
Document: N1731
Date: 2013/07/23

 Issues with alignment in C11

 Joseph Myers

There are various deficiencies in the C11 text about alignment
requirements.

Issue 1: Existence of over-aligned types
==

6.2.8#3 defines the concept of an over-aligned type, with a footnote
saying "Every over-aligned type is, or contains, a structure or union
type with a member to which an extended alignment has been applied.".
But there is no way in the syntax to apply such an alignment to a
member. _Alignas appears in the syntax for alignment-specifier, which
in turn appears in that for declaration-specifiers (6.7#1). But
structure and union members instead use struct-declaration which uses
specifier-qualifier-list which doesn't include a case for
alignment-specifier at all. So for the reference to over-aligned
types, and the reference in 6.7.5#6 to the "declared object or
member", to be meaningful, something needs adding to the syntax for
struct-declaration. (Note that specifier-qualifier-list is also used
in the syntax for type-name, and it seems less likely that a type-name
was intended to be able to include alignment-specifiers.)

Issue 2: Contexts in which alignments are supported
===

6.2.8#2 defines "fundamental alignment": "A fundamental alignment is
represented by an alignment less than or equal to the greatest
alignment supported by the implementation in all contexts, which is
equal to _Alignof (max_align_t)."

6.2.8#3 defines "extended alignment": "An extended alignment is
represented by an alignment greater than _Alignof (max_align_t). It is
implementation-defined whether any extended alignments are supported
and the contexts in which they are supported. A type having an
extended alignment requirement is an over-aligned type."

6.2.8#4 defines "valid alignment", saying "Alignments are represented
as values of the type size_t. Valid alignments include only those
values returned by an _Alignof expression for fundamental types, plus
an additional implementation-defined set of values, which may be
empty. Every valid alignment value shall be a nonnegative integral
power of two.".

max_align_t is specified in 7.19#2 as "an object type whose alignment
is as great as is supported by the implementation in all contexts".

The memory management functions in 7.22.3 are defined to return a
pointer "suitably aligned so that it may be assigned to a pointer to
any type of object with a fundamental alignment requirement and then
used to access such an object or an array of such objects in the space
allocated". In the case of aligned_alloc, there may be a stricter
requirement given by the alignment passed to the function, but the
alignment passed to the function can't result in memory any
less-aligned than a fundamental alignment requirement. The alignment

requirement still applies even if the size is too small for any object
requiring the given alignment (see the response to C90 DR#075).

There are various problems with the above:

* The term "fundamental type" is not defined in C11.

* There is also no definition of what a "context" is in which an
 alignment might or might not be supported. In common implementation
 practice, separate contexts might be by the storage duration of the
 object (static, thread, automatic, allocated, with the last
 referring to the alignments guaranteed by calloc, malloc and
 realloc).

* A "valid alignment" may not be a "fundamental alignment". Thus,
 whatever interpretation is adopted for "fundamental type", nothing
 in the standard requires the alignment of a "fundamental type" to be
 a "fundamental alignment". For example, say "long double" is a
 "fundamental type"; it would seem nonsensical if declaring "long
 double" objects (in any context) failed to work, but nothing seems
 to require malloc to return objects sufficiently aligned for long
 double.

* Given these gaps in the definition, nothing in the normative text
 appears to imply footnote 57 "Every over-aligned type is, or
 contains, a structure or union type with a member to which an
 extended alignment has been applied.", although no doubt it reflects
 the intent.

* If "fundamental type" is interpreted to mean "basic type", that is
 not sufficient to resolve these lacunae. For example, if

 struct s { long double ld; }

 has an alignment requirement bigger than long double, it should
 still be possible to allocate memory for it with malloc, and the
 same applies to any typedef from a standard header that might also
 have a bigger alignment requirement than any basic type.

The following principles seem natural for any fix for this issue:

* C99 referred to "any type of object" in the alignment requirements
 for calloc, malloc and realloc. As a matter of compatibility, this
 means that any type that could be constructed within C99 (including
 one using types from standard headers) should have an alignment
 required by C11 to be supported in all contexts, and the same
 applies to types from C extensions originally specified as
 extensions to C99. Most of the following principles follow to a
 greater or lesser extent from this compatibility principle.

* All basic types have alignments supported in all contexts.

* All enumerated types have alignments supported in all contexts.

* All pointer types have alignments supported in all contexts (even if
 the type pointed to does not).

* All types from standard headers specified as complete object types
 in the definitions of those headers have alignments supported in all
 contexts. (This includes both types specified as typedefs and types

 specified as structs or unions with a given tag.)

* If a type has an alignment supported in all contexts, so do arrays
 of that type, qualified versions of that type, and atomic versions
 of that type.

* If all the members of a structure or union have types with
 alignments supported in all contexts, and none of them use an
 _Alignas specifier specifying an alignment bigger than supported in
 all contexts, then that structure or union has an alignment
 supported in all contexts.

* Where C extensions such as TS 18661-2 and 18661-3 are proposed that
 define new types, or existing such extensions such as TR 18037 are
 revised and updated for C11, care should be taken that the new types
 are covered under the above, whether through being basic types or
 through being defined in standard headers. (If SIMD vector types,
 as mentioned at
 <http://www.open-std.org/pipermail/cplex/2013-June/000010.html>,
 were to end up in any such extension, it would probably be
 appropriate to define them in a way that does *not* require calloc,
 malloc and realloc to return memory suitably aligned for them; such
 types often require alignments bigger than needed for any other
 type, so imposing such requirements on memory allocation functions
 would result in undue inefficiency.)

