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1 Vision 

Parallel C++ programming should be a seamless extension of serial C++ programming. 

2 Background and Motivation 

At the C++ Standards meeting in February, 2012 in Kona, I presented N3361, C++ Language 

Constructs for Parallel Programming, which argued that C++ needs parallel programming 

constructs.  To summarize briefly, the presentation described the growth of multicore (task 

parallel) and vector (data parallel) hardware and the need to support programming this new 

hardware cleanly, portably, and efficiently in C++.  The Evolution Working Group (EWG) in 

Kona agreed that parallelism is an important thing to support and created a study group to 

research it further.  The study group met in Bellevue, OR in May, 2012.  There appeared to be 

enthusiasm for targeting some level of parallelism support for the next standard (also known 

as C++1y, tentatively targeted for 2017). 

In this paper, I will propose new language constructs to address the central aspects of task 

parallelism.  This paper addresses the language vs. library decision and why the proposal 

herein uses language extensions rather than relying on a library interface. Although this paper 

offers many specifics describing the semantics of the proposed constructs, it does not yet 

attempt to present formal wording for WP changes.  Those details will be forthcoming if and 

when the committee agrees with the direction of this proposal. The keywords used in the 

syntax examples are the keywords supported by the Intel® Cilk™ Plus compiler and are 

intended as a straw-man proposal; actual keyword names, attributes, and/or operators can be 

determined later, when discussion has progressed to the point that a bicycle-shed discussion is 

in order. 

This paper does not directly address constructs for SIMD (vector) loops and parallel loops 

which are proposed separately in N3418.  In addition, thread-safe containers, which are very 

useful in parallel programming, are being proposed in N3425.  Future proposals may include 

library components, including additional task-parallel constructs.   

3 A Quick Introduction to the Proposed New Features 

The following example shows a parallel tree walk in which a computation f() is performed 

on the value of each node in a binary tree, yielding an integer metric.  The results of the 

computation are summed over the entire tree: 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3361.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3418.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3425.pdf
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int tree_walk(node *n) 

{ 

    int a = 0, b = 0; 

    if (n->left) 

        a = cilk_spawn tree_walk(n->left); 

    if (n->right) 

        b = cilk_spawn tree_walk(n->right); 

    int c = f(n->value); 

    cilk_sync; 

    return a + b + c; 

} 

This example uses the Intel® Cilk™ Plus keywords, cilk_spawn and cilk_sync, because 

they have the same semantics as are being proposed in this paper.  Discussion on the names of 

keywords (or attributes) for the C++ standard is left to a future time. 

In the example, the presence of cilk_spawn indicates to the compiler that execution can 

proceed asynchronously to the next statement, without waiting for the recursive tree_walk 

calls to complete.  A cilk_spawn defines a task – a piece of work that is permitted (but not 

required) to execute asynchronously with respect to the caller and with respect to other 

spawned tasks.   

When the results of the spawned functions are needed, we issue a cilk_sync to indicate that 

the next statement cannot be executed until all cilk_spawn expressions within this function 

complete.  In the absence of an explicit cilk_sync, one is inserted automatically at the end of 

the function. 

Assuming that the tree_walk function is deterministic (i.e., no determinacy races are 

introduced by f()), the meaning of the program would be unchanged if we remove the Cilk 

keywords.  Such a program with the Cilk keywords removed is called the serialization of the 

parallel program.  The ability of a programmer to easily grasp the serialization of a program is 

one of the core strengths of this approach.  The importance of this benefit should not be 

underestimated – our parallelization strategy should not change C++ so that it no longer looks 

like C++. 

I will return to the details of syntax and semantics of cilk_spawn and cilk_sync later in 

the paper. 

4 Fork-join Execution Model 

4.1 What is Fork-join Parallelism? 

The term fork-join parallelism refers to a method of specifying parallel execution of a program 

whereby the program flow diverges (forks) into two or more flows that can be executed 

concurrently and which come back together (join) into a single flow when all of the parallel 

work is complete.  I’ll use the term strand to describe a serially-executed sequence of 

instructions that does not contain a fork point or join point. At a fork point, one strand (the 
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initial strand) ends and two strands (the new strands) begin. The initial strand runs in series 

with each of the new strands but the new strands may (but are not required to, a fact essential 

for a scalable implementation) run in parallel with each other. At a join point, one or more 

strands (the initial strands) end and one strand (the new strand) begins. The initial strands 

may run in parallel with one another but each of the initial strands runs in series with the new 

strand. 

