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1 Introduction
Modules are a mechanism to package libraries and encapsulate their implementations. 
They differ from the traditional approach of translation units and header files primarily in 
that all entities are defined in just one place (even classes, templates, etc.). This paper 
proposes a module mechanism (somewhat similar to that of Modula-2) with three 
primary goals:

• Significantly improve build times of large projects
• Enable a better separation between interface and implementation
• Provide a viable transition path for existing libraries

While these are the driving goals, the proposal also resolves a number of other long-
standing practical C++ issues (initialization ordering, run-time performance, etc.).

1.1 Document Overview
Section 2 first presents how modules might affect a typical command-line-driven user 
interface to a C++ compiler. The goal of that section is to convey how modules may or 
may not disrupt existing practice with regard to build systems. Section 3 then briefly 
introduces (mostly by example) the various language elements supporting modules. The 
major expected benefits are described in some detail in Section 4. Finally, Section 5 
covers rather extensive technical notes, including syntactic considerations. We conclude 
with acknowledgments.

1.2 Changes Since Previous Version
The paper has been revised to propose standardizing interface files in terms of C++ 
source code (side-stepping the thorny issue of agreeing on an efficient representation): 
See subsections 2.2 and 5.1. Also, the proposed access specifier "prohibited:" has 
been dropped (since the equivalent "= delete" feature is now part of the language).

2 Intended User Interface
Although the C++ standard doesn't mandate or even recommend any specific user model, 
successful implementations of C++ share similar user interface elements.  For example, 
they tend to rely on compiling a translation unit at a time, on name mangling, on plain-
text source code, on time-stamp-based dependency checking, etc.



The introduction of modules is not expected to change this: The revised standard will 
continue to just describe the semantics of the program, and an implementation will 
continue to be free to achieve those semantics in any way.  However, it is still expected 
that mainstream implementations will agree on the general mechanisms involved, and the 
intent is not to overly disrupt current software building strategies.

2.1 Interface Files vs. Header Files
The main expected change when transitioning from traditional C++ libraries to module-
based libraries is that compiler-generated interface files will largely replace user-written 
header files.  To make this concrete, consider a simple application consisting of one 
implementation file (main.cpp) that uses one simple library itself consisting of one 
implementation file (lib.cpp) and one header file (lib.h).  The file lib.h describes 
the interfaces offered by the library and—as is typical—is included in both main.cpp 
and lib.cpp.  (Let's assume for this particular case that the library does not provide any 
macros to client code.) The library writer might build his library with a compiler 
invocation like

$ CC –c –O lib.cpp

which will produce an object code file (lib.o, say).  That object code file (in some form) 
is provided to the application writer along with the header file, who can then build his 
application using

$ CC –O main.cpp lib.o

The intent of this proposal is that the two command lines above continue to work when 
the code transitions to modules, but the mechanisms underneath differ.  First, the header 
file can be dropped and its declarations moved to lib.cpp.  Second, when lib.cpp is 
compiled, a second file is generated in addition to the object code file: A interface file 
(lib.mpp, say) that describes the public interfaces of the library1. Third, when 
main.cpp is compiled, the #include directive can be replaced by an import directive 
(which is now a core language construct instead of a preprocessor construct). The 
compiler will read (parts of) lib.mpp when it parses the import directive, and will 
retrieve additional information from lib.mpp as it encounters the need to know about 
the various aspects of the library (or "module") it describes.
As with header files, compilers will likely have a mechanism to describe where various 
interface files might be located.  So if the interface file lib.mpp was moved to a 
nonstandard location, the compiler invocation might look like:

$ CC –M /nonstd/loc –O main.cpp lib.o
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Unlike with header files, however, a compiler might also offer an option to locate where a 
interface file should be written when a module is compiled.  So the command to build the 
library could conceivably be written as follows:

