
Document No.: SC22/WG14/N1358
Date: January 26, 2009
Reply to: David Svoboda, svoboda@cert.org

Extensions to the C1X Library

This document describes extensions to the C1X library to enhance security in the C
language. Most of these are existing functions, while some of these are enhancements or
minor modifications to existing library functions.

In Milpitas in September, CERT submitted document N1339, which proposed many
functions. Some were regarded favorably, while others were regarded not so favorably.
This document formalizes the functions regarded favorably, addressing issues presented
in Milpitas, and adds a few new function proposals.

#1 fopen() exclusive access with “x”

The C99 fopen() and freopen() functions are missing a mode character that will
cause fopen() to fail rather than open a file that already exists. This is necessary to
eliminate a time-of-creation to time-of-use (TOCTOU) race condition vulnerability.

The ISO/IEC 9899-1999 C standard function fopen() is typically used to open an
existing file or create a new one. However, fopen() does not indicate if an existing file
has been opened for writing or a new file has been created. This may lead to a program
overwriting or accessing an unintended file.

In the following example, an attempt is made to check whether a file exists before
opening it for writing by trying to open the file for reading.
...
FILE *fp = fopen("foo.txt","r");
if(!fp) {
 /* file does not exist */
 fp = fopen("foo.txt","w");
 ...
 fclose(fp);
} else {
 /* file exists */
 fclose(fp);
}
...
However, this code suffers from a Time of Check, Time of Use (TOCTOU) vulnerability.
On a shared multitasking system there is a window of opportunity between the first call
of fopen() and the second call for a malicious attacker to, for example, create a link
with the given filename to an existing file, so that the existing file is overwritten by the
second call of fopen() and the subsequent writing to the file.

The fopen() function does not indicate if an existing file has been opened for writing
or a new file has been created. However, the open() function as defined in the Open
Group Base Specifications Issue 6 [Open Group 04] provides such a mechanism. If the

O_CREAT and O_EXCL flags are used together, the open() function fails when the file
specified by file_name already exists.
...
int fd = open(file_name, O_CREAT | O_EXCL | O_WRONLY, new_file_mode);
if (fd == -1) {
 /* Handle Error */
}
...
The GNU libc package has implemented this suggestion by adding the 'x' mode
character to fopen() as documented at:
http://www.gnu.org/software/libc/manual/html_mono/libc.html#Opening-
Streams
"The GNU C library defines one additional character for use in opentype:
the character x insists on creating a new file--if a file filename
already exists, fopen fails rather than opening it. If you use x you are
guaranteed that you will not clobber an existing file. This is
equivalent to the O_EXCL option to the open function (see Opening and
Closing Files)."

We propose adding an ‘x’ character to the mode argument to fopen(). This
would maintain compatibility with glibc. The necessary revisions to the C
standard would be as follows:

Section 7.19.5.3 (The fopen function), paragraph 3 would receive the following
additions:

wx create text file for writing with
 exclusive access
wbx create binary file for writing with
 exclusive access
w+x create text file for update with

exclusive access
w+bx or wb+x create binary file for update with
 exclusive access

The following paragraph should be inserted before paragraph 5:

Opening a file with exclusive mode ('x' as the last
character in the mode argument) fails if the file
already exists or cannot be created. Otherwise, the
file is created with exclusive (also known as non-
shared) access to the extent that the underlying
system supports exclusive access.

#2 fopen_s() exclusive access with “x”

The fopen_s() function defined in ISO/IEC TR 24731-1 is designed to improve the
security of the fopen() function. TR24731-1, section 6.5.2.1, paragraph 6 indicates that
when fopen_s() is used to open a file for writing, access to the file is exclusive to the

program in as far as the underlying system supports exclusivity. However, like
fopen(), fopen_s() provides no mechanism to determine if an existing file has been
opened for writing or a new file has been created. The code below contains the same
TOCTOU race condition as in the fopen() example above.
...
FILE *fptr;
errno_t res = fopen_s(&fptr,"foo.txt", "r");
if (res != 0) {
 /* file does not exist */
 res = fopen_s(&fptr,"foo.txt", "w");
 ...
 fclose(fptr);
} else {
 fclose(fptr);
}
...

We propose adding an ‘x’ character to the mode argument to fopen_s(). The
necessary revisions to the C standard would be as follows:

Section 6.5.2.1 (The fopen_s function), paragraph 5 would receive the
following additions:

uw+bx or uwb+x create binary file for update with
exclusive access, default permissions

wx create text file for writing,

with exclusive access
wbx create binary file for writing,

with exclusive access
w+x create text file for update,

with exclusive access
w+bx or wb+x create binary file for update,

with exclusive access

The following paragraph should be inserted before paragraph 6:

Opening a file with exclusive mode ('x' as the last
character in the mode argument) fails if the file
already exists or cannot be created.

