
WG14 N1080
Sept 27, 2004

1

Limited size_t
Randy Meyers

Introduction
During committee discussion at the Sydney meeting, a request was made to limit
size_t for the new functions. Basically, it was observed that a common programming
error is to accidentally calculate a negative size value that when placed in a size_t (an
unsigned type) looks like a very big positive number. When such values are used for
source sizes, far too much data is accessed. When such values are used for destination
sizes, the destination appears far larger than it really is, and functions might write past the
end of the object. This last case can be insidious since the expected protection of using
the new secure functions has been defeated, but until the function might not fail or cause
any sort of any invalid memory reference until confronted with atypically large data.
This can also be yet another source for buffer overrun security attacks despite using the
secure library.

Several committee members spoke in favor of limiting size_t for the functions in the
secure library. I don't recall any opposition. But, the idea surfaced in committee
discussion without any written proposal to back it up. I agreed to look into this. Clearly,
the idea discussed at the meeting was too half-baked to be folded into a draft of the
Security TR. So, I produced this proposal to allow for proper committee review.

Proposal in a nutshell
A new typedef is introduced named (for the sake of presentation) size_t_s. This
typedef has exactly the same type as size_t. However, when size_t_s is used to
define a function parameter, it is a warning to the programmer that only a limited range
of the possible values of a size_t is allowed. Furthermore, functions that have
size_t_s parameters have a responsibility to check that the values of those parameters
are reasonable. If those parameters have unreasonable values, the function will treat that
as an error condition, not perform any further work, and return some sort of error
indicator to the caller. (The details of returning the error indicator to the caller are likely
to vary from function to function.)

The rest of this paper discusses the details of this proposal.

The typedef
No good catchy name for the limited typedef proposal occurred to me. Two possibilities
are:

• size_t_s, which has the advantage of following the naming pattern
established for functions in the Secure TR

WG14 N1080
Sept 27, 2004

2

• size_s, which has the advantage of being a shorter name and more or less
fitting the pattern, but has the disadvantage that it is only one character different
from size_t.

For the purpose of this document, size_t_s is used. If the committee likes this
proposal, suggestions for a better name are welcome.

Many headers in the library define the size_t typedef. Likewise, size_t_s will be
defined in any header that uses it, and in <stddef.h>, because that header would be an
expected place for the typedef. Thus, the following headers:

• <stddef.h>
• <stdio.h>
• <stdlib.h>
• <string.h>
• <time.h>
• <wchar.h>

will contain the additional declaration:
 typedef size_t size_t_s;

That declaration will have to be properly protected to avoid redeclarations in case
multiple headers defining the typedef are included, just as the declarations of size_t in
those headers is protected for the same situation. The declaration will also have to honor
the __STDC_WANT_SECURE_LIB__ macro.

Note that because size_t_s is the same type as size_t, the two types are not really
distinct and can be punned in various ways, and that there is no issue with binary
compatibility between the two types. This is appropriate since size_t_s is just
size_t with additional conceptual rules for the programmer and the library
implementer. This type equivalence makes it proper for the sizeof operator to be used
to produce the value for a size_t_s function argument.

Reasonable Values
The set of reasonable values for size_t_s needs to meet two slightly opposing
requirements:

1. It needs to be small enough that the implementation can identify suspect values
indicative of programming errors.

2. It needs to be large enough to be useful to programmers under most conditions.

In previous committee discussion, the proposal was the maximum value of size_t_s
should be SIZE_MAX/2. (SIZE_MAX, defined by C99 7.18.3, is the maximum value of
a size_t.)

WG14 N1080
Sept 27, 2004

3

That value does eliminate the "negative" values that might be in a size_t, but might
still be bigger than desirable. Consider an implementation that only supports 32K sized
objects, but uses a 32-bit int as size_t. Such in implementation would probably want
to reject any size_t_s larger than 32K, not 2Gig.