$ CC –X /nonstd/loc –c –O lib.cpp

2.2 What's A Interface File Like?
Since it is intended that interface files are compiler-generated, it is tempting to allow 
them to be structured for maximum efficiency and therefore not human-readable. 
However, "maximum efficiency" means different things to different implementations, 
which makes standardization of a module file format difficult at the least. On the other 
hand, without standardization third-party tool vendors will find it impractical support 
modules unless their complete implementation is available in source form (often not a 
commercially acceptable option).
Instead, this paper proposes to standardize interface files as files containing something 
recognizable as C++ source code with certain restrictions and extensions. When a 
compiler encounters the use of such an interface file (through a module import directive; 
see further), it is expected to do the following:
1. Look up the file in a cache of pre-compiled interface files
2. If no match is found is found or if the cache is out of date, generate an efficient pre-

compiled interface file (PIF).
3. Load information from the PIF "on demand".
The PIF is thus the maximally-efficient-but-not-human-readable representation of a 
module's interface. It can be optimized for efficient reading when compiling client code.  
In particular, it is expected that a compiler will only read the elements of a PIF that are 
actually needed by client code.  For example, if a library offers ten independent class 
definitions with 5 inline member function definitions in each, and client code only uses 
two of those classes and six of those inline member functions, then a compiler would 
only load the initial "table of contents" for the module, the two class descriptions in that 
PIF (which include their own "table of contents", and the data defining the six inline 
members.  Furthermore, tokenization, preprocessing, name lookup, overload resolution, 
and many other tasks a compiler must perform when reading a header file need not be 
performed when reading a PIF (it was done once when the module implementation was 
compiled or when the PIF was precompiled).
The scheme proposed here is similar in some ways to that of the "precompiled headers" 
feature available with many compilers. The important difference between a PIF and a 
precompiled header, however, is that the former is only dependent on the interface 
offered by a module, whereas the latter is specific for a particular use of header files: As a 
result PIFs are consistently usable for every use of the corresponding module, whereas 
precompiled header files are not.
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2.3 Header Files May Stay Around
Although modules are meant to replace header files for interfaces expressed using the 
core language, they are not meant to replace header files for macro interfaces. In a C++-
with-modules world, header files will therefore remain desirable.  In our earlier example 
we may therefore re-introduce a header file lib.h with contents somewhat as follows:

#ifndef LIB_H

#define LIB_H

import Lib;  // Import the module (no guard needed)

#define LIB_MACRO(X, Y) ...

...

#endif /* ifndef LIB_H */

Even if a library does not provide macros it may still provide a header file (as outlined 
above but without the macro definitions) to maintain source-level compatibility with prior 
non-module-based versions of that library.  (Note that import directives don't need 
include guards: A duplicated import is essentially just ignored.) I.e., client code that 
imports the library's interfaces with

#include "lib.h"

will continue to work and need not be aware of the fact that the header file is little more 
than a wrapper around a module import directive.

2.4 Writing Against Unimplemented Interfaces
It's not uncommon for the development of client code to start before a library has been 
fully implemented.  The header file is written first and contains the anticipated interfaces. 
Client code can be compiled against that while the implementation of the library proceeds 
concurrently.  The client code cannot be linked until enough of the library's 
implementation is written, but the scenario does enable compression of development 
schedules in practice.  (Note that the C++ standard doesn't mandate that this be possible, 
but the compiler+linker implementation strategy nicely supports it.)
This concurrent development approach is also intended to be available in the modules 
world (though again outside the standard wording).  This is achieved by compiling 
incompletely implemented modules.  For example, a very simple incomplete module may 
look as follows:

export Lib:

public:

  void f();  // Not yet implemented

This can be compiled the usual way:
$ CC –c lib.cpp

The object file produced (if any) is not useful, but the interface file can be given to client 
code developers to start coding against it:
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import Lib;

int main() {

  f();  // Will compile but not link yet.

}

2.5 Dependency Management
Or: How will tools like "make" work in the world of modules?
Tools like "make" typically examine the "last time modified" time-stamp of various files 
to decide whether a file (traditionally, an object code file or an executable file) needs to be 
re-built.  In the header-based world, the rule for rebuilding an object file typically 
depends on the implementation (.cpp) file it is built from, plus any header files directly or 
indirectly included by that implementation file.
In the proposed module world, object files will need to depend on interface files imported 
by the associated implementation (.cpp) files.  Specifying the imported interface files 
directly in the dependency descriptions could achieve this. Alternatively (for code that is 
transitioning from the header-based model), for modules with an associated header file as 
described above (i.e., one that mostly just contains a module import directive), a rule 
could be added to update the header file time stamp when the interface file itself is 
updated.
Since interface files are generated, they themselves depend on other files: the source files 
implementing the module (typically .cpp files, although header files are possible too) and 
perhaps other interface files it depends on.
As with header files today, it is relatively simple for a compiler to generate a dependency 
description that includes modules.

