

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

C++ Language Constructs for Parallel
Programming

2/8/2012 1

Pablo Halpern
Stefanus Du Toit

Clark Nelson
Robert Geva

pablo.g.halpern@intel.com
stefanus.du.toit@intel.com
clark.nelson@intel.com
robert.geva@intel.com

N3361=12-0051
Presented to EWG 8 Feb 2012

http://software.intel.com/en-us/articles/optimization-notice/
mailto:pablo.g.halpern@intel.com
mailto:stefanus.du.toit@intel.com
mailto:clark.nelson@intel.com
mailto:robert.geva@intel.com

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Goals

• To solicit interest in adding language constructs for
parallelism to C++.

• To present the concepts in Intel® Cilk™ Plus as a
basis for potential changes to C++.

• To create a common understanding of the factors
that should influence the design of such constructs.

• This presentation is not a proposal.

– Today we are presenting concepts

– Next meeting we will bring proposals

2/8/2012 2

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• About Parallelism

• Existing approaches

• An overview of Intel® Cilk™ Plus

• Desirable qualities of a parallel extension

• Implementation

• Conclusion

2/8/2012 3

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• About Parallelism

– Why parallelism?

– Why parallelism constructs?

– Task and data parallelism

• Existing approaches

• An overview of Intel® Cilk™ Plus

• Desirable qualities of a parallel extension

• Implementation

• Conclusion

2/8/2012 4

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Virtually all computers today contain multiple cores
and vector instruction sets, and mobile devices are
rapidly catching up.

• Many-core architectures such as Intel’s MIC and
modern GPUs are being tapped for computation.

• It is more power efficient to use multiple compute
elements than to increase the clock rate of a single
element.

• These developments will continue/accelerate

– Transistor densities continue to increase

– Mobile and data center both demand more speed with less
power consumption

– Expect 1000s of cores to become commonplace

Why Parallelism?

2/8/2012 5

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Why Add Parallelism Constructs to C++?

• Parallel programming is Hard!

• Without standard support, concurrent programming
often falls back on error-prone, ad-hoc protocols.

– Similar to parameter-passing protocols before Fortran

• Programming directly with threads often leads to
undesirable non-determinism1

• Threads and locks are not composable: Combining
components introduces errors (e.g., deadlocks) or
performance problems (e.g., resource contention).

Multicore and vector parallelism technologies
have matured. It is time that we give C++
programmers access to them.

1Bocchino et. al., Parallel Programming Must Be Deterministic by Default

2/8/2012 6

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Task and data parallelism

• Task parallelism:

– Performs separate operations in parallel

– Takes advantage of multiple CPUs and hardware threads.

• Data parallelism:

– Performs essentially the same operation on multiple data
elements in parallel

– Takes advantage of all HW resources: vector units and GP
GPUs as well as multiple CPUs.

• Other parallelism (not explored in this
presentation)

– Coordination languages – Parallel workloads

– Distributed parallelism

2/8/2012 7

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Threads are used for coarse-grained concurrency

– Concurrency is mandated – forward-progress is expected
on all (non-blocked) threads.

– Expensive to create – usually long-lived

– Best for user interfaces, independent workloads (e.g., web
server sessions), client-server workloads, etc.

• Tasks are used for fine-grained parallelism

– Concurrency is allowed but not mandated – only one task
at a time is typically required to make forward progress

– Inexpensive to create – can be very short-lived

– Best for parallelizing an algorithm to take advantage of
available parallel hardware resources.

Threads and Tasks

2/8/2012 8

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• About Parallelism

• Existing approaches

• An overview of Intel® Cilk™ Plus

• Desirable qualities of a parallel extension

• Implementation

• Conclusion

2/8/2012 9

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Existing approaches to parallelism in C++

• OpenMP*

• Intel® Threading Building Blocks™ (Intel® TBB)
and Microsoft Parallel Patterns Library (PPL)

• std::thread, std::async, std::future

• Auto parallelization

• CUDA* and OpenCL*

• Intel® Cilk™ Plus

– Intel believes that Cilk Plus can be the basis for a set of
standard language features for parallelism in C++

– Based on 15+ years of research (MIT, CMU, GA Tech)

– Has both task and data parallel constructs

– Well structured, composable, and has serial semantics

2/8/2012 10

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• About Parallelism

• Existing approaches

• An overview of Intel® Cilk™ Plus

– Task-parallel features

– Data-parallel features

• Desirable qualities of a parallel extension

• Implementation

• Conclusion

2/8/2012 11

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk Plus

• Easy to learn: 3 keywords (C & C++)

• Tasks, not threads  Load balancing
Parallel tasks

• Mitigate data races on non-local
variables Hyper Objects

• Data-parallel array operations

• Targets SIMD, GPU
Array notations

• Data-parallel function mapping
Elemental
Functions

• Vectorization annotation for loops

• Currently expressed as a pragma

SIMD
Annotation

12
2/8/2012 12

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

AO bench: Ambient Occlusion Renderer

• Small program for
benchmarking real-
world floating point
performance.

