Rationale for
International Standard—
Programming Languages—

C

Revision 5.10

April-2003

UNIX is a trademark of The Open Group.
POSIX is a trademark of IEEE.

10

15

20

25

30

35

40

A

Contents

INEEOAUCTION ...ttt ettt et et e et e e st e e b e e s saeenseesseeenseenseesnseenns 1
0.1 Organization of the dOCUMENtocoiiiiiiiiiii e 5
N Tel0] oL O PRTPPRRRTPRRRPRO 7
NOTrMAative RETETENCEScoiuiiiiiiiiiiiiee ettt 9
Terms and defiNTtIONS.........occuiiiiiiiiieie ettt esaaeebeeesaeensaens 11
CONTOTINANCE ...ttt et ettt et e b e et e bt e st e e bt e e bt e bt e sateesbeeenbeenbeen 13
ENVITONMENTiiiiiiiiie ettt ettt et et e st e et e e ssbeesseeenbeesaeenseenseannnas 15
5.1 Conceptual MOAEIS.......ccveiiuiieiiiiecie e e e 15
5.1.1 Translation enVIFONMENT.........c.eeruiieiuieriieeiieenieeieeeeeeieesaeeseesereeeeesseeenseenenes 15
5.1.2 EXecution €NVIFONIMENLScccueeiiieiiieriiieniieeieeniteeieestteeieesieeebeesaeeebeesseeenes 17
5.2 Environmental cONSIAErationsc.eecuieriieiiienieeiierieeieesieeieesee e e steeveesneeseens 19
5.2.1 CRATACTET SETS..cuueiitieiiieiieiiie ettt ettt ettt ettt et e st e et e s e st e e sateebeenaeas 19
5.2.2 Character display SEMANTICScceeevvieriieriiienieeiierieeieesee et esereeeeeseaeeseenenes 23
5.2.3 Signals and INEITUPLSeeeeeiieeeiiieiiie et eeee e e sre e e e e e eeaeeenenes 24
5.2.4 Environmental lIMItsccceecieriiiiiiiiiieiiecieee et 24
| o DT (PSSP 31
0.2 COMCEPLS .eveeuiieeiiieesiiieeeitte et ee ettt e ettt e sttt e s bt e e sab e e e st eeeeteeensaeesabteesaseeenaseeesaseeennseesnnseas 31
6.2.1 Scopes Of IAENTIIETS ..eeevvieeiiieeiiieciieeeee e e e s 31
6.2.2 Linkages of identifierscccueriiiiriiiiiieiieeiieee et 32
6.2.3 Name spaces of 1dentifiers........cccevviiieiiiieiieecie e e 34
6.2.4 Storage durations 0f ODJECES.......cecuiieiiiriiiiiieieceeee ettt 34
LT T) o TSRS 36
6.2.6 Representations Of tYPEeScc.eecuieriieriierieeiiesie ettt ettt 43
6.2.7 Compatible type and COMPOSItE tYPE......eevvrrerrreeriieeiieeeieeeieeeeieeeeree e 43
0.3 COMNVETSIONS ...eeieviieerieeiiieeeeiteeeetteeeiteeesseeeasseeeasseeessseaasseessseeasseesssseesssesesssesenssesnnsees 44
6.3.1 Arithmetic OPErands..........cccueeruieeiierieiiieiie ettt ettt et e e ereeebeeaeeeeseenes 44
6.3.1.6 COMPIEX LYPES .ottt ettt ettt et s nae e 46
6.3.1.7 Real and COMPIEXccveeeuiieiieiiieiiecie ettt b e e ssae e 46
6.3.2 Other OPerands........cccevueeieriieriiiiiiieieeert ettt 48
6.4 LexXical EICMENLScoociiiiiiieiieiiieeiieiee ettt ettt ete et e e et e e saaeesseensaeensaens 49
0.4.1 KEYWOTAS ..ottt ettt ettt et eaes 50
0.4.2 TAENTIFIETS ...ecuviiiiiiiieie ettt et e e et e e e sneeesbeeeeas 50
6.4.3 Universal character NAMEScccvviieiiieeiiie et 51
6.4.4 CONSLANTS.viieiiiieiiieesieeeieeerte e et e et e e e tteesteeesbeeeenbeeesnseeesseeensseessseesnneens 51
6.4.5 SN IEIalS...ccveiiiiiiiiiiiiee e 55
6.4.6 PUNCIUALOTS ...oiiiiiiieeiie ettt ettt e et e et e e s e e et e e sebeeesnbeeennseesnseeenneeas 57
6.4.7 HeEAdCT NAIMES.......ccciviieiiieeeiieeciee et et eette e e iee e st eeebeeeebeeeeabeeesaseeenaseeennseas 57
6.4.8 Preprocessing NUMDETSccveevieriieiieenieeieenereeireesereeseesreeseessseeseessseenses 57
0.4.9 COMIMENTSoeiiiiiiiiieeeiieeeeeiee e e esteeeeetreeeeeateeeeessaeeeessasaeeesesssseeeensseeeeenssens 58
0.5 EXPIESSIONS ...uviiiiiieiieiiieitieeteesiteeteestteeaeesteeebeesseaesseenseessseesseeasseeseesssaesseessseenseensseens 58
6.5.1 Primary EXPreSSIONS.cceeruiertieriieitierteenteeeteesieeeteesteeeteesieeeseesaseeseesneeenses 61
6.5.2 POSHIX OPEIALOTS ..eecuvieieiiiieeiieeeitee ettt aee et e e aee e snbeeennbeeenns 61
6.5.3 UNATY OPETATOTS ..couviiiiiiiieiieeieeeie ettt ettt st et eee 64
T I A O T A o) o 1) 22110 RPN 66

i

10

15

20

25

30

35

40

45

Contents

6.5.5 MultiplicatiVe OPEIAtOTS.c.uieruieeiieiieeiieriieeiteete et e eete et e e aeeebeeaeeenseenes 67
6.5.6 AdAItIVE OPETALOTS ...eeeeieiieeiiieeiieeeiieeeiteeeteeeeteeesteeeebeeessbeeesaseeesnseesnsseesnseas 67
6.5.7 Bitwise Shift OPETatorsc.eeviiiiiiiiiiiiiece et 68
6.5.8 Relational OPETatorSc.ueiecuiieeiiieeiieeeieeeeee e eee e eee e eree e e e aee e sbeeeenbeeenens 69
6.5.9 EQUAlity OPETALOIScuiiiiieiieetieeie ettt ettt ettt et see et seee e esaeeenbeenenas 69
6.5.15 Conditional OPETALOTeeeieiieeiiieeciieecieeeetee et e et e e e e e e eaeeeeaeeesseeenenas 69
6.5.16 ASSIZNMENt OPETALOTS ...uveeeiieniieeiiieriieeieeriieetee e esteestaeeaeessreeseessseenseessseenses 69
6.5.17 COMIMA OPETALOTeeeeieiiieeeiiiieeeeiieeeeeeieeeeeeiteeeeestteeeesaateeesensaeeeennsseeessnnnees 71
6.6 CONSLANE EXPIESSIONS ...vvereiienrierireeiieniieeteeneteeseesteeseessresseessseaseesssesnseessseesseesssessseens 71
6.7 DECIATALIONSconeeieiieiiiiete ettt sttt ettt sb e et beeeaneen 72
6.7.1 Storage-class SPECITIETS.....cccuiiriieriiieiieeiieiie ettt 72
6.7.2 TYPE SPECIIICTS ...ueieiiie ettt ettt et e s e e e e saaeeeaaeeenaeas 72
6.7.3 Type QUALITIETSeeiieiiieiieie ettt et et 75
6.7.4 FUNCHON SPECITICTS....eeeiiiieeiieeciiecciee ettt ettt e e e e saeeeareeeeaeas 80
0.7.5 DECLATALOTS ..ottt sttt 81
6.7.6 TYPE NAIMES ...eeeeeniiiieeeeiiieeeeeiiee e ettt e e et e e e et eeeessaeeeessaabaeesesnsseeeesnsaeeesnnnees 87
6.7.7 Type defINItIONSeevuiieiieiiieitieeie ettt ettt saae b 87
6.7.8 INIHANZATION ...eouiiiiiiiiii et 88
6.8 Statements and BIOCKS.coiiriiiiiiiiiiiiee e 90
6.8.1 Labeled Statements...........coouiiiiiiiiiiieiiieeeee e 91
6.8.2 Compound StAtEMENLcccuieriieeiieriieeiieeie ettt et ste et ae b seee e 92
6.8.3 Expression and null statements...........ccccveerciieeriieeiiiieeniie e 92
6.8.4 Selection StAtCIMENLS.cc.eevuieiirieriieieete sttt sttt 92
6.8.5 Iteration StateMENtS........ccueeiuiiiiiiiiiiie et 93
6.8.6. JUMP STALEIMENLSeeiiiiiiiiiieiieeie e s 94
6.9 External definitions.cocueiieiiiiiiiieie et 95
6.9.1 Function defiNitioNSceeiuiiieiiiieeiieeeiieeeiee et e e e e e e eereeeearee e 95
6.9.2 External object definitionS..........cceeviiiiiieiiieiiiecieeeeeie e 97
6.10 Preprocessing dIirCCLIVESccuieriieiiieriieiiesiieetee ettt te ettt e st eeste et e sateebeesseeenneen 97
6.10.1 Conditional INCIUSION........cocuiiiiirieiiiieeiiet e 97
6.10.2 Source file INCIUSIONceeeviiiiiiieciie e e 98
6.10.3 MaCrO 1ePlaCEMENLooouiieiiieiieeiiecie et ettt eebeesaeeesreenes 99
6.10.4 LiNe CONIOL.....cciiiiiiiiiiiie et eebe e e e e 105
6.10.5 EITOT QIT@CEIVEeeutieiiiitieieeiteeteee ettt sttt 105
6.10.6 Pragma dir€CtIVEcevuiiiiiieiiieiieeie ettt ettt et 105
6.10.7 NUIL AITECTIVE ..eveeiieniieiieeiieie ettt eaeas 105
6.10.8 Predefined Macro NAMES.........ccveeevuiieeiiiieeiieeeieeeeree et eeree e e e 106
6.10.9 Pragma OPETatOr......c.ueeriieeeiieesiieeeieeeeteeesteeesieeesebeeeseaeeensaeeensseesnseesnsneeanns 106
6.11 Future [anguage dir€CtioNS.c.eeiuieriiieriieiiesiie ettt ettt 106
0.11.1 FIOAtING tYPCS..cuviieriiriieeiieitieeieeiteeeteestteeteeteeseaeebeessaeebeeseneenseesssesnseessseenns 107
6.11.2 Linkages of identifierscccceeriieiiiiiiiiiiieeiieee e 107
6.11.3 EXternal Names.........cccueevuiiiiiiiiiiiiieieceeeeeteee ettt e 107
6.11.4 Character €SCAPE SEQUEIICEScveeurermrerrerreritenreetenitenteeeeestesreetesaeesseenseennes 107
6.11.5 Storage-class SPECITIETS.....cccuvieriieeriieeiiie ettt e 107
6.11.6 Function deClarators...........ccuveeeiieeiiieeeiieeciee et e eree e ve e eeree e ee e 107
6.11.7 Function definitionscoocueiiiiiiiiiiiniiiieceeeeeee e 108
6.11.8 Pragma dir@CtiVES........cevuieiiieiiiieiieiie ettt ettt st 108
6.11.9 Predefined macro NAMES..........cccueruieriieierieieeiesieete et 108