3 Module Features By Example

3.1 Import Directives
The following example shows a simple use of a module.  In this case, the module 
encapsulates the standard library.

import std;  // Module import directive.
int main() {
  std::cout << “Hello World\n”;
}

The first statement in this example is a module import directive (or simply, an import 
directive). Such a directive makes a collection of declarations available in the translation 
unit. In contrast to #include preprocessor directives, module import directives are 
insensitive to macro expansion (except with regard to the identifiers appearing in the 
directive itself, of course).
The name space of modules is distinct from all other name spaces in the language. It is 
therefore possible to have a module and e.g. a C++ namespace share the same name. That 
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is assumed in the example above (where the module name std is identical to the main 
namespace being imported). It is also expected that this practice will be common in 
module-based libraries (but it is not a requirement; in fact a module may well contain bits 
of multiple C++ namespaces). So in std::cout the std does not refer to the module 
name std, but to a namespace name std that happens to be packaged in the std module.

3.2 Module Definitions
Let’s now look at the definition (as opposed to the use) of a module.

// File_1.cpp:
export Lib: // Module definition header.
            // Must precede all declarations.
  import std;
public:
  namespace N {
    struct S {
      S() { std::cout << “S()\n”; }
    };
  }

// File_2.cpp:
import Lib;
int main() {
  N::S s;
}

A module definition header must precede all declarations in a translation unit: It indicates 
that some of the declarations that follow may be made available for importing in other 
translation units.
Import directives only make visible those members of a module that were declared to be 
"public" (these are also called exported members). To this end, the access labels 
"public:" and "private:" (but not "protected:") are extended to apply not only to 
class member declarations, but also to namespace member declarations that appear in 
module definitions. By default, namespace scope declarations in a module are private.
Note that the constructor of S is an inline function.  Although its definition is separate (in 
terms of translation units) from the call site, it is expected that the call will in fact be 
expanded inline using simple compile-time technology (as opposed to the more elaborate 
link-time optimization technologies available in some of today’s compilation systems).
Variables with static storage duration defined in modules are called module variables. 
Because modules2 have a well-defined dependency relationship, it is possible to define a 
reliable run-time initialization order for module variables.
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3.3 Transitive Import Directives
Importing a module is transitive only for public import directives:

// File_1.cpp:
export M1:
public:
  typedef int I1;

// File_2.cpp:
export M2:
public:
  typedef int I2;

// File_3.cpp:
export MM:
public:
  import M1;  // Make exported names from M1 visible 
              // here and in client code.
private:
  import M2;  // Make M2 visible here, but not in
              // client code.

// File_4.cpp:
import MM;
I1 i1;  // Okay.
I2 i2;  // Error: Declarations from M2 are invisible.

3.4 Private Class Members
Our next example demonstrates the interaction of modules and private class member 
visibility.

// File_1.cpp:
export Lib:
public:
  struct S { void f() {} };  // Public f.
  class C { void f() {} };   // Private f.

// File_2.cpp:
import Lib;  // Private members invisible.
struct D: Lib::S, Lib::C {
  void g() {
    f();  // Not ambiguous: Calls S::f.
  }
};

Modules in C++  N3347=12-0037



The similar case using header files would lead to an ambiguity, because private members 
are visible even when they are not accessible.  In fact, within modules private members 
must remain visible as the following example shows:

export Err:
public:
  struct S { int f() {} };  // Public f.
  class C { int f(); };     // Private f.
  int C::f() {}  // C::f must be visible for parsing.
  struct D: S, C {
    void g() {
      f();  // Error: Ambiguous.
    }
  };

It may be useful to underscore at this point that the separation is only a matter of 
visibility: The invisible entities still exist and may in fact be known to the compiler when 
it imports a module. The following example illustrates a key aspect of this observation:

// Library file:
export Singleton:
public:
  struct Factory {
    // ...
  private:
    Factory(Factory const&);  // Disable copying.
  };
  Factory factory;

// Client file:
import Singleton;
Singleton::Factory competitor(Singleton::factory);
  // Error: No copy constructor

Consider the initialization of the variable competitor. In nonmodule code, the compiler 
would find the private copy constructor and issue an access error. With modules, the user-
declared copy constructor still exists (and is therefore not generated in the client file), but, 
because it is invisible, a diagnostic will be issued just as in the nonmodule version of 
such code.

