is an incompatibility between C and
C++ on this point.It is proposed to remove floating constants from the definition of the notion 'evaluation
format'.

This is a 'non-silent' change, causing programs that rely on this automatic widening to behave differently.
But I cannot imagine a well-written C program that would be dependent on this feature while I know of
several well-written pre-C99 C programs that behave differently (or even incorrect) as a result of this
wide evaluation approach. So, removal should not cause big problems; see it as the correction of a mis-
guided principle introduced in C99.

4. The 1st sentence of 6.2.5 – Types reads:

The meaning of a value stored in an object or returned by a function is determined by the type of
the expression used to access it.

This suggests that a float function returns a (possibly truncated) float value, and not a value in a

possibly wider evaluation format. This contradicts with 6.8.6.4 – The return statement that states that 'the
value is returned as if by assignment to an object having the return type of the function'; the following

note states 'The return statement is not an assignment' (for overlap reasons) and the general statement

'The representation of floating-point values may have wider range or precision then implied by the type; a
cast may be used to remove this extra range and precision'. No link with the 'greater range or precision'
from 5.2.4.2.2, just seemingly a disguised loophole to allow for the return of a value wider than required
by the type of the function.

The fact that F.6 requires (if __STDC_IEC_559__ is defined) that function results are converted to the

type of the function confuses the matter even further: this strict behavior has nothing to do with IEEE
floating point. So the question is: what purpose is served with allowing wide results in 6.8.6.4? And
again: C++ does not allow these 'wide return values' so it is causing incompatibilities with no useful
purpose.

It is proposed to remove this 'freedom' to return values in a format greater than the format required by the
type of the function.

Proposed replacement text

1. Insert new section 6.3.1.9 (the first text between [] is to be removed if floating constants are not included
in evaluation formats, item 3 above, the second text between [] is to be removed if return statements are
not included in evaluation formats, item 4 above):

6.3.1.9 Evaluation formats

The values of floating type yielded by operators subject to the usual arithmetic conversions [and
the values of floating constants] are evaluated to a format whose range and precision may be
greater than required by the type. Such a format is called an evaluation format.note) Assignment
and cast operators [and return statements] will always yield values in the format corresponding to
the required type. The extend to which evaluation formats are used is defined by the value of
FLT_EVAL_METHOD (see 5.2.4.2.2).

note) The evaluation method determines evaluation formats of expressions involving all floating types, not just

real types. For example, if FLT_EVAL_METHOD is 1, then the product of two float _Complex operands is
represented in the double _Complex format, and its parts are evaluated to double.

2. In 5.2.4.2.2#9 replace:

Except for assignment and cast (which remove all extra range and precision), the values yielded
by operators with floating operands and values subject to the usual arithmetic conversions and of
floating constants are evaluated to a format whose range and precision may be greater than
required by the type. The use of evaluation formats is characterized by the implementation-
defined value of FLT_EVAL_METHOD:24)

with:

The use of evaluation formats (see 6.3.1.9) is defined by the implementation-defined value of
FLT_EVAL_METHOD:

and remove note 24.

3. In 6.6 note 116: replace “characterized” by “defined”

4. At the end of 6.3.1.8p2 add “(see 6.3.1.9)” and remove note 63

5. In 6.5.4#6: replace “(6.3.1.8)” by “(6.3.1.9)”

6. If floating constants remain subject of the evaluation formats (item 3 above is not accepted), add the
following sentence at the end of 6.4.4.2#4:

Floating constants may be evaluated to a wider format with more range and precision (the
evaluation format, see 6.3.1.9) than required by the type indicated by the floating suffixnote).

note) When FLT_EVAL_METHOD is 2, this means that 0.3f == 0.3l; if a constant with range and

precision according to the type is required, a cast should be used: (float)0.3.

7. If return statements are excluded from evaluation formats (item 4) remove the last sentence of note 160
and section F.6.