The strands in an execution of a program form a directed acyclic graph (DAG) in which fork 

points and join points comprise the vertices and the strands comprise the directed edges, with 

time defining the direction of each edge.1  Figure 1 illustrates such a DAG: 

 

 

 

 

 

 

Figure 1 – A fork-join DAG 

4.2 What is Strict Fork-Join Parallelism? 

The property of strictness that is of interest for this paper is that each function has exactly one 

incoming strand and one outgoing strand because asynchronous function calls created by 

cilk_spawn operations, like other function calls, strictly nest within each other.  Figure 2 

shows each cilk_spawn creating an asynchronous function call nested within the calling 

function (also called the parent function). 

                                                 

1 In an alternative DAG representation, sometimes seen in the literature, the strands comprise the vertices and the 

dependencies between the strands comprise the edges. 
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Figure 2 – Strict function-call nesting 

A strict fork-join execution model has the following properties: 

 A task can fork off one or more child tasks, each of which may execute in parallel with 

each other and with the parent task. 

 A task can join (wait for) its children to complete.  A task cannot wait for another task 

that is not its child.  (The latter property is called fully strict in the Cilk literature.) 

 A task cannot complete until all of its children complete. 

The execution DAG is always a series-parallel DAG. 

4.3 Local Variable Access and the Cactus Stack 

The strict fork-join constructs proposed in this paper maintain the flavor of C++ execution by 

making access to local variables in parallel code as similar as possible to the serial case:  

 Function-scope variables within the parent function can be accessed (by pointer or 

reference) from within the child function just as if it were called serially, since the 

parent is guaranteed to have a valid stack frame if the child is active. 

 If a parent function spawns more than one child, these sibling function calls each have 

their own separate stack frames but share the rest of the stack with each other.  Again, 

this mimics the behavior of a serial program. 

The technology that makes this possible is called a cactus stack.  When a child function “looks 

up” towards main(), the stack looks like a normal, linear stack, i.e., the child’s local variables, 

it’s parent’s local variables, and its parent’s parent’s local variables are all live.  Conversely, 

“looking down” from main() towards the currently-executing functions, one would see the 

stack diverging into different branches (like a tree or a cactus), with a leaf branch for each 
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function executing in parallel.  Because of the tree structure of a cactus stack, it cannot occupy 

contiguous memory like a linear stack does (see implementation experience, below). 

4.4 Why do We Want Strictness? 

In general, parallel programming is hard.  The job becomes easier when we avail ourselves of 

constructs that facilitate reasoning about the program. The benefits of strictness can be 

compared to that of using local variables and argument passing instead of global variables: 

decisions can be localized and individual parts of a program can be reasoned about without 

needing to understand the entire program at once.  Thus, strict fork-join parallelism should be 

a critical tool in our parallelism strategy.   

Note that I am not proposing that strict fork-join parallelism be the only form of parallelism 

in C++.  Other forms of parallelism can and should be available for those situations where 

strict fork-join parallelism is not sufficient, just as global variables and heap-allocated objects 

exist for those situations where local variables are not sufficient.  Both strict and less strict 

constructs are needed. 

However, the use of strict fork-join parallelism yields the following benefits over less-

structured approaches to parallelism: 

 Serial semantics: Every program can be executed serially.  A serial execution is always 

a legal interpretation of the parallel program. Execution on one processor exactly 

matches the (serial) execution of the serialization. 

 Composable: Parallel computations can be nested arbitrarily without taxing system 

resources. 

 Modular: Parallelism is encapsulated within functions so a caller does not need to know 

whether a function executes in parallel. Asynchronous tasks do not accidentally “leak” 

from functions, causing data races and other problems.  Note that task leaks are usually 

worse than memory leaks because even a single rogue task can crash your program. 