3.5 Module Partitions
A module may span multiple translation units: Each translation unit defines a module 
partition. For example:

Modules in C++  N3347=12-0037



// File_1.cpp:
export Lib.p1:
  struct Helper {  // Not exported.
    // ...
  };

// File_2.cpp:
export Lib.p2:
  import Lib.p1;
public:
  struct Bling: Helper {  // Okay.
    // ...
  };

// Client.cpp:
import Lib;
Bling x;

The example above shows that an import directive may name a module partition to make 
visible only part of the module, and within a module all declarations from imported 
partitions of that same mode are visible (i.e., not just the exported declarations).
Partitioning may also be desirable to control the import granularity for clients. For 
example, the standard header <vector> might be structured as follows:

#ifndef __STD_VECTOR_HDR

#define __STD_VECTOR_HDR

import std.vector;
   // Load definitions from std, but only those
   // from the vector partition should be made
   // visible in this translation unit.
// Definitions of macros (if any):
#define ...
#endif /* ifndef __STD_VECTOR_HDR */

The corresponding module partition could then be defined with following general pattern:
export std.vector:

public:
 import std.allocator;
  // Additional declarations and definitions...

The partition name is an identifier, but it must be unique among the partitions of a module 
(two different modules may use the same partition name, however; such partitions are 
unrelated). All partitions must be named, except if a module consists of just one partition.
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The dependency graph of the module partitions in a program must form a directed acyclic 
graph. Cycles can (and should) be diagnosed. Note that this does not imply that the 
dependency graph of the complete modules cannot have cycles.

3.6 Nested Module Names
Module names can look like nested namespace names: 

export Lib::Chunk:
  // ...

However, this is only a naming mechanism: Such names don't imply any relationship 
with other modules.  In particular, the example above does not require the existence of a 
module Lib.

The principal motivation for this feature is to allow modules to have names matching 
certain namespaces.  E.g.:

export Boost::MPL:
public:
  namespace Boost {
    namespace MPL {
      // ...
    }
  }

Note that unlike class and namespace names, module names cannot be used for 
qualification. For example:

// File lib.cpp:

export Lib:
  void f() {}

// File main.cpp:
import Lib;
int main() {
  Lib::f();  // Error: No class Lib or namespace Lib.
}

3.7 Inline Importing
When a module wants to interface to a nonmodule library, it needs to be able to declare 
the contents of the nonmodule library.  It cannot just #include its header, because that 
would make each declaration of the header a member of the current module. We therefore 
propose an escape mechanism called "inline import":

export Mod:

import { // Inline import.

  extern "C" int printf(char const*, ...);
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#include <stdlib.h>

}

// ...

Declarations appearing in an inline import are not members of any modules (and can 
therefore not be exported).

4 Benefits
The capabilities implied by the features presented above suggest the following benefits to 
programmers:

• Improved (scalable) build times
• Shielding from macro interference
• Shielding from private members
• Improved initialization order guarantees
• Global optimization properties (exceptions, side-effects, alias leaks,…)
• Dynamic library framework
• Smooth transition path from the #include world

 The following subsections discuss these in more detail.

4.1 Improved (scalable) build times
Build times on typical evolving C++ projects are not significantly improving as hardware 
and compiler performance have made strides forward. To a large extent, this can be 
attributed to the increasing total size of header files and the increased complexity of the 
code it contains. (An internal project at Intel has been tracking the ratio of C++ code in 
“.cpp” files to the amount of code in header files: In the early nineties, header files only 
contained about 10% of all that project's code; a decade later, well over half the code 
resided in header files.) Since header files are typically included in many other files, the 
growth in build cycles is generally superlinear with respect to the total amount of source 
code. If the issue is not addressed, it is likely to become worse as the use of templates 
increases and more powerful declarative facilities (like concepts, contract programming, 
etc.) are added to the language.
Modules address this issue by replacing the textual inclusion mechanism (whose 
processing time is roughly proportional to the amount of code included) by a precompiled 
module attachment mechanism (whose processing time—when properly implemented—
is roughly proportional to the number of imported declarations).  The property that client 
translation units need not be recompiled when private module definitions change can be 
retained.
Experience with similar mechanisms in other languages suggests that modules therefore 
effectively solve the issue of excessive build times.
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4.2 Shielding from macro interference
The possibility that macros inadvertently change the meaning of code from an unrelated 
module is averted. Indeed, macros cannot “reach into” a module.  They only affect 
identifiers in the current translation unit.
This proposal may therefore obviate the need for a dedicated preprocessor facility for this 
specific purpose (for example as suggested in N1614 "#scope: A simple scoping 
mechanism for the C/C++ preprocessor" by Bjarne Stroustrup).

