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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) form the specialised system for worldwide standardization. National bodies
that are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organizations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work.

International Standards are drafted in accordance with the rules in the ISO/IEC Directives,
Part 2 [1].

In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are
circulated to national bodies for voting. Publication as an International Standard requires approval
by at least 75% of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. ISO or IEC shall not be held responsible for identifying any or all such
patent rights.

International Standard ISO/IEC 10967-1 was prepared by Joint Technical Committee ISO/TEC
JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments
and system software interfaces.

This second edition cancels and replaces the first edition (ISO/IEC 10967-1:1994), which has
been technically revised.

ISO/IEC 10967 consists of the following parts, under the general title Information technology
— Language independent arithmetic:
— Part 1: Integer and floating point arithmetic
— Part 2: Elementary numerical functions

— Part 3: Complex integer and floating point arithmetic and complex elementary numerical
functions

vii
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Introduction

The aims

Programmers writing programs that perform a significant amount of numeric processing have
often not been certain how a program will perform when run under a given language processor.
Programming language standards have traditionally been somewhat weak in the area of numeric
processing, seldom providing an adequate specification of the properties of arithmetic datatypes,
particularly floating point numbers. Often they do not even require much in the way of documen-
tation of the actual arithmetic datatypes by a conforming language processor.

It is the intent of this part of ISO/TEC 10967 to help to redress these shortcomings, by setting
out precise definitions of integer and floating point datatypes, and requirements for documentation.

It is not claimed that this part of ISO/TEC 10967 will ensure complete certainty of arithmetic
behaviour in all circumstances; the complexity of numeric software and the difficulties of analysing
and proving algorithms are too great for that to be attempted.

The first aim of this part of ISO/IEC 10967 is to enhance the predictability and reliability of
the behaviour of programs performing numeric processing.

The second aim, which helps to support the first, is to help programming language standards
to express the semantics of arithmetic datatypes.

The third aim is to help enhance the portability of programs that perform numeric processing
across a range of different platforms. Improved predictability of behaviour will aid programmers
designing code intended to run on multiple platforms, and will help in predicting what will happen
when such a program is moved from one conforming language processor to another.

Note that this part of ISO/IEC 10967 does not attempt to ensure bit-for-bit identical results
when programs are transferred between language processors, or translated from one language into
another. However, experience shows that diverse numeric environments can yield comparable
results under most circumstances, and that with careful program design significant portability is
actually achievable. In addition, the IEC 60559 (IEEE 754) standard goes a long way to ensure bit-
for-bit identical results, and in this second edition of this part of ISO/IEC 10967 the requirements
are tightened (compared to the first edition) to approach those of IEEE 754.

The content

This part of ISO/IEC 10967 defines the fundamental properties of integer and floating point
datatypes. These properties are presented in terms of a parameterised model. The parameters
allow enough variation in the model so that several integer and floating point datatypes are
covered. In particular, the IEC 60559 (IEEE 754) floating point datatypes, both those of radix 2
and those of radix 10, are covered, as well as integer datatypes, both unlimited and limited, for
the latter both signed or unsigned, are covered. But when a particular set of parameter values is
selected, and all required documentation is supplied, the resulting information should be precise
enough to permit careful numerical analysis.

The requirements of this part of ISO/IEC 10967 cover four areas. First, the programmer must
be given runtime access to the specified operations on values of integer or floating point datatype.
Second, the programmer must be given runtime access to the parameters (and parameter func-
tions) that describe the arithmetic properties of an integer or floating point datatype. Third,
the executing program must be notified when proper results cannot be returned (e.g., when a
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computed result may be out of range or undefined). Fourth, the numeric properties of conforming
platforms must be publicly documented.

This part of ISO/IEC 10967 focuses on the classical integer and floating point datatypes.
Subsequent parts considers common elementary numerical functions (Part 2), complex numerical
numbers and complex elementary numerical functions (Part 3).

The benefits
Adoption and proper use of this part of ISO/TEC 10967 can lead to the following benefits.

For programming language standards it will be possible to define their arithmetic semantics
more precisely without preventing the efficient implementation of the language on a wide range
of machine architectures.

Programmers of numeric software will be able to assess the portability of their programs in
advance. Programmers will be able to trade off program design requirements for portability in
the resulting program.

In programs one will be able to determine (at run time) the crucial numeric properties of
the implementation. They will be able to reject unsuitable implementations, and (possibly) to
correctly characterize the accuracy of their own results. Programs will be able to detect (and
possibly correct for) exceptions in arithmetic processing.

End users will find it easier to determine whether a (properly documented) application program
is likely to execute satisfactorily on their platform. This can be done by comparing the documented
requirements of the program against the documented properties of the platform.

Finally, end users of numeric application packages will be able to rely on the correct execution
of those packages. That is, for correctly programmed algorithms, the results are reliable if and
only if there is no notification.

ix
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Information technology —
Language independent arithmetic —

Part 1: Integer and floating point arithmetic

1 Scope

This part of ISO/TEC 10967 specifies properties of many of the integer and floating point datatypes
available in a variety of programming languages in common use for mathematical and numerical
applications.

It is not the purpose of this part of ISO/IEC 10967 to ensure that an arbitrary numerical
function can be so encoded as to produce acceptable results on all conforming datatypes. Rather,
the goal is to ensure that the properties of the arithmetic on a conforming datatype are made
available to the programmer. Therefore, it is not reasonable to demand that a substantive piece of
software run on every implementation that can claim conformity to this part of ISO/TEC 10967.

An implementor may choose any combination of hardware and software support to meet the
specifications of this part of ISO/IEC 10967. It is the datatypes and operations on values of those
datatypes, of the computing environment as seen by the programmer/user, that does or does not
conform to the specifications.

The term implementation (of this part of ISO/IEC 10967) denotes the total computing en-
vironment pertinent to this part of ISO/IEC 10967, including hardware, language processors,
subroutine libraries, exception handling facilities, other software, and documentation.

1.1 Inclusions

This part of ISO/TEC 10967 provides specifications for properties of integer and floating point
datatypes as well as basic operations on values of these datatypes. Specifications are included
for bounded and unbounded integer datatypes, as well as floating point datatypes. Boundaries
for the occurrence of exceptions and the maximum error allowed are prescribed for each specified
operation. Also the result produced by giving a special value operand, such as an infinity or a
NaN (not-a-number), is prescribed for each specified floating point operation.

This part of ISO/IEC 10967 provides specifications for:
a) The set of required values of the arithmetic datatype.

b) A number of arithmetic operations, including:

1) comparison operations on two operands of the same type,
2) primitive operations (addition, subtraction, etc.) with operands of the same type,

3) operations that access properties of individual values,

1. Scope 1
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4) conversion operations of a value from one arithmetic datatype to another arithmetic
datatype, where at least one of the datatypes is conforming to this part of ISO/IEC
10967, and

5) numerals for all values specified by this part of ISO/TEC 10967 for a conforming
datatype.

This part of ISO/IEC 10967 also provides specifications for:

c)

d)

e)

1.2

The results produced by an included floating point operation when one or more argument
values are IEC 60559 special values.

Program-visible parameters that characterise the values and certain aspects of the operations
of an arithmetic datatype.

Methods for reporting arithmetic exceptions.

Exclusions

This part of ISO/IEC 10967 provides no specifications for:

a)

Arithmetic and comparison operations whose operands are of more than one datatype. This
part of ISO/IEC 10967 neither requires nor excludes the presence of such “mixed operand”
operations.

An interval datatype, or the operations on such data. This part of ISO/TEC 10967 neither
requires nor excludes such data or operations.

A fixed point datatype, or the operations on such data. This part of ISO/IEC 10967 neither
requires nor excludes such data or operations.

A rational datatype, or the operations on such data. This part of ISO/IEC 10967 neither
requires nor excludes such data or operations.

The properties of arithmetic datatypes that are not related to the numerical process, such
as the representation of values on physical media.

The properties of integer and floating point datatypes that properly belong in programming
language standards or other specifications. Examples include:

1) the syntax of numerals and expressions in the programming language, including the
precedence of operators in the programming language,

2) the syntax used for parsed (input) or generated (output) character string forms for
numerals by any specific programming language or library,

3) the presence or absence of automatic datatype coercions, and the consequences of
applying an operation to values of improper type, or to uninitialised data,

4) the rules for assignment, parameter passing, and returning value.

NOTE - See Clause[7]and Annex [D]for a discussion of language standards and language
bindings.

The internal representation of values is beyond the scope of this standard. E.g., the value
of the exponent bias, if any, is not specified, nor available as a parameter specified by this part

Scope
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of ISO/IEC 10967. Internal representations need not be unique, nor is there a requirement for
identifiable fields (for sign, exponent, and so on).

Furthermore, this part of ISO/IEC 10967 does not provide specifications for how the operations
should be implemented or which algorithms are to be used for the various operations.

2 Conformity

It is expected that the provisions of this part of ISO/IEC 10967 will be incorporated by refer-
ence and further defined in other International Standards; specifically in programming language
standards and in binding standards.

A binding standard specifies the correspondence between one or more of the arithmetic data-
types, parameters, and operations specified in this part of ISO/IEC 10967 and the concrete lan-
guage syntax of some programming language. More generally, a binding standard specifies the
correspondence between certain datatypes, parameters, and operations and the elements of some
arbitrary computing entity. A language standard that explicitly provides such binding information
can serve as a binding standard.

When a binding standard for a language exists, an implementation shall be said to conform
to this part of ISO/IEC 10967 if and only if it conforms to the binding standard. In the case
of conflict between a binding standard and this part of ISO/TEC 10967, the specifications of the
binding standard takes precedence.

When a binding standard requires only a subset of the integer or floating point datatypes
provided, an implementation remains free to conform to this part of ISO/IEC 10967 with respect
to other datatypes independently of that binding standard.

When a binding standard requires only a subset of the operations specified in this part of
ISO/TEC 10967, an implementation remains free to conform to this part of ISO/IEC 10967 with
respect to other datatypes and operations, independently of that binding standard.

When no binding standard exists, an implementation conforms to this part of ISO/IEC 10967
if and only if it provides one or more datatypes and operations that together satisfy all the
requirements of Clauses [5| through [§] that are relevant to those datatypes and operations. The
implementation shall then document the binding.

Conformity to this part of ISO/IEC 10967 is always with respect to a specified set of data-
types and set of operations. Under certain circumstances, conformity to IEC 60559 is implied by
conformity to this part of ISO/IEC 10967.

An implementation is free to provide arithmetic datatypes and arithmetic operations that do
not conform to this part of ISO/IEC 10967 or that are beyond the scope of this part of ISO/IEC
10967. The implementation shall not claim conformity to this part of ISO/IEC 10967 for such
datatypes or operations.

An implementation is permitted to have modes of operation that do not conform to this part of
ISO/IEC 10967. A conforming implementation shall specify how to select the modes of operation
that ensure conformity. However, a mode of operation that conforms to this part of ISO/IEC
10967 should be the default mode of operation.

2. Conformity 3
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NOTES

1 Language bindings are essential. Clause [8| requires an implementation to supply a binding
if no binding standard exists. See Annex [C.7] for recommendations on the proper content
of a binding standard, Annex [E] for an example of a conformity statement, and Annex
for suggested language bindings.

2 A complete binding for this part of ISO/IEC 10967 may include (explicitly or by reference)
a binding for IEC 60559 as well. See and Annex

3 It is not possible to conform to this part of ISO/IEC 10967 without specifying to which
datatypes and set of operations, and modes of operation, conformity is claimed.

4 This part of ISO/IEC 10967 requires that certain integer operations are made available for a
conforming integer datatype, and that certain floating point operations are made available
for a conforming floating point datatype.

5 All the operations specified in this part of ISO/IEC 10967 for a datatype must be provided
for a conforming datatype, in a conforming mode of operation for that datatype.

3 Normative references

The following referenced documents are indispensable for the application of this part of ISO/IEC
10967. For dated references, only the edition cited applies. For undated references, the latest
edition of the referenced document (including any amendments) applies.

IEC 60559, Standard for floating-point arithmetic.

4 Symbols and definitions

4.1 Symbols

For the purposes of this document, the following symbols are used.

4.1.1 Operators and relations

All prefix and infix operators have their conventional exact mathematical meaning. In particular,
this document uses:

= and < for logical implication and equivalence

+, —, /, |z|, |=], [x], and round(z) on real values

- for multiplication on real values

<, <, 2, and > between real values

= and # between real as well as special values

max on non-empty upwardly closed sets of real values
min on non-empty downwardly closed sets of real values
U, N, e, ¢ C, C, ¢, =, and # with sets

x for the Cartesian product of sets

— for a mapping between sets

| for the divides relation between integer values

¥, \/x, log,(z) on real values

4 Symbols and definitions
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NOTE 1 - = is used informally, in notes and the rationale.
For x € R, the notation |x| designates the largest integer not greater than z:
lz] € Z and z-1<|z] <z
the notation [z] designates the smallest integer not less than x:
[z] € Z and z<[z]<z+1
and the notation round(x) designates the integer closest to x:
round(z) € Z2 and x — 0.5 <round(z) <z +0.5
where in case x is exactly half-way between two integers, the even integer is the result.
The divides relation (|) on integers tests whether an integer ¢ divides an integer j exactly:
ilj & (i#0andi-n=jfor somen € 2)
NOTE 2 — i|j is true exactly when j/i is defined and j/i € Z.

4.1.2 Sets and intervals

In this document, Z denotes the set of mathematical integers, R denotes the set of real numbers,
and C denotes the set of complex numbers over R. Note that Z C R C C.