il

10

15

20

25

30

35

40

45

Contents

| 331) 1 OO PRUPSUSSTRPR 109
Tl INEEOAUCTION. ¢ttt ettt et st e ebe e et e b e st e e bt e eabeeee 109
7.1.1 Definitions Of teIMSeeoviiiiriiiiieieeiieieeese et 111
7.1.2 Standard headers..........cooueiiiiiiiiiiieie e 111
7.1.3 Reserved 1dentifierscoceevuiiieriiiierienieeieeeicee e 112
7.1.4 Use of library fUnCtioNScccuveeviieeiiieeieeeieeeee e e 112
7.2 DiIagnostiCs <aSSEIT . N> ittt 113
7.2.1 Program dia@nOSTICS........ceeruieruiieiieniieeiieeiieetee sttt ettt et 113
7.3 Complex arithmetic <COMPLEX . N> ittt 114
7.3.5 Trigonometric fUNCLIONScceieiuieriiieiiieie et e 115
7.3.6 Hyperbolic fUNCHONSccveiiieiiieiiieiieeie ettt 116
7.3.7 Exponential and logarithmic functions............cccceeeuierieniiiiinniiiieeieeee 117
7.3.8 Power and absolute-value functionscoceeeevierieneenienienieeseeeeen 117
7.3.9 Manipulation fUNCHONScooiuiiiiiiiieiie e 118
7.4 Character handling <CELyPEe . N> i 118
7.4.1 Character classification fUNCHONS.........c.eecieriieiiieriieieeie e 118
7.4.2 Character case mapping fUNCHONScceeeeeiireriieeeriieeriieeeieeerreeereeevee e 119
ST =5 § (0] 6 IR = alial s Lo N o USSR 119
7.6 Floating-point environment <fenv . N>ccoooiiiiiiiiieceeeee e 120
7.6.1 The FENV_ACCESS PragmMa.......cccccuiiiiiiiiiiiiiiiiiniiieeiieieie e 122
7.6.2 Floating-point €XCEPLIONSeevierureeiieriieeieenieeeieenieeereesieeereenseesareenseesnseenne 122
7.6.3 ROUNAING......oiiiiiiieiie ettt e et e e eaaee e saaeeesaeeenaeeennes 122
7.6.4 ENVIIONMENT ...otiiiiiiiiiitieieeiiesiteie ettt ettt ettt et st e bt et saeenbeeeesaeas 123
7.7 Characteristics of floating types <float .n>..cccecieiiiiiciiiiieeiieeeeee e, 123
7.8 Format conversion of integer types <inttypes . N> .iiiienieeiieieeeeeee, 124
7.9 Alternate spellings <1S0646 . N> .ioiiiiiiiiieiieeee s 124
7.10 Sizes of integer types <1 Imits N> i e 125
7.11 Localization <10Cale . N> ittt ettt e e 125
7.11.1 Locale CONIOL.....ccuiiiiiiiiiiieiieieeeet et s 127
7.11.2 Numeric formatting convention INQUITYcccveeeeeveeriveesiveesseeessreessneeenns 127
7.12 Mathematics <mMath . N> oo e 127
7.12.1 Treatment of error CONAITIONScccuviiiiiieeciieeciee ettt e aae e 128
7.12.2 The FP_CONTRACT Praga.......ccccueeruirueieminrinienienenieieneinessesessesesseseenennens 130
7.12.3 ClassifiCation MACTOSeeveruieiiriieniieie sttt ettt ettt sre et s 130
7.12.4 Trigonometric fUNCHIONSeeeiviieeiiiieeiieeciie ettt e 131
7.12.6 Exponential and logarithmic functions...........c..cecevvieviinenieniencnienceeeen 132
7.12.7 Power and absolute-value functionscceceeveeriiiiieniiiiiieiceee e 134
7.12.8 Error and gamma fUNCHONScocierieeiiierieeiiienieeieesee ettt seee e 134
7.12.9 Nearest inteZer fUNCHONScevvuiieiiieeeiieeeieeeeee et eesreeesreeenenee e 135
7.12.10 Remainder fUnCONScoeertieiirieieeiecteeee et 136
7.12.11 Manipulation fUNCHONScueeeiiieeiiieeiieeeie e e 137
7.12.12 Maximum, minimum, and positive difference functions...............ccoc...... 138
7.12.13 Floating multiply-addccoeeiiiieiiieeieee e 138
7.12.14 COMPATISON MACTOSeervreurirrrenteentenitenieesteestesseestesieesteesesseesseesesseesseesens 138
7.13 Nonlocal Jumps <SETIMP « N> wiiiiiiiiieiieie et 139
7.13.1 Save calling envIroNmMENtccceeeveerierieeriienieeiee e esiee e ereeseneeseeseee e 139

v

10

15

20

25

30

35

40

45

Contents

7.13.2 Restore calling environmentcceeecveerieeiiienieeieeiieeieesieeereesieeseeesieeens 140
7.14 Signal handling <s31gnal . N> oottt 140
7.14.1 Specify signal handling...........cccoeevieriiiiiiiiiiiiiieeceee e 141
7.14.2 Send SIZNAL......cceiiiiiiiiiiiiiiieeee e e 141
7.15 Variable arguments <StAarg . N> oo 141
7.15.1 Variable argument list aCCESS MACTOSc...erueervirierreenierieneenreeieneenieeeeeeees 142
7.16 Boolean type and values <stdbool . N> i 143
7.17 Common definitions <stddef . N> ..o 143
7.18 Integer types <StAInNtT e N> i 144
7 R T T 011 o4 g 1 1 PSR 145
7.19 Input/output <STAL0 e N> i 145
7.19.1 INtrOAUCTION.ccutiieiiiieeiie ettt eiee ettt e e e e e e e e e etbee e sebeeeeareeesaseeesnseeensseeanns 146
T.19.2 SEFCAIMNS .ttt ettt ettt ettt ettt et sab e e bt e et e st e saneenbeeeas 146
T 1.3 FIlES. ittt ettt ettt ettt et e ae et 148
7.19.4 Operations ON fIlESccuiiiiiiiiieiierieeieee et s 148
7.19.5 File access fUNCLIONSeeiuiiriiiiiiiiiiesiie ettt 149
7.19.6 Formatted input/output fUNCHONScocvieiiiiriieiieiieeie e 151
7.19.7 Character input/output fUNCtIONSccceeeviieeriiieeriie et 155
7.19.8 Direct input/output fUNCHONScc.eeviieriieiiieiieeie e 157
7.19.9 File positioning fUNCHIONScceieriieiiiieeiiie et 157
7.19.10 Error-handling functions............ccceeeiieiiierieeiiienieeiceree e 158
7.20 General Utilities <StALIiD . n> i 158
7.20.1 Numeric conversion funCtionS...........ceccvervueerieeiieenieeiienie et 158
7.20.2 Pseudo-random sequence generation functions............eeceeeveeerieeneesiieeneenne 160
7.20.3 Memory management fUNCHONScccvevevierieeriierieeieeeieeieeeee e eveeieens 160
7.20.4 Communication with the environmentccccueeeeiieeiiieecieecie e 162
7.20.5 Searching and SOTting UHIIHIEScccvverieeiieriieeiieie et 164
7.20.6 Integer arithmetic fUNCLIONS.......cccueeiiiiiiiiieiiieee e 164
7.20.7 Multibyte/wide character conversion functions............ceeceeevveecieeneeesieennnenns 165
7.20.8 Multibyte/wide string conversion functions............cceceeveeeveeenieeneesieenieenne 165
7.21 String handling <string . N> e 165
7.21.1 String function CONVENTIONScccueeruierieerireeiieriieeteenieeeteeieeereenseesseeseenns 165
7.21.2 COPYING fUNCLIONS.eiiiiireeiieeiiieeeiieesteeeeieeesieeessreeessseeessseeessseeessseeessseeanns 165
7.21.3 Concatenation fUNCHIONSccceevuirieriiriirienieeieeterie ettt 166
7.21.4 CompariSOn fUNCHIONScccuvieeriiieeiiieeiieeeiieeeieeeereeeereeesreeesaeeesereeesnseeenne 166
7.21.5 Search fUnCHONS.c..eviiriiriirieieetereee ettt 166
7.21.6 Miscellaneous fUNCLIONScc.eeiiiiiieiiiiiieie e 167
7.22 Type-generic math <tgmath . N> .o 167
7.23 Date and tiMe <t I1Me . N> ..iiiiiiiiieieiieie ettt 169
7.23.1 Components Of tIME.......c.cccvuieriieriieiieiieeriieete et e e esreeeveereeereeseesseeseenns 169
7.23.2 Time manipulation fUnCioNS..........cceeriiiiiiiriiieiierie e 169
7.23.3 Time conversion fUNCHIONScc.eecuerieriirrienientieie et enees 171
7.24 Extended multibyte and wide character utilities <wchar .h>ccccoevvevciveenneennne. 171
7.25 Wide character classification and mapping utilities <wctype.h>ccccvveneennee. 171
7.26 Future lbrary dir€CtiONSccveeiuierieeiieriieeieeiee et esteeeteeteeeaeeseesereeseesneeeseenenas 172
F N 1111 U OUSRRRPPPPR 173

5

10

15

20

25

30

35

40

Contents

Annex D Universal character names for identifiers (normative)cccceeeveeevieeeeieeecveeennee. 175
Annex F IEC 60559 floating-point arithmetic (NOrmative).........ccoceeveeenieeniieenienieenieeieeee. 177
S % o 1T SO PPPRRPRRRTRRO 177

F.5 Binary-decimal CONVETSION.......ccccueieiuiieriiiieeiieeeieeeeieeesieeesreeeseieeesiveeeseaeeeseveeeanee s 179

F.7 ENVITONIMENL ...ttt ettt sttt sttt s 179

F.7.4 CoONStant @XPIESSIONSccuveeerurreerieeeiieeeteeesisreesiseeesseeesseeessseessssesesssessssseenns 179

F.7.5 INTtHAHZATION .c..cotiiieiiiiiieicetee et 179

F.9 Mathematics <math . N> oo 179

F.9.1 Trigonometric fUNCLIONScccvieruieeiiieriieeiieriie et esiee et eseteereeseeeereeseeeenneens 181

F.9.4 Power and absolute value functionscccceeevveeeeiieeciieeeieecee e 182

F.9.9 Maximum, minimum, and positive difference functions...............cceeeuvnneee. 182

Annex G IEC 60559-compatible complex arithmetic (informative)c..cccceevveeieneenennenee. 183
LG 1 o1 OSSP 183

G.5 BINAIY OPEIALOTS...cc.viiuieiiriiiriieteeiteett ettt ettt ettt sttt sbe et st sbe e e et esbeeees 183

G.5.1 MultiplicatiVe OPEIALOTS.....c.ueeivieriieiieeieeriieeteeteeereesieeeteesteeebeensaesseesaneens 183

G.6 Complex arithmetic <COMPLEX . N> .iiiiiiiiiiiiiiieeitece e 184
(G.6.2 Hyperbolic fUNCLIONS.cc.eievieiiiiiieiie ettt ettt ete e e re et sve e 185

(G.6.3 Exponential and logarithmic functions.........c..cccceeverieninniniiniencnicneccee, 187

(G.6.4 Power and absolute-value functionscceceveevierieneenenienieieseeeeen 187

G.7 Type-generic math <tgmath . N> .o 187
Annex H Language independent arithmetic (Informative)ccoceeviieniiniiiiniieniieniceee 189
MSE. Multibyte Support Extensions Rationale...........cccccoecieriieiiiiniiiiiieeiieieceee e 191
MSE.1 MSE Background............ccccuvieeiiiieiiie ettt e en 191
MSE.2 Programming model based on wide charactersccoceveevenienenneniennenn. 193
MSE.3 Parallelism versus IMprovementcc.eccuveeecuieeriieeniireeeieeeeveeesreeeseeeseeveeens 193
MSE.4 Support for invariant ISO/TEC 646ccceeeiieniieiiieieeeeeee et 197
MSE.5 HEAAETS ... 197
MSE.S5.1 SWCRAT e B> ettt e e e e e e aaee e 197