• Case study for
combining task and
data parallelism in
Cilk Plus.

• Parallelized in 1
day using Intel®
Cilk™ Plus

http://software.intel.com/en-us/articles/data-and-thread-parallelism/

2/8/2012 13

3.2GHz Intel® architecture code-
name Nehalem (8 hyperthreads)

32-bit Win 7, 3GB RAM

AObench Video

Serial
0.67 FPS
1.00 X

Array Notation
1.42 FPS
2.10X

Intel Cilk tasks
3.30 FPS
4.90 X

Intel Cilk tasks +
Array Notation
6.89 FPS
10.25 X

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

MD6: Cryptographic Hash Function

• Cryptographic hash
function submitted to
NIST competition

• Leverages large
memory and multicore
CPU’s

• Multicore-enabled in 1
day (Cilk Arts Cilk++ SDK)

• HP DL785

– 8 Quad-Core Opterons

– 1.1 GHz

– 16 GB RAM

Courtesy Ronald L. Rivest
Invited talk at CRYPTO

2008

http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/

2/8/2012 14

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Murphi: Model Checker

• Finite-state-machine
verification tool developed
at Stanford University.

• 3 programmer-months to
ship a production-quality
multicore-enabled version
with Cilk Arts Cilk++ SDK.

• Employs parallel breadth-
first and depth-first search
algorithms on a sparse
graph.

S
p

e
e
d

u
p

#Cores

http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/

2/8/2012 15

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/
http://software.intel.com/en-us/articles/intel-cilk-sdk-resource-library/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• About Parallelism

• Existing approaches

• An overview of Intel® Cilk™ Plus
– Task-parallel features

– cilk_spawn, cilk_sync and cilk_for keywords

– hyperobjects

– Data-parallel features
– array notation

– elemental functions

– pragma simd

• Desirable qualities of a parallel extension

• Implementation

• Conclusion

2/8/2012 16

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Serial Tree Walk

#include <cilk/cilk.h>

int tree_walk(node *nodep)

{

 int a = 0, b = 0;

 if (nodep->left)

 a = tree_walk(nodep->left);

 if (nodep->right)

 b = tree_walk(nodep->right);

 int c = f(nodep->value);

 return a + b + c;

}

2/8/2012 17

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

cilk_spawn and cilk_sync Keywords

#include <cilk/cilk.h>

int tree_walk(node *nodep)

{

 int a = 0, b = 0;

 if (nodep->left)

 a = cilk_spawn tree_walk(nodep->left);

 if (nodep->right)

 b = cilk_spawn tree_walk(nodep->right);

 int c = f(nodep->value);

 cilk_sync;

 return a + b + c;

}

Call to f() can run in parallel
with recursive tree walks

Implicit sync at the end of every
function keeps code well structured

2/8/2012 18

Asynchronous recursive
call to tree_walk

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

cilk_for Loop

cilk_for (int i = start; i < finish; i += stride)

 { /* Body of loop uses i */ }

f();

cilk_for (iterator x = c.begin(); x != c.end(); ++x)

 { /* Body of loop uses *x */ }

f();

Iterations can
execute in parallel.

All iterations complete
before f() executes

• A high-quality implementation will use dynamic
load-balancing for unbalanced iterations.

• Iterations are independent -- compiler can apply
data-parallel optimizations such as vectorization.

2/8/2012 19

Random-access iterator

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Spawning is not Thread Creation

• cilk_spawn gives the runtime permission to

continue before the called function (child) returns.

– Low cost (5x to 10x cost of a function call) No new threads

– Code is processor oblivious: the number of cores is not
specified.

– If no available resources, then child executes serially.

– A work-stealing scheduler (described later) may steal the
parent and run it asynchronously.

• cilk_for gives the runtime permission to run

iterations in parallel

• cilk_sync does not cause any thread to stall

– A worker thread just finds other work to steal.