The conventional notation for set definition and for set operations are used.
The following notation for intervals is used in this document:

[z, z] designates the interval {y € R | z <y < z},
|z, z] designates the interval {y e R | z < y < z},
[z, z] designates the interval {y € R | z <y < z}, and
|z, z[ designates the interval {y e R | z <y < z}.

NOTE - The notation using a round bracket for an open end of an interval is not used, for
the risk of confusion with the notation for pairs.

4.1.3 Exceptional values

The parts of ISO/IEC 10967 use the following six exceptional values:

a) inexact: the result is rounded and different from the exact result.

b) underflow: the absolute value of the unrounded result is less than the smallest normal
value, and the rounded result may have lost accuracy due to the denormalisation (more
than lost by ordinary rounding if the exponent range was unbounded).

c) overflow: the rounded result (when rounding as if the exponent range was unbounded) is
larger than what can be represented in the result datatype.

d) infinitary: the corresponding mathematical function has a pole at the finite argument
point, or the result is otherwise infinite from finite arguments.

NOTE - infinitary is a generalisation of divide_by_zero.

e) invalid: the operation is undefined but not infinitary, or the result is in C but not in R, for
the given arguments.

4.1.2 Sets and intervals 5
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f) absolute_precision_underflow: indicates that at least one argument is such that the
density of representable values is too low in the neighbourhood of the given argument value
for a numeric result to be considered appropriate to return. This exceptional value is used for
operations that approximate trigonometric functions (Part 2 and Part 3) and for operations
that that approximate complex hyperbolic and exponentiation functions (Part 3).

For the exceptional values, a continuation value may be given in ISO/IEC 10967 in parenthesis
after the exceptional value.

4.1.4 Special values

The following symbols represent special values defined in IEC 60559 and are used in ISO/IEC
10967:

—0, 400, —00, qNalN, and sNalN.

These values are not part of I or F' (see Clauses and for a definition of these datatypes),
but if
hasinf;

(see Clause has the value true, the +00, —oo values are included in the integer datatype
in the implementation that corresponds to I, and if iec_60559p (see Clause has the value
true, all these special values are included in the floating point datatype in the implementation
that corresponds to F.

NOTE - This document uses the above five special values for compatibility with IEC 60559.

In particular, the symbol —0 (in bold) is not the application of (mathematical) unary — to
the value 0, and is a value logically distinct from 0.

The specifications for floating point operations cover the results to be returned by an operation
if given one or more of the IEC 60559 special values —0, 400, —oo, or NaNs as input values.
These specifications apply only to systems which provide and support these special values.

If an implementation is not capable of representing a —0 result or continuation value, 0 shall be
used as the actual result or continuation value. If an implementation is not capable of representing

a prescribed result or continuation value of the IEC 60559 special values 400, —oo, or gNalN, the
actual result or continuation value is binding or implementation defined.

4.1.5 The Boolean datatype

The datatype Boolean consists of the two values true and false.

NOTE - Mathematical relations are true or false (or undefined, if an operand is undefined),
which are abstract conditions, not values in a datatype. In contrast, true and false are values
in Boolean.

4.1.6 Operation specification framework

Each of the operations are specified using a mathematical notation with cases. Each case condition
is intended to be disjoint with the other cases, and encompass all non-special values as well as
some of the special values.

Mathematically, each argument to an operation is a pair of a value and a set of exceptional
values and likewise for the return value. However, in most cases only the first part of this pair is

6 Symbols and definitions
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written out in the specifications. The set of exceptional values returned from an operation is at
least the union of the set of exceptional values from the arguments. Any new exceptional value
that the operation itself gives rise to is given in the form exceptional_value(continuation_value)
indicating that the second (implicit) part of the mathematical return value not only is the union
of the second (implicit) parts of the arguments, but in addition is unioned with the singleton set
of the given exceptional value, or, in the case of underflow or overflow, the set of the given
exceptional value and inexact.

In an implementation, the exceptional values usually do not accompany each argument and
return value, but are instead handled as notifications. See Clause [6]

When not communicating values, notifications shall be internal to each computational thread,
whether threads are explicit or implicit in the program as seen by the programmer.

When communicating values, if the value sending thread has notifications that may be relevant
for a communicated values these notifications should be communicated to a receiving thread along
with values (of any datatype, not just numeric ones). In such instances, the exceptional values
are associated with the value, even though it may pick up notifications in the thread that arose
for a different computation in that thread and were not cleared.

NOTES

1 If notifications were arbitrarily seen in other threads, it would be very difficult to know which
computation (thread) it is that might have caused the notification, and thus may trigger
notification handling when not appropriate in an unrelated thread. Therefore it is essential
that notifications are internal to each computational thread, when not communicating a
value.

2 If notifications (normally recorded in indicators) are trimmed away when communicating a
value (of whatever type) to another thread, that can result in the failure to cause notification
handling when that would have been appropriate. Not communicating notifications between
communicating threads thus goes against a goal set out in the introduction, namely “the
executing program must be notified when proper results cannot be returned (e.g., when a
computed result may be out of range or undefined)”.

However, many existing methods for remote procedure calling, or thread communication,
do not communicate notifications (even when they are recorded in indicators).

4.2 Definitions of terms

For the purposes of this document, the following terms and definitions apply.

4.2.1
accuracy
closeness between the true mathematical result and a computed result

4.2.2
arithmetic datatype
datatype whose non-special values are members of Z, R, or C

4.2.3
continuation value
computational value used as the result of an arithmetic operation when an exception occurs

4.2 Definitions of terms 7
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Continuation values are intended to be used in subsequent arithmetic processing. A continua-
tion value can be a (in the datatype representable) value in R or be an IEC 60559 special value.
(Contrast with exceptional value. See Clause [6.2.1})

4.2.4
denormalisation
inclusion of lead zero digits, with corresponding adjustment of the exponent

Denormalisation is logically done before rounding (otherwise there may be double rounding,
that is rounding done twice with slightly different rounding functions, and that would be noncon-
forming). It may be done in order to get the exponent (just) within representable range.

4.2.5

denormalisation loss

larger than normal rounding error caused by the fact that denormalisation plus rounding may lose
precision more than only rounding would do if the target exponent range was unbounded

See Clause [5.2.4] for a full definition.

4.2.6
error
(in computed value) difference between a computed value and the mathematically correct value

Used in phrases like “rounding error” or “error bound”.

4.2.7
error
(computation gone awry) exception

Used in phrases like “error message” or “error output”. Error and exception are not synonyms
in any other contexts.

4.2.8
exception
inability of an operation to return a suitable finite numeric result from finite arguments

This might arise because no such finite result exists mathematically (infinitary (e.g., at a
pole), invalid (e.g., when the true result is in C but not in R)), or because the mathematical
result cannot, or might not, be representable with sufficient accuracy (underflow, overflow) or
viability (absolute_precision_underflow).

NOTES

1 absolute_precision_underflow is not used in this document, but is used in Part 2 (and
thereby also in Part 3).

2 The term exception is here not used to designate certain methods of handling notifications
that fall under the category ‘change of control flow’. Such methods of notification han-
dling will be referred to as “[programming language name] exception”, when referred to,
particularly in Annex

8 Symbols and definitions
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4.2.9

exceptional value

non-numeric value produced (in the specification model) by an arithmetic operation to indicate
the occurrence of an exception (or the inexactness of the result)

Exceptional values are not used in subsequent arithmetic processing. (See Clause )
NOTES

3 Exceptional values are used as a defining formalism only. With respect to this document,
they do not represent values of any of the datatypes described. There is no requirement
that they be represented or stored in the computing system.

4  Exceptional values are not to be confused with the NaNs and infinities defined in IEC 60559.
Contrast this definition with that of continuation value above.

4.2.10
helper function
function used solely to aid in the expression of a requirement

Helper functions are not accessible to the programmer, and are not required to be part of an
implementation.

4.2.11

implementation (of this document)

total arithmetic environment presented to a programmer, including hardware, language processors,
exception handling facilities, subroutine libraries, other software, and all pertinent documentation

4.2.12
literal
single syntactic entity denoting a constant value

4.2.13
normal value
non-special and non-subnormal value of a floating point datatype F

See Fy in Clause [5.2) for a full definition.

4.2.14

notification

process by which a program (or that program’s user) is informed that an arithmetic exception has
occurred

For example, dividing 2 by 0 results in a notification for infinitary. See Clause [0] for details.

4.2.15
numeral
numeric literal

It may denote a value in Z or R, —0, an infinity, or a NaN.

4.2 Definitions of terms 9



ISO/IEC FDIS 10967-1:2011(E) © ISO/IEC 2011 — All rights reserved

4.2.16
operation
function that is intended to be made directly available to the programmer

As opposed to helper functions or theoretical mathematical functions.

4.2.17

pole

argument, xg, where a given mathematical function, f, is defined, finite, monotone, and continuous
in at least one one path of approach towards xg, and where a:h—g:lo f(x) is infinite

4.2.18
precision
number of digits in the fraction of a floating point number

(See Clause [5.2])

4.2.19

rounding

act of computing a result for an operation that is close to the exact result for that operation, but
that does not have digits beyond what the target datatype can represent

Note that a suitable representable result may not exist (see Clause [5.2.5)).

4.2.20

rounding function

function, rnd : R — X, (where X is a given discrete and unlimited subset of R) that maps each
element of X to itself, and is monotonic non-decreasing

Formally, if x and y are in R,
reX=>rndlz)=cz
r <y = rnd(z) < rnd(y)

Note that if u is between two adjacent values in X, rnd(u) selects one of those adjacent values.

4.2.21

round to nearest

rounding function, rnd, that when u € R is strictly between two adjacent values in X, rnd(u)
selects the one nearest u, but if the adjacent values are equidistant from wu, either value can be
chosen deterministically but in such a way that sign symmetry is preserved (rnd(—u) = —rnd(u))

4.2.22

round toward minus infinity

rounding function, rnd, that when u € R is strictly between two adjacent values in X, rnd(u)
selects the one less than u

10 Symbols and definitions
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4.2.23

round toward plus infinity

rounding function, rnd, that when u € R is strictly between two adjacent values in X, rnd(u)
selects the one greater than u

4.2.24
signature (of a function or operation)
argument and result summary of information about an operation or function

A signature includes the function or operation name; a subset of allowed argument values to
the operation; and a superset of results from the function or operation (including exceptional
values if any), if the argument is in the subset of argument values given in the signature.

The signature addy : I x I — I'U{overflow} states that the operation named add; shall accept
any pair of values in I as input, and when given such input shall return either a single value in I
as its output or the exceptional value overflow possibly accompanied by a continuation value.

A signature for an operation or function does not forbid the operation from accepting a wider
range of arguments, nor does it guarantee that every value in the result range will actually be
returned for some argument(s). An operation given an argument outside the stipulated argument
domain may produce a result outside the stipulated result range.

NOTE 5 - In particular, IEC 60559 special values are not in F', but must be accepted as
arguments if iec_60559r has the value true.

4.2.25

subnormal

denormal (obsolete)

value of a floating point datatype F, or —0, whose absolute value is strictly less than the smallest
positive normal value in F' (fminNp)

(See Fg in Clause [5.2| for a full definition.)

4.2.26

ulp

unit(s) in the last place (for a given real value and given floating point datatype)

for a value x in R, that has a nearest-closer-to-zero normalised value in F extended to arbitrarily
large values, where the normalised value’s exponent is ¢, precision is pg, and the radix is rp: the
unit is r%_p F. for a value x in R, with a nearest-closer-to-zero subnormal value in F', as well as
for —0: the unit is fminDp

This value depends on the exponent, the radix, and the precision used in representing the
numbers in F. (See Clause [5.2])

NOTE 6 — For a value that is exactly equal to an integer power of the radix, the ulp is the
size of the gap between available values on the side away from zero.

4.2 Definitions of terms 11
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5 Specifications for integer and floating point datatypes and op-
erations

An arithmetic datatype consists of a set of values and is accompanied by operations that take
values from an arithmetic datatype and return a value in an arithmetic datatype or a boolean
value. For any particular arithmetic datatype, the set of non-special values is characterised by a
small number of parameters. An exact definition of the value set will be given in terms of these
parameters.

Each operation is given a signature and is further specified by a number of cases. These cases
may refer to mathematical functions, to other operations, and to helper functions (specified in
this document). They also use special values and exceptional values.

Given the datatype’s non-special value set, V', the accompanying arithmetic operations will be
specified as mathematical functions on V union certain special values that may be in the corre-
sponding implementation datatype. These functions typically return values in V' or a special value,
but they may instead nominally return exceptional values (that have no arithmetic datatype, and
are not to be confused with the special values) that are often specified along with a continuation
value. Though nominally listed as a return value, an exceptional value is mathematically really
part of a second component of the result, as explained in clause and is to be handled as a
notification as described in clause [6l

The exceptional values used in this document are underflow, inexact, overflow, infinitary
(generalisation of division-by-zero), and invalid. Parts 2 and 3 will also use the exceptional value
absolute_precision_underflow for the operations that correspond to cyclic functions. For many
cases this document specifies which continuation value to use with a specified exceptional value.
The continuation value is then expressed in parenthesis after the expression of the exceptional
value. For example, infinitary(+o00) expresses that the exceptional value infinitary in that case
is to be accompanied by a continuation value of 400 (unless the binding states differently). In
case the notification is by recording in indicators (see Clause , the continuation value is used
as the actual return value. This part of ISO/IEC 10967 sometimes leaves the continuation value
unspecified, in which case the continuation value is implementation defined.