MSE.5.2 WL VP e N et e e et 199

MSE.6 Wide-character classification functions.............cceceeveevenienienenieneeeeeeee 199
MSE.6.1 Locale dependency of 1 swxxx fUnCtions..........ccceceeeecuieeniieeniveeenneennns 199

MSE.6.2 Changed space character handlingccceeeiieniiiieiieenieecee e 199

MSE.7 Extensible classification and mapping functions...........cccecceevveeviienveeninennnne. 200
MSE.8 Generalized multibyte characters...........occvveeeiieeiiieeieece e 200
MSE.9 Streams and fI1ESeeverieriiiiiiie e 201
MSE.9.1 CONVETSION StALEccueeruiieiieriieiiieitieeieesite ettt sttt eseee e 201

MSE.Q.2 Implementation............cccueeiierieeiiieniieeiiesiie et eete et esereeteesereeaeesereenseens 201

MSE.9.3 Byte versus wide-character input/output..........cccceeeveeeiieeeiieeiiieeenieenns 203

MSE.9.4 Text versus binary input/Output...........cceevvereiieriieeiieenieeiienieeieesee e 204

MSE.10 Formatted input/output funCtions...........ceeecueeeriieeeriiieesiie e e eeveeeevee e 205
MSE.10.1 Enhancing existing formatted input/output functionsc..cceceeuueeee. 205

MSE.10.2 Formatted wide-character input/output functionscccceeevveervernns 205

MSE.11 Adding the fwide functionc..cccevieriiiiniiniiiiiinceeeee e 206
MSE.12 Single-byte wide-character conversion functions..........c..cceceeeereeneenieeeennenn 206

vi

5

Contents
MSE.13 Extended CONVETrSION ULIIITIESuuueevee
MSE.13.1 CONVEISION STALE ..ueeeeeeeteeeeeee e e e e et ee e e e e e e e eeeeeeeeaeeeeeeeeeeeeaaaaeeeaeeneees

MSE.13.2 CONVEISION ULLITIES ... e e e e e e e eeeeeeeeeenas
MSE.14 COIUMN WIATN. c.ceeeeiieeee e e et e e e e e e e e e aeens

Vil

10

15

20

25

30

35

Introduction

0. Introduction

This Rationale summarizes the deliberations of INCITS J11 (formerly X3J11 and NCITS J11)
and SC22 WG14, respectively the ANSI Technical Committee and ISO/IEC JTC 1 Working
Group, charged with revising the International Standard for the C programming language; and it
retains much of the text of the Rationale for the original ANSI Standard (ANSI X3.159-1989, the
so-called “C89). This document has been published along with the draft Standard to assist the
process of formal public review.

There have been several changes to the Standard already. C89 was quickly adopted as an
International Standard (ISO/IEC 9899:1990, commonly called “C90”), with changes to clause
and subclause numbering to conform to ISO practices. Since then, there have been two
Technical Corrigenda and one Amendment, AMD1; and those three documents, together with
C90 itself, compose the International Standard, (“C95”). The current C Standard was adopted in
1999 and is called “C99.”

J11 represents a cross-section of the C community in the United States: it consists of about
twenty or thirty members representing hardware manufacturers, vendors of compilers and other
software development tools, software designers, consultants, academics, authors, applications
programmers, and others. WG14’s participants are representatives of national standards bodies
such as AFNOR, ANSI, BSI, DIN and DS. In this Rationale, the unqualified “Committee” refers
to J11 and WG14 working together to create C99.

Upon publication of the new Standard, the primary role of the Committee will be to offer
interpretations of the Standard. It will consider and respond to all correspondence it receives.

The Committee’s overall goal was to develop a clear, consistent, and unambiguous Standard for
the C programming language which codifies the common, existing definition of C and which
promotes the portability of user programs across C language environments.

The original X3J11 charter clearly mandated codifying common existing practice, and the C89
Committee held fast to precedent wherever that was clear and unambiguous. The vast majority of
the language defined by C89 was precisely the same as defined in Appendix A of the first edition
of The C Programming Language by Brian Kernighan and Dennis Ritchie, and as was
implemented in almost all C translators of the time. (That document is hereinafter referred to as
K&R))

K&R was not the only source of “existing practice.” Much work had been done over the years to
improve the C language by addressing its weaknesses, and the C89 Committee formalized
enhancements of proven value which had become part of the various dialects of C. This practice
has continued in the present Committee.

Existing practice, however, has not always been consistent. Various dialects of C have
approached problems in different and sometimes diametrically opposed ways. This divergence
has happened for several reasons. First, K&R, which once served as the language specification
for almost all C translators, is imprecise in some areas (thereby allowing divergent
interpretations), and it does not address some issues (such as a complete specification of a

10

15

20

25

30

35

Introduction

library) important for code portability. Second, as the language has matured over the years,
various extensions have been added in different dialects to address limitations and weaknesses of
the language; but these extensions have not been consistent across dialects.

One of the C89 Committee’s goals was to consider such areas of divergence and to establish a
set of clear, unambiguous rules consistent with the rest of the language. This effort included the
consideration of extensions made in various C dialects, the specification of a complete set of
required library functions, and the development of a complete, correct syntax for C.

Much of the Committee’s work has always been in large part a balancing act. The C89
Committee tried to improve portability while retaining the definition of certain features of C as
machine-dependent, it attempted to incorporate valuable new ideas without disrupting the basic
structure and fabric of the language, and it tried to develop a clear and consistent language
without invalidating existing programs. All of the goals were important and each decision was
weighed in the light of sometimes contradictory requirements in an attempt to reach a workable
compromise.

In specifying a standard language, the C89 Committee used several principles which continue to
guide our deliberations today. The most important of these are:

Existing code is important, existing implementations are not. A large body of C code exists
of considerable commercial value. Every attempt has been made to ensure that the bulk of this
code will be acceptable to any implementation conforming to the Standard. The C89 Committee
did not want to force most programmers to modify their C programs just to have them accepted
by a conforming translator.

On the other hand, no one implementation was held up as the exemplar by which to define C. It
was assumed that all existing implementations must change somewhat to conform to the
Standard.

C code can be portable. Although the C language was originally born with the UNIX operating
system on the PDP-11, it has since been implemented on a wide variety of computers and
operating systems. It has also seen considerable use in cross-compilation of code for embedded
systems to be executed in a free-standing environment. The C89 Committee attempted to
specify the language and the library to be as widely implementable as possible, while
recognizing that a system must meet certain minimum criteria to be considered a viable host or
target for the language.

C code can be non-portable. Although it strove to give programmers the opportunity to write
truly portable programs, the C89 Committee did not want to force programmers into writing
portably, to preclude the use of C as a “high-level assembler”: the ability to write machine-
specific code is one of the strengths of C. It is this principle which largely motivates drawing the
distinction between strictly conforming program and conforming program (§4).

Avoid “quiet changes.” Any change to widespread practice altering the meaning of existing
code causes problems. Changes that cause code to be so ill-formed as to require diagnostic
messages are at least easy to detect. As much as seemed possible consistent with its other goals,

10

15

20

25

30

35

Introduction

the C89 Committee avoided changes that quietly alter one valid program to another with
different semantics, that cause a working program to work differently without notice. In
important places where this principle is violated, both the C89 Rationale and this Rationale point
out a QUIET CHANGE.

A standard is a treaty between implementor and programmer. Some numerical limits were
added to the Standard to give both implementors and programmers a better understanding of
what must be provided by an implementation, of what can be expected and depended upon to
exist. These limits were, and still are, presented as minimum maxima (that is, lower limits placed
on the values of upper limits specified by an implementation) with the understanding that any
implementor is at liberty to provide higher limits than the Standard mandates. Any program that
takes advantage of these more tolerant limits is not strictly conforming, however, since other
implementations are at liberty to enforce the mandated limits.

Keep the spirit of C. The C89 Committee kept as a major goal to preserve the traditional spirit
of C. There are many facets of the spirit of C, but the essence is a community sentiment of the
underlying principles upon which the C language is based. Some of the facets of the spirit of C
can be summarized in phrases like:

» Trust the programmer.

* Don'’t prevent the programmer from doing what needs to be done.
* Keep the language small and simple.

» Provide only one way to do an operation.

* Make it fast, even if it is not guaranteed to be portable.

The last proverb needs a little explanation. The potential for efficient code generation is one of
the most important strengths of C. To help ensure that no code explosion occurs for what
appears to be a very simple operation, many operations are defined to be how the target
machine’s hardware does it rather than by a general abstract rule. An example of this
willingness to live with what the machine does can be seen in the rules that govern the widening
of char objects for use in expressions: whether the values of char objects widen to signed or
unsigned quantities typically depends on which byte operation is more efficient on the target
machine.

One of the goals of the C89 Committee was to avoid interfering with the ability of translators to
generate compact, efficient code. In several cases the C89 Committee introduced features to
improve the possible efficiency of the generated code; for instance, floating-point operations
may be performed in single-precision, rather than double, if both operands are £loat.

At the WG 14 meeting in Tokyo, Japan, in July 1994, the original principles were re-endorsed
and the following new ones were added:

Support international programming. During the initial standardization process, support for
internationalization was something of an afterthought. Now that internationalization has become
an important topic, it should have equal visibility. As a result, all revision proposals shall be
reviewed with regard to their impact on internationalization as well as for other technical merit.

10

15

20

25

30

35

Introduction

Codify existing practice to address evident deficiencies. Only those concepts that have some
prior art should be accepted. (Prior art may come from implementations of languages other than
C.) Unless some proposed new feature addresses an evident deficiency that is actually felt by
more than a few C programmers, no new inventions should be entertained.

Minimize incompatibilities with C90 (ISO/IEC 9899:1990). It should be possible for existing
C implementations to gradually migrate to future conformance, rather than requiring a
replacement of the environment. It should also be possible for the vast majority of existing
conforming programs to run unchanged.

Minimize incompatibilities with C++. The Committee recognizes the need for a clear and
defensible plan for addressing the compatibility issue with C++. The Committee endorses the
principle of maintaining the largest common subset clearly and from the outset. Such a principle
should satisfy the requirement to maximize overlap of the languages while maintaining a
distinction between them and allowing them to evolve separately.

The Committee is content to let C++ be the big and ambitious language. While some features of
C++ may well be embraced, it is not the Committee’s intention that C become C++.

Maintain conceptual simplicity. The Committee prefers an economy of concepts that do the
job. Members should identify the issues and prescribe the minimal amount of machinery that
will solve the problems. The Committee recognizes the importance of being able to describe and
teach new concepts in a straightforward and concise manner.

During the revision process, it was important to consider the following observations:

* Regarding the 11 principles, there is a tradeoff between them—mnone is absolute.
However, the more the Committee deviates from them, the more rationale will be needed
to explain the deviation.

* There had been a very positive reception of the standard from both the user and vendor
communities.

» The standard was not considered to be broken. Rather, the revision was needed to track
emerging and/or changing technologies and internationalization requirements.

* Most users of C view it as a general-purpose high-level language. While higher level
constructs can be added, they should be done so only if they don’t contradict the basic
principles.

* There are a good number of useful suggestions to be found from the public comments
and defect report processing.

Areas to which the Committee looked when revising the C Standard included:

* Incorporate AMDI.
* Incorporate all Technical Corrigenda and Records of Response.

* Current defect reports.

10

15

20

25

30

35

Introduction

 Future directions in current standard.

» Features currently labeled obsolescent.

* Cross-language standards groups work.

* Requirements resulting from JTC 1/SC 2 (Coded Character Sets).

* Requirements resulting from JTC 1/SC 22 WG11 (Binding Techniques).
* The evolution of C++.

* The evolution of other languages, particularly with regard to interlanguage
communication issues.

» Other papers and proposals from member delegations, such as the numerical extensions
Technical Report which was proposed by J11.

* Other comments from the public at large.

* Other prior art.