 Faithful extension of serial C++: This approach requires minimum reordering of 

control flow.  The cactus stack eliminates the need create “packaged tasks”. 

 Well-behaved exceptions:  An exception thrown from an asynchronous task will be 

caught at in the same place as it would be in the serialization of the program. 

 Powerful analysis tools: The mathematical qualities of strict fork-join parallelism allow 

analysis tools to work within reasonable memory bounds.  Local parallelism results in 

localized analysis. 
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5 Language vs. Library? 

When the idea of adding parallelism to C++ was introduced, one of the first questions to be 

raised was whether it should be specified as a core language extension or purely as a new 

library.  I assert that the correct answer is to do some of both.  While pure library constructs for 

parallelism do exist (TBB is a good example), the most essential constructs should be built into 

the language.  Conversely, other more flexible and powerful constructs can and should be 

implemented in a library.  This proposal addresses only language support for strict fork-join 

parallelism.  Other forms of parallelism, including pipelines, graphs, and coordination 

constructs can be productively specified as libraries features beyond the scope of this proposal. 

5.1 The Difference Between Language and Library Features 

Maximally useful fork-join parallelism constructs can take advantage of the compiler’s 

understanding of types, variables, blocks, function boundaries, variable scope, control flow, 

etc..  The C++ language gives library authors the tools necessary to express user-defined 

abstract data types and user-defined functions, but (unfortunately) not user-defined control 

constructs.  Libraries need objects to communicate context between parts of a control construct 

(e.g., between a fork and its corresponding join). Although lambdas help, they don’t handle 

everything, and they can make code hard to read.  For example: a serial for loop could be 

implemented as a library function, but communicating the loop control variable to the lambda 

that implements the loop body requires an explicit, non-obvious syntax.  It is intriguing to 

consider language extensions that would allow for control-construct libraries, but that is not 

the task at hand2. 

Finally, the most efficient implementations of strict fork-join parallelism will need to take 

advantage of compiler support. It is possible to describe the feature using library syntax but 

implement it in the compiler, but then we would end up with the worst of both worlds: the 

implementation headaches of a language feature and the clumsy syntax of library-

implemented control constructs. 

5.2 A Memory-Allocation Analogy 

In C++, we benefit from having core language constructs for defining automatic (local) 

variables with limited scope and separate library facilities for allocating longer-lived objects on 

the heap. As with automatic vs. heap objects, we would also benefit from having language-

                                                 

2 It is not reasonable to propose and ratify new language features that permit specification of user-defined control 

constructs and a parallelism library that depends on those new features, all within the C++1y time frame.  The 

EWG has already agreed on the importance of adding parallelism but has not considered any proposals for 

adding features for user-defined control constructs. 

http://threadingbuildingblocks.org/
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based mechanism for highly-structured parallelism, and separate library-based facilities with 

less-structured semantics. 

In the case of automatic object creation and destruction, the allocation of space, call to the 

constructor, call to the destructor, and deallocation of space is completely described by 

language constructs and is handled by the compiler.  Conversely, library facilities new, 

delete, malloc, and free allow the programmer to escape the “strict” automatic allocation 

and deallocation semantics of the language and invoke the constituent parts under program 

control.  As with many other library facilities, one or more objects are used to pass context 

between the allocation and deallocation functions; in this case the pointer to the allocated 

object provides the context.  The heap management functions are powerful, but require more 

care by the programmer for correct use (to avoid memory leaks or double-deallocation).  Thus, 

programmers try to use local variables when possible, and use heap allocation only when local 

variables will not suffice. 

It would not make sense, in a language like C++, to support only heap-based objects, as a 

program in such a language would likely be efficient due to the heap-allocation overhead and 

suffer from memory leaks due to the difficulties in reasoning about object lifetimes. Nor have I 

have ever heard anyone suggest that automatic variables should be handled using a library 

rather than a language feature, although such a library implementation is possible.3 

Strict fork-join parallelism, as proposed here, can take advantage of the execution context for 

simplicity and semantic rigor.  Less-strict types of parallelism would require the use of 

“handle” objects (e.g., futures or task groups) for communicating between different parts of 

the program and would not need as much access to the implicit execution context.  It would be 

a mistake to take a one-size-fits-all approach to task parallelism; both strict language 

constructs and less-structured library features are needed.  Nevertheless, some library features 

could be built on top of language features and some of the implementation (e.g., a work-

stealing scheduler) could be shared between language and library features. 