4.3 Shielding from private members
The fact that private members are inaccessible but not invisible regularly surprises 
incidental programmers. Like macros, seemingly unrelated declarations interfere with 
subsequent code. Unfortunately, there are good reasons for this state of affairs: Without it, 
private out-of-class member declarations become impractical to parse in the general case.
Modules appear to be an ideal boundary for making the private member fully invisible: 
Within the module the implementer has full control over naming conventions and can 
therefore easily avoid interference, while outside the module the client will never have to 
implement private members. (Note that this also addresses the concerns of N1602 "Class 
Scope Using Declarations & private Members" by Francis Glassborow; the extension 
proposed therein is then no longer needed.)

4.4 Improved initialization order guarantees
A long-standing practical problem in C++ is that the order of dynamic initialization of 
namespace scope objects is not defined across translation unit boundaries. The module 
partition dependency graph defines a natural partial ordering for the initialization of 
module variables that ensures that implementation data is ready by the time client code 
relies on it.  I.e., the initialization run-time can ensure that the entities defined in an 
imported module partition are initialized before the initialization of the entities in any 
client module partition.
Consider the following multi-translation-unit program:

// File X.cpp:

export X:

  import std;

public:

  struct X { X(int i) { std::cout << i << '\n'; };

  X x1(1);

// File L1.cpp:

export L.p1:

  import X; X x3(3);
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// File L2.cpp:

export L.p2:

  import L.p1; X x4(4);

// File main.cpp:

import X;

X x2(2);

import L;

int main() {}

This program outputs:	

1

2

3

4

because the location of import directives are a trigger to ensure that the imported 
partitions be initialized at that time.  If a partition was previously initialized, it is of 
course not initialized a second time (i.e., the initialization code for every partition is 
protected by a "one time" flag).

4.5 Global optimization properties
(exceptions, side-effects, alias leaks, …)

Certain properties of a function can be established relatively easily if these properties are 
known for all the functions called by the first function. For example, it is relatively easy 
to determine whether a function will not throw an exception if it is known that the 
functions it calls will never throw. Such knowledge can greatly increase the optimization 
opportunities available to the lower-level code generators. In a world where interfaces 
can only be communicated through header files containing source code, consistently 
applying such optimizations requires that the optimizer see all code. This leads to build 
times and resource requirements that are often (usually?) impractical. Historically such 
optimizers have also been less reliable, further decreasing the willingness of developers 
to take advantage of them.
Since the interface specification of a module is generated from its definition, a compiler 
can be free to add any interface information it can distill from the implementation. That 
means that various simple properties (such as a function not having side-effects or not 
throwing exceptions) can be affordably determined and taken advantage of.
An alternative solution is to add declaration syntax for this purpose as proposed for 
example in N1664 "Toward Improved Optimization Opportunities in C++0X" by Walter 
E. Brown and Marc F. Paterno. The advantage of that alternative is that the properties can 
be associated with function types and not just functions. In turn that allows indirect calls 
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to still take advantage of the related optimizations (at a cost in type system constraints). 
A practical downside of that approach is that without careful cooperation from the 
programmer, the optimizations will not occur. In particular, it is in general quite 
cumbersome and often impractical to manually deal with the annotations for instances of 
templates when these annotations may depend on the template arguments.

4.6 Dynamic library framework
C++ currently does not include a concept of dynamic libraries (aka. shared libraries, 
dynamically linked libraries (DLLs), etc.). This has led to a proliferation of vendor-
specific, ad-hoc constructs to indicate that certain definitions can be dynamically linked 
to. N1400 "Toward standardization of dynamic libraries" by Matt Austern offers a good 
first overview of some of the issues in this area.
The module concept maps naturally to dynamic libraries. Indeed, the symbol visibility/
resolution, initialization order, and general packaging aspects of modules have direct 
counterparts in dynamic libraries.
Modules that may be loaded and unloaded at the program's discretion are probably 
possible, but they are currently not discussed in this proposal.

4.7 Smooth transition path from the #include world
As proposed, modules can easily be introduced in a bottom-up fashion into an existing 
development environment. Nonmodule code is allowed to import modules. Top-down 
transitions are also possible—though likely more cumbersome—thanks to inline imports.
The provision for module partitions allows for existing file organizations to be retained in 
most cases. Cyclic declaration dependencies between translation units are the only 
exception. Such cycles are fortunately uncommon and can easily be worked around by 
moving declarations to separate partitions.
Finally, we note that modules are a "front end" notion with no effect on traditional ABIs 
("application binary interfaces").  Moving to a module-based library implementation 
therefore does not require breaking binary compatibility.