This Rationale focuses primarily on additions, clarifications, and changes made to the C
language. It is not a rationale for the C language as a whole: the C89 Committee was charged
with codifying an existing language, not designing a new one. No attempt is made in this
Rationale to defend the pre-existing syntax of the language, such as the syntax of declarations or
the binding of operators. The Standard is contrived as carefully as possible to permit a broad
range of implementations, from direct interpreters to highly optimizing compilers with separate
linkers, from ROM-based embedded microcomputers to multi-user multi-processing host
systems. A certain amount of specialized terminology has therefore been chosen to minimize the
bias toward compiler implementations shown in K&R.

This Rationale discusses some language or library features which were not adopted into the
Standard. These are usually features which are popular in some C implementations, so that a
user of those implementations might question why they do not appear in the Standard.

0.1 Organization of the document

This Rationale is organized to parallel the Standard as closely as possible to facilitate finding
relevant discussions. Some subclauses of the Standard are absent from this Rationale: this
indicates that the Committee thought no special comment was necessary. Where a given
discussion touches on several areas, attempts have been made to include cross references within
the text. Such references, unless they specify the Standard or the Rationale, are deliberately
ambiguous.

This document has one appendix called MSE which brings together information on the Multibyte
Support Extensions (MSE) that were added to C90 by AMDI. This is essentially the Rationale
for AMD1; and it was kept largely unchanged because it was thought that it would be clearer to
have the MSE rationale in one place, as opposed to scattered throughout the document.

Just as the Standard proper excludes all examples, footnotes, references, and informative
annexes, this Rationale is not part of the Standard. The C language is defined by the Standard

Introduction

alone. If any part of this Rationale is not in accord with that definition, the Committee would
very much like to be so informed.

Introduction

1. Scope

Introduction

Normative References

2. Normative References

Normative References

10

10

15

20

25

30

35

Terms and Definitions

3. Terms and definitions

The definitions of object, bit, byte, and alignment reflect a strong consensus, reached after
considerable discussion, about the fundamental nature of the memory organization of a C
environment:

» All objects in C must be representable as a contiguous sequence of bytes, each of which
is at least 8 bits wide.

* A char whether signed or unsigned, occupies exactly one byte.

(Thus, for instance, on a machine with 36-bit words, a byte can be defined to consist of 9, 12, 18,
or 36 bits, these numbers being all the exact divisors of 36 which are not less than 8.) These
strictures codify the widespread presumption that any object can be treated as an array of
characters, the size of which is given by the sizeof operator with that object’s type as its
operand.

These definitions do not preclude “holes” in struct objects. Such holes are in fact often
mandated by alignment and packing requirements. The holes simply do not participate in
representing the composite value of an object.

The definition of object does not employ the notion of type. Thus an object has no type in and of
itself. However, since an object may only be designated by an lvalue (see §6.3.2.1), the phrase
“the type of an object” is taken to mean, here and in the Standard, “the type of the lvalue
designating this object,” and “the value of an object” means “the contents of the object
interpreted as a value of the type of the lvalue designating the object.”

The concepts of multibyte character, wide character, universal character, and extended
character have been added to C to support very large character sets (see §5.2.1 and §MSE.1).

The terms unspecified behavior, undefined behavior, and implementation-defined behavior are
used to categorize the result of writing programs whose properties the Standard does not, or
cannot, completely describe. The goal of adopting this categorization is to allow a certain
variety among implementations which permits quality of implementation to be an active force in
the marketplace as well as to allow certain popular extensions, without removing the cachet of
conformance to the Standard. Informative Annex J of the Standard catalogs those behaviors
which fall into one of these three categories.

Unspecified behavior gives the implementor some latitude in translating programs. This latitude
does not extend as far as failing to translate the program, however, because all possible behaviors
are “correct” in the sense that they don’t cause undefined behavior in any implementation.

Undefined behavior gives the implementor license not to catch certain program errors that are
difficult to diagnose. It also identifies areas of possible conforming language extension: the
implementor may augment the language by providing a definition of the officially undefined
behavior.

11

10

15

20

Terms and Definitions

Implementation-defined behavior gives an implementor the freedom to choose the appropriate
approach, but requires that this choice be explained to the user. Behaviors designated as
implementation-defined are generally those in which a user could make meaningful coding
decisions based on the implementation’s definition. Implementors should bear in mind this
criterion when deciding how extensive an implementation definition ought to be. As with
unspecified behavior, simply failing to translate the source containing the implementation-
defined behavior is not an adequate response.

A new feature of C99: While responding to a Defect Report filed against C89, the Committee
came to realize that the term, “implementation-defined,” was sometimes being used in the sense
of “implementation must document” when dealing with locales. The term, “locale-specific
behavior,” already in C89, was then used extensively in C95 to distinguish those properties of
locales which can appear in a strictly conforming program. Because the presence or absence of a
specific locale is, with two exceptions, implementation-defined, some users of the Standard were
confused as to whether locales could be used at all in strictly conforming programs.

A successful call to setlocale has side effects, known informally as “setting the contents of
the current locale,” which can alter the subsequent output of the program. A program whose
output is altered only by such side effects—for example, because the decimal point character has
changed—is still strictly conforming.

A program whose output is affected by the value returned by a call to setlocale might not be
strictly conforming. If the only way in which the result affects the final output is by determining,
directly or indirectly, whether to make another call to setlocale, then the program remains
strictly conforming; but if the result affects the output in some other way, then it does not.

12

10

15

20

25

30

35

Conformance

4. Conformance

The three-fold definition of conformance is used to broaden the population of conforming
programs and distinguish between conforming programs using a single implementation and
portable conforming programs.

A strictly conforming program is another term for a maximally portable program. The goal is to
give the programmer a fighting chance to make powerful C programs that are also highly
portable, without seeming to demean perfectly useful C programs that happen not to be portable,
thus the adverb strictly.

By defining conforming implementations in terms of the programs they accept, the Standard
leaves open the door for a broad class of extensions as part of a conforming implementation. By
defining both conforming hosted and conforming freestanding implementations, the Standard
recognizes the use of C to write such programs as operating systems and ROM-based
applications, as well as more conventional hosted applications. Beyond this two-level scheme,
no additional subsetting is defined for C, since the C89 Committee felt strongly that too many
levels dilutes the effectiveness of a standard.

Conforming program is thus the most tolerant of all categories, since only one conforming
implementation need accept it. The primary limitation on this license is §5.1.1.3.

Diverse parts of the Standard comprise the “treaty” between programmers and implementors
regarding various name spaces: if the programmer follows the rules of the Standard the
implementation will not impose any further restrictions or surprises:

* A strictly conforming program can use only a restricted subset of the identifiers that
begin with underscore (§7.1.3). Identifiers and keywords are distinct (§6.4.1).
Otherwise, programmers can use whatever internal names they wish; a conforming
implementation is guaranteed not to use conflicting names of the form reserved for the
programmer. (Note, however, the class of identifiers which are identified in §7.26 as
possible future library names.)

» The external functions defined in, or called within, a portable program can be named
whatever the programmer wishes, as long as these names are distinct from the external
names defined by the Standard library (§7). External names in a maximally portable
program must be distinct within the first 31 characters (in C89, the first 6 characters
mapped into one case) (see §5.2.4.1 and §6.4.2).

* A maximally portable program cannot, of course, assume any language keywords other
than those defined in the Standard.

» Each function called within a maximally portable program must either be defined within
some source file of the program or else be a function in the Standard library.

One proposal long entertained by the C89 Committee was to mandate that each implementation
have a translation-time switch for turning off extensions and making a pure Standard-conforming
implementation. It was pointed out, however, that virtually every translation-time switch setting
effectively creates a different “implementation,” however close may be the effect of translating

13

10

Conformance

with two different switch settings. Whether an implementor chooses to offer a family of
conforming implementations, or to offer an assortment of non-conforming implementations
along with one that conforms, was not the business of the C89 Committee to mandate. The
Standard therefore confines itself to describing conformance, and merely suggests areas where
extensions will not compromise conformance.

Other proposals rejected more quickly were to provide a validation suite, and to provide the
source code for an acceptable library. Both were recognized to be major undertakings, and both
were seen to compromise the integrity of the Standard by giving concrete examples that might
bear more weight than the Standard itself. The potential legal implications were also a concern.

Standardization of such tools as program consistency checkers and symbolic debuggers lies

outside the mandate of the C89 Committee. However, the C89 Committee took pains to allow
such programs to work with conforming programs and implementations.

14

10

15

20

25

30

35

Environment

5. Environment

Because C has seen widespread use as a cross-compiled cross-compilation language, a clear
distinction must be made between translation and execution environments. The C89
preprocessor, for instance, is permitted to evaluate the expression in a #1i £ directive using the
long integer or unsigned long integer arithmetic native to the translation environment: these
integers must comprise at least 32 bits, but need not match the number of bits in the execution
environment. In C99, this arithmetic must be done in intmax t oruintmax_t, which must
comprise at least 64 bits and must match the execution environment. Other translation time
arithmetic, however, such as type casting and floating-point arithmetic, must more closely model
the execution environment regardless of translation environment.

QUIET CHANGE in C99

Due to the introduction of new types, the preprocessor arithmetic has to be
performed using the semantics of the types intmax t and uintmax_t (defined in
<stdint.h>). This change is important to cross-compilation implementations,
because C89 did not mandate the translation-time arithmetic to have the properties of
the run-time environment, whereas C99 does.

5.1 Conceptual models

The as if principle is invoked repeatedly in this Rationale. The C89 Committee found that
describing various aspects of the C language, library, and environment in terms of concrete
models best serves discussion and presentation. Every attempt has been made to craft the models
so that implementors are constrained only insofar as they must bring about the same result, as if’
they had implemented the presentation model; often enough the clearest model would make for
the worst implementation.

5.1.1 Translation environment
5.1.1.1 Program structure

The terms source file, external linkage, linked, libraries, and executable program all imply a
conventional compiler/linker combination. All of these concepts have shaped the semantics of
C, however, and are inescapable even in an interpreted environment. Thus, while
implementations are not required to support separate compilation and linking with libraries, in
some ways they must behave as if they do.

5.1.1.2 Translation phases

Perhaps the greatest undesirable diversity among pre-C89 implementations can be found in
preprocessing. Admittedly a distinct and primitive language superimposed upon C, the
preprocessing commands accreted over time, with little central direction, and with even less
precision in their documentation. This evolution has resulted in a variety of local features, each
with its ardent adherents: K&R offers little clear basis for choosing one over the other.

15

10

15

20

25

30

35

40

Environment

The consensus of the C89 Committee is that preprocessing should be simple and overt, that it
should sacrifice power for clarity. For instance, the macro invocation £ (a,b) should assuredly
have two actual arguments, even if b expands to ¢, d; and the formal definition of £ must call
for exactly two arguments. Above all, the preprocessing sub-language should be specified
precisely enough to minimize or eliminate dialect formation. To clarify the nature of
preprocessing, the translation from source text to tokens is spelled out as a number of separate
phases. The separate phases need not actually be present in the translator, but the net effect must
be as if they were. The phases need not be performed in a separate preprocessor, although the
definition certainly permits this common practice. Since the preprocessor need not know
anything about the specific properties of the target, a machine-independent implementation is
permissible. The C89 Committee deemed that it was outside the scope of its mandate to require
that the output of the preprocessing phases be available as a separate translator output file.

The phases of translation are spelled out to resolve questions raised about the precedence of
different parses. Can a #define begin a comment? (No.) Is backslash/new-line permitted
within a trigraph? (No.) Must a comment be contained within one #include file? (Yes.) And
so on. The Rationale on preprocessing (§6.10) discusses the reasons for many of the decisions
that shaped the specification of the phases of translation.

A backslash immediately before a newline has long been used to continue string literals, as well
as preprocessing command lines. In the interest of easing machine generation of C, and of
transporting code to machines with restrictive physical line lengths, the C89 Committee
generalized this mechanism to permit any token to be continued by interposing a
backslash/newline sequence.