6 Current Threading Features in the Standard 

The current standard provides the building blocks for multithreaded programming: threads, 

mutexes, futures, and async.  These features can be used for concurrent execution of multiple 

tasks in order to make use of multicore hardware.  Unfortunately, these features alone do not 

address the challenges of programming for multicore hardware for several reasons: 

                                                 

3 As a thought experiment, I designed such a library interface.  See Library Implementation of Automatic 

Variables. 

http://www.halpernwightsoftware.com/WG21/Library_Implementation_of_Automatic_Variables.html
http://www.halpernwightsoftware.com/WG21/Library_Implementation_of_Automatic_Variables.html
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 Thread creation and destruction is a relatively heavy-weight operation.  The guarantees 

that the standard makes with respect to the lifetime of thread-local variables imposes 

some cost even on code that does not rely on those guarantees. 

 Threads and mutexes are not composable: If a multithreaded application calls a 

multithreaded library, the result could be an explosion of threads (easily the square of 

the number of cores in the system).  Since all threads are expected to make forward 

progress, this oversubscription can result in lost performance due to context switches, 

and in the worst case, exhaustion of system resources and a crash.  Likewise, if a 

function exits while holding a mutex, then the caller must be aware of that side-effect, 

breaking modularity. 

 The async and future features come closest to providing support for parallelism.  

Unfortunately, they also make guarantees that limit the efficiency of potential 

implementations. In addition, extensive use of futures has been shown to cause 

unbounded memory use in large-scale parallel programs.  Finally, C++11 futures are 

syntactically clumsy in situations where conditional execution is involved; the simple 

tree walk example above becomes very messy when expressed with async and 

future, though some of these failings can probably be addressed. 

The core problem with the existing facilities is that they are specified in terms of threads and 

are thus processor centric instead of compute centric; a programmer must indicate which 

operations are to occur on which thread instead of describing the computation as a whole.  The 

interaction between threads (e.g., through synchronization constructs) is inherently non-

deterministic.  Reasoning about nondeterministic constructs is much more difficult than 

reasoning about deterministic constructs (how do you establish confidence in a program that 

executes differently every time it is run?).  Furthermore, thread-based constructs are too 

coarse-grained for effective parallelization of many workloads; they do not work well for 

many small, irregular tasks and they do not scale well when a program written for one system 

is run on a system with many more cores.   

The constructs proposed in this paper encapsulate nondeterminacy and hide thread interactions 

within the scheduler.  In order to obtain scalability, the user should be able to express a large 

amount of parallelism however the runtime system needs the flexibility to use only the 

fraction of this available parallelism that matches system resources.  For this reason, we must 

not guarantee that tasks actually run in parallel.  When parallel execution is not mandatory and 

serialization has the same behavior as parallel execution, the system can automatically scale up 

or down the amount of actual parallelism used to match system resources.   This scalable 

quality also supports composability, since parallel libraries can call other parallel libraries 

without fear of exhausting system resources. 



N3409=12-0099: Strict Fork-Join Parallelism Page 10 of 18 

7 Proposal 

What follows is a fairly detailed specification of the syntax and semantics of a fork-join 

parallelism feature for C++.  Exact wording changes to the working paper are not being 

presented here, pending an expression of strong interest from the EWG as well as the needed 

bicycle-shed discussions on syntax. 

7.1 Syntax Summary 

Note: the cilk_spawn, cilk_sync, and cilk_for keywords below are for exposition only.  