Whenever an arithmetic operation (as defined in this clause) returns an exceptional value
(mathematically, that a non-empty exceptional value set is unioned with the union of exceptions
from the arguments, as the exceptional values part of the result), notification of this shall occur
as described in Clause [6l

An implementation of a conforming integer or floating point datatype shall include all non-
special values defined for that datatype by this document. However, the implementing datatype
is permitted to include additional values (for example, and in particular, IEC 60559 special val-
ues). This part of ISO/IEC 10967 specifies the behaviour of integer operations when applied to
infinitary values, but not for other such additional values. This part of ISO/IEC 10967 specifies
the behaviour of floating point operations when applied to IEC 60559 special values, but not for
other such additional values.

An implementation of a conforming integer or floating point datatype shall be accompanied by
all the operations specified for that datatype by this part of ISO/IEC 10967. Additional operations
are explicitly permitted.

The datatype Boolean is used for parameters and the results of comparison operations. An
implementation is not required by this document to provide a Boolean datatype, nor is it re-
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quired by this part of ISO/IEC 10967 to provide operations on Boolean values. However, an
implementation shall provide a method of distinguishing true from false as parameter values and
as results of operations.
NOTE - This document requires an implementation to provide methods to access values,
operations, and other facilities. Ideally, these methods are provided by a language or binding
standard, and the implementation merely cites this standard. Only if a binding standard

does not exist, must an individual implementation supply this information on its own. See
Annex [C.7]

5.1 Integer datatypes and operations

The non-special value set, I, for an integer datatype shall be a subset of Z, characterised by the
following parameters:

bounded ;< Boolean (whether the set I is finite)
minint; € I U{—oo} (the smallest integer in I if bounded; = true)
mazxint; € I U {400} (the largest integer in [ if bounded; = true)

In addition, the following parameter characterises one aspect of the special values in the datatype
corresponding to [ in the implementation:

hasinfr€ Boolean (whether the corresponding datatype has —oo and +00)

NOTE 1 — The first edition of this document also specified the parameter moduloy. A binding
may still have a parameter moduloy, and for conformity to this second edition, that parameter
is to have the value false. Part 2 includes specifications for operations add_wrapy, sub_wrapy,
and mul_wrapy. If the parameter modulor has the value true (non-conforming case), that
indicates that the binding binds the basic integer arithmetic operations, for bounded integer
datatypes, to the corresponding wrapping operations instead of the add;, suby, and mul;
operations of this document.

If bounded; is false, the set I shall satisfy
I1=Z

In this case, hasinf; shall be true, the value of minint; shall be —oo, and the value of maxinty
shall be 4o00.

If bounded; is true, then minint; € Z and mazint; € Z and the set I shall satisfy
I ={x € Z| minint; <z < mazints}
and minint; and mazint; shall satisfy
maxinty > 0
and one of:
mininty = 0,
minint; = —mazxinty, or
minint; = —(mazintr + 1)
A bounded integer datatype with minint; < 0 is called signed. A bounded integer datatype
with minint; = 0 is called unsigned. An integer datatype in which bounded; is false is signed,
due to the requirement above.

5.1 Integer datatypes and operations 13
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An implementation may provide more than one integer datatype. A method shall be provided
for a program to obtain the values of the parameters boundedy, hasinf;, minint;, and mazinty,
for each conforming integer datatype provided.

NOTES
2 The value of hasinf; does not affect the values of minint; and mazint; for bounded integer
datatypes.

3 Most traditional programming languages call for bounded integer datatypes. Others allow
or require an integer datatype to have an unbounded range. A few languages permit the
implementation to decide whether an integer datatype will be bounded or unbounded. (See

C.5.1.0.1] for further discussion.)

4 Operations on unbounded integers will not overflow, but may fail due to exhaustion of
resources.

5 Unbounded natural numbers are not covered by this document.

5.1.1 Integer result function

If bounded; is true, the mathematical operations +, —, and - can produce results that lie outside
the set I even when given values in I. In such cases, the computational operations addy, suby,
negr, absy, and mul; shall cause an overflow notification.

In the integer operation specifications below, the handling of overflow is specified via the resulty
helper function:

result; : Z — I U {overflow}
which is defined by:

resultr(x) =z ifeel
= overflow(—o0) ifreZandaoe gl and x <0
= overflow(+00) ifreZandz ¢ and x>0
NOTES

1 For integer operations, this document does not specify continuation values for overflow
when hasinf; = false nor the continuation values for invalid. The binding or implementa-
tion must document the continuation value(s) used for such cases (see Clause[g).

2 For the floating point operations in Clause [5.2] a resultp helper function is used to consis-
tently and succinctly express overflow and denormalisation loss cases.

5.1.2 Integer operations
5.1.2.1 Comparisons

For each provided conforming integer datatype, the following operations shall be provided.
eqr : I x I — Boolean

eqr(x,y) = true if z,y € IU{—00,+00} and z =y
= false if v,y € IU{—00,4+00} and = # y

neqr : I x I — Boolean

neqr(z,y) = true if x,y € IU{—00,4+00} and = # y
= false ifx,y € IU{—00,400} and z =y
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lssy: I x I — Boolean

Issp(z,y) =

true
false
true
true
false
false

leqr : I x I — Boolean

leqr(x,y) =

true
false
true
true
false
false

gtry : I x I — Boolean

gtri(z,y) =

lSSI(ya ‘T)

geqr : I x I — Boolean

geqr(z,y) =

leqr(y, x)

5.1.2.2 Basic arithmetic

ISO/IEC FDIS 10967-1:2011(E)

ifr,yeland z <y
ifz,yeland x>y

if x € IU{—o00} and y = 400

ifr=—occandyel

if v € IU{—00,+00} and y = —00
if =400 and y € I U {400}

ifr,yeland x <y
ifr,yeland x>y

if 2 € I U{—00,400} and y = 400
if x=—00 and y € I U{—o00}
if x € IU{4+o00} and y = —00

ifr=4occandyel

For each provided conforming integer datatype, the following operations shall be provided. If I is

unsigned, it is permissible to omit the operations negy, absy, and signumj.

negr : I — I U {overflow}

negr(x) =

addy : I xI —TU
addy(z,y) =

result;(—x)
+o00
—00
{overflow}

result;(z + y)
—00
—00
+o00

invalid
invalid

subr: I x I — I'U{overflow}

5.1.2 Integer operations

ifxel
if r =—00
if £ =400

ifex,yel

if x € IU{—o00} and y = —o0

ifr=—occandyel

if x € IU {400} and y = 400

ifr=4oc0candyel
if x =400 and y = —o0
if £ = —00 and y = 400
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suby(z,y) = result;(z —y)
= —00
= —00
= +o00
= +00
= invalid
= invalid

mulr : I x I — I'U{overflow}

mulr(z,y) = result;(z - y)

= invalid
= invalid

absy : I — I U {overflow}

absy(x) = result;(|x|)
_= +w

signumy : I — {—1,1}

signumy(x) =1
=1

© ISO/IEC 2011 — All rights reserved

ife,yel

ifx € IU{—o0} and y = 400
ifr=—occandyel

ifx € IU{+o0} and y = —00
ifr=4occandy el

if £ =400 and y = 400

if t = —00 and y = —00

ife,yel

if x =400 and (y =+o0 or (y € I and y > 0))
if x =400 and (y = —oo or (y € [ and y < 0))
ifreland x>0 and y =—o00

ifrel and z <0 and y = —00

if t =—o00 and (y =—oo or (y € [ and y < 0))
if x = —o00 and (y =4oo or (y € I and y > 0))
ifxel and x <0 and y =400
ifxeland x >0 and y = 400

if v € {—00,+00} and y =0

if x =0 and y € {—00,+00}

ifexel
if x € {—o00,+00}

if (zelandz>0)oraz=+4o00
if (xelandz <0)orz=-—00

NOTE 1 — The first edition of this document specified a slightly different operation sign;.
signumy is consistent with signump, which in turn is consistent with the branch cuts for the

complex trigonometric operations (Part 3).

Integer division with floor and its remainder:

quoty : I x I — I U{overflow, infinitary, invalid}

quoty(z,y) = result;([x/y])
= infinitary(+00)
= infinitary(—oo0)
=0
= muly(x,y)
= invalid

ifx,ye landy#0
ifrelandz>0and y=0
ifrelandez<0and y=0
ifxelandye {—o00,+00}

if z € {—00,4+00} and y € I and y # 0
otherwise

NOTE 2 - quot;(minint;,—1), for a bounded signed integer datatype where minint; =
—maxint; — 1, is the only case where this operation will overflow.
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modr : I x I — I'U {invalid}

modr(x,y) =z—(lz/y]-vy) ifx,yelandy#0
=z if x € I and y € {—o00,+00}
= invalid otherwise

NOTES

3 The first edition of this document specified the operations div{, divt, mod$, mod?, rem{,

and rem’. However, aliv}c = quotr, and mod§ = remf = mod;. Further, divt, mody, and
rem! are not recommended to be provided, as their use may give rise to late-discovered
bugs.

4 Part 2 specifies the related operations ratioy, residuey, groupy, and pady.

5.2 Floating point datatypes and operations

A floating point datatype shall have a non-special value set F' that is a finite subset of R, char-

acterized by the following parameters:

rF€Z (the radix of F)

prE€Z (the precision of F)

emaxp € Z (the largest exponent of F')
eminp € 2 (the smallest exponent of F')

denormp € Boolean (whether F' contains non-zero subnormal values)

In addition, the following parameter characterises the special values in the datatype corresponding

to F' in the implementation, and the operations in common for this document and ITEC 60559:

iec_60559r € Boolean (whether the datatype and operations conform to TEC 60559)
NOTES

1 This standard does not advocate any particular representation for floating point values.
However, concepts such as radiz, precision, and exponent are derived from an abstract
model of such values as discussed in Annex

2 The 2011 version of IEC 60559 also uses the parameters emax and emin (written as F,,q,
and Fy;, in the 1989 version). However, those values are respectively one less than the
emaxy and eming parameters of this document. The latter are, however, in line with the
maximum and minimum exponent access variables in several programming languages.

The parameters rr, pr, and denormp shall satisfy:

rE = 2

pr > 2-max{l, [log, (2 )]}
denormp = true

NOTE 3 -~ The first edition of this document only required for pr that pr > 2. The
requirement in this edition allows for the use of any floating point type in widespread use and
is made so that angles in radians are not too degenerate within the first two cycles, plus and
minus, when represented in F'.

Furthermore, rx should be even, and pr should be such that pr > 2 + [log,,.(1000)].

NOTE 4 — The recommendation that pr > 2 + [log,, (1000)], which did not occur in the
first edition of this document, allows for the use of any floating point type in widespread use
and is made so as to allow for a not too coarse angle resolution, for operations in Part 2 and
Part 3, anywhere in the interval [—big_angle_rg, big_angle rr] (big_.angle_rp is a parameter
introduced in Part 2).

5.2 Floating point datatypes and operations
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The parameters eming and emazp shall satisfy:

1 —rlle <eming < —1—pr
pr < emazp < rpf —1

and should satisfy:
0 < emarp +eming < 4

NOTE 5 — The first edition of this document had the wider range requirement 1 — TIQF <
emingp < 2 — pp. The shorter range requirement in this edition of this document allows for
the use of any floating point type in widespread use and is made so as to be able to avoid the
underflow notification, that is, avoid denormalisation loss, in the specifications for the expmI
and Inlpp operations (Part 2) for subnormal arguments (though these operations are still
inexact for non-zero subnormal arguments).

Given specific values for rg, pp, eming, emazxp, and denormpg, the following sets are defined:

Fs={s-m-r5"" | se{-1,1}, mee Z, 0<m <r2F "' e=eminp}

PF

Fyn={s-m-rg " | se{-1,1}, m,e€ Z, TI{-’,FA <m <rpf, eminp < e < emaxp}

PF

Fe={s-m-rp " | se{-1,1}, mec€ Z, r£F71<m<r£F, emazrp < e}

F,={s-m-rpz " | se{-1,1}, mec Z, T£F71<m<T£F,e<eminF}
Fi = FsUFNUFg
Ft=F,UFT

F =FsUFn if denormp = true
= {0} U Fy if denormp = false (non-conforming case, see Annex )
NOTES

6 F'is the outwards unbounded extension of F, including in addition all subnormal values
that would be in F if denormp were true. FT will be used in defining rounding for
operations.

7 F1%is the unbounded extension of F.

The elements of Fy are called normal floating point values. The elements of Fg, as well as the
special value —0, are called subnormal floating point values.

NOTE 8 — The terms normal and subnormal refer to the mathematical values involved, not
to any method of representation.

An implementation may provide more than one floating point datatype.

For each of the parameters rp, pr, eming, emaxp, denormp, and iec_60559r, and for each
conforming floating point datatype provided, a method shall be provided for a program to obtain
the value of the parameter.

NOTE 9 — The conditions placed upon the parameters rg, pg, eming, and emazp are suffi-
cient to guarantee that the abstract model of F' is well-defined and contains its own parameters,
as well as enabling the avoidance of denormalisation loss (in particular for expm1 r and Inlpp
of Part 2). More stringent conditions are needed to produce a computationally useful floating
point datatype. These are design decisions which are beyond the scope of this document. (See

Annex )
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5.2.1 Conformity to IEC 60559

The parameter tec_60559r shall be true only when the datatype corresponding to F' and the
relevant operations completely conform to the requirements of IEC 60559. F' may correspond to
any of the floating point datatypes defined in IEC 60559.