#3 rand() disclaimer

Pseudorandom number generators use mathematical algorithms to produce a sequence of
numbers with good statistical properties, but the numbers produced are not genuinely
random. The C Standard function rand() (available in stdlib.h) does not have good
random number properties. The numbers generated by rand() have a comparatively
short cycle, and the numbers may be predictable. The following code generates an ID

with a numeric part produced by calling the rand() function. The IDs produced are
predictable and have limited randomness.
enum {len = 12};
char id[len]; /* id will hold the ID, starting with
* the characters "ID" followed by a
* random integer */
int r;
int num;
/* ... */
r = rand(); /* generate a random integer */
num = snprintf(id, len, "ID%-d", r); /* generate the ID */
/* ... */
A better pseudorandom number generator is the random() function, defined in POSIX.
While the low dozen bits generated by rand() go through a cyclic pattern, all the bits
generated by random() are usable.
enum {len = 12};
char id[len]; /* id will hold the ID, starting with
* the characters "ID" followed by a
* random integer */
int r;
int num;
/* ... */
time_t now = time(NULL);
if (now == (time_t) -1) {
/* handle error */
}
srandom(now); /* seed the PRNG with the current time */
/* ... */
r = random(); /* generate a random integer */
num = snprintf(id, len, "ID%-d", r); /* generate the ID */
/* ... */

At the last WG14 meeting in Milpitas, we proposed adding the random() function, as
specified by POSIX, to the C standard. The WG14 committee was unfavorable to this
proposal. They agreed that rand() was a poor random-number generator (RNG), but
experts did not agree on what constitutes a 'good' RNG. They suggested that CERT
should draft a disclaimer for rand() for inclusion in the standard. We hereby provide
such a disclaimer:

Add a footnote to 7.20.2.1, paragraph 4, which reads:

These specifications for a pseudo-random sequence generator do
not guarantee that the numbers generated are sufficiently random
for applications with strict randomness requirements, such as
cryptographic applications. There are several implementations of
rand() which are known to produce insufficient results. For
instance, the low-order bits may follow a short cycle.
Specifications for proper pseudo-random number generation are
beyond the scope of this document.

#4 resetenv() to clean the environment

Because environment variables are inherited from the parent process when a program is
executed, an attacker can easily sabotage variables, causing a program to behave in an
unexpected and insecure manner [Viega 03].

All programs, particularly those running with higher privileges than the caller should
treat their environment as untrusted user input. Because the environment is inherited by
processes spawned by calls to the fork(), system(), or exec() functions, it is
important to verify that the environment does not contain any values that can lead to
unexpected behavior.

C99 states that, "the set of environment names and the method for altering the
environment list are implementation-defined." Because some programs may behave in
unexpected ways when certain environment variables are not set, it is important to
understand which variables are necessary on your system and what are safe values for
them.

At the last WG14 meeting in Milpitas, we proposed adding the clearenv() function,
as implemented by Linux and several other platforms, to the C standard. However, upon
further reflection, we realized that a standardized clearenv() would have the
following problems:

• Clearing the environment is not always possible. For instance Windows does
not permit users without administrative privileges to clear system environment
variables; they may only clear user environment variables.

• An 'empty' environment is not particularly desirable. The purpose of clearing

the environment is to prevent unwanted or malicious environment variables from
being transmitted to an external program via system() or exec**(). But
these programs require some environment variables to be set in order to function
properly. For instance, CERT Secure Coding Rule ENV03-C recommends setting
PATH, TZ, and IFS before calling an external program on an empty environment.

• Finally, clearenv() shall soon be standardized in POSIX, however as noted

above, it cannot be implemented in Windows, and the C standard should not
contain an incompatible definition of clearenv().

In particular, we are less interested in an empty, cleared environment, than we are in a
sanitized, 'cleaned' environment, for use in calling external programs. Consequently, we
propose a resetenv() function. This function would sanitize the environment,
eliminating all permissible environment variables, and leaving a few variables known to
have 'good' values. The variables left would be implementation-defined, and designed so
that a subsequent call to system() or exec**() would be feasible, yet not transmit
nefarious information to the external program.

For instance, a Linux resetenv() function might clear the environment, and set
PATH, TZ, and IFS to default values. Likewise, a Windows resetenv() function
might remove all user environment variables, and if the program had administrator access
would also clear the system environment variables except PATH, which would be set to a
default value.