The actual syntax will be determined by a later bicycle-shed discussion.  The keywords could 

be replaced by attributes, operators, different keywords, or some combination of those. 

spawning-expression: 

cilk_spawn function-or-functor ( expression-listopt ) 

sync-statement: 
cilk_sync ; 

parallel-loop: 

cilk_for ( init-clauseopt ; condition-expr ; increment-expr ) statement 

The expression following the cilk_spawn keyword may be a normal function call, a member-

function call, or the function-call (parentheses) operator of a function object (functor) or 

lambda expression.  The function or functor following the cilk_spawn is called the spawned 

function and the function that contains the cilk_spawn expression is called the spawning 

function. Overloaded operators other than the parentheses operator may be spawned by using 

the function-call notation (e.g. cilk_spawn operator+(arg1, arg2)).  A spawning 

expression shall appear only within an expression statement or within the initializer clause in 

a simple declaration.  There shall be no more than one cilk_spawn within a full expression. 

Note: The current implementations of cilk_spawn in the Intel and gcc compilers limit 

cilk_spawn to the following contexts: 

 as the entire body of an expression statement OR 

 as the entire right-hand size of an assignment expression that is the entire body of an 

expression statement OR 

 as the entire initializer-clause in a simple declaration. 

We know of no technical reason why the above restrictions need to exist, but there may be 

aesthetic reasons to maintain them. 

The details of the parallel loop construct, which is built upon the basic functionality provided 

by the spawn and sync constructs using a scalable divide-and-conquer approach, are described 

in Robert Geva’s paper, N3418.  It is introduced here in order to make certain definitions 

simpler (see Task Block, below). 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3418.pdf
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7.2 Semantics 

7.2.1 Serialization Rule 

The behavior of a deterministic parallel program is defined in terms of its serialization, which is 

the same program but with cilk_spawn and cilk_sync removed and cilk_for replaced 

by for. 

The strands in an execution of a parallel program are ordered according to the order of 

execution of the equivalent code in the program's serialization. Given two strands, the earlier 

strand is defined as the strand that would execute first in the serial execution of the same 

program with the same inputs, even though the two strands are unordered in the actual 

parallel execution. Similarly, the terms earlier, earliest, later, and latest are used to designate 

strands according to their serial ordering. The terms left, leftmost, right, and rightmost are 

equivalent to earlier, earliest, later, and latest, respectively. 

7.2.2 Task Blocks 

A task block is a region of the program subject to special rules. Task blocks may be nested. The 

body of a nested task block is not part of the outer task block. Task blocks never partially 

overlap.  The following blocks are task blocks: 

 the body of a function 

 the body of a cilk_for loop 

 a try block 

A task block does not complete until all of its children have completed.  (See description of 

cilk_sync, below, for details of task block exit).  A cilk_sync within a nested task block 

will synchronize with cilk_spawn statements only within that task block, and not with 

cilk_spawn statements in the surrounding task block.  An attempt to enter or exit a task 

block via a goto statement is ill-formed.  An attempt to exit the task block that comprises the 

body of a cilk_for via break or return is ill-formed. 

7.2.3 cilk_spawn 

A cilk_spawn expression invokes a function and suggests to the implementation that 

execution may proceed asynchronously while the spawned function executes.  The call to the 

spawned function is called the spawn point and is the point at which a control flow fork is 

considered to have taken place. Any operations within the spawning expression that are not 

required by the C++ standard to be sequenced after the spawn point shall be executed before 

the spawn point.  Specifically, the arguments to the spawned function are evaluated before the 

spawn point. 

The strand that begins at the statement immediately following the spawning statement (in 

execution order) is called the continuation of the spawn. The scheduler may execute the child 
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and the continuation in parallel.  A consequence of parallel execution is that the program may 

exhibit undefined behavior (as a result of data races) not present in the serialization. 

The sequence of operations within the spawning statement that are sequenced after the spawn 

point comprise the child of the spawn. Specifically, the destructor for any temporary variables 

that comprise arguments to the spawned function are invoked in the child.  This last point is 

critical, as it keeps temporaries around long enough to be passed by const reference without 

special handling by the user.  The same semantic is not obtainable using a library syntax. 