When iec_60559r has the value true, all the facilities required by IEC 60559 shall be provided.
Methods shall be provided for a program to access each such facility. In addition, documentation
shall be provided to describe these methods, and all implementation choices. When iec_60559F
has the value true, all operations and values common to this document and IEC 60559 shall
satisfy the requirements of both standards.

NOTES
1 IEC 60559 is also known as IEEE 754 [34].

2 The IEC 60559 facilities include: values for infinities and NaNs, extended comparisons,
rounding towards positive or negative infinity, an exceptions (including inexact) recorded
in indicators. See annex [B] for more information.

3 IEC 60559, third edition, specifies rp = 2 or rr = 10, as well as values for maximum and
minimum exponents and precision for the floating point datatypes it specifies.

4 If iec_60559r is true, then denormp must also be true. Note that denormp = false is
non-conforming also to this document.

5.2.2 Range and granularity constants

The range and granularity of F' is characterized by the following derived constants:

fmaryp = max F =(1- T;pp) ) ,r;ma:ltp
fminNg = min {z € Fy | z > 0} = reminr—1

fminDp = min {z € Fs | 2 > 0} = reminr—pr

fming =min {z € F | 2 >0} = fminDp if denormp = true

= fminNp if denormp = false (non-conforming case)

PFr

epsilonp = 7“11; (the relative spacing in F* between adjacent values)

For each of the derived constants fmazr, fminNg, fming, and epsilony, and for each conform-
ing floating point datatype provided, a method shall be provided for a program to obtain the
value of the derived constant.

5.2.3 Approximate operations

The operations (specified below) addr, subp, mulr, divp and, upon denormalisation loss, scaler 1
are approximations of exact mathematical operations. They differ from their mathematical coun-
terparts, not only in that they may accept special values as arguments, but also in that

a) they may produce “rounded” results,

b) they may produce a special value (even without notification, or for values in F’ as arguments),
and
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¢) they may produce notifications (with values in F' or special values as continuation values).

The approximate floating point operations are specified as if they were computed in three
stages:

1) compute the exact mathematical answer (if there is any), or determine if an infinitary or
invalid notification is required,

2) round the exact answer (if there is any) to pp digits of precision in the radix rp (the precision
will be less if the rounded answer is subnormal), maybe producing a —0 as the rounded result,
and

3) determine if an underflow, overflow (using 4+00 or —oo as continuation value if available),
or inexact notification is required.

These stages will be modelled by basic and elementary mathematical functions (stage 1) and
two helper functions: nearestp (stage 2) and resultp (stage 3). These helper functions are not
visible to the programmer and are not required to be part of the implementation, just like exact
mathematical functions are not required to be part of an implementation. An actual implemen-
tation need not perform the above stages at all, merely return a result (or produce a notification
and a continuation value) as if it had.

5.2.4 Rounding and rounding constants

Define the helper function er : R — Z such that
erp(xz) = [logrp(|z])] +1 if |z| > fminNp
= eming if |z| < fminNp
Define the helper function up : R — F' such that

UF(JJ) _ T;F(x)*pF

NOTES

1 The value ep(z) is the exponent for values in FT in the immediate neighbourhood of x
(which need not be in FT) When z is in |—rg - fminNp, g - fminNg[, then ep(z) is eming
regardless of x.

2 The value up(z) is the absolute distance between adjacent values in FT in the immediate
neighbourhood of z (which need not be in F). When z is in |—7¢ - fminNp, 75 - fminNpg|,
then up(x) is fminDr regardless of x.

3  When z is on an exponent boundary of Ff, the neighbourhood (mentioned in the previous
two notes) is that which is away from zero.

For floating point operations, rounding is the process of taking an exact result in R and
producing a pp-digit approximation.

NOTE 4 — In Annex A of this document, and in Parts 2 and 3 of ISO/IEC 10967, the “exact
result” may be a prerounding approximation, through approximation helper functions.

The nearestr, downg, and upr helper functions are introduced to model the rounding process:
The floating point helper function

nearestp : R — FT

is the rounding function that rounds to nearest, ties rounded to even last digit. The floating point
helper function

downp : R — FT

20 Specifications for integer and floating point datatypes and operations



© ISO/IEC 2011 — All rights reserved ISO/IEC FDIS 10967—1:2011(E)

is the rounding function that rounds towards negative infinity. The floating point helper function
upp : R — Ft
is the rounding function that rounds towards positive infinity.

If, for some z € R and some i € Z, such that |z| < fminNg, |z -r%| > fminNp, and rounding
function rnd : R — F', the formula

rnd(z - T};) = rnd(x) - Tfp
does not hold, then rnd is said to have a denormalisation loss at x.

NOTE 5 - If nearest, : R — F* is a round to nearest function to F¥, and nearests(z) #
nearestp(x), then nearestp has a denormalisation loss at . Similarly for upr and downp.

5.2.5 Floating point result function

A floating point operation produces a rounded result or a notification. The decision is based on
the computed result (either before or after rounding).

The resultg helper function is introduced to model this decision. resultg is partially imple-
mentation defined. resultr has a signature:
resultp : R x (R — F') — F U {inexact, underflow, overflow}
NOTE 1 — The first input to resultp is the computed result before rounding, and the second

input is the rounding function to be used.

For the overflow cases for the three roundings nearestr, upp, and downg, and for x € R, the
following shall apply:

resultp(x,nearesty) = overflow(4+00) if nearestp(z) > fmazp
resultp(z, nearestp) = overflow(fmaz ) or inexact(fmaz )
if nearestp(r) = fmaxp and x > fmazp

resultp(z, nearestp) = overflow(—oo) if nearestp(z) < —fmazp
resultp(x,nearesty) = overflow(—fmaz ) or inexact(—fmaz )

if nearestp(z) = —fmazy and z < —fmazp
resultp(z, upr) = overflow(+00) if upp(z) > fmazp
resultp(x, upp) = overflow(—fmaz ) if upp(x) < —fmazp
resultp(x, upp) = overflow(—fmaz ) or inexact(—fmax )

if upp(z) = —fmazp and © < —fmazp
resultp(x, downp) = overflow(—oo) if downp(z) < —fmazp
resultp(x,downp) = overflow(fmazy) if downp(z) > fmaxp
resultp(z,downp) = overflow(fmaz ) or inexact(fmazp)

if downp(x) = fmazp and = > fmaxp

For other cases for either of the thee rounding functions as rnd, and for x € [—fmaz p, fmaz ],
the following shall apply:

x ifeeF

= inexact(rnd(z)) if x # rnd(x) and fminNp < |z| < fmazp

= underflow(—0) if denormp = false and —fminNr < x <0

= underflow(0) if denormp = false and 0 < x < fminNp

= underflow(—0) if denormp = true and z < 0 and rnd(x) =0

resultp(x, rnd)
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= inexact(rnd(x)) or underflow (rnd(z))
if denormp = true and x # rnd(x) and |z| < fminNp
and rnd has no denormalisation loss at x
= underflow(rnd(x))
otherwise

NOTES

2 Overflow may be detected before or after rounding. If overflow is detected before rounding,
the bounds for overflow are independent of rounding.

3 The notifications underflow and overflow implies inexact result. When inexact notifica-
tions are supported, and when recording notifications in indicators, recording an underflow
or an overflow notification implies also recording an inexact notification.

4 An implementation is allowed to choose between inexact(rnd(x)) and underflow (rnd(z))
for values of x in the interval |—fminNg, fminNg| where x is not in F' and there is no
denormalisation loss at . However, a subnormal value without an underflow notification
can be chosen only if denormp is true and no denormalisation loss occurs at z.

5 In the non-conforming case denormp = false, neither rounding is heeded in case of
underflow.

An implementation shall document how the choice between inexact(rnd(z)) and underflow (rnd(x))
is made. Different floating point types may have different versions of resultp.

Define the no_resultp_, g+ and no_result2p_, g+ helper functions:
no_resultp_, g : F' — {invalid}

no_resultp_, pr(x)

= invalid(qNalN) if x € FU{—00,—0,+00}
= qNaN if x is a quiet NaN
= invalid(gNaN) if = is a signalling NaN

no_result2p_,pr : F x F — {invalid}

no_result2p_ g (z,y)

= invalid(qNalN) if x,y € FU{—00,—0,+00}

= qNalN if at least one of x and y is a quiet NaN and
neither a signalling NalN

= invalid(gNaN) if x is a signalling NaN or y is a signalling NaN

These helper functions are used to specify both NaN argument handling and to handle non-NaN-
argument cases where invalid(qNalN) is the appropriate result.

NOTE 6 — The handling of special values, if available, other than NaNs, infinities, and —0,
is left unspecified by this document.

5.2.6 Floating point operations
5.2.6.1 Comparisons

For each provided conforming floating point datatype, the following operations shall be provided.

eqr : F x F' — Boolean
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eqr(z,y) = true
= false
= eqF(Ov y)
= eqp(z,0)
= false
= false
= invalid(false)

neqr : F X F' — Boolean

neqr(x,y) = true
= false
= neqr(0,y)
= neqr(z,0)
= true
= true
= invalid(true)

lssp . F' x F — Boolean

Issp(z,y) = true
= false
=lssp(0,y)
= lssp(x,0)
= true
= false
= false
= true
= invalid(false)

leqr : F' x F — Boolean

legr(x,y) = true
= false
= leqF(07 y)
= ZGQF(x’ 0)
= true
= false
= false
= true
= invalid(false)

gtrp : I x F — Boolean

gtre(x,y) = lssp(y, x)

geqr : F' x F' — Boolean

geqr(z,y) = leqr(y, )

5.2.6 Floating point operations
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if x,y € FU{—00,400} and z =y

if x,y € FU{—00,400} and = # y
ifr=—-0and y € FU{—00,—0,400}

if x € FU{—00,400} and y = —0

if x is a quiet NaN and y is not a signalling NaN
if y is a quiet NaN and x is not a signalling NaN
if x is a signalling NaN or y is a signalling NaN

if x,y € FU{—00,400} and z # y

ifx,y € FU{—00,+00} and z =y
ifr=—-0and y € FU{—00,—0,400}
ify=—-0and z € FU{—00,+00}

if x is a quiet NaN and y is not a signalling NaN
if y is a quiet NaN and z is not a signalling NaN
if x is a signalling NaN or y is a signalling NaN

ifr,ye Fand z <y

ifr,ye Fandz >y

ifr=—-0and y € FU{—00,—0,400}
ify=—-0and z € FU{—00,+00}

if 1 = —00 and y € F U {+00}

if x =400 and y € FFU {—00,+00}

if v € FU{—o00} and y = —00

ifx € Fand y = 400

if x is a NaN or y is a NaN

ifr,ye Fand z <y

ifz,y€e Fand x>y
ifx=-0andye FU{—00,—0,+00}
ify=—-0and z € FU{—00,+00}

if #=—00 and y € FU{—00,+00}

if r =400 and y € FU{—o00}

ifx e Fand y=—00

if x € FU{4o00} and y = 400

if  is a NaN or y is a NaN
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isnegzeror : F' — Boolean

isnegzerop(x) = true ifz =-0
= false if v € FU{—00,+00}
= invalid(false) if z is a NaN

istinyr : F — Boolean

istinyp(x) = true if (x € F and |z| < fminNp) or x = —0
= false if (x € F and |z| > fminNp) or x € {—o00,+00}
= invalid(false) if z is a NaN

isnang : F' — Boolean

isnanp(x) = false if v € FU{—00,—0,+00}
= true if x is a quiet NaN
= invalid(true) if z is a signalling NaN

issignang : F' — Boolean

issignanp(z) = false ifx € FU{—00,—0,400}
= false if  is a quiet NaN
= true if x is a signalling NaN

5.2.6.2 Basic arithmetic

For each provided conforming floating point datatype, the following round to nearest operations
shall be provided, and the round towards negative and positive infinity operations should be
provided. For the non-conforming case that denormp = false, the operations below using upg or
downp as rounding shall not be provided.

NOTE 1 - If denormp = false, then any result that is smaller than fminNp is replaced by

zero. This implies that neither rounding direction (nearest, up, down) is heeded, doing “flush

to zero” for would-be subnormal results. Thus if denormp = false, the directed rounding

operations would be unreliable for interval arithmetic, as well as other uses. That is why the

directed rounding operations are not to be provided when denormp = false.