Therefore, a more reasonable definition of the limit on size_t_s is the smaller of
(SIZE_MAX/2) or (the maximum size of an object supported by the supported by the
implementation).

Some consequences of this definition of the limit:

If an implementation allows as large of objects as size_t can represent, then
size_t_s has the same limit originally proposed, which merely disallows the
"negative" values for a size.

If an implementation has a smaller limit on the size of objects than SIZE_MAX, then
there are two cases:

1. The limit on object sizes is smaller than (SIZE_MAX/2). In which case, the
programmer can represent the size of any object in size_t_s.

2. The limit on object sizes is greater than (SIZE_MAX/2). In which case, the
programmer can represent the size of any object in size_t_s except for those
values that might appear "negative."

In all cases, the "negative" appearing values are disallowed.

In all cases, the programmer can represent either the size of any object, or objects up to
SIZE_MAX/2 in size.

Note that hosted implementations must support objects of at least 64K-1 in size, which
implies that the smallest size_t is a 16-bit unsigned short. Thus, the tightest
restriction on a hosted environment is 32K-1. That is not an unreasonable limit for
minimalist systems.

More typical workstation and PC environments will have limits of 2G-1.

Freestanding environments sometimes have very tiny objects: 256 byte objects and
size_t is an unsigned char. Such environments may find any limit on the range of
size_t_s burdensome. However, such environments are not required to implement a
library, and the Security TR is not really aimed at them. I would propose a footnote in
the TR stating that freestanding environments choosing the implement the TR may ignore
the limit on size_t_s.

WG14 N1080
Sept 27, 2004

4

Knowing the limit
Programmers will want to know the limit on size_t_s so that they can enforce the
limit in their own functions (and perhaps to verify that the limit is big enough for their
purposes).

The limit depends upon implementation-defined numbers, so it is reasonable that the
limit be provided by the implementation.

The macro SIZE_MAX_S should be defined in <stdint.h> as this limit. The
definition should be conditional on __STDC_WANT_SECURE_LIB__.

Note that <stdint.h> is the definition point for SIZE_MAX, the limit macro for
size_t.

It might also be useful to have a function defined in <stdlib.h> that has the definition:

bool issize_t_s(size_t_s value) {return value <= SIZE_MAX;}

Checking size_t_s parameters
Functions in the Secure Library that take size_t parameters will be changed to take
size_t_s parameters. The specification of the function will be changed to require
checking the limit of the size_t_s parameters.

The edit will be very similar to the edits made to N1078 (the latest draft of the Security
TR) to check for and handle null pointers.

For example, the prototype for the memcpy_s function would become:

errno_t memcpy_s(void * restrict s1, size_t_s s1max,
 const void * restrict s2, size_t_s n);

Paragraph 2 of the function's description would be changed to:

If s1 or s2 is a null pointer or if s1max or n is greater than SIZE_MAX_S, then no
copying is performed.

The "Returns" section would be changed to:

The memcpy_s function returns zero if n is less than or equal to s1max and s1 and
s2 are not null pointers and s1max and n are less than or equal to SIZE_MAX_S.
Otherwise, ERANGE is returned.

However, these wording changes are related to the issue around the edits in N1078
regarding the null pointer handling. If the committee wishes to keep the approach in

WG14 N1080
Sept 27, 2004

5

N1078 of stating explicitly the behavior of functions with null pointers (or in the general
case, an invalid argument of some kind), then the edits for checking the range of
size_t_s parameters are just more of the same.

If the wording for null pointer parameters in N1078 changes, a similar approach would be
required for range testing size_t_s parameters.

In Conclusion
I believe that this proposal fleshes out the direction discussed at the Sydney meeting. I
believe that it does hang together, and that the edits to the TR are not burdensome.

The biggest question is whether the committee thinks that this work is worth doing.

	Introduction
	Proposal in a nutshell
	The typedef
	Reasonable Values
	Knowing the limit
	Checking size_t_s parameters
	In Conclusion