In translation phase 4, the syntactic category preprocessing-file applies to each included file
separately from the file it is included into. Thus an included file cannot contain, for example,
unbalanced #else or #elif directives.

5.1.1.3 Diagnostics

By mandating some form of diagnostic message for any program containing a syntax error or
constraint violation, the Standard performs two important services. First, it gives teeth to the
concept of erroneous program, since a conforming implementation must distinguish such a
program from a valid one. Second, it severely constrains the nature of extensions permissible to
a conforming implementation.

The Standard says nothing about the nature of the diagnostic message, which could simply be
“syntax error”’, with no hint of where the error occurs. (An implementation must, of course,
describe what translator output constitutes a diagnostic message, so that the user can recognize it
as such.) The C89 Committee ultimately decided that any diagnostic activity beyond this level is
an issue of quality of implementation, and that market forces would encourage more useful
diagnostics. Nevertheless, the C89 Committee felt that at least some significant class of errors
must be diagnosed, and the class specified should be recognizable by all translators.

The Standard does not forbid extensions provided that they do not invalidate strictly conforming
programs, and the translator must allow extensions to be disabled as discussed in Rationale §4.

16

10

15

20

25

30

Environment

Otherwise, extensions to a conforming implementation lie in such realms as defining semantics
for syntax to which no semantics is ascribed by the Standard, or giving meaning to undefined
behavior.

5.1.2 Execution environments

The definition of program startup in the Standard is designed to permit initialization of static
storage by executable code, as well as by data translated into the program image.

5.1.2.1 Freestanding environment

As little as possible is said about freestanding environments, since little is served by constraining
them.

5.1.2.2 Hosted environment

The properties required of a hosted environment are spelled out in a fair amount of detail in order
to give programmers a reasonable chance of writing programs which are portable among such
environments.

5.1.2.2.1 Program startup

The behavior of the arguments to main, and of the interaction of exit, main and atexit
(see §7.20.4.2) has been codified to curb some unwanted variety in the representation of argv
strings, and in the meaning of values returned by main.

The specification of argc and argv as arguments to main recognizes extensive prior practice.
argv[argc] is required to be a null pointer to provide a redundant check for the end of the
list, also on the basis of common practice.

main is the only function that may portably be declared either with zero or two arguments. (The
number of other functions’ arguments must match exactly between invocation and definition.)
This special case simply recognizes the widespread practice of leaving off the arguments to
main when the program does not access the program argument strings. While many
implementations support more than two arguments to main, such practice is neither blessed nor
forbidden by the Standard; a program that defines main with three arguments is not strictly
conforming (see §J.5.1.).

Command line I/O redirection is not mandated by the Standard, as this was deemed to be a
feature of the underlying operating system rather than the C language.

5.1.2.3 Program execution
Because C expressions can contain side effects, issues of sequencing are important in expression

evaluation (see §6.5 and Annex C). Most operators impose no sequencing requirements, but a
few operators impose sequence points upon their evaluation: comma, logical-AND, logical-OR,

17

10

15

20

25

30

35

Environment

and conditional. In the expression (1 =1, a[i] = 0), for example, the side effect (alteration
to storage) specified by i = 1 must be completed before the expression a[i] = 0 is evaluated.

Other sequence points are imposed by statement execution and completion of evaluation of a full
expression (see §6.8). Thus in £n (++a), the incrementation of a must be completed before £n
iscalled. Ini=1; a[i] = 0; the side effect of 1 = 1 must be complete before a[i] =0 is
evaluated.

The notion of agreement has to do with the relationship between the abstract machine defining
the semantics and an actual implementation. An agreement point for some object or class of
objects is a sequence point at which the value of the object(s) in the real implementation must
agree with the value prescribed by the abstract semantics.

For example, compilers that hold variables in registers can sometimes drastically reduce
execution times. In a loop like

sum = 0;
for (i = 0; i < N; ++i)
sum += a[i];

both sum and i might be profitably kept in registers during the execution of the loop. Thus, the
actual memory objects designated by sum and i would not change state during the loop.

Such behavior is, of course, too loose for hardware-oriented applications such as device drivers
and memory-mapped [/O. The following loop looks almost identical to the previous example,
but the specification of volatile ensures that each assignment to *ttyport takes place in
the same sequence, and with the same values, as the abstract machine would have done.

volatile short *ttyport;

/* ... */

for (i = 0; i < N; ++i)
*ttyport = a[i];

Another common optimization is to pre-compute common subexpressions. In this loop:

volatile short *ttyport;
short maskl, mask2;
/* ... */
for (i = 0; i < N; ++i)
*ttyport = a[i] & maskl & mask2;

evaluation of the subexpression maskl & mask2 could be performed prior to the loop in the
real implementation, assuming that neither mask1 nor mask2 appear as an operand of the
address-of (&) operator anywhere in the function. In the abstract machine, of course, this
subexpression is reevaluated at each loop iteration, but the real implementation is not required to
mimic this repetitiveness, because the variables maskl and mask2 are not volatile and the
same results are obtained either way.

18

10

15

20

25

30

35

Environment

The previous example shows that a subexpression can be precomputed in the real
implementation. A question sometimes asked regarding optimization is, “Is the rearrangement
still conforming if the precomputed expression might raise a signal (such as division by zero)?”
Fortunately for optimizers, the answer is “Yes,” because any evaluation that raises a
computational signal has fallen into an undefined behavior (§6.5), for which any action is
allowable.

Behavior is described in terms of an abstract machine to underscore, once again, that the
Standard mandates results as if certain mechanisms are used, without requiring those actual
mechanisms in the implementation. The Standard specifies agreement points at which the value
of an object or class of objects in an implementation must agree with the value ascribed by the
abstract semantics.

Annex C to the Standard lists the sequence points specified in the body of the Standard.

The class of interactive devices is intended to include at least asynchronous terminals, or paired
display screens and keyboards. An implementation may extend the definition to include other
input and output devices, or even network inter-program connections, provided they obey the
Standard’s characterization of interactivity.

5.2 Environmental considerations
5.2.1 Character sets

The C89 Committee ultimately came to remarkable unanimity on the subject of character set
requirements. There was strong sentiment that C should not be tied to ASCII, despite its heritage
and despite the precedent of Ada being defined in terms of ASCII. Rather, an implementation is
required to provide a unique character code for each of the printable graphics used by C, and for
each of the control codes representable by an escape sequence. (No particular graphic
representation for any character is prescribed; thus the common Japanese practice of using the
glyph “¥” for the C character “\” is perfectly legitimate.) Translation and execution
environments may have different character sets, but each must meet this requirement in its own
way. The goal is to ensure that a conforming implementation can translate a C translator written
in C.

For this reason, and for economy of description, source code is described as if it undergoes the
same translation as text that is input by the standard library I/O routines: each line is terminated
by some newline character regardless of its external representation.

With the concept of multibyte characters, “native” characters could be used in string literals and
character constants, but this use was very dependent on the implementation and did not usually
work in heterogenous environments. Also, this did not encompass identifiers.

A new feature of C99: C99 adds the concept of universal character name (UCN) (see §6.4.3) in
order to allow the use of any character in a C source, not just English characters. The primary
goal of the Committee was to enable the use of any “native” character in identifiers, string
literals and character constants, while retaining the portability objective of C.

19

10

15

20

25

30

35

Environment

Both the C and C++ committees studied this situation, and the adopted solution was to introduce
a new notation for UCNSs. Its general forms are \unnnn and \Unnnnnnnn, to designate a given
character according to its short name as described by ISO/IEC 10646. Thus, \unnnn can be
used to designate a Unicode character. This way, programs that must be fully portable may use
virtually any character from any script used in the world and still be portable, provided of course
that if it prints the character, the execution character set has representation for it.

Of course the notation \unnnn, like trigraphs, is not very easy to use in everyday programming;
so there is a mapping that links UCN and multibyte characters to enable source programs to stay
readable by users while maintaining portability. Given the current state of multibyte encodings,
this mapping is specified to be implementation-defined; but an implementation can provide the
users with utility programs that do the conversion from UCNs to “native” multibytes or vice
versa, thus providing a way to exchange source files between implementations using the UCN
notation.

UCN models

Once this was adopted, there was still one problem, how to specify UCNSs in the Standard. Both
the C and C++ committees studied this situation and the available solutions, and drafted three
models:

A. Convert everything to UCNs in basic source characters as soon as possible, that is, in
translation phase 1.

B. Use native encodings where possible, UCNs otherwise.

C. Convert everything to wide characters as soon as possible using an internal encoding that
encompasses the entire source character set and all UCNSs.

Furthermore, in any place where a program could tell which model was being used, the standard
should try to label those corner cases as undefined behavior.

The C++ committee defined its Standard in terms of model A, just because that was the clearest
to specify (used the fewest hypothetical constructs) because the basic source character set is a
well-defined finite set.

The situation is not the same for C given the already existing text for the standard, which allows
multibyte characters to appear almost anywhere (the most notable exception being in identifiers),
and given the more low-level (or “close to the metal”) nature of some uses of the language.

Therefore, the C Committee agreed in general that model B, keeping UCNs and native characters
until as late as possible, is more in the “spirit of C” and, while probably more difficult to specify,
is more able to encompass the existing diversity. The advantage of model B is also that it might
encompass more programs and users’ intents than the two others, particularly if shift states are
significant in the source text as is often the case in East Asia.

In any case, translation phase 1 begins with an implementation-defined mapping; and such
mapping can choose to implement model A or C (but the implementation must document it). As

20

10

15

20

25

30

35

Environment

a by-product, a strictly conforming program cannot rely on the specifics handled differently by
the three models: examples of non-strict conformance include handling of shift states inside
strings and calls like fopen ("\\ubeda\\file.txt","r") and #include
"sys\udefault.h". Shift states are guaranteed to be handled correctly, however, as long as
the implementation performs no mapping at the beginning of phase 1; and the two specific
examples given above can be made much more portable by rewriting these as fopen (" \\"
"ubeda\\file.txt", "r") and #include "sys\\udefault.h".

5.2.1.1 Trigraph sequences

Trigraph sequences were introduced in C89 as alternate spellings of some characters to allow the
implementation of C in character sets which do not provide a sufficient number of non-
alphabetic graphics.

Implementations are required to support these alternate spellings, even if the character set in use
is ASCII, in order to allow transportation of code from systems which must use the trigraphs.
AMDI also added digraphs (see §6.4.6 and §MSE.4).

The C89 Committee faced a serious problem in trying to define a character set for C. Not all of
the character sets in general use have the right number of characters, nor do they support the
graphical symbols that C users expect to see. For instance, many character sets for languages
other than English resemble ASCII except that codes used for graphic characters in ASCII are
instead used for alphabetic characters or diacritical marks. C relies upon a richer set of graphic
characters than most other programming languages, so the representation of programs in
character sets other than ASCII is a greater problem than for most other programming languages.

ISO (the International Organization for Standardization) uses three technical terms to describe
character sets: repertoire, collating sequence, and codeset. The repertoire is the set of distinct
printable characters. The term abstracts the notion of printable character from any particular
representation; the glyphs R, R, R, R, R, R, and R, all represent the same element of the
repertoire, “upper-case-R”, which is distinct from “lower-case-r”. Having decided on the
repertoire to be used (C needs a repertoire of 91 characters plus whitespace), one can then pick a
collating sequence which corresponds to the internal representation in a computer. The
repertoire and collating sequence together form the codeset.

What is needed for C is to determine the necessary repertoire, ignore the collating sequence
altogether (it is of no importance to the language), and then find ways of expressing the
repertoire in a way that should give no problems with currently popular codesets.

C derived its repertoire from the ASCII codeset. Unfortunately, the ASCII repertoire is not a
subset of all other commonly used character sets; and widespread practice in Europe is not to
implement all of ASCII either, but to use some parts of its collating sequence for special national
characters.