7.2.4 cilk_sync 

A cilk_sync statement indicates that all children of the current task block must finish 

executing before execution may continue within the task block. The new strand coming out of 

the cilk_sync is not running in parallel with any child strands, but may still be running in 

parallel with parent and sibling strands. If a task block has no children at the time of a 

cilk_sync, then the cilk_sync has no observable effect. The compiler may elide a 

cilk_sync if it can statically determine that the cilk_sync will have no observable effect. 

On exit from a task block, including abnormal exit due to an exception, destructors for 

automatic objects with scope ending at the end of the task block are invoked as usual, but the 

block does not complete until all of its children are complete.  In effect, there is a cilk_sync 

as part of the tear down of the task block frame. 

A consequence of the semantics described above is that the return value of a function may be 

initialized and the destructors of block-scoped variables may be invoked while children of the 

task block are still running. 

Some people have argued that it would be better if there were an automatic cilk_sync 

before destructors were invoked (and possibly before the return value is initialized).  Some 

advantages and disadvantage of the invoking destructors before waiting for child tasks (as 

described above and implemented in the Intel and gcc compilers) are: 

 Advantage: If a child and parent try to acquire the same lock using (separate) 

lock_guards, then a cilk_sync occurring while the parent is holding the lock can 

result in deadlock because the child would never succeed at acquiring the lock and the 

parent will never reach the point (after the cilk_sync) where it would release the 

lock. Invoking the lock_guard destructor without waiting for the child prevents such 

a deadlock.   

 Disadvantage: Our definition of strict fork-join parallelism with a cactus stack ensures 

that function-scoped variables in the parent are alive within the child except that the 

current semantics allows those variables’ destructors to be invoked while the child is 

still running (possibly causing a data race).  Adding an implicit cilk_sync before the 
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destructors would ensure that the child completes before those variables go out of 

scope, strengthening the model of strict function nesting. 

 Disadvantage: It is hard to explain why it is sometimes necessary to put a cilk_sync 

at the end of a function even though most of the time it has no observable effect.  We 

would prefer to avoid this sort of difficult-to-explain subtlety. 

I welcome reasonable debate about adding an implicit cilk_sync before destructors are 

invoked would be welcome, but the outcome will have only a modest effect on the useability 

of the constructs proposed here.  Work-arounds exist to compensate for the disadvantages of  

either outcome:  A user concerned about destructors racing with children can add an explicit 

cilk_sync at the end of the function; conversely, if an implicit cilk_sync were added 

before the destructors, a user could force destructors to run sooner by creating a nested block 

containing the variables at issue (as is already a common idiom with lock_guard variables 

anyway).   

7.2.5 Exceptions 

There is an implicit cilk_sync before a throw, after the exception object is constructed. 

If an exception escapes a spawned function, it is nondeterministic whether the continuation of 

the caller runs.  If it does run, then it is not aborted; it runs until the cilk_sync.  Exceptions 

do not introduce asynchronous termination into the language. 

The catch clause of a try block does not execute until all children of the try block have 

completed. 

If multiple spawned functions throw exceptions within a single try block, the earliest one 

according to the serialization is propagated.  If a spawned child function and the parent 

continuation both throw exceptions, the child’s exception is propagated.  Discarded exceptions 

are destroyed. 

Exception handling can introduce nondeterminacy into otherwise deterministic parallel 

programs. The rules described here allow the exception handling in parallel code to most 

closely resemble the serialization, at the cost of potentially discarding some exceptions.  It 

would be possible, using exception pointers, to keep all of the exceptions somehow, but it is 

probably not worth it.  We have not seen a use case where the use of exceptions was so 

intricate as to warrant adding such additional levels of complexity. 
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8 Known Issues 

8.1 Implementation Background 

8.1.1 Work Stealing 

All implementations of the constructs described in this paper, and all expected 

implementations, use a work-stealing scheduler.  A work-stealing scheduler uses a pool of 

worker threads, typically one per available CPU core.  Each idle worker polls the other workers, 

typically at random, to see if there is any asynchronous work to be done.  If so, it “steals” the 

work from the other worker and begins executing it.  Among other advantages, this strategy 

means that the cost of load balancing is borne by workers that would otherwise be idle. 