This proposal does not specify details of the environment that resetenv() will create;
those are considered implementation-dependent. Consequently, this proposal cannot
ensure that an implementation of resetenv() would be sufficient; implementations
could fail to clean nefarious environment variables, or could clean variables necessary to
a subsequent call to an external program.

The proposal is as follows:

Add this section after 7.20.4.5 (The getenv Function)

 7.20.4.6 The resetenv function
 Synopsis
 #include <stdlib.h>
 void resetenv();
 Description

 The resetenv function replaces the current host
environment with a minimal host environment. This minimal
environment is independent of the environment state before
the call to resetenv, and is a suitable environment for a
subsequent call to system. The set of names and values in
the minimal environment and the method for altering the
environment list are implementation-defined.

 The implementation shall behave as if no library function
calls the resetenv function.

 Returns
 The resetenv function returns no value.

#5 memset_s() to clear memory, without fear of removal

The memset() function, defined in Section 7.21.6.1, sets a range of memory to a value,
and is often used to zero out a series of bytes. However, this function is insufficient in
circumstances involving sensitive data, as described in CERT Secure Coding rule
MSC06-C. Consider the following code:

 void getPassword(void) {
 char pwd[64];
 if (GetPassword(pwd, sizeof(pwd))) {
 /* checking of password, secure operations, etc */
 }
 memset(pwd, 0, sizeof(pwd));
 }

This code is subject to a potential vulnerability. An optimizing compiler could employ
"dead store removal"; that is, it could decide that pwd is never accessed after the call to
memset(), ergo the call to memset() could be optimized away. Consequently, the
password remains in memory, possibly to be discovered by some other process
requesting memory.

There are several solutions to this problem, but no solution appears to be both portable
and optimal. The solutions currently known are as follows:

1. Append a volatile access after the memset():
 memset(pwd, 0, sizeof(pwd));
 (volatile char)pwd = *(volatile char*)pwd;
However, the MIPSpro compiler and versions 3 and later of GCC cleverly zero out only
the first byte and leave the rest of the pwd array intact.

2. Replace memset() with ZeroMemory():
 ZeroMemory(pwd, sizeof(pwd));
This function also might be optimized away, and is only available on Windows.

3. Replace memset() with SecureZeroMemory():
 SecureZeroMemory(pwd, sizeof(pwd));
This function is guaranteed not to be optimized away, but it is only available on
Windows.

4. Pragmas
 #pragma optimize("", off)
 /* clear memory */
 #pragma optimize("", on)
This approach will prevent the clearing of memory from being optimized away.
However, this pragma is not portable.

5. Platform-independent ' secure-memset' solution:
 void *secure_memset(void *v, int c, size_t n) {
 volatile unsigned char *p = v;
 while (n--) *p++ = c;
 return v;
 }
This approach will prevent the clearing of memory from being optimized away, and it
should work on any standard-compliant platform. There has been recent notice that some
compilers violate the standard by not always respecting the volatile qualifier. Also,
this compliant solution may not be as efficient as possible due to the nature of the volatile
type qualifier preventing the compiler from optimizing the code at all. Typically, some
compilers are smart enough to replace calls to memset() with equivalent assembly
instructions that are much more efficient than the memset() implementation.
Implementing a secure_memset() function as shown in the example may prevent the

compiler from using the optimal assembly instructions and may result in less efficient
code.

We propose a memset_s() function that behaves like memset(), with the added
stipulation that the call to memset_s() is guaranteed not to be optimized away. It may
be implemented like SecureZeroMemory(), or it might be implemented like the
secure_memset() described above. The implementation is encouraged to implement
it in an optimal fashion. We thus propose the following:

Add the following section after section 7.21.6.1 The memset() function:

 7.21.6.2 The memset_s function

 Synopsis

#include <string.h>
void *memset_s(void *s, int c, size_t n);

 Description
 The memset_s function copies the value of c (converted to
an unsigned char) into each of the first n characters of
the object pointed to by s. Unlike memset, any call to
memset_s shall be evaluated strictly according to the rules
of the abstract machine, as described in 5.1.2.3. That is
to say, any call to memset_s shall assume that the memory
indicated by s and n may be accessible in the future and
therefore must contain the values indicated by c.

 Returns
 The memset_s function returns the value of s.

One final note: While necessary for working with sensitive information, this
memset_s() function may not be sufficient, as it does nothing to prevent memory from
being swapped to disk, or written out in a core dump. More information on such issues is
available at the CERT C Secure Coding rule MEM06-C.