The operations in this clause are specified only for the case that rp = rg, denormp =
denormp:, iec_60559r = iec_60559p. If iec_60559r = false then the operations are required
only if F' = F’'. The addp_,r and subp_, g operations can underflow only if denormp = false
(non-conforming case) or eming — pp < eming — ppr.

negr : FF — F U {-0}

negr(z) =—z ifreFandaz #0
=-0 ifz=20
=0 ifz =-0
= —00 if £ =400
= +o00 if t = —00
= no_result p_,p(x) otherwise

addp_,pr : F x F — F' U {inexact, underflow, overflow }
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addp_pr(z,y) = resultp(x + y,nearestp:)
ifx,ye F

=-0 ifz=—-—0and y=-0

= addp_, g (0,9) if x=—0and y € FU{—00,+00}
= addp_,p/(x,0) if 2 € FU{—00,+00} and y = —0
=400 if x =400 and y € F'U {400}

= +00 if x € I and y = 400

= —00 if t = —o00 and y € FFU {—o0}

= —00 ifx e Fand y=—00

= no_result2p_ g (x,y) otherwise

add} _p  F x F — F'U{inexact, underflow, overflow}
add}_)F, (x,y) =resultp(x+y,upp) ifz,y€eF
= addp_, g (x,y) otherwise
add%_m, : F x F — F'U{-0, inexact, underflow, overflow}
add%_)F,(w, y) =resultp(x +y,downg)if x,y € F and (x +y # 0 or z = 0)
=-0 ifr,ye Fandxz+y=0and x #0
=-0 if addp_pr(z,y) =0 and (x =—0 or y = —0)
= addp_, g (x,y) otherwise

subp_, g : F x F — F' U {inexact, underflow, overflow}

subp_p(x,y) = addp_p(x,negr(y))

sub} _ g F x F — F'U{inexact, underflow, overflow}

sub}_ﬂ,,(x,y) = add}_)F,(a:,negF(y))

subfﬂ_ﬂw : F x F — F'U{-0, inexact, underflow, overflow}

subj , p(2,y) = addy o (z,negr(y))

mulp_ g : F x F'— F'U{-0, inexact, underflow, overflow }

mulp_ g (z,y) = resultp(x -y, nearestp)
ifez,ye Fandz#0and y #0
=0 ifr=0andye Fandy >0
=-0 ifr=0and ((y € Fand y <0) or y =—0)
=-0 ifr=—0andy€Fandy >0
=0 ifx=-0and ((y € F and y <0) or y =—0)
=0 ifre Fand x >0and y =0
=-0 ifre Fand x <0 and y =0
=-0 ifre Fand x >0 and y =—0
=0 ifxe Fand x <0 and y = —0
= 400 if x =400 and ((y € F and y > 0) or y = +00)
= —00 if x =400 and ((y € F and y < 0) or y = —00)
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= —00 if vt = —o00 and ((y € F and y > 0) or y = +00)
=400 if t =—o00 and ((y € F and y < 0) or y = —00)
=400 ifx € Fand >0 and y = 400
= —00 ifx e Fand x <0 and y = 400

I
|
g

ifre Fand x >0 and y = —00
= 400 ifx e Fand x <0 and y = —00
= no_result?p_,p(z,y) otherwise

mul;HF, : F x F — F'U{-0,inexact, underflow, overflow}

mul;_)F,(fL‘,y) = resultp/(x - y,upp) ifz,y€ Fand z#0and y #0
= mulp_p(x,y) otherwise

muliﬂﬁF, : F x F — F'U{-0,inexact, underflow, overflow}
mul%_)F,(fL‘,y) = resultp/(x - y,downg:) if z,y € F and x # 0 and y # 0

= mulp_p(x,y) otherwise

divp_,pr : F x F — F'U{—0, inexact, underflow, overflow, infinitary, invalid}

divp_pr(x,y) = resultp (x/y,nearestp)
ifr,ye Fand x #0 and y # 0
=0 fr=0andye Fandy>0
=-0 ifr=0andy € Fandy<0
=-0 fr=—-0andye Fandy >0
=0 ifr=—0andy € Fand y <0

= infinitary(4+o0 ifxre Fandx >0 and y =0

(+00)

= infinitary(—o0) ifre Fandz <0Oandy=0

= infinitary(—oo) ifre Fand 2z >0andy=-0

= infinitary(+o00) ifre Fandx <0andy=-0

=0 ifx e Fand x >0 and y = 400

=-0 ifre Fand x >0 and y = —o0

=-0 if (x € Fand x <0) or x =—0) and y = 400
= if (x € Fand x <0)or x =—0) and y = —00
= 400 ifr=4occandye€ Fandy >0

= —00 ifr=—occandye€ Fandy >0

= —00 if z =400 and ((y € F and y < 0) or y = —0)
= +00 if v =—o00 and ((y € F and y < 0) or y = —0)

= no_result2p_,pr(x,y) otherwise

div}ﬁF, : F x F = F'U{-0, inexact, underflow, overflow, infinitary, invalid}

div;ﬁF,(a:,y) = resultp/(x/y, uppr) ifx,ye Fand x #0and y # 0
= divp_ g (z,y) otherwise

div%ﬁF, : F x F = F'U{-0, inexact, underflow, overflow, infinitary, invalid}

div%ﬁF,(a:,y) = resultp/(x/y,downg:) if x,y € Fand x # 0 and y # 0
= divp_ g (z,y) otherwise
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absp : ' — F

absp(x) = |z ifeeF
= 400 if x € {—o00,+00}
= no_resultp_,p(x) otherwise

signump - F — F

signump(x) =1 if (x € F and x > 0) or x = 400
=-1 if (x € Fand  <0) or € {—0,—00}
= no_resultp_,p(x) otherwise

residuep : ' x F — F U{-0,invalid}

residuep(z,y) = resultp(x — (round(z/y) - y), nearestr)
if x,y € F and y # 0 and
(x =0 or x — (round(z/y) - y) # 0)

=-0 if x,y € F and y # 0 and

x < 0and z — (round(z/y) -y) =0
=-0 ifr =—0and y € FU{—o00,+00} and y # 0
=z if x € F and y € {—00,+00}

= no_result2p_,p(x,y) otherwise

NOTE 2 — The residuep operation is informally known as “IEEE remainder”.

sqrtp_ g+ F — F' U {inexact, underflow, invalid }

sqrtp_yp () = resultp (\/z,nearestpr)
ifzeFand x>0
=z if z € {—0,400}
= no_resultp_,pr(x) otherwise

sqrt} _p  F = F'U {inexact, underflow, invalid }

sqrt}_m, (x,y) = resultp (\/z,uppr) ifre Fanda >0
= sqrtp_ g (x) otherwise

sqrt% g F—=F " U {inexact, underflow, invalid}

sqrt%_m, (x,y) =resultp(\/x,downg) ifz e Fandz>0
= sqrtp_p(x) otherwise

5.2.6.3 Value dissection

For each provided floating point type, the following operations shall be provided. For the non-
conforming case of denormp = false, ulpr may underflow, and the operations succr and predg
shall not be provided.
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The exponentr_,; and scaler 1 operations are specified for an integer datatype I where minint; <
eming — prp and mazxint; > emaxp.

exponentp_,r : F' — I U {infinitary}

exponentr(x)= |log, . (|z|)] +1 ifxe Fandx#0

= infinitary(—oo) if x € {—0,0}

=400 if z € {—o00,400}

= qNaN if x is a quiet NaN

= invalid(gNaN) if z is a signalling NaN
NOTES

1 Since most integer datatypes cannot represent infinitary or NaN values, documented out of
range finite integer values of the correct sign may be used instead of the infinities here.

2 The related IEC 60559 operation logb returns a floating point value, to guarantee the
representability of the infinitary (and NaN) return values.

fractionp : FF — F

fractionp(x) = :U/r;mponentF”Z(x) ifre Fandz #0
=z if x € {—00,—0,0,+00}
= no_result p_,p(x) otherwise

scalepy : F' x I — F U {underflow, overflow }

scalep(x,n) =resultp(x - ri, nearesty)
ifre Fandnel
= mulp_,p(z,0) ifn=-00
= mulp_,p(x, convert;,p(n))
otherwise

succp : F'— F U {overflow}

succp(x) = resultp(min {z € F! | 2 > x}, nearestr)
ifxe Fand z # —fminp and x # 0
= —fmax if x =—00
=-0 if x = —fming
= succrp(0) ite=-0
= fming ifx=0
=400 if x =400
= no_resultp_,p(x) otherwise

predp : F' — F' U {overflow}

predp(z) = negr(succp(negr(x)))

ulpp : F — F U {underflow}

ulpp(x) = resultp(up(x), nearestr)
ifeeF
= ulpr(0) ife=-0
= no_result p_,p(x) otherwise
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5.2.6.4 Value splitting

For each provided floating point type, the following operations shall be provided. The truncp s
and roundp ; operations are specified for an integer type I where maxint; > pr.

intpartp : F — F U {-0}

intpartp(z) = |z| ifre Fandx >0
= negr(intpartp(—zx)) ifz € Fand z <0
=z if x € {—00,—0,+00}
= no_resultp_p(x) otherwise

fractpartp : F — F U {-0}

fractpartp(x) =z — |z ifre Fandz >0
= negp(fractpartp(—x)) if x € F and x <0
= no_resultp_,p(x) otherwise

truncpy : F x I — FU{-0}

truncp(z,n) = Lm/r;F(x)_nJ : T;F(x)_n ifre Fandx >0andnel
= negr(truncp(—z,n)) ifr € Fandx <0andn el
=z if x € {—00,—0,+00}

= no_result2p_,p(x,n)  otherwise

roundpy : F x I — F'U{-0,overflow}

roundpr(z,n) = resultp(round(x/rgp(x)—n> _T%F(ﬂﬂ)_

" nearestr)

frxreFandex>0andnel
= negr(roundp(—z,n)) ifx € Fand x <0andn €I
=z if x € {—00,—0,+00}

= no_result2p_p(x,n)  otherwise

5.3 Operations for conversion between numeric datatypes

Numeric conversion between different representation forms for integer and floating point values
can take place under a number of different circumstances. E.g.:

a) explicit or implicit conversion between different numeric datatypes conforming to this part
of ISO/IEC 10967;

b) explicit or implicit conversion between different numeric datatypes only one of which con-
forms to this part of ISO/TEC 10967;

c¢) explicit or implicit conversion between a character string and a numeric datatype.

The last case includes outputting a numeric value as a character string, inputting a numeric value
from a character string source, and converting a numeral in the source program to a value in a
numeric datatype (see clause . This part of ISO/IEC 10967 covers only the cases where at
least one of the source and target of a conversion is a numeric datatype conforming to this part
of ISO/IEC 10967.
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When a character string is involved as either source or target of a conversion, this part of
ISO/IEC 10967 does not specify the lexical syntax for the numerals parsed or formed. A binding
standard should specify the lexical syntax or syntaxes for these numerals, and, when appropriate,
how the lexical syntax for the numerals can be altered. This could include which set of digits to
use in a numeral position system (Latin-Arabic digits, Arabic-Indic digits, traditional Thai digits,
Devanagari digits, etc.). With the exception of the radix used in numerals expressing non-integer
values, differences in lexical syntactic details that do not affect the value in R denoted by the
numerals will not affect the result of a conforming conversion.

Output of floating point values is quite often to a fixed point format. Therefore conversion
from a floating point datatype to a fixed point datatype is included in this clause.

Character string representations for integer values can include representations for —0, 400,
—o00, and quiet NaNs. Character string representations for floating point and fixed point values
should have formats for —0, +00, —o0, and quiet NaNs. For both integer and floating point
values, character strings that are not numerals nor special values according to the lexical syntax
used, shall be regarded as signalling NaNs when used as source of a numerical conversion.

For the cases where one of the datatypes involved in the conversion does not conform to this
part of ISO/IEC 10967, the values of some numeric datatype parameters need to be inferred. For
integers, one need to infer the value for bounded, and if that is true then also values for maxint
and minint, and for string formats also the radiz. For floating point values, one need to infer
the values for r, p, and emax or emin. In case a precise determination is not possible, values
that are ‘safe’ for that instance should be used. ‘Safe’ values for otherwise undetermined inferred
parameters are such that

a) if the value resulting from the conversion is converted back to the source datatype by a
conversion conforming to this part of ISO/TEC 10967 the original value, or a close approxi-
mation, should be regenerated if possible, and

b) overflow and underflow are avoided if possible.

If, and only if, a specified infinite special value result cannot be represented in the target
datatype, the infinity result shall be interpreted as implying the infinitary notification. If, and
only if, a specified NaN special value result cannot be represented in the target datatype, the
NaN result shall be interpreted as implying the invalid notification. If, and only if, a specified
—0 special value result cannot be represented in the target datatype, the —0 result shall be
interpreted as 0.

5.3.1 Integer to integer conversions
Let I and I’ be non-special value sets for integer datatypes. At least one of the datatypes
corresponding to I and I’ conforms to this part of ISO/TEC 10967.

The convertr_,;r operation:

converty_p : I — I' U {overflow}

convertr_p(x) = resultp(x) iferel
=z if v € {—00,—0,+00}
= qNaN if x is a quiet NaN
= invalid(gNaN) if = is a signalling NaN
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5.3.2 Floating point to integer conversions

Let F' be the non-special value set for a floating point datatype. Let I be the non-special value
set for an integer datatype. At least one of the datatypes corresponding to F' and I conforms to
this part of ISO/IEC 10967.

The floorp_,r, roundingr_,s, and ceilingp_,; operations:

floorp_,; : F — I U {overflow}

floor p_, () = result;(|x]) ifeeF
==z if z € {—00,—0,+400}
= qNaN if x is a quiet NaN
= invalid(gNaN) if x is a signalling NaN

roundingr_y : F' — I U {-0,overflow}

roundingr—(x)
= resultr(round(x)) if x € F and (x > 0 or round(z) # 0)
=-0 if x € F and x < 0 and round(z) =0
=z if x € {—00,—0,+00}
= qNaN if x is a quiet NaN
= invalid(gNaN) if z is a signalling NaN

ceilingp—y : F — I U{—0, overflow}

ceilingp—1(x) = result;([x]) ifx € Frand (x >0 or [z] #0)
=-0 ifxe Fand x <0and [z] =0
=z if x € {—00,—0,+00}
= qNaN if x is a quiet NaN
= invalid(gNaN) if = is a signalling NaN

5.3.3 Integer to floating point conversions

Let I be the non-special value set for an integer datatype. Let F' be the non-special value set for
a floating point datatype. At least one of the datatypes corresponding to I and F' conforms to
this part of ISO/IEC 10967.

