
BLOCKS PROPOSAL, N1451
BLAINE GARST

APPLE INC.

blaine@apple.com

A P R I L 1 3 , 2 0 1 0

1 I n f i t n i t e L o o p D r i v e • C u p e r t i n o • C a l i f o r n i a • 9 5 0 1 4

mailto:blaine@apple.com
mailto:blaine@apple.com

Introduction

Apple Inc. first shipped a blocks extension to C in its Mac OS X 10.6 SnowLeopard product. It is implemented in both
gcc 4.2 as well as Clang/LLVM 1.6 compilers, both of which are open-source under varying license conditions (the
Clang/LLVM license being generally considered far less restrictive). The blocks runtime has been available since
June 2009 as part of LLVM and has been back-ported to the Windows, FreeBSD, linux, and previous versions of Mac
OS X by third parties. It was critical to the infrastructure work that comprised Mac OS X 10.6 SnowLeopard in that
many new APIs using blocks were introduced and incorporated in system level software.

In addition to C, blocks are also available in Objective-C (with suitable extensions for garbage collection and direct
messaging) and C++ (with extensions for const copied on-stack objects), and the hybrid language Objective-C++.

Blocks are a form of closures which were introduced in the Scheme dialect of LISP circa 1973. They take their name in
Apple’s product from Smalltalk, where the C language block was turned into a Smalltalk object and many flow control
ideas were expressed as Smalltalk messages. In Objective-C Blocks are also Objective-C objects, and since this is for
Apple the primary language for developers the Smalltalk name was chosen in homage to many other Smalltalk
styled features of the Objective-C language.

In C, however, the term block is already well-defined. For the purposes of this document it is intended that Apple’s
block idea be described as closures to avoid the confusion which would otherwise ensue. This document does honor
Apple’s existing naming practice by describing the feature externally as Blocks and by using “block” labeled key-
words as is currently practiced, since current practice is the standard by which the C Standard adopts proposals, and
it is the syntax that would be used to examine existing code written to this practice. Naming is ultimately the choice
of the entire C Standard committee of course, and whereas this document uses __block, Block_copy, and Block_re-
lease, it may well be the case that _Closure, closure_copy, and closure_release or other names will ultimately be
approved.

WG14 documents may be found at http://www.open-std.org/JTC1/sc22/wg14/www/documents. Document
N1270 “Apple’s Extensions to C” provides an overview of the construct and is considered a prerequisite to this
document.

Overview

More formally, there are four concepts that need to be introduced to the C language to accommodate closures.

First, there is a new form of compound type exactly paralleling that of function types, and that is of course closure
types. Closures are function expression objects of these closure types. Closures objects are, essentially, a new form of
scope providing equivalent access to automatic duration identifiers under highly constrained conditions. One primar-
ily declares pointers to closure objects and uses the syntactic form of pointers to functions exactly with the one substi-
tution of ^ for * when describing the pointer to closure aspect.

Second, there is a new closure literal construct that creates a pointer to a closure object. The object is of indeterminate
size. It captures automatic variables in a const form, references a specialized function that knows how to access these
captured variables, and also captures references to mutable variables declared directly in a new storage class known
as __block. The most minimal closure literal is ^ { }.

W G 1 4! N 1 4 5 1

1

http://www.open-std.org/JTC1/sc22/wg14/www/documents
http://www.open-std.org/JTC1/sc22/wg14/www/documents

Third is the new storage class __block representing essentially closure object “scope” duration. For efficiency closure
objects and hence closure scoped identifiers are specified such that they may start as being implemented in automatic
storage and, upon being preserved by explicit programmer action via the Block_copy primitive, move into allocated
storage. Because they may move the & operator is forbidden upon these, much like it is forbidden for register dura-
tion objects.

Forth are the language primitives Block_copy and Block_release which manage the preservation of closure objects
beyond their scope of declaration.

Rationale

Closures are an ideal form of a succinct description of units of work that are easily and trivially farmed off to anony-
mous threads of execution once copied. The predominant form of a closure rarely uses __block storage and as such is
an immutable object that can be accessed by multiple threads safely in a trivial fashion in essentially an asynchronous
form. Synchronous uses, say for sorting or searching, are cheap because they need never leave the stack, and the
__block form is generally safe because there is no parallelism implied.

Modifications

The following are the more formal descriptions of changes necessary to the N1425 proposed draft standard to reflect
the preceding high level descriptions of blocks. Due to the parallel type system to functions there is a significant
burden to describe these succinctly without simply copying and pasting the descriptions for function with closure sub-
stituted. The following changes are minimal but hardly sufficient, and it is recognized that significant additional
“wordsmithing” will be required. It is, however, intended to be complete.

1. Section 6.2.1

An identifier can denote an object; a function; a closure; a tag..

Add closure to paragraph 2: “five kinds of scopes, function, file, block, closure, and
function or closure prototype.

At end of paragraph 2: “Similarly for closure prototypes”

Para 4: in a function definition or closure literal,...

...function or closure prototype...

Add paragraph:

As a special rule, the block associated with a closure imports identifiers from outer
scopes of storage duration automatic as an implicitly declared const identifiers initial-
ized with their value at the point of closure expression evaluation.. These implicit const

W G 1 4! N 1 4 5 1

2

identifiers are of __block storage duration, e.g. can outlive the defining scope of the clo-
sure literal upon Block_copy of that closure.