5 Technical Notes
This section collects some thoughts about specific constraints and semantics, as well as 
practical implementation considerations.

5.1 The interface file
A module is expected to map on one or several persistent files describing its public 
declarations. These interface files will also contain any public definitions except for 
definitions of noninline functions, namespace scope variables, and nontemplate static data 
members, which can all be compiled into separate object files just as they are in current 
implementations.
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Some private entities may still need to be stored in an interface file because they are 
(directly or indirectly) referred to by public declarations, inline function definitions, or 
private member declarations. For example:

export M:

  struct S {} s;  // Private type

public:

  S f() { return s; }

Not every modification of the source code defining a module needs to result in updating 
the associated interface file. Avoiding superfluous compilations due to unnecessary 
interface file updates is relatively straightforward.
As mentioned before, an implementation may store interface information that is not 
explicit in the source.  For example, it may determine that a function won’t throw any 
exceptions, that it won’t read or write persistent state, or that it won’t leak the address of 
its parameters.
In its current form, the syntax does not allow for the explicit naming of the interface file: 
It is assumed that the implementation will use a simple convention to map module names 
onto file names (e.g., module name Lib::Core may map onto Lib.Core.mpp). This 
may be complicated somewhat by file system limitations on name length or case 
sensitivity.
As explained in section 2, it is desirable for the interface file to be standardized (to 
maintain a healthy 3rd-party tool market), and that is probably most easily achieved by 
having the interface file consist of C++ source code slightly augmented to simplify 
portability. In general, the source code of an interface file corresponding to a module 
partition is expected to have the contents of the corresponding partition implementation's 
source modified as follows:
1. The source is preprocessed.
2. Entities that are neither exported nor needed for the declaration of exported entities 

are omitted.
3. Names are made unique using a special suffix syntax (see below) to avoid relying on 

the complexities of standard C++ binding rules (lookup, deduction, overload 
resolution, etc.).

4. Private details that have client-visible consequences are optionally rendered opaque 
through attributes.

For example, the module partition
export M:

  class B { virtual ~B(); };

  B::~B() {}

#define X 42
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public:

  class D: B {
    int f() { return X; }

  public:

    int f(int x) { return x; }

    double f(double x) { return x; }

    int g() { return f(); }

  };

might generate an interface file that looks as follows:
export M:

private:

  class [[class_layout(8, 8)]] #1 {

    ~#1();

  };

public:

  class [[class_layout(8, 8)]] D#1: #1 {

    int #2() { return 42; }

  public:

    int f#1(int x#1) { return x#1; }

    double f#2(double x#1) { return x#1; }

    int g#1() { return #2(); }

  };

A "unique number" scheme is not strictly needed, but it may improve portability of a 
generated interface file (because implementation often have small, subtle differences in 
lookup and overload resolution results). More work is needed in working out the details 
of the interface exchange source. For example, any attributes (or other extension) — like 
class_layout — used to communicate properties of the implementation to client code 
will require specification.

5.2 Loading a interface file
When a compiler front end encounters an import directive, it will precompile the 
corresponding precompiled interface file if needed, and then load that PIF. It is expected 
that this "loading" does not actually bring in all the declarations packaged in the module.  
Instead, a sort of "table of contents" is loaded (most likely into the symbol table) and if 
any lookup finds an entry in that table, additional declarative information is loaded as 
needed.  For example, if the <algorithms> header is included and only one or two 
algorithm are used, a module-based header implementation would only load the 
definitions of the used algorithms.
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5.3 Module dependencies
When module A imports module B (or a partition thereof) it is expected that A's interface 
file will not contain a copy of the contents of B's interface file. Instead it will include a 
reference to B's interface file. When a module is imported, a compiler first retrieves the 
list of modules it depends on from the interface file and loads any that have not been 
imported yet. To avoid undue implementation and specification complications, the 
following constraint is made:

The dependencies among partitions within a module must form a directed 
acyclic graph.

When a partition is modified, sections of the interface file on which it depends need not 
be updated. Similarly, sections of partitions that do not depend on the modified partition 
do not need to be updated. Initialization order among partitions is only defined up to the 
partial ordering of the partitions.

5.4 Startup and termination
A natural initialization order can be achieved within modules and module partitions.

Within a module partition the module variables are initialized in the order 
currently specified for a translation unit (see [basic.start.init] §3.6.2). The 
module variables and local static variables of a program are destroyed in 
reverse order of initialization (see [basic.start.term] §3.6.3).