The solution is an internationally agreed-upon repertoire in terms of which an international

representation of C can be defined. ISO has defined such a standard, ISO/IEC 646, which
describes an invariant subset of ASCII.

21

10

15

20

25

30

35

Environment

The characters in the ASCII repertoire used by C and absent from the ISO/IEC 646 invariant
repertoire are:

L1 (NI ~"

Given this repertoire, the C89 Committee faced the problem of defining representations for the
absent characters. The obvious idea of defining two-character escape sequences fails because C
uses all the characters which are in the ISO/IEC 646 repertoire, so no single escape character is
available. The best that can be done is to use a trigraph: an escape digraph followed by a
distinguishing character.

?? was selected as the escape digraph because it is not used anywhere else in C except as noted
below; it suggests that something unusual is going on. The third character was chosen with an
eye to graphical similarity to the character being represented.

The sequence ?? cannot occur in a valid pre-C89 program except in strings, character constants,
comments, or header names. The character escape sequence '\?' (see §6.4.4.4) was introduced
to allow two adjacent question marks in such contexts to be represented as ?\ ?, a form distinct
from the escape digraph. The Committee makes no claims that a program written using trigraphs
looks attractive. As a matter of style, it may be wise to surround trigraphs with white space, so
that they stand out better in program text. Some users may wish to define preprocessing macros
for some or all of the trigraph sequences.

QUIET CHANGE IN C89

Programs with character sequences such as ??! in string constants, character
constants, or header names will produce different results in C89-conforming
translators.

5.2.1.2 Multibyte characters

The ““a byte is a character” orientation of C works well for text in Western alphabets, where the
number of characters in the character set is under 256. The fit is rather uncomfortable for
languages such as Japanese and Chinese, where the repertoire of ideograms numbers in the
thousands or tens of thousands. Internally, such character sets can be represented as numeric
codes, and it is merely necessary to choose the appropriate integer type to hold any such
character. Externally, whether in the files manipulated by a program, or in the text of the source
files themselves, a conversion between these large codes and the various byte-oriented media is
necessary.

The support in C of large character sets is based on these principles:

» Multibyte encodings of large character sets are necessary in I/O operations, in source text
comments, in source text string and character literals, and beginning with C99, in native
language identifiers.

* No existing multibyte encoding is mandated in preference to any other; no widespread
existing encoding should be precluded.

22

10

15

20

25

30

35

Environment

* The null character (' \0') may not be used as part of a multibyte encoding, except for
the one-byte null character itself. This allows existing functions which manipulate
strings to work transparently with multibyte sequences.

» Shift encodings (which interpret byte sequences in part on the basis of some state
information) must start out in a known (default) shift state under certain circumstances
such as the start of string literals.

5.2.2 Character display semantics

The Standard defines a number of internal character codes for specifying “format-effecting
actions on display devices,” and provides printable escape sequences for each of them. These
character codes are clearly modeled after ASCII control codes, and the mnemonic letters used to
specify their escape sequences reflect this heritage. Nevertheless, they are internal codes for
specifying the format of a display in an environment-independent manner; they must be written
to a text file to effect formatting on a display device. The Standard states quite clearly that the
external representation of a text file (or data stream) may well differ from the internal form, both
in character codes and number of characters needed to represent a single internal code.

The distinction between internal and external codes most needs emphasis with respect to
new-line. INCITS L2, Codes and Character Sets (and now also ISO/IEC JTC 1/SC2/WGl, 8 Bit
Character Sets), uses the term to refer to an external code used for information interchange
whose display semantics specify a move to the next line. Although ISO/IEC 646 deprecates the
combination of the motion to the next line with a motion to the initial position on the line, the C
Standard uses new-line to designate the end-of-line internal code represented by the escape
sequence '\n'. While this ambiguity is perhaps unfortunate, use of the term in the latter sense
is nearly universal within the C community. But the knowledge that this internal code has
numerous external representations depending upon operating system and medium is equally
widespread.

The alert sequence (' \a') was added by popular demand to replace, for instance, the ASCII
BEL code explicitly coded as '\007'.

Proposals to add '\e' for ASCII ESC (' \033 ') were not adopted because other popular
character sets have no obvious equivalent (see §6.4.4.4.)

The vertical tab sequence (' \v') was added since many existing implementations support it,
and since it is convenient to have a designation within the language for all the defined white

space characters.

The semantics of the motion control escape sequences carefully avoid the Western language
assumptions that printing advances left-to-right and top-to-bottom.

To avoid the issue of whether an implementation conforms if it cannot properly affect vertical
tabs (for instance), the Standard emphasizes that the semantics merely describe intent.

23

10

15

20

25

30

35

Environment

5.2.3 Signals and interrupts

Signals are difficult to specify in a system-independent way. The C89 Committee concluded that
about the only thing a strictly conforming program can do in a signal handler is to assign a value
to avolatile static variable which can be written uninterruptedly and promptly return.
(The header <signal.h> specifies a type sig_atomic_t which can be so written.) Itis
further guaranteed that a signal handler will not corrupt the automatic storage of an instantiation
of any executing function, even if that function is called within the signal handler. No such
guarantees can be extended to library functions, with the explicit exceptions of longjmp
(§7.13.2.1) and signal (§7.14.1.1), since the library functions may be arbitrarily interrelated
and since some of them have profound effect on the environment.

Calls to longjmp are problematic, despite the assurances of §7.13.2.1. The signal could have
occurred during the execution of some library function which was in the process of updating
external state and/or static variables.

A second signal for the same handler could occur before the first is processed, and the Standard
makes no guarantees as to what happens to the second signal.

5.2.4 Environmental limits

The C89 Committee agreed that the Standard must say something about certain capacities and
limitations, but just how to enforce these treaty points was the topic of considerable debate.

5.2.4.1 Translation limits

The Standard requires that an implementation be able to translate and execute some program that
meets each of the stated limits. This criterion was felt to give a useful latitude to the
implementor in meeting these limits. While a deficient implementation could probably contrive
a program that meets this requirement, yet still succeed in being useless, the C89 Committee felt
that such ingenuity would probably require more work than making something useful. The sense
of both the C89 and C99 Committees was that implementors should not construe the translation
limits as the values of hard-wired parameters, but rather as a set of criteria by which an
implementation will be judged.

Some of the limits chosen represent interesting compromises. The goal was to allow reasonably
large portable programs to be written, without placing excessive burdens on reasonably small
implementations, some of which might run on machines with only 64K of memory. In C99, the
minimum amount of memory for the target machine was raised to 512K. In addition, the
Committee recognized that smaller machines rarely serve as a host for a C compiler: programs
for embedded systems or small machines are almost always developed using a cross compiler
running on a personal computer or workstation. This allows for a great increase in some of the
translation limits.

C89’s minimum maximum limit of 257 cases in a switch statement allows coding of lexical

routines which can branch on any character (one of at least 256 values) or on the value EOF.
This has been extended to 1023 cases in C99.

24

10

15

20

25

30

35

Environment

The requirement that a conforming implementation be able to translate and execute at least one
program that reaches each of the stated limits is not meant to excuse the implementation from
doing the best it can to translate and execute other programs. It was deemed infeasible to require
successful translation and execution of a// programs not exceeding those limits. Many of these
limits require resources such as memory that a reasonable implementation might allocate from a
shared pool; so there is no requirement that all the limits be attained simultaneously. Requiring
just one acceptable program that attains each limit is simply meant to ensure conformance with
these requirements.

The C99 Committee reviewed several proposed changes to strengthen or clarify the wording on
conformance, especially with respect to translation limits. The belief was that it is simply not
practical to provide a specification which is strong enough to be useful, but which still allows for
real-world problems such as bugs. The Committee therefore chose to consider the matter a
quality-of-implementation issue, and to leave translation limits in the standard to give guidance.

5.2.4.2 Numerical limits

5.24.2.1 Sizes of integer types <limits.h>

Such a large body of C code has been developed for 8-bit byte machines that the integer sizes in
such environments must be considered normative. The prescribed limits are minima: an
implementation on a machine with 9-bit bytes can be conforming, as can an implementation that
defines int to be the same width as 1long. The negative limits have been chosen to
accommodate one’s-complement or sign-magnitude implementations, as well as the more usual
two’s-complement. The limits for the maxima and minima of unsigned types are specified as
unsigned constants (e.g., 65535u) to avoid surprising widening of expressions involving these
extrema.

The macro CHAR BIT makes available the number of bits in a char object. The C89
Committee saw little utility in adding such macros for other data types.

The names associated with the short int types (SHRT MIN, etc., rather than SHORT MIN,
etc.) reflect prior art rather than obsessive abbreviation on the C89 Committee’s part.

5.2.4.2.2 Characteristics of floating types <float.h>

The characterization of floating-point follows, with minor changes, that of the Fortran
standardization committee. The C89 Committee chose to follow the Fortran model in some part
out of a concern for Fortran-to-C translation, and in large part out of deference to the Fortran
committee’s greater experience with fine points of floating-point usage. Note that the floating-
point model adopted permits all common representations, including sign-magnitude and two’s-
complement, but precludes a logarithmic implementation.

The C89 Committee also endeavored to accommodate the IEEE 754 floating-point standard by

not adopting any constraints on floating-point which were contrary to that standard. IEEE 754 is
now an international standard, IEC 60559; and that is how it is referred to in C99.

25

10

15

20

25

30

35

Environment

The term FLT _MANT DIG stands for “float mantissa digits.” The Standard now uses the more
precise term significand rather than mantissa.

In C99, all values except FLT ROUNDS in <float.h> must be usable as static initializers.

The overflow and/or underflow thresholds may not be the same for all arithmetic operations. For
example, there is at least one machine where the overflow threshold for addition is twice as big
as for multiplication. Another implementation uses a pair of doubles to represent a long
double. In that implementation, the next representable long double value after 1. OL is
1.0L + LDBL_MIN, yet, the difference between those two numbers (LDBL_MIN) is not b,
otherwise known as LDBL EPSILON. Because of anomalies like these, there are few hard
requirements on the <float.h> values. But, the values in <€float.h> should be in terms of
the hardware representation used to store floating-point values in memory, not in terms of the
effective accuracy of operations, nor in terms of registers, and should apply to all operations.
The representation stored in memory may have padding bits and/or bytes that do not contribute
to the value. The padding should not be included in the <€£loat.h> values.

Because of the practical difficulty involved in defining a uniform metric that all vendors would
be willing to follow (just computing the accuracy reliably could be a significant burden) and
because the importance of floating-point accuracy differs greatly among users the standard
allows a great deal of latitude in how an implementation documents the accuracy of the real and
complex floating-point operations and functions.

Here are some ways that an implementation might address the need to define the accuracy:

digits correct

digits wrong

maximum Units in the Last Place (ULPs) error
maximum absolute error

maximum relative error
For complex values, some methods are:

error in terms of both real and imaginary parts

error in terms of Euclidean norm, ||a + ib|| = (a° + b%)"

There are two usages of the term ULP. One is in the context of differences between two
numbers, that is, f(x) differs from F(x) by 3 ULPs. The other is the value of the ULP of a
number, that is, an ULP of the value 1.0 is DBL_EPSILON. For this discussion, we are
interested in the former; the difference between the computed value and the infinitely precise
value.

The error between two floating-point numbers in ULPs depends on the radix and the precision

used in representing the number, but not the exponent. With a decimal radix and 3 digits of
precision, the computed value 0.314e+1 differs from the value 0.31416e+1 by 0.16 ULPs.

26

10

15

20

25

30

35

Environment

If both numbers are scaled by the same power of the radix, for example, 0.314e+49 and
0.31416e+49, they still differ by 0.16 ULPs.