– No global barrier is implied

2/8/2012 20

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reducer Hyperobjects

• “Traditional” reduction on a parallel for loop:

long a[sz];

cilk::reducer_opadd<long> sum(0);

cilk_for (std::size_t i = 0; i < sz; ++i)

 sum += a[i];

• Generalized reduction for any code executing in parallel:

cilk::reducer_list_append<int> lst(0);

void tree_walk2(node* nodep) {

 if (nodep->left) cilk_spawn tree_walk2(nodep->left);

 if (nodep->right) cilk_spawn tree_walk2(nodep->right);

 lst.push_back(f(nodep->value));

}

• You can define your own reducer types.

Parallel accesses each get
their own “view” of sum

2/8/2012 21

Warning: reducer_opadd<float>
would not be fully deterministic!

Final list has same order as for serial execution!

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• About Parallelism

• Existing approaches

• An overview of Intel® Cilk™ Plus
– Task-parallel features

– cilk_spawn, cilk_sync and cilk_for keywords

– hyperobjects

– Data-parallel features
– array notation

– elemental functions

– pragma simd

• Desirable qualities of a parallel extension

• Implementation

• Conclusion

2/8/2012 22

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Array Notations

• Concise data-parallel notation encourages effective
exploitation of SIMD, multi-core, and/or GPU

• The [:] operator delineates an array section:

array-expression[lower-bound : length : stride]

• Each argument to [:] may be omitted:

– Default lower-bound is 0

– Default length is the length of the array (if known)

– Default stride is 1 (second colon may be omitted)

• Array sections can be used with unary and binary
operators for element-by-element computation:
a[10:count] = b[0:count] + c[0:count:2];

• Intrinsic functions operate on entire array sections

2/8/2012 23

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Array Notation Example

• Serial Example
float dot_product(unsigned int sz,
 float A[], float B[]) {
 float dp=0.0f;
 for (int i=0; i<sz; i++)
 dp += A[i] * B[i];
 return dp;
}

• Array Notation Version
float dot_product(unsigned int sz,
 float A[], float B[]) {
 return __sec_reduce_add(A[0:sz] * B[0:sz]);
}

Array
Section

Element-wise
multiplication

Intrinsic reduction

2/8/2012 24

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Rank and Shape

• No new type(s) for array sections

– Type of an array section is just the element type

– Additionally, an array section has rank and shape

• Rank: number of array-section operators on a
single array

• Shape: vector of lengths of array sections
– Conceptual, not concrete

– Rank is the length of the shape vector

Expression Rank Shape

a[0] 0

a[0:n] 1 n

a[0][i:10] 1 10

a[i:n][j:m] 2 n × m

2/8/2012 25

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Array notation can be used within conditionals.

• A vectorizing compiler can generate a mask that
allows vector computations based on the condition.

Masked vector operations

if (a[:] > b[:]) { // Create a (logical) bit-mask, M

 c[:] = d[:] * e[:]; // For indexes where M contains 1

} else {

 c[:] = d[:] * 2; // For indexes where M contains 0

}

2/8/2012 26

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Elemental Functions

• A general construct to express data parallelism:

– Write a function to describe the operation on a single element

– Invoke the function across a parallel data structure (arrays) or
from within a vectorizable loop.

– Implementation: A high-quality compiler vectorizes across
consecutive invocations of the function

• Polymorphic: a vectorizing compiler may create both
array and scalar versions of the function.

• Function parameters can be varying, uniform, linear

– Allows mapping to the most efficient load/store available.

– Allows optimization of address computations.

• Authoring the function is independent of its invocation

– The function can invoked on scalars, within serial for or
cilk_for loops, using array notation, etc..

2/8/2012 27

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Elemental Functions - Example

• Defining an elemental function:
__declspec (vector) double option_price_call_black_scholes(

 double S, double K, double r, double sigma, double time)

{

 double time_sqrt = sqrt(time);

 double d1 = (log(S/K)+r*time)/(sigma*time_sqrt) +

 0.5*sigma*time_sqrt;

 double d2 = d1-(sigma*time_sqrt);

 return S*N(d1) - K*exp(-r*time)*N(d2);

}

• Invoking the elemental function:
// The following loop can also use cilk_for

call[0:N] = option_price_call_black_scholes(S[0:N], K[0:N], r,

 sigma, time[0:N]);

Compiler breaks data
into SIMD vectors

and calls function on
each vector

2/8/2012 28

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

#pragma SIMD

• Loop annotation informs the compiler that
vectorized loop will have same semantics as serial
loop:
void f(float *a, const float *b, const int *e, int n)

{

#pragma simd

 for (int i = 0; i < n; ++i)

 a[i] = 2 * b[e[i]];

}

• Currently implemented as a pragma, but other
methods of annotating the loop can be considered.