2. Section 6.2.4

(p37) 1. There are five storage durations: static, thread, automatic, __block, and allo-
cated.

The lifetime of __block storage identifiers is minimally that of the function, closure, or
block of origin, or as extended by a Block_copy of a closure that references said __block
storage identifier. Conforming implementations may choose to always allocate storage
for __block identifiers from allocated storage, or start them in automatic storage and
migrate them to allocated storage upon the first Block_copy. Like register, __block stor-
age identifiers are forbidden the use of the & (address) operator. (see forward reference).

3. Section 6.2.5, add closure types

object types (types that fully describe objects), function types (types that describe func-
tions), closure types (types that describe closures), and incomplete types

...

20. Any number of derived types can be constructed from the object, function, closure,
and incomplete types

- Function and closure types describe functions and closures with specified return
type....

- A pointer type may be derived from a function type, a closure type, an object type

- A closure type describes an opaque object of indeterminate size that references a func-
tion, and it is the function type that characterizes the closure type. The opaque object
captures constant (const) copies of all identifiers of automatic storage as identifers of
__block storage duration, and references to all identifiers of __block storage duration

W G 1 4! N 1 4 5 1

3

referenced recursively in all closure literals defined within the closure literal. A closure
type is considered incomplete from the perspective of size determination.

Para 24: Array, function. closure, and pointer...

Para 26. Any type so far mentioned...[[[this should move to become para 20 I think

]]] there is no const/volatile/restrict function (or closure) type.

4. Section 6.3.2.3

A pointer to a function or closure of one type...

Pointers to closures are not equivalent to pointers to functions, even if their types are
apparently the same, and undefined behavior will result if a function or closure call is
performed upon an incorrect type.

5. Section 6.4.1,

Add __block, Block_copy, Block_release to the list of keywords

6. Section 6.5

or that designates an object or a closure or a function

7. Section 6.5.1

An identifier is a... or a function (...) or a closure reference.

8. Section 6.5.2

postfix-expression:

 ^ closure-decl-opt compound-statement-body

closure-decl:

! (argument-expression-list)

! type-expression

[Closure literals are introduced by a unary use of the ^ operator, and result in a pointer
to a closure object. The return type of the closure is generally inferred by the presence

W G 1 4! N 1 4 5 1

4

and return type of any return statements, or void if no return statements are made.
Closures that have a nullary argument list may specify it as such by either declaring it
as (void) or by omitting the (void) entirely. Closures may explicitly provide a full return
type and argument lists using a primary expression, which, with explict return type
specified, will force normal return “conversions” to that type]

[^ char (int x) { return x; } is a closure that returns a char given an int argument]

[^ (int x) { return x; } is a closure that returns an integer given an integer argument]

[^ { printf(“hello closure\n”); } is a closure returning void given no arguments]

[^(void) { printf(“legal\n”); } is an closure taking no arguments returning void]

[^() { printf(“illegal\n”); } is an illegal closure; empty argument list is not allowed]

[A closure’s compound statement block does not share control flow with enclosing
scope. Only a return statement is allowed.]

9. Section 6.5.2.2

Function and closure calls

The expression that denotes the called function (or closure) shall have type pointer to
function (or closure) [generically, need to replace references to “function” with “func-
tion (or closure)”. This is a presentation choice.]

Semantics

A closure call upon a closure object has the meaning of calling the function referenced
within the closure object, and that the contents of the closure object be provided to the
function such that uses of identifiers from an enclosing scope used within the
compound-statement-body of the closure are to the captured const copy of that identi-
fier held within the closure object. References to __block storage duration identifiers
must be implemented in such a fashion that all such references across the declaring
scope and those from closures are to the same object.
W G 1 4! N 1 4 5 1

5

[Note: if the closure object is a structure, a pointer to that structure could be passed as a
hidden argument to the function otherwise specified by the closure, and uses of cap-
tured identifiers are replaced in the closure function body to elements of a closure struc-
ture object.]

10. Section 6.5.3 Unary operators

unary-expression:

 Block_copy (closure-expression)

 Block_release (closure-expression)

Semantics

Block_copy is used to assure the lifetime of a closure object beyond its possible initial
automatic storage lifetime. Block_copy “returns” an equivalent (possibly the same) clo-
sure object of the same type. Block_release is used to recover allocated storage for a clo-
sure object. They are intended to be used in pairs. An unmatched use of Block_release
results in undefined behavior.

11. Section 6.5.3.2

... not declared with the register or __block storage-class specifier.

12. Section 6.7.1

Add __block to the list of storage-class-specifier

Constraint

__block can only occur within a compound statement body, e.g. only where auto is al-
lowed. It is implementation defined as to whether such storage is implemented using
allocated duration memory, or automatic duration memory and promoted to allocated
upon Block_copy.

One may not designate __block storage duration class for arrays. [this is because array
backing storage are not first class objects].

W G 1 4! N 1 4 5 1

6

13. Section 6.7.6

pointer:

 ^ type-qualifier-listopt

 ^ type-qualifier-listopt pointer

14. Section 6.7.6.3 “Function and Closure declarators”

The ^ token is used to distinguish pointer to closure and is allowed only where pointer
to function would be.

W G 1 4! N 1 4 5 1

7

