
Draft	DRs	for	TS	18661	 	 	 	 	 	 WG	14	N2125	

2017-03-04	

	
DDR	#1	
==	

Reference	Document:	TS	18661-1		

Subject:	Zero	payloads	and	setpayload	function	

Summary	

This	is	about	an	issue	raised	by	Joseph	Myers	in	SC22WG14.14450:	
	

The	specification	for	setpayload	(and	likewise	setpayloadsig)	says	"If	pl	is	
not	a	positive	floating-point	integer	representing	a	valid	payload,	*res	is	set	to	
positive	zero."	
	
Does	"positive"	as	applied	to	"floating-point	integer"	here	mean	"with	sign	bit	0"	
(the	list	of	definitions	in	IEEE	754	doesn't	include	"positive")?		In	the	preferred	
encodings	for	binary	interchange	formats,	0	is	a	valid	payload	for	quiet	NaNs.		So	
should	+0.0	as	an	argument	to	setpayload	result	in	a	quiet	NaN	with	payload	0,	
while	-0.0	results	in	*res	being	set	to	+0.0	because	-0.0	isn't	positive	(and	for	
setpayloadsig,	both	result	in	*res	set	to	+0.0	because	a	payload	for	a	signaling	
NaN	has	to	be	nonzero	to	avoid	all	mantissa	bits	being	zero)?	

	
A	“positive	floating-point	integer”	is	a	positive	integer	in	the	floating-point	format,	hence	it	
is	greater	than	zero.	So,	the	current	specification	for	setpayload	and	setpayloadsig	is	
flawed	in	that	it	doesn’t	allow	setting	the	payload	to	zero.	
	
A	more	basic	problem	is	that	TS	18661-1	assumes	IEC	60559	interprets	payloads	as	
integers.	This	is	true	for	decimal	formats.	IEC	60559	says:	
	

The	payload	corresponds	to	the	significand	of	finite	numbers,	interpreted	as	
an	integer	with	a	maximum	value	of	10^(3×J)−1,	…	

	
The	significand	c	interpreted	as	an	integer	is	assumed	throughout	to	be	non-negative,	while	
the	s	field	in	(s,	q,	c)	provides	the	sign.	For	decimal,	interpreting	the	bits	in	the	encodings	
allows	the	two	encoding	schemes	to	have	the	same	payloads	and	the	payloads	to	fit	
conceptually	with	their	encoding	schemes.		
	
However,	for	binary	formats,	IEC	60559	says:	
	

For	binary	formats,	the	payload	is	encoded	in	the	p−2	least	significant	bits	of	the	
trailing	significand	field.	

	
Nowhere	does	it	actually	interpret	the	payload	for	binary	formats	as	an	integer.	

	
However,	the	payload	for	binary	formats	has	a	natural	interpretation	as	an	unsigned	
integer,	so	it	is	reasonable	for	TS	1866-1	to	interpret	payloads	(for	binary	and	decimal	
formats)	as	such.	
	
The	suggested	Technical	Corrigendum	below	addresses	these	problems.	
	
Suggested	Technical	Corrigendum	

In	14.10,	replace	the	first	sentence:	
	

IEC	60559	defines	the	payload	of	a	NaN	to	be	a	certain	part	of	the	NaN’s	significand	
interpreted	as	an	integer.	
	

with:	
	

IEC	60559	defines	the	payload	of	a	NaN	to	be	a	certain	part	of	the	NaN’s	significand.	
The	payload	can	be	interpreted	as	an	unsigned	integer.	

	
	
In	14.10,	in	the	new	C	subclause	F.10.13,	replace:	
	

IEC	60559	defines	the	payload	of	a	quiet	or	signaling	NaN	as	an	integer	value	
encoded	in	the	significand.	

	
with:	
	

IEC	60559	defines	the	payload	of	a	quiet	or	signaling	NaN	as	information	encoded	in	
part	of	the	NaN	significand.	The	payload	can	be	interpreted	as	an	unsigned	integer.	