As with the current translation unit rules, it is the point of definition and not the point of 
declaration that determines initialization order.
The initialization order between module partitions is determined as follows:

Every import directive implicitly defines anonymous namespace scope 
variables associated with each module partition being imported. These 
variables require dynamic initialization. The first of such variables associated 
with a partition to be initialized triggers by its initialization the initialization 
of the associated partition; the initialization of the other variables associated 
with the same partition is without effect.

This essentially means that the initialization of a module partition must be guarded by 
Boolean flags much like the dynamic initialization of local static variables. Also like 
those local static variables, the Boolean flags will likely need to be protected by the 
compiler if concurrency is a possibility (e.g., thread-based programming).

5.5 Linkage
In modules, public entities cannot have internal linkage.

5.6 Exporting incomplete types
It is somewhat common practice to declare a class type in a header file without defining 
that type. The definition is then considered an implementation detail. To preserve this 
ability in the module world, the following rule is stated:
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An imported class type is incomplete unless its definition was public or a 
public declaration requires the type to be complete.

For example:
// File_1.cpp:
export Lib:
public:
  struct S {};  // Export complete type.
  class C;      // Export incomplete type only.
private:
  class C { ... };

// File_2.cpp:
import Lib;
int main() {
  sizeof(S); // Okay.
  sizeof(C); // Error: Incomplete type.
}

The following example illustrates how even when the type is not public, it may need to 
be considered complete in client code:

// File_1.cpp:
export X:
  struct S {};  // Private by default.
public:
  S f() { return S(); }

// File_2.cpp:
import X;
int main() {
  sizeof(f());  // Allowed.
}

5.7 Explicit template specializations
Explicit template specializations and partial template specializations are slightly strange 
in that they may be packaged in a module that is other than the primary template's own 
module:

export Lib:

public:
  template<typename T> struct S { ... };

export Client:
  import Lib;
  template<> struct S<int>;
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There are however no known major technical problems with this situation.
It has been suggested that modules might allow "private specialization" of templates. In 
the example above this might mean that module Client will use the specialization of 
S<int> it contains, while other modules might use an automatically instantiated version 
of S<int> or perhaps another explicit specialization. The consequences of such a 
possibility have not been considered in depth at this point. (For example, can such a 
private specialization be an argument to an exported specialization?) Private 
specializations are not currently part of this proposal.

5.8 Automatic template instantiations
The instantiations of noninline function templates and static data members of class 
templates can be handled as they are today using any of the common instantiation 
strategies (greedy, queried, or iterated). Such instantiations do not go into the interface 
file (they may go into an associated object file).
However instances of class templates present a difficulty.  Consider the following small 
multimodule example:

// File_1.cpp:
export Lib:
public:
  template<typename T> struct S {
    static bool flag;
  };
  ...

// File_2.cpp:
export Set:
  import Lib;
public:
  void set(bool = S<void>::flag);
  // ...

// File_3.cpp:
export Reset:
  import Lib;
public:
  void reset(bool = S<void>::flag);
  // ...
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// File_4.cpp:
export App:
  import Set;
  import Reset;
  // ...

Both modules Set and Reset must instantiate Lib::S<void>, and in fact both expose 
this instantiation in their interface file. However, storing a copy of Lib::S<void> in 
both interface files can create complications similar to those encountered when 
implementing export templates with the existing loose ODR rules.
Specifically, in module App, which of those two instantiations should be imported? In 
theory, the two are equivalent (unlike the header file world, there can ultimately be only 
one source of the constituent components), but an implementation cannot ignore the 
possibility that some user error caused the two to be different. Ideally, such discrepancies 
ought to be diagnosed (although current implementation often do not diagnose similar 
problems in the header file world).
There are several technical solutions to this problem. One possibility is to have a 
reference to instantiated types outside a template's module be stored in symbolic form in 
the client module: An implementation could then reconstruct the instantiations when 
they're first needed. Alternatively, references could be re-bound to a single randomly 
chosen instance (this is similar to the COMDAT section approach used in many 
implementations of the greedy instantiation strategy). Yet another alternative might 
involve keeping a pseudo-module of instantiations associated with every module 
containing public templates (that could resemble queried instantiation).