When the two numbers being compared span a power of the radix, the two possible ULP error
calculations differ by a factor of the radix. For a decimal radix and 3 digits of precision, consider
the two values 9.99e2 and 1.01e3. These are the two values adjacent to the value 1.00e3,
a power of the radix, in this number system. If 999 is the correct value and 1010 is the computed
value, the error is 11 ULPs; but, if 1010 is the correct value and 999 is the computed value, then
the error is 1.1 ULPs.

Some math functions such as those that do argument reduction modulo an approximation of &t
have good accuracy for small arguments, but poor accuracy for large arguments. It is not
unusual for an implementation of the trigonometric functions to have zero bits correct in the
computed result for large arguments. For cases like this, an implementation might break the
domain of the function into disjoint regions and specify the accuracy in each region.

If an implementation documents worst case error, there is no requirement that it be the minimum
worst case error. That is, if a vendor believes that the worst case error for a function is around 5
ULPs, they could document it as 7 ULPs to be safe.

The Committee could not agree on upper limits on accuracy that all conforming implementations
must meet, for example, “addition is no worse than 2 ULPs for all implementations.” This is a
quality of implementation issue.

Implementations that conform to IEC 60559 have one half ULP accuracy in round-to-nearest
mode, and one ULP accuracy in the other three rounding modes, for the basic arithmetic
operations and square root. For other floating-point arithmetics, it is a rare implementation that
has worse than one ULP accuracy for the basic arithmetic operations.

The accuracy of decimal-to-binary conversions and format conversions are discussed elsewhere
in the Standard.

For the math library functions, fast, correctly rounded 0.5 ULP accuracy remains a research
problem. Some implementations provide two math libraries, one being faster but less accurate
than the other.

The C99 Committee discussed the idea of allowing the programmer to find out the accuracy of
floating-point operations and math functions during compilation (say, via macros) or during
execution (with a function call), but neither got enough support to warrant the change to the
Standard. The use of macros would require over one hundred symbols to name every math
function, for example, ULP_SINF, ULP_SIN, and ULP_SINL just for the real-valued sin
function. One possible function implementation might be a function that takes the name of the
operation or math function as a string, ulp_err ("sin") for example, that would return a
double such as 3.5 to indicate the worst case error, with —1.0 indicating unknown error. But
such a simple scheme would likely be of very limited use given that so many functions have
accuracies that differ significantly across their domains. Constrained to worst case error across
the entire domain, most implementations would wind up reporting either unknown error or else a

27

10

15

20

25

30

35

Environment

uselessly large error for a very large percentage of functions. This would be useless because
most programs that care about accuracy are written in the first place to try to compensate for
accuracy problems that typically arise when pushing domain boundaries; and implementing
something more useful like the worst case error for a user-specified partition of the domain
would be excessively difficult.

NaNs

C99 does not define the behavior of signaling NaNs, nor does it specify the interpretation of NaN
significands.

The IEC 60559 floating-point standard specifies quiet and signaling NaNs, but these terms can
be applied for some non-IEC 60559 implementations as well. For example, the VAX reserved
operand and the CRAY indefinite qualify as signaling NaNs. In IEC 60559 standard arithmetic,
operations that trigger a signaling NaN argument generally return a quiet NaN result provided no
trap is taken. Full support for signaling NaNs implies restartable traps, such as the optional traps
specified in the IEC 60559 floating-point standard.

The primary utility of quiet NaNs, as stated in IEC 60559, “to handle otherwise intractable
situations, such as providing a default value for 0.0/0.0,” is supported by C99.

Other applications of NaNs may prove useful. Available parts of NaNs have been used to
encode auxiliary information, for example about the NaN’s origin. Signaling NaNs might be
candidates for filling uninitialized storage; and their available parts could distinguish
uninitialized floating objects. IEC 60559 signaling NaNs and trap handlers potentially provide
hooks for maintaining diagnostic information or for implementing special arithmetics.

However, C support for signaling NaNs, or for auxiliary information that could be encoded in
NaNss, is problematic. Trap handling varies widely among implementations. Implementation
mechanisms may trigger signaling NaNs, or fail to, in mysterious ways. The IEC 60559
floating-point standard recommends that NaNs propagate; but it does not require this and not all
implementations do. And the floating-point standard fails to specify the contents of NaNs
through format conversion. Making signaling NaNs predictable imposes optimization
restrictions that anticipated benefits don’t justify. For these reasons this standard does not define
the behavior of signaling NaNs nor specify the interpretation of NaN significands.

A draft version of the NCEG floating-point specification included signaling NaNs. It could
serve as a guide for implementation extensions in support of signaling NaNs.

WG14 web site has a current document that discusses the optional support for signaling NaNs.

Signed Zeros

The committee has been made aware of at least one implementation (VAX and Alpha in VAX

mode) whose floating-point format does not support signed zeros. The hardware representation

that one thinks would represent -0 . 0 is in fact treated as a non-numeric value similar to a NaN.
Therefore, copysign (+0.0,-1.0) returns +0. 0, not the expected -0. 0, on this

28

10

15

20

25

30

Environment

implementation. Some places that mention (or might have) signed zero results and the sign might
be different than you expect:

The complex functions, in particular with branch cuts;

ceil()
conj ()
copysign()
fmod ()
modf ()
fprintf ()
fwprintf ()
nearbyint ()
nextafter ()
nexttoward ()
remainder ()
remquo ()
rint()
round ()
signbit()
strtod()
trunc ()
westod ()

Underflow: In particular: 1dexp (), scalbn (), scalbln().
When C is next revised, the committee should look at adding:
* the minimum denormalized positive floating-point number, b** (eMIN-p)
FLT DEN MIN le-42
DBL DEN MIN le-46
LDBL_DEN MIN 1le-46

* minimum negative integer such that FLT RADIX raised to one less than that power is a
denormalized floating-point number, eMIN-p

FLT DEN MIN EXP
DBL DEN MIN EXP
LDBL DEN MIN EXP
* minimum negative integer such that 10 raised to that power is a denormalized floating-point

number, ceil (logl0 (b** (eMIN-p)))

29

Environment
FLT _DEN MIN 10 EXP
DBL_DEN MIN 10 EXP

LDBL_DEN MIN 10 _EXP

(These macros are defined if and only if denormalized numbers are supported for the given type).

30

10

15

20

25

30

35

Language
6. Language

While more formal methods of language definition were explored, the C89 Committee decided
early on to employ the style of K&R: Backus-Naur Form for the syntax and prose for the
constraints and semantics. Anything more ambitious was considered to be likely to delay the
Standard, and to make it less accessible to its audience.

6.2 Concepts
6.2.1 Scopes of identifiers

C89 separated from the overloaded keywords for storage classes the various concepts of scope,
linkage, name space, and storage duration (see §6.2.2, §6.2.3 and §6.2.4.). This has traditionally
been a major area of confusion.

One source of dispute was whether identifiers with external linkage should have file scope even
when introduced within a block. K&R was vague on this point, and has been interpreted
differently by different pre-C89 implementations. For example, the following fragment would
be valid in the file scope scheme, while invalid in the block scope scheme:

typedef struct data d_struct;

first()
{
extern d_struct func();
/* ... */
}
second ()
{

d_struct n = func();

}

While it was generally agreed that it is poor practice to take advantage of an external declaration
once it had gone out of scope, some argued that a translator had to remember the declaration for
checking anyway, so why not acknowledge this? The compromise adopted was to decree
essentially that block scope rules apply, but that a conforming implementation need not diagnose
a failure to redeclare an external identifier that had gone out of scope (undefined behavior).

QUIET CHANGE IN C89

A program relying on file scope rules may be valid under block scope rules but
behave differently, for instance, if d_struct were defined as type £loat rather
than struct data in the example above.

Although the scope of an identifier in a function prototype begins at its declaration and ends at
the end of that function’s declarator, this scope is ignored by the preprocessor. Thus an identifier
in a prototype having the same name as that of an existing macro is treated as an invocation of
that macro. For example:

31

10

15

20

25

30

Language

##define status 23
void exit(int status) ;

generates an error, since the prototype after preprocessing becomes
void exit(int 23);
Perhaps more surprising is what happens if status is defined
#define status []
Then the resulting prototype is
void exit(int []):;
which is syntactically correct but semantically quite different from the intent.

To protect an implementation’s header prototypes from such misinterpretation, the implementor
must write them to avoid these surprises. Possible solutions include not using identifiers in
prototypes, or using names in the reserved name space (such as __status or _Status).

6.2.2 Linkages of identifiers

The first declaration of an identifier, including implicit declarations before C99, must specify by
the presence or absence of the keyword static whether the identifier has internal or external
linkage. This requirement allows for one-pass compilation in an implementation which must
treat internal linkage items differently from external linkage items. An example of such an
implementation is one which produces intermediate assembler code, and which therefore must
construct names for internal linkage items to circumvent identifier length and/or case restrictions
in the target assembler.

Pre-C89 practice in this area was inconsistent. Some implementations avoided the renaming
problem simply by restricting internal linkage names by the same rules as the ones used for
external linkage. Others have disallowed a static declaration followed later by a defining
instance, even though such constructs are necessary to declare mutually-recursive static
functions. The requirements adopted in C89 called for changes in some existing programs, but
allowed for maximum flexibility.

The definition model to be used for objects with external linkage was a major C89
standardization issue. The basic problem was to decide which declarations of an object define
storage for the object, and which merely reference an existing object. A related problem was
whether multiple definitions of storage are allowed, or only one is acceptable. Pre-C89
implementations exhibit at least four different models, listed here in order of increasing
restrictiveness:

Common Every object declaration with external linkage, regardless of whether the keyword
extern appears in the declaration, creates a definition of storage. When all of the modules are

32

10

15

20

25

Language

combined together, each definition with the same name is located at the same address in
memory. (The name is derived from common storage in Fortran.) This model was the intent of
the original designer of C, Dennis Ritchie.

Relaxed Ref/Def The appearance of the keyword extern in a declaration, regardless of
whether it is used inside or outside of the scope of a function, indicates a pure reference (ref),
which does not define storage. Somewhere in all of the translation units, at least one definition
(def) of the object must exist. An external definition is indicated by an object declaration in file
scope containing no storage class indication. A reference without a corresponding definition is
an error. Some implementations also will not generate a reference for items which are declared
with the extern keyword but are never used in the code. The UNIX operating system C
compiler and linker implement this model, which is recognized as a common extension to the C
language (see §J.5.11). UNIX C programs which take advantage of this model are standard
conforming in their environment, but are not maximally portable (not strictly conforming).

Strict Ref/Def This is the same as the relaxed ref/def model, save that only one definition is
allowed. Again, some implementations may decide not to put out references to items that are not
used. This is the model specified in K&R.

Initialization This model requires an explicit initialization to define storage. All other
declarations are references.

Figure 6.1 demonstrates the differences between the models. The intent is that Figure 6.1 shows
working programs in which the symbol i is neither undefined nor multiply defined.

The Standard model is a combination of features of the strict ref/def model and the initialization
model. As in the strict ref/def model, only a single translation unit contains the definition of a
given object because many environments cannot effectively or efficiently support the
“distributed definition” inherent in the common or relaxed ref/def approaches. However, either
an initialization, or an appropriate declaration without storage class specifier (see §6.9), serves as
the external definition. This composite approach was chosen to accommodate as wide a range of
environments and existing implementations as possible.

33

10

15

Language

Figure 6.1: Comparison of identifier linkage models

Model File 1 File 2
Common extern int i; extern int i;
int main() void second()
{ {
i=1; third(i);
second() }
}
Relaxed Ref/Def int i; int i;
int main() void second()
{ {
i=1; third(i);
second() }
}
Strict Ref/Def int i; extern int i;
int main() void second()
{ {
i=1; third(i);
second(); }
}
Initializer int i = 0; int i;
int main() void second()
{ {
i=1; third(i);
second(); }
}

6.2.3 Name spaces of identifiers

Pre-C89 implementations varied considerably in the number of separate name spaces maintained.
The position adopted in the Standard is to permit as many separate name spaces as can be

distinguished by context, except that all tags (struct, union, and enum) comprise a single
name space.