• Additional clauses for reductions and other
vectorization guidance (borrowed from OpenMP*)

Potential aliasing and
loop-carried

dependencies would
thwart auto-vectorization

2/8/2012 29

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• About Parallelism

• Existing approaches

• An overview of Intel® Cilk™ Plus

• Desirable qualities of a parallel extension

– Structured Parallelism, Determinism & Serial Semantics

– Why a language extension instead of a library-only
approach?

• Implementation

• Conclusion

2/8/2012 30

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Desirable qualities of a parallel extension

 • Minimal changes to the existing language

• Efficient exploitation of all forms of mainstream
hardware parallelism

• Hardware independent and scalable to future
hardware (e.g. more cores & wider vector units).

• Composable (parallelism in library components
does not introduce errors or performance issues)

•Support for building programs that are
easy to reason about

–Clean, expressive, syntax

–Serial semantics

–Deterministic results

2/8/2012 31

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Structured Parallelism and Determinism

• The biggest challenge in writing correct programs is
making it possible to reason about your program.

• Experience has shown that structure is an
important quality for parallel constructs that can be
reasoned about. (Compare loops vs. goto.)

• Ideally, a parallel program would be as easy to
reason about as a serial program.

• A good parallelization model abstracts away as
much non-determinism as possible.

– Language constructs should favor determinism

– Non-determinism should be available for when the need
arises.

2/8/2012 32

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Benefits of Structured Parallelism

• Composability

– Given a call to f(), the caller doesn’t need to know whether
f() uses cilk_spawn or array operations.

– Scalable to large codebases

• Tools

– The Cilkscreen race detector is guaranteed to find races in
any ostensibly deterministic Cilk Plus program.

– The Cilkview scalability analyzer can determine how your
program will scale to more cores.

• Optimization

– The compiler can determine invariants only when the
parallel constructs are fully structured

2/8/2012 33

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Serial Semantics

• Definition: a deterministic (race-free) program has
the same semantics when running on one HW
thread or many HW threads

• Dramatically simplify the task of reasoning about
the program logic.

• Simplify the task of converting a serial program to
a parallel program

• Allow serial debugging separate from parallel
debugging.

• Allow tools and debuggers to discover many
properties of a program – even parallel properties –
by running the program serially (i.e., on one core)

2/8/2012 34

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Why a language extension instead of a
library-only approach?

• Serial semantics: Structure is enforced by the

compiler.

• Simpler syntax: A few keywords and operators can
take the place of a large number of templates

• C compatibility: we want to propose similar
extensions to C and C++.

• Implementation options: Difficult to implement lazy
task creation using a library approach.

• Optimization: Huge opportunities for the compiler
to apply algorithms and heuristics to the parallel
code, e.g., much more effective vectorization.

2/8/2012 35

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• About Parallelism

• Existing approaches

• An overview of Intel® Cilk™ Plus

• Desirable qualities of a parallel extension

• Implementation

– Load balancing and work-stealing schedulers

– Implementation experience

• Conclusion

2/8/2012 36

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Work Stealing

void f()
{
 cilk_spawn g();
 work
 work
 work
 cilk_sync;
 work
}

void g()
{
 work
 work
 work
}

Worker
A

Worker
B

Worker
?

steal!

2/8/2012 37

This Slide is not
meaningful without

animation

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Why Work Stealing?

• A work-stealing scheduler can be shown
mathematically to be nearly optimal for a program
with sufficient parallelism.

– Gracefully handles control-flow and data divergence.

– Used by most modern parallel programming systems

• Intel® Cilk™ Plus implements lazy task creation

– Scheduler performs parent stealing, not child stealing

– Serial semantics, even when using futures or the like.

– Deterministic memory use

• Any C++ parallel extension should support (though
not necessarily require) a work stealing scheduler
that uses lazy task creation.

2/8/2012 38

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® Cilk™ Plus Implementation
Experience

• Current features available in Intel® compilers

– For CPU, Many integrated cores (MIC), and integrated GPU

– Run-time library is open source

• Partial implementation in GCC – ongoing

• At least three approaches have been used
successfully for the work-stealing cactus stack

– Heap-based (Cilk-5 from MIT, Cilk++ from Cilk Arts)

– Multiple stacks (Intel® Cilk™ Plus)

– Per-core memory-mapped stacks (Cilk-M from MIT)

• Specification for Intel® Cilk™ Plus is available at:
http://software.intel.com/en-us/articles/intel-cilk-
plus-specification/

2/8/2012 39

Link Compatible!