It is important to note that a worker may or may not be implemented using the same 

underlying OS mechanism as std::thread.  We should avoid conflating std::thread with 

workers, as tying them too closely will limit implementation options, especially on novel 

hardware, and could cause confusion (both for the standards committee and for the end user) 

that could lead to bad design decisions. 

8.1.2 Child Stealing vs. Parent Stealing Implementations 

On execution of a cilk_spawn, the program can either queue the child function and begin 

executing the continuation, or it can queue the continuation and begin executing the child 

function.  The first approach is called child stealing because an idle worker (the thief) will pull 

the child off the queue and execute it.  The second approach is called parent stealing because the 

thief will pull the parent continuation off the queue and execute it.  Parent stealing has proven 

bounds on stack usage whereas child stealing has no such bounds and implementations 

sometimes limit parallelism when stack space becomes tight. Parent stealing is the only 

approach that has well-defined serial semantics (i.e., single-worker execution matches the 

serialization). All modern implementations of languages derived from Cilk use parent stealing.  

TBB and PPL use child stealing. 

8.1.3 Stalling vs. Non-stalling implementations 

Another variation among implementations is whether a worker stalls at a sync point.  There 

are two choices: A stalling implementation is one where a specific worker waits until all 

children are complete, then continues after the sync point.  If the computation is unbalanced, 

then parallelism is lost while the worker waits.  A non-stalling implementation does not 

designate a specific worker to continue after the sync.  Whichever worker reaches the sync 

point last continues after the sync.  The remaining workers are free to steal other work.  

Although most parent-stealing implementations are non-stalling and most child-stealing 

implementations are stalling, the two factors can be separated. 
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8.2 Thread Identity in Non-stalling Implementations 

One potential problem with non-stalling work-stealing implementations is that the worker that 

continues after a cilk_sync is non-deterministic.  This means that a function can return on a 

different (OS) thread than it was called on.  A caller that is not expecting this change of thread 

could make incorrect assumptions about thread-local storage (TLS) and thread IDs.   

Another problem with functions returning on a different thread is that the current definition of 

mutexes is bound to threads rather than to tasks.  As a result, a mutex acquired before a 

cilk_spawn may not be able to be released after the cilk_sync if the thread has changed 

in-between. 

8.2.1 Mutexes 

Mutexes exist to handle interactions between threads and are a form of nondeterministic 

programming.  Parallelism, by contrast, is generally about splitting up work such that mutual 

exclusion is unnecessary.  When mutexes are needed in parallel code, their use needs to be 

disciplined so that the code does not become serialized.  This usually means acquiring mutexes 

over very short regions of code with no parallel control.  Thus, concerns about the behavior of 

mutexes across cilk_spawn and cilk_sync invocations should be considered a minor issue 

when measured against the essential qualities of performance, composability, and serial 

semantics. 

8.2.2 TLS 

Thread local storage is basically another form of global storage.  Its use should be limited to 

carefully-considered situations where the nondeterminism introduced by their use can be 

hidden or managed.  Reaching for TLS in a parallel-programming environment is nearly 

useless, since, regardless of the work-stealing implementation, one can rarely depend on TLS 

being stable across a parallel-control construct (e.g., a cilk_spawn or cilk_sync).  About 

the only reliable use of TLS in a parallel context is for per-thread caches and memory pools, 

where correctness does not depend on knowing what thread is doing the work.  Thus, we 

should minimize the impact of TLS on our decision-making when designing a parallel 

programming system for C++, especially if making TLS behave “well” would compromise 

parallel performance.  The sooner we wean users off of TLS, the better.  C++ will not become 

the parallel programming language of choice if we limit the ability of implementations to use 

the most efficient schedulers.  For more information you can view my presentation for the 

parallelism study group, May 7-9, 2012 in Bellevue, WA. Hyperobjects, especially holders (see 

Future Directions, below) can be used to encapsulate TLS in a composable way. 

http://wiki.edg.com/twiki/pub/PublicRepository/SG1Docs2012/TLS_and_Parallelism.pdf
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9 Related Proposals 

N3418: Vector and Parallel loops.  This paper contains a more detailed description of the 

cilk_for loop as well as additional constructs to allow a program to take full advantage of 

the vector units within a single CPU core. 