6.2.4 Storage durations of objects

It was necessary to clarify the effect on automatic storage of jumping into a block that declares
local storage (see §6.8.2.). While many implementations could traditionally allocate the
maximum depth of automatic storage upon entry to a function, the addition to C99 of the
variable length array feature (§6.7.5.2) forces the implementation to allocate some objects when
the declaration is encountered.

A new feature of C99: C89 requires all declarations in a block to occur before any statements.
On the other hand, many languages similar to C (such as Algol 68 and C++) permit declarations
and statements to be mixed in an arbitrary manner. This feature has been found to be useful and
has been added to C99.

34

10

15

20

25

30

35

40

Language

Declarations that initialize variables can contain complex expressions and have arbitrary side-
effects, and it is necessary to define when these take place, particularly when the flow of control
involves arbitrary jumps. There is a simple rule of thumb: the variable declared is created with
an unspecified value when the block is entered, but the initializer is evaluated and the value
placed in the variable when the declaration is reached in the normal course of execution. Thus a
jump forward past a declaration leaves it uninitialized, while a jump backwards will cause it to
be initialized more than once. If the declaration does not initialize the variable, it sets it to an
unspecified value even if this is not the first time the declaration has been reached.

The scope of a variable starts at its declaration. Therefore, although the variable exists as soon
as the block is entered, it cannot be referred to by name until its declaration is reached.

Example:
int j = 42;
{
int i = 0;
loop:

printf ("I = %44, ", 1i);
printf("J1l = %44, ", ++3);

int j = i;

printf("J2 = %4d, ", ++j);
int k;

printf ("K1 = %4d, ", k),

k =1i * 10;

printf ("K2 = %4d, ", k),
if (i % 2 == 0) goto skip;
intm=1i * 5;

skip:
printf ("M = %4d\n", m);
if (++i < 5) goto loop;

}

will output:

I =0, Jg = 43, J2 = 1, K1 = ?222?, K2 = 0, M = 2?22?
I=1, Jgl = 44, J2 = 2, K1 = 77?2, K2 = 10, M= 5
I=2,Jl= 45, J2 = 3, K1 = ????, K2 = 20, M= 5
I=3,Jl= 46, J2 = 4, K1 = ??2??, K2 = 30, M= 15
I=4,Jl= 47, 32 = 5, K1 = ????, K2 = 40, M= 15

where “????” indicates an indeterminate value (and any use of an indeterminate value is
undefined behavior).

These rules have to be modified slightly for variable length arrays. The implementation will not

know how much space is required for the array until its declaration is reached, and so cannot
create it until then. This has two implications for jumps:

35

10

15

20

25

30

35

Language

A jump to a point after the declaration of a VLA is forbidden, because it would be
possible to refer to the VLA without creating it. Such a jump requires a diagnostic.

A jump to a point before the declaration of a VLA destroys the VLA.

A number of other approaches were considered, but there were problems with all of them. In
particular, this choice of rules ensures that VLAs can always be destroyed in the reverse order of
their creation, which is essential if they are placed on the stack.

To effect true reentrancy for functions in the presence of signals raised asynchronously (see
§5.2.3), an implementation must assure that the storage for function return values has automatic
duration. For example, the caller could allocate automatic storage for the return value and
communicate its location to the called function. (The typical case of return registers for small-
sized types conforms to this requirement: the calling convention of the implementation
implicitly communicates the return location to the called function.)

6.2.5 Types

Several new types were added in C89:

void

void¥*

signed char
unsigned char
unsigned short
unsigned long
long double

And new designations for existing types were added:

signed short for short
signed int for int
signed long for long

C99 also adds new types:

_Bool

long long

unsigned long long
float _Imaginary

float _Complex

double Imaginary
double _Complex

long double _Imaginary
long double _Complex

C99 also allows extended integer types (see §7.8, <inttypes.h>, and §7.18, <stdint.h>)
and a boolean type (see §7.16, <stdbool.h>).

36

10

15

20

25

30

35

40

Language

void is used primarily as the typemark for a function that returns no result. It may also be used
as the cast (void) to indicate explicitly that the value of an expression is to be discarded while
retaining the expression’s side effects. Finally, a function prototype list that has no arguments is
written as £ (void), because £ () retains its old meaning that nothing is said about the
arguments. Note that there is no such thing as a “void object.”

A “pointer to void,” void*, is a generic pointer capable of pointing to any object (except for
bit-fields and objects declared with the register storage class and functions) without loss of
information. A pointer to void must have the same representation and alignment as a pointer to
char; the intent of this rule is to allow existing programs that call library functions such as
memcpy and £ree to continue to work. A pointer to void cannot be dereferenced, although
such a pointer can be converted to a normal pointer type which can be dereferenced. Pointers to
other types coerce silently to and from void* in assignments, function prototypes, comparisons,
and conditional expressions, whereas other pointer type clashes are invalid. It is undefined what
will happen if a pointer of some type is converted to void*, and then the void* pointer is
converted to a type with a stricter alignment requirement. Three types of char are specified:
signed, plain, and unsigned. A plain char may be represented as either signed or unsigned
depending upon the implementation, as in prior practice. The type signed char was
introduced in C89 to make available a one-byte signed integer type on those systems which
implement plain char as unsigned char. For reasons of symmetry, the keyword signed is
allowed as part of the type name of other integer types. Two varieties of the integer types are
specified: signed and unsigned. If neither specifier is used, signed is assumed. The only
unsigned type in K&R is unsigned int.

The keyword unsigned is something of a misnomer, suggesting as it does in arithmetic that it
is non-negative but capable of overflow. The semantics of the C type unsigned is that of
modulus, or wrap-around, arithmetic for which overflow has no meaning. The result of an
unsigned arithmetic operation is thus always defined, whereas the result of a signed operation
may be undefined. In practice, on two’s-complement machines, both types often give the same
result for all operators except division, modulus, right shift, and comparisons. Hence there has
been a lack of sensitivity in the C community to the differences between signed and unsigned
arithmetic.

A new feature of C99: C99 adds a new integer data type, long long, as consolidation of prior
art, whose impetus has been three hardware developments. First, disk density and capacity used
to double every 3 years, but after 1989 has quadrupled every 3 years, yielding low-cost,
physically small disks with large capacities. Although a fixed size for file pointers and file
system structures is necessary for efficiency, eventually it is overtaken by disk growth, and limits
need to be expanded. In the 1970s, 16-bit C (for the PDP-11) first represented file information
with 16-bit integers, which were rapidly obsoleted by disk progress. People switched to a 32-bit
file system, first using int[2] constructs which were not only awkward, but also not efficiently
portable to 32-bit hardware.

To solve the problem, the 1long type was added to the language, even though this required C on

the PDP-11 to generate multiple operations to simulate 32-bit arithmetic. Even as 32-bit
minicomputers became available alongside 16-bit systems, people still used int for efficiency,

37

10

15

20

25

30

35

Language

reserving | ong for cases where larger integers were truly needed, since 1ong was noticeably
less efficient on 16-bit systems. Both short and 1ong were added to C, making short
available for 16 bits, | ong for 32 bits, and int as convenient for performance. There was no
desire to lock the numbers 16 or 32 into the language, as there existed C compilers for at least
24- and 36-bit CPUs, but rather to provide names that could be used for 32 bits as needed.

PDP-11 C might have been re-implemented with int as 32-bits, thus avoiding the need for
long; but that would have made people change most uses of int to short or suffer serious
performance degradation on PDP-11s. In addition to the potential impact on source code, the
impact on existing object code and data files would have been worse, even in 1976. By the
1990s, with an immense installed base of software, and with widespread use of dynamic linked
libraries, the impact of changing the size of a common data object in an existing environment is
so high that few people would tolerate it, although it might be acceptable when creating a new
environment. Hence, many vendors, to avoid namespace conflicts, have added a 64-bit integer to
their 32-bit C environments using a new name, of which long long has been the most widely
used.

C99 has therefore adopted 1long long as the name of an integer type with at least 64 bits of
precision. People can and do argue about the particular choice of name, but it has been difficult
to pick a clearly better name early enough, and by now it is fairly common practice, and may be
viewed as one of the least bad choices.

To summarize this part: 32-bit CPUs are coming to need clean 64-bit integers, just as 16-bit
CPUs came to need 32-bit integers, and the need for wider integers happens irrespective of other
CPUs. Thus, 32-bit C has evolved from a common | LP32 model (int, 1long, and pointers are
32 bits) to | LP32LL (I LP32 + 64-bit long long), and this still runs on 32-bit CPUs with
sequences to emulate 64-bit arithmetic.

The memory trend encourages a C programming model in which pointers are enlarged to 64 bits
(called * P64), of which the consensus choice seems to be LP64 (1ong, pointers and 1ong
long are 64 bits; int is 32 bits), with long long in some sense redundant, just as long was
on the 32-bit VAX. It is fairly difficult to mix this object code with the | LP32 model, and so it
is a new environment to which people must port code, but for which they receive noticeable
benefits: they can address large memories, and file pointers automatically are enlarged to 64
bits. There do exist, of course, 32-bit CPUs with more-than-32-bit addressing, although C
environments become much more straightforward on 64-bit CPUs with simple, flat addressing.
In practice, people do not move from | LP32LL to LP64 unless they have no choice or gain
some clear benefit.

If people only consider LP64 in isolation, 1ong is 64 bits, and there seems no need for long
long, just as the VAX 32-bit environment really did not need 1ong. However, this view
ignores the difficulty of getting compilers, linkers, debuggers, libraries, etc., to exist for LP64.
In practice, these programs need to deal with 64-bit integers long before an P64 environment
exists, in order to bootstrap, and later support, all these tools. Put another way, people must:

38

10

15

20

25

30

35

Language

1. Using int[2], upgrade compilers and a minimal set of tools to compile and debug code
that uses long long.

2. Recode the compilers and all of the tools to actually use long long.

This ends up with a set of tools that run as | LP32LL, on existing 32-bit CPUs and new 64-bit
CPUs, and can compile code to either | LP32LL or LP64. This is yet another reason where
long long is important, not for the LP64 model, but for the tools that support that model.

Most 64-bit micros can, and for commercial reasons must, continue to run existing ILP32LL
object programs, alongside any new LP64 programs. For example, database server processes
often desire LP64 to access large memory pools, but the implementers prefer to leave the client
code as ILP32 so that it can run on existing 32-bit CPUs as well, and where P64 provides no
obvious value.

In mixed environments, it is of course very useful for programs to share data structures, and
specifically for 32-bit programs to be able to cleanly describe aligned 64-bit integers, and in fact
for it to be easy to write structure definitions whose size and alignment are identical between

| LP32LL and LP64. This can be straightforwardly done using int and 1long long, just as it
was doable in the 1970s via short and long.

Finally, one more important case occurs, in which people want performance benefits of 64-bit
CPUs, while wishing to maintain source compatibility, but not necessarily binary compatibility,
with related 32-bit CPUs. In embedded control and consumer products, people have little
interest in 64-bit pointers, but they often like 64-bit integer performance for bit manipulation,
memory copies, encryption, and other tasks. They like | LP32LL, but with long long
compiled to use 64-bit registers, rather than being simulated via 32-bit registers. While this is
not binary-compatible with existing | LP32LL binaries, it is source-compatible; and it runs faster
and uses less space than LP64, both of which are important in these markets. It is worth noting
that of the many millions of 64-bit CPUs that exist, a very large majority are actually used in
such applications rather than traditional computer systems.

Thus, there are 3 choices, all of which have been done already, and different customers choose
different combinations:

| LP32LL, compiled 32-bit only, runs on 32- and 64-bit CPUs

* Needs long long to express 64-bit integers without breaking existing source and object
code badly.

LP64, runs on 64-bit CPU

* Does not need long long in isolation, but needed its earlier | LP32LL tools to have
long long fo