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• About Parallelism

• Existing approaches

• An overview of Intel® Cilk™ Plus

• Desirable qualities of a parallel extension

• Implementation

• Conclusion

– Known challenges

– Next Steps

– References

– Acknowledgements

2/8/2012 40

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Conclusions

“The Free Lunch is Over”
– Herb Sutter

“Parallel programming need not be just
a collection of ad hoc odd hacks”

– Charles Leiserson

2/8/2012 41

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Conclusions

• Programmers will write parallel programs in C++,
whether with hacks or non-standard extensions.

• The technologies for parallelization are much more
mature than most people realize

– Vectorization and work-stealing schedulers have been
around for decades.

– This used to be the province of super computers, but today
a super computer fits in your pocket!

• Intel® Cilk™ Plus provides a fully-implemented
starting point for standardization.

2/8/2012 42

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Next Steps

• Intel® Cilk™ Plus will become the basis for a set of
proposals for C++ language constructs.

– We are still evolving Intel Cilk Plus and are open to
feedback

• We will not necessarily be proposing the entire
Intel® Cilk™ Plus specification as a single proposal

– Individual features may be proposed separately

– Some features may evolve before being proposed

– Some features may not be proposed

• Expect the first proposals at the October C++
Standards Meeting.

2/8/2012 43

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

References

• Intel® Cilk™ Plus Specification
http://software.intel.com/en-us/articles/intel-cilk-
plus-specification/

• Edward Lee, The Problem with Threads
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-1.pdf

• Bocchino et. al., Parallel Programming Must Be
Deterministic by Default
http://www.usenix.org/event/hotpar09/tech/full_papers/bo
cchino/bocchino.pdf

• Mohr et. al., Lazy Task Creation: A Technique for
Increasing the Granularity of Parallel Programs
http://dl.acm.org/citation.cfm?id=629042

2/8/2012 44

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://software.intel.com/en-us/articles/intel-cilk-plus-specification/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
http://www.usenix.org/event/hotpar09/tech/full_papers/bocchino/bocchino.pdf
http://www.usenix.org/event/hotpar09/tech/full_papers/bocchino/bocchino.pdf
http://dl.acm.org/citation.cfm?id=629042

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Acknowledgements

• Thanks to the following people and working groups
for help in drafting and reviewing this presentation:

– Charles Leiserson

– Arch Robison

– The Cilk Plus runtime team at Intel

– The Parallel Programming Models Working Group at Intel

2/8/2012 45

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Backup Slides

2/8/2012 46

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

User-defined reducers

template <class T> struct multiply_monoid

 : public cilk::monoid_base<T>

{

 void identity(T* p) { ::new(p) T(1); }

 void reduce(T* left, T* right) {

 *left *= *right;

 }

};

...

cilk::reducer<multiply_monoid<double>> product(1.0);

cilk_for (std::size_t i = 0; i < sz; ++i)

 product() *= a[i];

2/8/2012 47

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Other Types of Hyperobjects

• Holders

– Work like thread-local storage, but are tied to logical
structure of parallel program, not to thread.

– Can also be used to optimize logically-parallel
computations that actually occur serially.

• Splitters

– Allows parallel strands to read the same value, but keeps
modifications separate

– Implementation techniques are still an area of research

2/8/2012 48

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Array Notations  Vector Operations

• Selection of array elements

– “vector” refers to a 1D array. Current implementation is
does not allow [:] to be overloaded, e.g., for std::vector.

A[:] // All of vector A

B[2:6] // Elements 2 to 7 of vector B

C[:][5] // Column 5 of matrix C

D[0:3:2] // Elements 0,2,4 of vector D

2/8/2012 49

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Known Challenges & Limitations

• Functions that spawn may return on a different
thread than they were called on, causing problems
with TLS.

• Array notation is currently limited to built-in arrays

– No overloading for vector<>, array<>, etc.

• Array sections do not participate in the C++ type
system; you cannot declare a variable of array-
section type.

• #pragma is an ugly syntax for SIMD annotation

• Overlapping (i.e., partially redundant) functionality
among array notation, cilk_for, and #pragma
SIMD.

2/8/2012 50

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 2/8/2012 51

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Optimization Notice

2/8/2012 52

Optimization Notice

Intel’s compilers may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to
Intel microarchitecture are reserved for Intel microprocessors.
Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction
sets covered by this notice.

Notice revision #20110804

2/8/2012 52

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2012, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Legal Disclaimer

2/8/2012 53

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2012. Intel Corporation.

http://intel.com/software/products

http://software.intel.com/en-us/articles/optimization-notice/
http://www.intel.com/software/products
http://intel.com/software/products