The convert;_, p operation:

convert;_,p : I — F U {inexact, overflow}

convert;,p(x) = resultp(x,nearestp) ifx el
=z if x € {—00,—0,+00}
= qNaN if x is a quiet NaN
= invalid(gNaN) if z is a signalling NaN

The convert;_)F and convertﬁ_)F operations:

convert} _ 1 — FU/{inexact, overflow}

convert}HF(a:) = resultp(z,upr) ifxel
= convert;_,p(x) otherwise
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com)erﬁ _p 1 — FU{inexact, overflow}

com}ert%_}F(a:) = resultp(z, downy) iteel
= convert;_p(x) otherwise

5.3.4 Floating point to floating point conversions

Let F' and I’ be non-special value sets for floating point datatypes. At least one of the datatypes
corresponding to F' and F” conforms to this part of ISO/IEC 10967.

The convertp_, pr operation:
convertp_, g : F'— F' U {inexact, underflow, overflow}

convertp_, g (x) = resultp (x,nearestp:) if x € F

=z if x € {—00,—0,+00}
= qNalN if z is a quiet NaN
= invalid(gNaN) if z is a signalling NaN

NOTE — Modern techniques allow, on the average, efficient conversion with a maximum error
of 0.5 ulp even when the radices differ. C99 [15], for instance, requires that all floating point
value conversion is done with a maximum error of 0.5 ulp.

i) 1 fana-
The converty,_, ., and converty,_, ., operations:
com;ert} _m  F'— F'U {inexact, underflow, overflow}

com}ert}%p (x) = resultp(x, uppr) iteeF
= convertp_, g otherwise

convertﬁ, _  F'— F'U {inexact, underflow, overflow}

com}ert%%p (x) = resultp(x,downp)  ifxeF
= convertp_, g otherwise

5.3.5 Floating point to fixed point conversions

Let F' be the non-special value set for a floating point datatype conforming to this part of ISO /TEC
10967. Let D be the non-special value set for a fixed point datatype.

A fixed point datatype D is a subset of R, characterised by a radix, rp € Z (> 2), a density,
dp € Z (> 0), and if it is bounded, a maximum positive value, dmazp > 1. Given these values,
the following sets are defined:

D" = {n/() | nez}

D = D* if D is not bounded
D = D* N [-dmazxp,dmazp] if D is bounded

NOTE 1 — D corresponds to scaled(rp, dp) in ISO/IEC 11404 Information technology —
General-Purpose Datatypes (GPD) [10]. However, that standard does not specify a dmaxp
parameter.

The fixed point rounding helper functions:
nearestp : R — D*

is the rounding function that rounds to nearest, ties round to even last digit.
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upp : R — D*

is the rounding function that rounds towards positive infinity.
dounp : R — D*

is the rounding function that rounds towards negative infinity.

The fixed point result helper function, resultp, is like result g, but for a fixed point datatype.
It will return overflow if the rounded result is not representable:

resultp : R x (R — D*) — D U {inexact, overflow}

resultp(z,rnd) = overflow(+00) if v € R and rnd(x) € D and = > 0
= overflow(—00) if x € R and rnd(z) € D and z < 0
=z if rnd(z) € D and rnd(x) =
= inexact(rnd(z)) if rnd(x) € D and rnd(x) # = and

(rnd(x) #0or 0 < x)
= inexact(—0) if rnd(x) =0 and z <0

The convertp_,p operation:
convertp_,p : F' — D U {inexact, overflow }

convertp_,p(x) = resultp(x,nearestp) if x € F

=z if x € {—00,—0,+00}
= gNaN if x is a quiet NaN
= invalid(gNaN) if x is a signalling NaN

NOTES

2 The datatype D need not be visible in the programming language. D may be a subtype of
strings, according to some format. Even so, no datatype for strings need be present in the
programming language.

3 This covers, among other things, “output” of floating point datatype values, to fixed point
string formats. E.g. a binding may say that float_to_fixed_string(xz, m, n) is bound
to convertp_,s,, , (x) where Sy, ,, is strings of length m, representing fixed point values in
radix 10 with n decimals. The binding should also detail how NaNs, signed zeroes and
infinities are represented in S,, ,, as well as the precise format of the strings representing
ordinary values. (Note that if the length of the target string is limited, the conversion may
overflow.)

The com)ert; _,p and com)ert? _,p operations:

convert; _p: F — DU {inexact, overflow}

convert}_ﬂj(x) = resultp(z,upp) ifeeF
= convertp_,p(x) otherwise

convert? _p: F — DU {inexact, overflow}

convertﬁﬁD(x) = resultp(x, downp) ifeeF
= convertp_,p(x) otherwise
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5.3.6 Fixed point to floating point conversions

Let D be the non-special value set for a fixed point datatype. Let F' be the non-special value set
for a floating point datatype conforming to this part of ISO/IEC 10967.

The convertp_,r operation:
convertp_,r : D — F U {inexact, underflow, overflow }

convertp_p(x) = resultp(x,nearesty) if x € D

=z if x € {—00,—0,+00}
= qNaN if x is a quiet NaN
= invalid(gNaN) if = is a signalling NaN

NOTE - This covers, among other things, “input” of floating point datatype values, from
fixed point string formats. E.g. a binding may say that string to_float(s) is bound to
converts,, . . r(s) where Sy, ,, is strings of length m, where m is the length of s, and n is the
number of digits after the “decimal symbol” represented in .S, ,, as well as the precise format
of the strings representing ordinary values.

The com}ertg _p and com;ert% _,p operations:
convert% _p D — FU{inexact, underflow, overflow}

convertp_p(x) = resultp(z,upr) ifxeD
= convertp_,p(x) otherwise

convert% _p D — FU{inexact, underflow, overflow}

convertp_p(x) = resultp(x,downyp) iteeD
= convertp_,r(x) otherwise

5.4 Numerals as operations in a programming language

NOTE - Numerals in strings, or input, is covered by the conversion operations in clause [5.3

Each numeral is a parameterless operation. Thus, this clause introduces a very large number
of operations, since the number of numerals is in principle infinite.

5.4.1 Numerals for integer datatypes

Let I’ be a non-special value set for integer numerals for the datatype corresponding to I.

An integer numeral, denoting an abstract value n in I’ U {—0, 400, —00,qNaN, sNaN}, for
an integer datatype with non-special value set I, shall result in

convertp _y(n)

For each integer datatype conforming to this document and made directly available, there shall
be integer numerals with radix 10.

For each radix for numerals made available for a bounded integer datatype with non-special
value set I, there shall be integer numerals for all non-negative values of I. For each radix for
numerals made available for an unbounded integer datatype, there shall be integer numerals for
all non-negative integer values smaller than 10%°.

For each integer datatype made directly available and that may have special values:
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a) There should be a numeral for positive infinity. There shall be a numeral for positive infinity
if there is a positive infinity in the integer datatype.

b) There should be numerals for quiet and signalling NaNs.

5.4.2 Numerals for floating point datatypes

Let D be a non-special value set for fixed point numerals for the datatype corresponding to F'.
Let I’ be a non-special value set for floating point numerals for the datatype corresponding to F'.

A fixed point numeral, denoting an abstract value z in D U{—0, 400, —00,gNalN,sNalN}, for
a floating point datatype with non-special value set F', shall result in
convertp_,p(z)
A floating point numeral, denoting an abstract value z in F' U {—0, 400, —00,qNaN, sNaN},
for a floating point datatype with non-special value set F', shall result in
convertp _p(x)
For each floating point datatype conforming to this document and made directly available,

there should be radix 10 floating point numerals, and there shall be radix 10 fixed point numerals.

For each radix for fixed point numerals made available for a floating point datatype, there shall
be numerals for all bounded precision and bounded range expressible non-negative values of R.
At least a precision (dp) of 20 should be available. At least a range (dmazp) of 102 should be
available.

For each radix for floating point numerals made available for a floating point datatype with
non-special value set F', there shall be numerals for all bounded precision and bounded range
expressible non-negative values of R. The precision and range bounds for the numerals shall be
large enough to allow all non-negative values of F' to be reachable.

For each floating point datatype made directly available and that may have special values:

a) There should be a numeral for positive infinity. There shall be a numeral for positive infinity
if there is a positive infinity in the floating point datatype.

b) There should be numerals for quiet and signalling NaNs.

The conversion operations used for numerals as operations should be the same as those used
by default for converting strings to values in conforming integer or floating point datatypes.

6 Notification

6.1 Model for handling of notifications

Notification (as that term is used in ISO/IEC 10967) is the process by which a user or program
is informed that an arithmetic operation, on given arguments, has some problem associated with
it. Specifically, a notification shall occur when any arithmetic operation returns an exceptional
value as defined in clause [l

Logically there is a set of exceptional values associated with each value (not just arithmetic
values). An operation returns a computed result together with the union of the arguments’s sets
of exceptional values and the set of exceptional values produced by the operation itself.
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What in clause [5| is written as addy : I x I — I U {overflow}, should really be written as
addr : (I x P(E)) x (I x P(E)) — (I x P(E)), where E is the set of exception values, and P is
powerset, and for each case of add;((z, s1), (y, s2)), return s; Usy as the second component and the
first component is the computed value, except for the overflow case where the second component
is s1UsgU{overflow} and the first component is then the continuation value. Since being explicit
about this for every operation specification would clutter the specifications, the specifications in
ISO/IEC 10967 are implicit about this handling of exceptional values.

Reproducing this nominal behaviour (a special case of recording in indicators, clause
may be prohibitively inefficient. Therefore the notification alternatives below relax this nominal
behaviour. The maximum extension of the notification handling in these alternatives is a runtime
thread (or similar construct), except when communicating values between threads, but may be
more limited as specified in a binding standard.

6.2 Notification alternatives

Three alternatives for notification are provided in ISO/IEC 10967 The requirements are:

a) Notification by recording in indicators (see clause [6.2.1)) shall be supplied, and should be
the default way of handling notifications.

b) Notification by alteration of control flow (see clause[6.2.2]) should be supplied in conjunction
with any language which provides support for exception handling.

c¢) Notification by termination with message (see clause [6.2.3) (a special case of the second
alternative) may be supplied.
NOTE - This is different from the first edition of this document, in which all implementations

were required to supply the last alternative, but were given a choice between the first and the
second based on whether the language supported exception handling or not.

6.2.1 Notification by recording in indicators

An implementation shall provide for support of this alternative, and it should be the default
alternative for notification handling.

Notification consists of two elements: a prompt recording in the relevant indicators of the fact
that an arithmetic operation returned an exceptional value, and means for the program or system
to interrogate or modify the recording in those indicators at a subsequent time.

This notification alternative has indicators, which represent sets of exceptional values (which
need not be just arithmetic ones). But the indicators need not be directly associated with val-
ues, but instead with determinable sets of values. However, computations that occur in parallel
(logically or actually) must not interfere with each others’s indicators. At the start of a compu-
tation the indicators for that computation are all clear (that is, the set of notifications recorded
is empty).

NOTES
1 The “set of values” may thus be “all the values computed by a thread”. Not just “output

values”, but all values computed by the thread. The “sets of values” may be subsets of the
values computed by a thread, by the rules of the programming language or system.
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2 When values (of any type) are communicated between threads, notification recordings are
ideally communicated along with the values, and recorded in the receiving thread. This is
preferably done automatically, needing no extra code from the programmer.

3 Computations that are completely ignored, e.g. speculative threads that are not taken, or
timed out threads without output, will have their indicator recordings ignored too.

The set of indicators shall consist of at least six indicators, one for each of the exceptional values
that may be returned by an arithmetic operation as defined in clause inexact, underflow,
overflow, infinitary, invalid, and absolute_precision_underflow.

NOTE 4 — Part 1 does not use absolute_precision_underflow, but it is used in Part 2 and
Part 3.

Consider a set F including at least six elements corresponding to the six exceptional val-
ues used in this document: {absolute_precision_underflow, inexact, underflow, overflow,
infinitary, invalid} C E. An implementation is permitted to expand the set E to include
additional notification indicators beyond the six listed in this document.

Let Ind be a type whose values represent the subsets of . An implementation shall provide
an embedding of Ind into a programming language type. In addition, a method shall be provided
for denoting each of the values of Ind, either as constants or via computation. The individual
notifications as well as the set of all notifications shall be available as named constants.

Let Ctz (context) be a type whose values represent the subsets of E and possibly other con-
textual values (unspecified by this part of ISO/IEC 10967). A value of type Ctz holds the current
indicators (and possibly other data) for the current thread or part of a thread. Multiple threads
shall not share a Ctz value, but a thread shall have at least one and may have multiple Ctz val-
ues. Note that this is the model used in ISO/IEC 10967 for recording of notifications, and a type
corresponding to Ctz need not be available, nor need such a type be present in an implementation.

The relevant indicators shall be set in the current Ctr value when any arithmetic operation
returns exceptional values as defined in clause 5} When either of the exceptional values underflow
or overflow is returned, not only shall the corresponding indicator be set, but also the indicator
for inexact shall be set. Once set in a Ctz, an indicator shall be cleared only by explicit action
(see clear_indicators below) of the program.

NOTE 5 — The status flags required by IEC 60559 are an example of this form of notification,

provided that the status flags for different computations (microthreads, threads, programs,
scripts, similar) are kept separate, and joined only when results of computations are joined.

When an arithmetic operation returns exceptional values as defined in clause |5, in addition to
recording the event, an implementation shall provide a continuation value for the result of the
failed arithmetic operation, and continue execution from that point. In many cases this document
specifies the continuation value. The continuation value shall be implementation specified if this
document does not specify one.

NOTE 6 — The infinities and NaNs produced by an IEC 60559 system are examples of values
not in F’ which can be used as continuation values.

