
WG14 N1071

Title: ISO/IEC TR 18037 issues
Status: For discussion at the WG14 Redmond meeting, October 2004
Source: TR 18037 editor

Note: the clause numbering used in this document is the numbering used in the official
approved version of TR 18037; in this official version, the fixed-point arithmetic is in
clause 4 (was clause 2), the named address spaces and named-register storage classes
are in clause 5 (was clause 3) and the basic I/O hardware addressing is in clause 6 (was
clause 4).

The issues presented in this document were reported earlier by email; parts of the email
discussion is added here as well. The order of the issues is roughly the order in which
they appear in TR 18037.

Issue 1: Name conflict for strtok
Description: by selecting the letter 'k' as suffix for the accum type, the the function to
convert a string to an accum type gets the name strtok; this name is already in use in the
C standard.

Possible solutions:
- use a different letter

- 'q' as proposed originally, conflicts with quadruple precision format
- 'y' the only reasonable choice of the 'free' letters (others are 'b', 'm', 'v' and

'w');
- change the names of all "strto" functions to "strto_"; that is: "strtok" becomes

"strto_k", "strtoht" becomes "strto_hr", etc. Easy to do but a little bit inconsistent
with the C library;

- use the letter 'q' only for the functionnames, leave the 'k' everywhere else.

Issue 2: Order in which overflow handling and rounding is done
Description: the current text requires that overflow handling is done before rounding; this
is counter intuitive, and not what is done for floating-point overflow/rounding. As it
happens, the order in which overflow and rounding are done has no effect on the result
when saturation is used for overflow handling.
Hence, if we change the order, the result remains the same for saturation. However, with
the current required order, mod_wrap as overflow handling (which is allowed but not
required) cannot (reasonably) be implemented. It is therefore proposed to change the
order.

Proposed solution: change the required order of overflow handling and rounding.

Issue 3: Typo in 4.1.6.2.1 - Binary arithmetic operations
Description: 4.1.6.2.1 (Binary arithmetic operations), last para, the text on the divi
fuctions has 'yielding a fixed-point type result'; this must be 'yielding an integer type
result'.

Proposed solution: obvious

Issue 4: Type generic macro's
Description: The type-generic macro definition sections (2.1.7.6 and 7.18a.6.7) are
incomplete and possibly wrong.

Incomplete because there are no rules on which function should be called when a type-
generic macro is called with a non fixed-point type argument. Possibly wrong, because
it is not clear what the name of the type-generic macro's should be: 2.1.7.6 suggest to
call the type-generic abs function 'absfx', in 7.18a.6.7 the 'fx' part of the name is in italic
which might suggest that the name should really be 'abs'. So, do we want to have 'abs',
'round' and 'countls', or 'absfx', 'roundfx' and 'countls'?

Proposed solution:

Issue 5: Typo in new text for 6.2.6.3
Description: the new text for clause 6.2.6.3, 3rd para, last sentence: replace 'integer
types' by 'fixed-point types' twice.

Proposed solution: obvious

Issue 6: fp arithmetic suppo rt functions do n ot specify what happens if an integer
result overflows
Description: 7.18a.6.1 (fp arithmetic support functions) does not specify what happens if
an integer result overflows.

Proposed solution: Isn't there a blanket statement to the effect that when a specified
result is not representable in the type, the behavior is undefined? If not, there should be.

Issue 7: Error in 7.18.a.6.3
Description: the rounding functions in 7.18a.6.3 require that

Fractional bits beyond the rounding point are set to zero in the result.
This should not apply when saturation has occurred.

Proposed solution: replace the offending text by:
When saturation has not occurred, fractional bits beyond the rounding point are
set to zero in the result.

Issue 8: Diagno stic required on n amed-register constraint violation?
Description: consider

// file 1
register REG_A int reg_a;

// file 2
extern int reg_a;

int main() { return reg_a; }

According to the new constraints for 6.7.1 this is not allowed:
If an object is declared with a named-register storage-class specifier, every
declaration of that object shall include the same named-register storage-class
specifier.

The 'shall' implies that a diagnostic is required here. However, so far C compilers have
not been required to diagnose such issues across translation units. Is this really the
intention?

Proposed solution:

Issue 9: Effective type definition (aka US-40)
Description: a couple of the statements concerning effective types in 6.5 of the
C Standard are not exactly correct in the presence of address-space qualifiers. The
easiest fix is probably to modify the concept of effective type in the C Standard so as not
to include an address-space qualifier. (The whole concept of effective type is used only
in 6.5 and in one footnote elsewhere in the C Standard.)

Prossible solution: add the following section to clause 5.3 of TR 18037:

Clause 6.5 - Expressions, replace the first two sentences of paragraph 6 with:

The effective type of an object for an access to its stored value is the declared
type of the object, if any, without any address-space qualifier that the declared
type may have.72) If a value is stored into an object having no declared type
through an lvalue having a type that is not a character type, then the type of the
lvalue, without any address-space qualifier, becomes the effective type of the
object for that access and for subsequent accesses that do not modify the stored
value.

and remove the notion additionally access-qualified version from TR 18037 (first
replacement paragraph of paragraph 26 of 6.2.5, replacement text for paragraph 7 of
6.5).

Issue 10: The relationship beween named-registers and external object definitions
Description: the relationship beween named-registers and 6.9.2 (external object
definitions) need to specified: when there is no initializer in the named-register
declaration, the declaration is not an external definition for the identifier. The declaration
is however also not a tentative definition, because it has a storage-class specifier. Then,
what is it?

Proposed solution: That's one problem with using existing syntactic categories for new
facilities. A workaround would be to change storage-class-specifier to storage-class-
specifier|whatever in the grammar, where "whatever" is some new category, and
then adjust the text that constrains storage-class-specifier to say the right thing (just
storage-class-specifier or storage-class-specifier|whatever, depending). Then the
construct would not have a storage-class-specifier and thus would be a tentative
definition.

Issue 11: Initialization of global named-registers
Description: the current specification allows global named-registers to be initialized:

register REG_A int reg_a = 32;

It is however unclear when, and by whom this initialization should be done (one could
imagine that the register storage onto which the variable maps does not really exist until
some device is initialized by some user code).

Proposed solution: disallow initializers on named-register variables.

Issue 12: Address space qualifier in specifier-qualifier-list
Description: in the new text for 6.7.2.1, the TR adds a constraint:

The specifier-qualifier-list in the declaration of a member of a structure or union
shall not include an address space qualifier.

This is a mistake, because it keeps us from declaring something innocuous like

struct onePointer { _X int *pX; };

As written, the constraint would make the member declaration invalid, whereas we only
intended to prohibit declarations such as this:

struct oneInteger { _X int iX; };

Proposed solution: change the constraint to be:

Within a structure or union specifier, the type of a member shall not be qualified
by an address space qualifier.

Email crossreference list:
Item Embedded-c emailnumber
1: 188, 189, 190, 191, 192, 194, 196, 198, 200, 201, 203, 204, 207
2: 208
3: 206
4: 211
5: 206
6: 208, 210
7: 208
8: 208, 210
9: 184, 195, 199, 207
10: 208, 210
11: 208, 209, 210
12: 207