	
In	14.10,	in	the	new	C	subclauses	F.10.13.2#2	and	F.10.13.3#2,	change:	
	

If	pl	is	not	a	positive	floating-point	integer	representing	a	valid	payload,	*res	is	set	
to	positive	zero.	

	
to:	
	

If	pl	is	not	a	floating-point	integer	representing	a	valid	payload,	*res	is	set	to	
positive	zero.	

	
	
	

DDR	#2	
==	

Reference	Document:	TS	18661-3		

Subject:	Type-generic	macros	for	functions	that	round	result	to	narrower	type	

Summary	

This	is	about	an	issue	raised	by	Joseph	Myers	in	SC22WG14.14561:	
	

TS	18661-1	and	-2	define	type-generic	macros	for	the	functions	that	round		
result	to	a	narrower	type.		In	part	1	these	are,	for	example,	fadd	and		
dadd	for	addition;	in	part	2,	for	example,	d32add	and	d64add.	
	
Part	3	does	not	seem	to	make	any	changes	or	additions	to	those	macros,	and		
consequences	of	that	seem	nonobvious.		It	defines	new	functions	for	the		
new	types:	fMaddfN,	fMaddfNx,	fMxaddfN,	fMxaddfNx	(where	M	<	N,	or	M	<=	N		
in	the	fMaddfNx	case),	and	likewise	for	decimal	types.		But	the		
type-generic	macros	remain	as	defined	in	7.25#6a	after	the	changes	from		
parts	1	and	2	are	applied	(part	3	does	not	contain	the	string	"6a").	
	
That	is,	it's	valid	to	pass	the	_FloatN	and	_FloatNx	types	to	the	fadd	and		
dadd	macros,	and	valid	to	pass	the	new	_DecimalN	and	_DecimalNx	types	from		
part	3	to	the	d32add	and	d64add	types.	
	
(a)	7.25#6a	says	"If	the	macro	prefix	is	d32	or	d64,	use	of	an	argument	of		
standard	floating	type	results	in	undefined	behavior.".		Other	places	get		
amended	in	part	3	to	say	"floating	type	of	radix	2"	in	addition	to		
"standard	floating	type".		But	it	appears	it	fails	to	make	it	undefined	to		
pass	_FloatN	or	_FloatNx	arguments	to	d32add,	d64add	etc.	type-generic		
macros	-	although	clearly	it	should	be	undefined.	
	
(b)	Passing	_Decimal128	to	d32add	would	result	in	the	d32addd128	function		
being	called,	as	expected.		But	say	you	pass	a	_Decimal128x	argument.		A		
function	d32addd128x	exists	but	the	specification	would	seem	to	result	in		
d32addd64	being	called,	which	seems	unintuitive.		Similar	issues	apply		
with	_FloatN	and	_FloatNx	types	-	calling	fadd	on	them	would	always	call		
the	fadd	function	not	faddl.		(But	in	that	case	there	*are*	no	functions		
defined	that	take	_FloatN	/	_FloatNx	arguments	and	return	float	or	double.			
So	the	right	thing	to	do	is	less	obvious.)	
	

The	following	addresses	these	issues	by	filling	in	the	missing	specification	in	part	3.	
	

Suggested	Technical	Corrigendum	

In	clause	15,	after	the	change	to	7.25#6,	add:	
	

Change	7.25#6a	from:	
	

[6a]	The	functions	that	round	result	to	a	narrower	type	have	type-generic	
macros	whose	names	are	obtained	by	omitting	any	suffix	from	the	function	
names.	Thus,	the	macros	with	f	or	d	prefix	are:	
	

fadd fmul ffma
dadd dmul dfma
fsub fdiv fsqrt
dsub ddiv dsqrt

	
and	the	macros	with	d32	or	d64	prefix	are:	
	

d32add d32mul d32fma
d64add d64mul d64fma
d32sub d32div d32sqrt
d64sub d64div d64sqrt

	
All	arguments	are	generic.	If	any	argument	is	not	real,	use	of	the	macro	
results	in	undefined	behavior.	If	the	macro	prefix	is	f	or	d,	use	of	an	
argument	of	decimal	floating	type	results	in	undefined	behavior.	If	the	
macro	prefix	is	d32	or	d64,	use	of	an	argument	of	standard	floating	type	
results	in	undefined	behavior.	The	function	invoked	is	determined	as	
follows:	
	
—				If	any	argument	has	type	_Decimal128,	or	if	the	macro	prefix	is	d64,	

the	function	invoked	has	the	name	of	the	macro,	with	a	d128	suffix.	
	