The following four operations shall be provided:

clear_indicators: Ctx x Ind — Ctz
set_indicators: Ctr x Ind — Ctz
current_indicators:  Cix — Ind
test _indicators: Ctx x Ind — Boolean
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The Ctx value result for the set and clear operations are used as replacement for the input
Ctz value. That is, these two operations may change the state of the context. The Ctx value is
usually the one for “the current thread” or similar construct, and is then an implicit argument to
these operations.

For every value S in Ind, the above four operations shall behave as follows:

clear_indicators(C,S) in the context C clear each of the indicators referred in S

set_indicators(C, S) in the context C' set each of the indicators referred in .S
current _indicators(C')  return the set of indicators that are set in the context C
test_indicators(C, S) true if any of the indicators referred in S are set in the context C'

If either of the indicators for underflow or overflow is set by set_indicators, not only shall that
indicator be set, but also the indicator for inexact shall be set. Indicators that are not referred
to in S shall not be altered by clear_indicators nor set_indicators except as just mentioned, and
no indicators are altered by current_indicators nor test_indicators.

NOTE 7 — No changes to the specifications of a language standard are required to implement
this alternative for notification. The recordings can be implemented in system software. The
operations for interrogating and manipulating the recording can be contained in a system
library, and invoked as library routine calls.

The implementation shall not allow a program to complete successfully with an indicator that
is set in the indicators of any context of the final thread. However, it is permissible for a binding
to except underflow and inexact from hindering the successful completion of a program. Unsuc-
cessful completion of a program shall be reported to the user of that program in an unambiguous
and “hard to ignore” manner (see [6.2.3).

6.2.2 Notification by alteration of control flow

An implementation should provide this alternative for any language that provides a mechanism for
handling of exceptions. This alternative is allowed (with system support) even in the absence of
such a mechanism. This alternative can be applied to some notifications, while other notifications
are dealt with by recording in indicators. In particular, notification by alteration of control flow
should not be used for inexact nor for underflow (unless underflow implies “flush to zero”).

Notification consists of prompt alteration of the control flow of the program to execute user
provided exception handling code. The manner in which the exception handling code is specified
and the capabilities of such exception handling code (including whether it is possible to resume
the operation which caused the notification) is the province of the language standard, not this
arithmetic standard.

If no exception handling code is provided for a particular occurrence of the return of an excep-
tional value as defined in clause [5] that fact shall be reported to the user of that program in an
unambiguous and “hard to ignore” manner (see [6.2.3)).

6.2.3 Notification by termination with message

An implementation may provide this alternative, which also serves as a back-up if the programmer
has not provided the necessary code for handling of a notification by alteration of control flow.

Notification consists of prompt delivery of a “hard to ignore” message, followed by termination
of execution of the program. Any such message should identify the cause of the notification and
the operation responsible.
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NOTE - The phrase “hard to ignore” is intended to discourage writing messages to log
files (which are rarely read), or setting program variables (which disappear when the program
completes).

6.3 Delays in notification

Notification may be momentarily delayed for performance reasons, but should take place as close
as practical to the attempt to perform the responsible operation. When notification is delayed, it
is permitted to merge notifications of different occurrences of the return of the same exceptional
value into a single notification. However, it is not permissible to generate duplicate or spurious
notifications.

In connection with notification, “prompt” means before the occurrence of a significant program
event. For the recording in indicators in [6.2.1], a significant program event is an attempt by the
program (or system) to access the indicators, or the termination of the program. For alteration of
control flow described in the definition of a significant event is language dependent, is likely
to depend upon the scope or extent of the exception handling mechanisms, and must therefore be
provided by language standards or by language binding standards. For termination with message
described in [6.2.3] the definition of a significant event is again language dependent, but would
include producing output visible to humans or other programs.

NOTE - Roughly speaking, “prompt” should at least imply “in time to prevent an erroneous
response to the exception”.

6.4 User selection of alternative for notification

A conforming implementation shall provide a means for a user or program to select among the
alternate notification mechanisms provided. It should be possible to select different notification
alternatives for different exceptional values. The choice of an appropriate means, such as compiler
options, is left to the implementation.

The language or binding standard should specify the notification alternatives to be used in the
absence of a user choice. The notification alternatives used in the absence of a user choice shall
be documented.

7 Relationship with language standards

A computing system often provides arithmetic datatypes within the context of a standard pro-
gramming language. The requirements of this document shall be in addition to those imposed by
the relevant programming language standards.

This document does not define the syntax of arithmetic expressions. However, programmers
need to know how to reliably access the operations defined in this document.

NOTE 1 - Providing the information required in this clause is properly the responsibility of
programming language standards. An individual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

An implementation shall document the notation used to invoke each operation specified in

Clause B
NOTE 2 — For example, integer equality (eq(i,7)) might be invoked as
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i=j in Pascal [25] and Ada [11]

i==j in C [15], C++ [17], Java [62], and Fortran [21]
i .EQ. j in Fortran [21]

(=1 j) in Common Lisp [37] and ISLisp [22]

An implementation shall document the semantics of arithmetic expressions in terms of compo-
sitions of the operations specified in clause

NOTE 3 - For example, if z, y, and z are declared to be single precision (SP) reals, and
calculation is done in single precision, then the expression

x +y <z
might translate to

Issgp(addsp—sp(z,y), 2)

If the language in question did all computations in double precision (D P), the above expression
might translate to

lsspp(addpp—,pp(convertsp_, pp(x), convertsp_,pp(y)), convertsp_,pp(z))

or

lsspp(addsp—pp(z,y), convertsp_,pp(z))

Alternatively, if x was declared to be an integer (J), and computations done in single precision,
the above expression might translate to

Issgp(addsp_,sp(convert j_ssp(x),y), z)

Compilers often “optimize” code as part of compilation. Thus, an arithmetic expression might
not be executed as written. An implementation shall document the possible transformations of
arithmetic expressions (or groups of expressions) that it permits. Typical transformations include:

a) Insertion of operations, such as datatype conversions (including changes in precision).
b) Reordering of operations, such as the application of associative or distributive rules (note

that these rules are not exact for floating point operations and may result in different noti-
fications both for integer and floating point expressions).

¢) Replacing operations (or entire subexpressions) with others, such as “2xx” — “x+x” or “x/c”
— “x*(1/c)” (the latter is not exactly valid for floating point). (The example expressions
here are expressed in some programming language, they are not mathematical expressions.)

d) Evaluating constant subexpressions at compile time.

e) Eliminating unneeded subexpressions.

Only transformations which alter the semantics of an expression (the values produced (in-
cluding special values), and the notifications generated (including continuation values)) need be
documented. Only the kinds of permitted transformations need be documented. It is not necessary
to describe the specific choice of transformations that will be applied to a particular expression.

The textual scope of such transformations shall be documented, and any mechanisms that
provide programmer control over this process should be documented as well.

NOTE 4 - Tt is highly desirable that programming languages intended for numerical use
provide means for limiting the transformations applied to particular arithmetic expressions.
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8 Documentation requirements

In order to conform to this part of ISO/TEC 10967, an implementation shall include documentation
providing the following information to programmers.

a)

b)

e

—

o

)
)
)
h)
i)

j)

A list of the provided integer and floating point types that conform to this part of ISO/IEC
10967.

For each conforming integer type, the values of the parameters: boundedy, mininty, maxintr,
and hasinf;. (See[5.1})

For each conforming floating point type, the values of the parameters: rgp, pr, eming,
emaxp, denormp, and iec_60559p. (See )

For each conforming unsigned integer type I, which (if any) of the operations negy, absy,
and signum;y are omitted for that type. (Seel5.1.2.2])

For each pair of types, a list of conversion operations provided.
For each conforming floating point type F, the full definition of resultp. (See[5.2.5)
For each implementation defined continuation value, the value used.

The notation for invoking each operation provided by this part of ISO/IEC 10967. (See

and 1)

The translation of arithmetic expressions into combinations of operations provided by this
part of ISO/IEC 10967, including any use made of higher precision. (See clause[7])

For each conforming integer type, the method for a program to obtain the values of the
parameters: boundedy, minintr, maxintr, and hasinf;. (See )

For each conforming floating point type, the method for a program to obtain the values of
the parameters: rp, pp, eming, emazrp, denormp, and iec_60559r. (See )

For each conforming floating point type, the method for a program to obtain the values of
the derived constants fmax p, fming, fminNg, epsilong.

The methods used for notification, and the information made available about the notification.
(See clause [6] )

The means for selecting among the notification methods, and the notification method used
in the absence of a user selection. (See[6.4])

When “recording in indicators” is the method of notification, the type used to represent Ind,
the method for denoting the values of Ind (the association of these values with the subsets
of E must be clear), and the notation for invoking each of the four “indicator” operations,
as well as the names of the empty indicator set and the set of all indicators. (See[6.2.1])

When “recording in indicators” is the method of notification, the mechanism for transfer-
ring indicators along with values transferred when communicating values between different
computations (such as threads).

For each conforming floating point type where iec_60559r is true, and for each of the
facilities required by IEC 60559, the method available to the programmer to exercise that

facility. (See and Annex [B])
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NOTE — Much of the documentation required in this clause is properly the responsibility of
programming language or binding standards. An individual implementation would only need
to provide details if it could not cite an appropriate clause of the language or binding standard.
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Annex A
(informative)

Partial conformity

The requirements of this part of ISO/IEC 10967 have been carefully chosen to be as beneficial
as possible, yet be efficiently implemented on most existing or anticipated hardware architectures.

The bulk of requirements of this part of ISO/TEC 10967 are for documentation, or for pa-
rameters and functions that can be efficiently realized in software. However, the accuracy and
notification requirements on the four basic floating point operations (addp_, g/, subp_ pr, mulp_ pr,
and divp_ ) do have implications for the underlying hardware architecture.

A small number of computer systems may have some difficulties with some of the requirements
of this part of ISO/IEC 10967 for floating point arithmetic:

a) The ability to represent subnormal values apart from zero.
) The ability to record all notifications, including underflow and inexact.
c¢) The ability to distinguish infinitary and invalid notifications.
)

Strict 0.5-ulp accuracy for addp_,pr, subp_pr, mulp_,pr, and divp_, g (strictly interpreted
this applies also for continuation values upon underflow which in turn requires subnormal
values).

e) Strict 0.5-ulp accuracy for convertp_,pr, converty_,p, and convertp_,p.

f) addp_p and subp_p never give a notification of underflow, but instead may return a
subnormal value.

g) Round ties to even last digit.

h) A common rounding rule for addp_, g/, subp_,pr, mulp_ g, and divp_, pr.
i) The ability to do exact comparisons without spurious notifications.

)

j) A sign symmetric value set (all values can be negated exactly).

Language standards will want to adopt all the requirements of this part of ISO/IEC 10967 to
provide programmers with the maximum benefit. However, if it is perceived that requiring full
conformity to this part of ISO/TEC 10967 will exclude a significant portion of that language’s user
community from any benefit, then specifying partial conformity to this part of ISO/IEC 10967,

as permitted in clause 2| and further specified in this Annex, may be a reasonable alternative.

Such partial conformity would relax one or more of the requirements listed above, but would
retain the benefits of all other requirements of this part of ISO/IEC 10967. All deviations from
conformity to this part of ISO/IEC 10967 shall be fully documented.

If a programming language (or binding) standard states that partial conformity is permitted,
programmers will need to detect what degree of conformity is available. It would be helpful for
the language standard to require parameters indicating whether or not conformity is complete,
and if not, which of the requirements above are violated.
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A.1 Integer overflow notification relaxation

Some programming languages specify a “wrapping” interpretation of addition, subtraction, and
multiplication for bounded integer datatypes. These are in ISO/IEC 10967 modelled as different
operations from the addy, suby, and mul; operations, and are specified in Part 2.

If a binding allows an implementation to interpret the ordinary (for that language) program-
ming language syntax for integer addition, subtraction, and multiplication as wrapping operations,
there shall be a Boolean parameter, available to programs:

modulo; — if true this indicates that the implementation uses the operations add_wrapy,
sub_wrapr, and mul_wrap; specified in Part 2 instead of add;, subr, and mul; specified in this
part of ISO/TEC 10967 for the “ordinary” syntax for these operations.

NOTES

1 In the first edition of this document, this was modelled as a normative parameter and a
change of interpretation of the addy, suby, muly, dz’v{, and div operations. In this edition
the parameter and the wrapping interpretation for the ordinary (in that programming
language) addition, subtraction, and multiplication operations are accepted as only partially
conforming.

2 The interpretation of integer division has been made stricter in this edition than in the first
edition, and is no longer dependent on the the modulo; parameter even if integer overflow
notification is otherwise relaxed.

3 addwrapr, subwrapr, and mul_wrap; can (and should) be provided as separate operations
also in fully conforming implementations.

4 addy, subr, and muly can (and should) be provided as separate operations (though per-
haps will less appealing syntax) also in partially conforming implementations where integer
overflow notification is relaxed for the ordinary syntax operations.

A.2 Infinitary notification relaxation

With an infinitary notification (as opposed to overflow) a continuation value that is an infinity
is given as an exact value. It is therefore reasonable to have implementations or modes that
suppress infinitary notifications.

If a binding allows infinitary notifications to go unrecorded, there shall be a Boolean parameter,
available to programs:

silent_infinitary; — true when infinitary notifications are suppressed, and not replaced by
invalid notifications, for the integer datatype corresponding to I.

invalid _infinitary; — true when infinitary notifications are replaced by invalid notifications
for the integer datatype corresponding to I.

silent_infinitary , — true when infinitary notifications are suppressed for the floating point
datatype corresponding to F'.