5.9 Friend declarations
Friend declarations present an interesting challenge to the module implementation when 
the nominated friend is not guaranteed to be an entity of the same module. Consider the 
following example illustrating three distinct situations:

export Example:
  import Friends;  // Imports namespace Friends.
  void p() { /* ... */ };
public:
  template<typename T> class C {
    friend void p();
    friend Friends::F;
    friend T;
    // ...
  };

The first friend declaration is the most common kind: Friendship is granted to another 
member of the module. This scenario presents no special problems: Within the module 
private members are always visible.
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The second friend declaration is expected to be uncommon, but must probably be allowed 
nonetheless. Although private members of a class are normally not visible outside the 
module in which they are declared, an exception must be made to out-of-module friends. 
This implies that an implementation must fully export the symbolic information of 
private members of a class containing friend declarations nominating nonlocal entities. 
On the importing side, the implementation must then make this symbolic information 
visible to the friend entities, but not elsewhere. The third declaration is similar to the 
second one in that the friend entity isn't known until instantiation time and at that time it 
may turn out to be a member of another module.
For the sake of completeness, the following example is included:

export Example2:
public:
  template<typename T> struct S {
    void f() {}
  };
  class C {
    friend void S<int>::f();
  };

The possibility of S<int> being specialized in another module means that the friend 
declaration in this latter example also requires the special treatment discussed above.

5.10 Base classes
Private members can be made entirely harmless by deeming them "invisible" outside 
their enclosing module. Base classes, on the other hand, are not typically accessed 
through name lookup, but through type conversion.  Nonetheless, it is desirable to make 
private base classes truly private outside their module.  Consider the following example:

export Lib:
public:
  struct B {};
  struct D: private B {
    operator B&() { static B b; return b; }

  };
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export Client:
  import Lib;
  void f() {
    B b;
    D d;
    b = d;  // Should invoke user-defined conversion.
  }

If B were known to be a base class of D in the Client module (i.e., considered for 
derived-to-base conversions), then the assignment b = d would fail because the 
(inaccessible) derived-to-base conversion is preferred over the user-defined conversion 
operator.

Outside the module containing a derived class, its private base classes are not 
considered for derived-to-base or base-to-derived conversions.

Although idioms taking advantage of the different outcomes of this issue are uncommon, 
it seems preferable to also do "the right thing" in this case.

5.11 Syntax considerations
The following notes summarize some of the alternatives and conclusions considered for 
module-related syntax.

5.11.1 Is a keyword import viable?
The word "import" is fairly common, and hence the notion of making it a new keyword 
gives one pause. The introduction of the keyword export might however have been the 
true bullet that needed to be bitten: The two words usually go hand in hand, and reserving 
one makes alternative uses of the other far less likely. Various Google searches of 
"import" combined with other search terms likely to produce C or C++ code (like 
"#define", "extern", etc.) did not find use of "import" as an identifier. Of note however, 
are preprocessor extensions spelled #import both in Microsoft C++ and in Objective-C
++, but neither of those uses conflicts with import being a keyword.
Overall, a new keyword import appears to be a viable choice.

5.11.2 The module partition syntax
Early feedback on syntax suggested that requiring braces around a module definition was 
preferred:

export MyModule {

   ...

}

However, if a translation unit contains a module partition, it cannot contain anything 
outside that partition. That implies that requiring braces surrounding the partition's 
content is superfluous. Although it was not preferred by the first few reviewers, the 
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current brace-less syntax has since gained more traction and now appears slightly more 
popular than the alternative requiring braces.

5.11.3 Public module members
Earlier revisions on this paper made all module declarations "private" by default, and 
required the use of the keyword export on those declarations meant to be visible to 
client code. Advantages of that choice include:

• it makes explicit (both in source and in thought) which entities are exported, and 
which are not, and

• the existing meaning of export (for templates) matches the general meaning of 
this syntactical use.

There are also some disadvantages:
• it conflicts somewhat with the current syntax to introduce a module (that syntax 

was different in earlier revisions of this paper, however).
• the requirement to repeat export on every public declaration can be unwieldy.

Peter Dimov's observation that the use of "public:" and "private:" for namespace scope 
declarations (as is now proposed) is consistent with the rules for visibility of public/
private class members across module boundaries clinched the case  for the current syntax. 
Other alternatives have been considered, but do not seem as effective as the ones 
discussed.

5.11.4 Partition names
In earlier revisions of this paper, partition names were originally quoted strings, which 
allowed them to e.g. match source file names:

export M["m.cpp"] ...

However, nearly-all reviewers were surprised by that syntax and expected an identifier 
instead.  Ultimately, simplicity and intuitiveness trumped generality and consistency.
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