—				Otherwise,	if	the	macro	prefix	is	d32,	the	function	invoked	has	the	name	

of	the	macro,	with	a	d64	suffix.	
	
—				Otherwise,	if	any	argument	has	type	long double,	or	if	the	macro	

prefix	is	d,	the	function	invoked	has	the	name	of	the	macro,	with	an	l	
suffix.	

	
—				Otherwise,	the	function	invoked	has	the	name	of	the	macro	(with	no	

suffix).	
	
	to:	
	

[6a]	The	functions	that	round	result	to	a	narrower	type	have	type-generic	
macros	whose	names	are	obtained	by	omitting	any	suffix	from	the	function	

names.	Thus,	the	macros	with	f	or	d	prefix	are:	
	

fadd fmul ffma
dadd dmul dfma
fsub fdiv fsqrt
dsub ddiv dsqrt

	
and	the	macros	with	fM,	fMx,	dM,	or	dMx	prefix	are:	
	

fMadd fMxmul dMfma
fMsub fMxdiv dMsqrt
fMmul fMxfma dMxadd
fMdiv fMxsqrt dMxsub
fMfma dMadd dMxmul
fMsqrt dMsub dMxdiv
fMxadd dMmul dMxfma
fMxsub dMdiv dMxsqrt

	
All	arguments	are	generic.	If	any	argument	is	not	real,	use	of	the	macro	
results	in	undefined	behavior.	If	the	macro	prefix	is	f,	d,	fM,	or	fMx,	use	of	
an	argument	of	decimal	floating	type	results	in	undefined	behavior.	If	the	
macro	prefix	is	dM	or	dMx,	use	of	an	argument	of	standard	or	binary	
floating	type	results	in	undefined	behavior.	The	function	invoked	is	
determined	as	follows:	
	
—	 Arguments	that	have	integer	type	are	regarded	as	having	type	

_Decimal64	if	any	argument	has	decimal	floating	type,	and	as	having	
type	double	otherwise.	

	
—	 The	unsuffixed	name	of	the	function	is	the	name	of	the	macro,	and	its	

suffix,	if	any,	corresponds	to	the	parameter	type	which	may	be	any	type	
with	at	least	the	range	and	precision	of	the	argument	types.	

	
In	clause	15,	at	the	end	of	the	text	appended	to	the	table	in	7.25#7,	further	append:	
	

f32xadd(d, f32x)	 any	f32xaddfN	or	f32xaddfNx	such	that	
N	>	32	and	the	suffix	type,	_FloatN	or	
_FloatNx,	is	at	least	as	wide	as	double	and	
_Float32x		

	 	

DDR	#3	
==	

Reference	Document:	TS	18661-2		

Subject:	Effect	of	%a	vs	%A	conversion	specifiers	

Summary	

The	specification	in	TS	18661-2	for	a,A	conversion	specifiers	for	decimal	describes	the	
behavior	in	terms	of		f	and	e	formatting.	The	intention	was	that	the	A	conversion	specifier	
would	have	the	effects	of	F	and	E	formatting.	The	following	Technical	Corrigendum	corrects	
this	oversight,	using	wording	similar	to	that	in	C11	for	the	g,G	conversion	specifiers.	
	
Suggested	Technical	Corrigendum	

In	12.5,	in	the	text	added	to	7.21.6.1#8	and	7.29.2.1#8,	under	a,A	conversion	
specifiers,	replace	the	bullets:	
	

—	 if	−(n+5)	≤	q	≤	0,	use	style	f	formatting	with	formatting	precision	equal	to	−q,	

—	 otherwise,	use	style	e	formatting	with	…	

	
with:	
	

—	 if	−(n+5)	≤	q	≤	0,	use	style	f	(or	style	F	in	the	case	of	an	A	conversion	specifier)	
with	formatting	precision	equal	to	−q,	

—	 otherwise,	use	style	e	(or	style	E	in	the	case	of	an	A	conversion	specifier)	with	…	

	
	

