
The nodiscard attribute
Reply-to: Aaron Ballman (aaron@aaronballman.com; aballman@cert.org)
Document No: N2051
Date: 2016-05-26

Introduction
Many functions return a value, however, not all function return values are of equal importance to the

caller. Instead, function return values tend to fall into one of three high-level categories: crucial (such as

the value returned by a call to malloc()), informative-and-sometimes-important (such as the value

returned by a call to sprintf()), or purely informative (such as the value returned by a call to

printf()). A crucial return value is one which likely represents a programming error if it is ignored by

the caller. There is insufficient information encoded within a function declaration to determine whether

ignoring the return value at a call site is erroneous or not, and implementations generally do not

diagnose that situation by default due to a very high false-positive rate. However, the designer of that

function generally has sufficient knowledge of the problem domain to determine whether ignoring the

results of the function call is a likely sign of a programming mistake.

Proposal
This document proposes the [[nodiscard]] attribute as a way for an API designer to specify intent,

allowing implementations to diagnose a function call expression that implicitly discards the result value

when that result is crucial to correctly using the API.

The [[nodiscard]] attribute can be applied to the identifier in a function declarator to encourage

implementations to diagnose ignoring the return value of a call to the function. As a motivating

example, consider:

 const size_t kNeededSize = ...; // Always > 0

 void func(void *ptr, size_t size) {

 // If size is insufficient for our needs, resize the

 // given buffer to the larger size.

 if (size < kNeededSize) {

 realloc(ptr, kNeededSize); // (1)

 // (2)

 }

 int *i_ptr = (int *)ptr;

 for (size_t i = 0; i < (kSizeNeeded / sizeof(int)); ++i) {

 i_ptr[i] += 12; // (3)

 }

 }

The call to realloc() at (1) attempts to resize the given buffer pointed to by ptr. However, this code

has two potential security-related failures:

If realloc() fails to resize the buffer, that information is lost at (2) and ptr retains its original size.

This means that ptr points to a buffer of insufficient size and when (3) is executed, a buffer overrun

occurs. If realloc() fails to resize the buffer in place, then the pointer pointed to by ptr has been

freed and when (3) is executed, it writes to freed memory. Either situation can lead to an exploitable

security vulnerability [CWE-131, CWE-416]. (Note that CWE-131 is a CWE Top 25 vulnerability.)

If realloc() were instead declared [[nodiscard]] void *realloc(void *, size_t);,

then implicitly discarding the return value at (1) can be diagnosed with an on-by-default warning,

without inundating the user with false-positives elsewhere.

Additionally, the [[nodiscard]] attribute can be applied to the declaration of a struct, union, or

enumeration type that, when used as the return type of a function, implies the function results should

not be discarded. For instance, a code author may decide to annotate the declaration of a custom

critical_error_information struct type with [[nodiscard]] rather than mark each

individual function declaration returning critical_error_information. This eliminates the

chance that a function returning such a type accidentally allows the results to be discarded by failing to

write the attribute on a function declaration.

Rationale
The [[nodiscard]] attribute has extensive real-world use, being implemented by Clang and GCC as

__attribute__((warn_unused_result)), but was standardized under the name

[[nodiscard]] by WG21. This proposal chose the identifier nodiscard because deviation from

this name would create a needless incompatibility with C++.

The semantics of this attribute rely heavily on the notion of a use, the definition of which is left to

implementation discretion. However, the non-normative guidance specified by WG21 is to encourage

implementations to emit a warning diagnostic when a nodiscard function call is used in a potentially-

evalulated discarded-value expression unless it is an explicit cast to void. This means that an

implementation is not encouraged to perform dataflow analysis (like an initialized-but-unused local

variable diagnostic would require). e.g.,

 #define IGNORE(X) ((void)X)

 [[nodiscard]] int foo(void);

 void func(void) {

 foo(); // Diagnose

 (void)foo(); // Do not diagnose

 IGNORE(foo()); // Do not diagnose

 _Generic(foo(), default : 1); // Do not diagnose (foo()

 // is not evaluated).

 int i = foo();

 // Do not diagnose, even though i is never used.

 }

This proposal does not cover applying the [[nodiscard]] attribute to a typedef type because the

WG21 attribute does not apply to such a type. However, this may be a reasonable, motivating use case

for the attribute given the common design patterns using typedef in C. If WG14 determines that this

attribute should appertain to typedefs as well, it would be reasonable to propose this addition to WG21

as well to avoid incompatibilities between the two languages.

Proposed Wording
This proposed wording currently uses placeholder terms of art and is expected to change as N2049

progresses. It assumes a new subclause, 6.7.11, Attributes that describes the referenced grammar

terms. The [Note] in paragraph 1 of the semantics is intended to convey informative guidance rather

than normative requirements.

Add new subclause:

6.7.11.4 Nodiscard attribute

Constraints

1 The attribute-token nodiscard shall be applied to the identifier in a function declarator or to the

definition of a structure, union, or enumeration type. It shall appear at most once in each attribute-list

and no attribute-argument-clause shall be present.

Semantics
1 [Note: A nodiscard call is a function call expression that calls a function previously declared

nodiscard, or whose return type is a possibly const-, volatile-, or restrict-qualified structure, union, or

enumeration type marked nodiscard. Evaluation of a nodiscard call as a void expression (6.8.3) is

discouraged unless explicitly cast to void. Implementations are encouraged to issue a warning in such

cases. This is typically because discarding the return value of a nodiscard call has surprising

consequences. ­­ end note]

2 EXAMPLE

 struct [[nodiscard]] error_info { /*...*/ };
 struct error_info enable_missile_safety_mode(void);

 void launch_missiles(void);

 void test_missiles(void) {

 enable_missile_safety_mode(); // warning encouraged

 launch_missiles();

 }

Acknowledgements
I would like to recognize the following people for their help in this work: David Keaton, David Svoboda,

and Andrew Tomazos. I would also like to thank the US Department of Homeland Security, without

whose funding this proposal would not have been made.

References
[N2049]
Attributes in C. Aaron Ballman. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf

[P0068R0]
Proposal of [[unused]], [[nodiscard]] and [[fallthrough]] attributes. Andrew Tomazos. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2015/p0068r0.pdf

[P0189R1]
Wording for [[nodiscard]] attribute. Andrew Tomazos. http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2016/p0189r1.pdf

[CWE-131]
CWE-131: Incorrect Calculation of Buffer Size. http://cwe.mitre.org/data/definitions/131.html

[CWE-416]
CWE-416: Use After Free. http://cwe.mitre.org/data/definitions/416.html