N3425:  Thread-safe Containers.  This document describes containers that can be used 

effectively in parallel and multithreaded programs. 

10 Future Directions 

If the EWG is interested in moving forward with the ideas in this proposal, then some future 

proposals will build on the concepts: 

 Hyperobjects: These are special variables implemented using a class library that 

present a different “view” to each strand executing in parallel.  Using views, parallel 

tasks can update the same hyperobject without causing a data race and without 

acquiring locks.  A type of hyperobject called a holder can be used as a composable 

replacement for TLS.  The most common type of hyperobject is a reducer, which 

automatically combines the different views using an associative (but not necessarily 

commutative) operation to produce a deterministic result.  For example, the following 

serial code performs a post-order walk over a binary tree and builds a list of all nodes 

for which condition(value) returns true: 

std::list<Node*> matches; 

 

void walk_tree(Node* n) 

{ 

    if (n->left) walk_tree(n->left); 

    if (n->right) walk_tree(n->right); 

    if (condition(n->value)) 

        matches.push_back(n); 

} 

 

int main() 

{ 

    extern Node* root; 

    tree_walk(root); 

} 

The following parallel code generates the identical list (in the same order!) with 

minimal restructuring: 

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3418.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/n3425.pdf
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std::list<Node*> matches; 

reducer<list_append<Node*> > matches_r; 

 

void walk_tree(Node* n) 

{ 

    if (n->left) cilk_spawn walk_tree(n->left); 

    if (n->right) cilk_spawn walk_tree(n->right); 

    if (condition(n->value)) 

        matches_r->push_back(n); 

} 

 

int main() 

{ 

    extern Node* root; 

    matches_r.move_in(matches); 

    tree_walk(root); 

    matches_r.move_out(matches); 

} 

Hyperobjects have been implemented in the Intel® Cilk™ Plus open-source runtime 

library.  Their performance is comparable to PPL’s combinable facility, but with the 

additional benefit of permitting reductions on operations that are not commutative. 

 Library API for controlling the scheduler: Users will want the ability to get and set the 

number of workers in the scheduler’s thread pool, as well as get the ID of the current 

worker. 

 Pedigrees: Although the scheduler introduces non-determinacy into a parallel program, 

every part of that execution can be given a deterministic identification string.  The Intel 

compiler and runtime library maintain this string, which we call the pedigree and use it 

for such purposes and deterministic parallel random number generation and 

deterministic replay of parallel programs. 

 Parallel algorithms:  The constructs proposed in this paper can be used for parallel sort, 

parallel find, and other parallel algorithms. 

 Other parallelism constructs: In addition to language constructs for strict fork-join 

parallelism, there is plenty of room for library facilities to provide less structured 

parallelism such as task groups, pipelines, graphs, and distributed multiprocessing.  

Some of these libraries could be built on top of the constructs described in this paper. 

11 Implementation experience 

 Cilk, a version of C with spawn and sync constructs essentially the same as this 

proposal, was implemented more than 15 years ago.  It has been the subject of active 

evolution and has benefitted from extensive user experience. 

 Implemented at MIT, Cilk Arts, Intel, and in gcc. 

 There have been at least 3 different implementations of a cactus stack: 
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o The Cilk 5 implementation from MIT and Cilk++, formerly from Cilk Arts, 

allocates all frames on the heap. 

o The Intel compiler runtime library and the open-source runtime library used in 

gcc use a collection of contiguous stacks.  This implementation is slightly less 

memory efficient, but preserves the existing C++ calling convention on each OS. 

o Cilk-M, implemented at MIT, uses worker-local memory-mapping to make the 

cactus stack look like a linear stack to each worker. 

 Implementations of this proposal have low spawn overhead (5-10 times the cost of a 

simple function call).  Changing the calling conventions could lower the cost even 

further; one possibility would be to use a private calling convention within a 

compilation unit. 

 Applications with sufficient available parallelism scale linearly unless they saturate 

memory bandwidth. 

 Applications cope gracefully with increased system loads, unlike most Open MP 

programs, which are design for dedicated systems with no other loads. 
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