A.3 Inexact notification relaxation

Some architectures may not be able to efficiently detect inexact results.

If a binding allows inexact to go unrecorded, there shall be a Boolean parameter, available to
programs:

44 Partial conformity



© ISO/IEC 2011 — All rights reserved ISO/IEC FDIS 10967—1:2011(E)

silent_inezract p — true when inexact notifications are suppressed for the datatype correspond-
ing to F.

A.4 Underflow notification relaxation

Some architectures may not be able to efficiently detect underflow, even if there are no non-zero
subnormal values.

If a binding allows underflow to go unrecorded, there shall be a Boolean parameter, available
to programs:

silent_underflow p — true when underflow notifications are suppressed for the datatype corre-
sponding to F.

A.5 Subnormal values relaxation

If the parameter denormp has a value false, and thus there are no subnormal values in F' except
0 (and —0, if available, in the corresponding datatype), then the corresponding datatype is not
fully conforming to this part of ISO/TEC 10967. If a binding allows a floating point datatype in
an implementation not to have subnormal values apart from 0 and —0, the parameter denormpg
shall be made available to programs, and the parameter fminDp shall not be available if denormpg
has the value false. Further, how rounding is done in the interval |—fminNg, fminNg| shall be
documented for the case that denormp has the value false (often “flush to zero” is used).

NOTE - If full conformity is required by the binding, the parameter denormpg is always true
and need not be made available to programs.

A.6 Accuracy relaxation for add, subtract, multiply, and divide

Ideally, and conceptually, no information should be lost before the rounding step in the computa-
tional model of this part of ISO/IEC 10967. But some hardware implementations of arithmetic
operations compute an approximation that loses information (conceptually) prior to rounding (to
nearest). In some cases, it may even be so that  +y = w + v may not imply addy_, p (2, y) =
add_, 7 (u,v) (and similarly for subtract). (add}_, - is defined below.)

A maximum error parameter max_error is an element in F' such that
|z — nearestp(z’)] < max_error - up(z)

for x,2' € R, where z is the mathematical result and x’ is the result of a corresponding approx-
imation helper function given the same arguments; max_error should be the minimal value for
which the relation holds.

If this relaxation is allowed, there shall be a maximum error parameter, rnd_errorp parameter
available to programs for the datatype corresponding to F. rnd_errorp shall be the maximum
error for the addition, multiplication, and division operations. It cannot have a value that is less
than 0.5 and shall have a value less than or equal to 1.

The add},, muly, and divy helper functions are introduced to model this pre-rounding approx-
imation: add}, : Ftx Ft 5 R, muly, : Ftx Ft 5 R, divy, Ftx Ft 5 R.
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addy,(z,y) returns a close approximation to = + y, satisfying
T +y) —nearestg(a z,Y))| < rnd_errorg - up(r +y
tr(addy < rnd
mul}.(z,y) returns a close approximation to z - y, satisfying
x - y) — nearestp(mulf(xz,y))| < rnd_errorg - up(x -y
t I < rnd
divy,(z,y) returns a close approximation to z/y, satisfying
|(z/y) — nearestp(divy(z,y))| < rnd_errorp - up(x/y)

Further requirements on the add}, approximation helper function are:

u+v€Ft & addp(u,v) =u+v if u,v € F*

add},(—u, —v) = —add}.(u,v) if u,v € Fi

addy,(u,v) = add}, (v, ) if u,v € F*

add},(u,x) < addj (v, x) if u,v,2 € F* and u < v
adds(u - rh,v - rh) = addi(u,v) - 7 if u,v € F*andi e Z
NOTES

1 The above requirements capture the following properties:

a) The result of add}, is exact iff the ‘true result’ is in F’ . and, by monotonicity, addy (u,v)
and u+v, when not equal, are in the same range of values strictly between two adjacent
values in F*.

b) add} is sign symmetric when changing both signs.

c) add}, is commutative.

d) add}, is monotonic for the left operand and, by commutativity, for the right operand.

e) For add}. a common exponent of its arguments can be factored out. But the approxi-
mation to +, and thus final rounding, may depend on the (absolute) difference of the
exponents of the arguments.

Further requirements on the mul}, approximation helper function are:

u-veFt & mulh(u,v)=u-v if u,v € F*

muly,(— uv)——mul* (u,v) if u,v € F*

muly(u,v) = mulj (v, u) if u,v € F*

mul*(u, x) < mulj(v, x) if u,v,2 € F* and u <vand 0 < z
muly(u,z) > m l*(v x) if u,v,2 € F* and u < v and z < 0
mulf(u - rh,v - 7") muly(u,v) - 7“;;” ifu,ve Ftandi,je Z

NOTES

2 The above requirements capture the following properties:

a) The result of mul}. is exact iff the ‘true result’ is in F*: and, by monotonicity,
muly(u,v) and u - v, when not equal, are in the same range of values strictly be-
tween two adjacent values in F'¥. Thus, if rnd_errorp is 1, the max error is strictly
less than 1.

b) mul}, is sign symmetric for the left operand and, by commutativity, for the right
operand.

c¢) mul} is commutative.
d) mul}. is monotonic for the left operand and, by commutativity, for the right operand.
e) For mul}, the exponents of its arguments can be factored out.

Further requirements on the div}. approximation helper function are:

u/v € Ft & divi(u,v) =u/v if u,v € F* and v # 0
divi(—u,v) = —divi(u,v) if u,v € F* and v # 0
divy(u, —v) = —divy(u,v) if u,v € F* and v # 0
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if u,v,2€ Ffandu<vand 0 < x

divi(u, z) < divy (v, x)

divi(u, x) > divy(v, z) if u,v,2 € Ff and v < v and z < 0

divi(z,u) > divy(z,v) if u,v,2€ Ftand (u<v<0or0<u<wv)and0 <z
divi(z,u) < divi(z,v) if u,v,2 € F*and (u<v<0or0<u<w)and z <0
divi(u - rh,v- TIJ;) = divy.(u,v) -rg_j ifu,ve Ftandv#0andi,jeZ

NOTES

3 The above requirements capture the following properties:

a) The result of div} is exact iff the ‘true result’ is in F*; and, by monotonicity, divi(u,v)
and u/v, when not equal, are in the same range of values strictly between two adjacent
values in F*.

b) div}. is sign symmetric for the left operand and for the right operand.
¢) div}. is monotonic for the left and right operands.
d) For div}, the exponents of its arguments can be factored out.

If this relaxation is permitted in a binding, addy_, p/, subyp_, g, mully_, g, and divi_ g, (re-
placing addp_,pr, subp_ g, mulp_,pr, and divp_, g in the binding) shall be defined as:
addy_, i (x,y) = resultp(addy, (z,y),nearestp)  if x,y € F
= addp_,pr(x,y) otherwise

sublp_ i (x,y) = addy_ g (z,negr(y))

mully_, @ (x,y) = resultp (muly, (x,y), nearestpr)  if x,y € F
= mulp_, g (x,y) otherwise

divy_ g (x,y) = resultp/(divy, (z,y), nearesty:) ifz,y € Fand y #0
= divp_ypr(z,y) otherwise
This allows addition, subtraction, multiplication, and division that do not round ties to even

last digit (when rnd_errorg: is 0.5), or rounds towards zero or away from zero (when rnd_errorp
is 1).

If this relaxation is allowed, there shall be a parameter rnd_styler, available to programs for
the datatype corresponding to F', having one of four constant values, which is defined by

rnd_stylep = nearesttiestoeven  if this relaxation is not engaged
= nearest if this relaxation is engaged and rnd_errorgp = 0.5
= truncate if nearestrp(|addy.(x,y)|) = downp(|z + y|) and

nearestp(|muly(z,y)|) = downp(|z - y|) and
nearestp(|divi.(x,y)|) = downp(|z/y|)
= other otherwise

If rnd_styler # nearesttiestoeven, the operations using upr or downp as rounding shall not
be provided.

A.7 Accuracy relaxation for floating point conversion

First define the least radix function, [b, defined for arguments that are greater than 0:
b:Z2—- 2
Ib(r) = min{n € Z | n > 1 and there is an m € Z such that r = n™}
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If this relaxation is allowed, there shall be a max_error_convertp_, o parameter that gives the
maximum error when converting from F to F’ and lb(rp) # Ib(rg/), a mazx_error_convertp_,p
parameter that gives the maximum error when converting from F' to D and lb(rg) # Ib(rp), and
a max_error_convertp_,rp parameter that gives the maximum error when converting from D to
F and lb(rp) # lb(rp). These parameters may be required to have the same value, and then only
one parameter need be made available to programs.

mazx_error_convertp_ g, max_error_convertp_,p, and max_error_convertp_. g should each
have a value less than 1. When (b(rp) = lb(rg), then maz_error_convertp_, g, max_error_convertp_,p,
and max_error_convertp_r shall all be 0.5.

The converty,_, p,, converty_, p, and convert},_, helper functions are introduced to model
this pre-rounding approximation: converty_, p, @ F 5 R, convertp_,p : F PS5 R, converty_ p :
D* — R.

converty,_, () returns a close approximation to x, satisfying

|z — nearestp(converty,_, . (x))| < max_error_convertp_,pr - up(x)
converty,_, p(x) returns a close approximation to x, satisfying

|z — nearestp(converty,_, ()| < max_error_convertp_.p - up(x)
convert},_, p(x) returns a close approximation to x, satisfying

|z — nearestp(converty, , p(z))| < max_error_convertp_,p - up(x)

Further requirements on the converty,_, ., approximation helper functions are:

convert,_ g (x) = ifre ZNF
convert, , p(—x) = —convertt, . (zr)  ifxe F*
converty,_, . (x) < converty,_ i (y) ifz,yc Ffandz <y

Relationship to other floating point to floating point conversion approximation helper functions
for conversion operations in the same library shall be:

converty,_, g (x) = converty,_, g () if b(rpn) = Ib(rp) and z € F N F”
The convert,_, , operation:
converty_, . : F — F' U {inexact, underflow, overflow}

converty_, . (x) = resultp (converty,_, p,(x), nearestpr)
ifereF
= convertp_ () otherwise

Further requirements on the converty._, ;, approximation helper functions are:

converty,_, p(z) = x ifre ZNF
converty_, p(—x) = —converty_, p(x) iteeF
converty,_, () < converty,_, p(y) ifr,ye Fand z <y

Relationship to other floating point to fixed point conversion approximation helper functions
for conversion operations in the same library shall be:

converty,_, p(x) = converty,_, p(x) if b(rpn) = Ib(rp) and z € F N F”
The convert,_, ;, operation:
convertl_, , : F'— D U {inexact, overflow}

converty_, (x) = resultp(convert},_, (x), nearestp)
ifeeF
= convertp_ () otherwise
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Further requirements on the converty,_,  approximation helper functions are:

convert],  p(z) = ifreZND
convert},  p(—x) = —convert},_, p(x) ifeeD
convert, , p(x) < convert}, , p(y) ifz,ye Dandx <y

Relationship to other floating point and fixed point to floating point conversion approximation
helper functions for conversion operations in the same library shall be:

convert},_, p(x) = converty, , p(x) if Ib(rpr) = 1b(rp) and 2 € DN D’
convert},_, p(x) = converthy, , p(z) if Ib(rg) =1b(rp) and z € DN F’

The convert,_, . operation:
convert, . : D — F U {inexact, underflow, overflow}

convert, _, p(x) = resultp(convert}, , (), nearestr)
ifxeD
= convertp_,p(x) otherwise
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Annex B
(informative)

IEC 60559 bindings

When the parameter iec_60559 is true for a floating point type F', all the facilities required
by IEC 60559 shall be provided for that datatype. Methods shall be provided for a program to
access each such facility. In addition, documentation shall be provided to describe these methods.

This means that a complete programming language binding for LIA-1 should provide a binding
for all IEC 60559 facilities as well. Such a programming language binding must define syntax
for all required facilities, and should define syntax for all optional facilities as well. Defining
syntax for optional facilities does not make those facilities required. All it does is ensure that
those implementations that choose to provide an optional facility will do so using a standardized
syntax.

The normative listing of all TEC 60559 facilities (and their definitions) is given in IEC 60559.
ISO/IEC 10967 does not alter or eliminate any of them. However, to assist the reader, the
following summary is offered.

B.1 Summary

A binding of IEC 60559 to a programming language must provide the names of the programming
language datatypes that correspond to:

a) binary32,
b) binary64,
c¢) binary128,
d) decimal64,

e) decimall28,
if any.

Note that the LIA-1 parameter values for each of the IEC 60559 datatypes the parameters
denormp and iec_60559r are true. The remaining LIA-1 basic parameters for ‘binary32’ are:

rEp =2
pr =24
eming = —125

emaxrp = 128
For IEC 60559 ‘binary64’ they are:

rp =2
pr =53
emingp = —1021

emazrr = 1024
For TEC 60559 ‘binary128’ they are:
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rp =2

Pr = 113

emingp = —16381
emarp = 16384

For TEC 60559 ‘decimal64’ they are:

rp =10
pr =16
eming = —382

emaxrp = 385
For IEC 60559 ‘decimall28’ they are:

rp =10
pr = 34
emingp = —6142

emarp = 6145

TEC 60559 also specifies ‘binaryl16’ and ‘decimal32’ with only conversion operations speci-
fied, terming them “storage formats”. These storage formats are not included when referring to
IEC 60559 conforming datatype below. IEC 60559 also specifies extended formats, giving just
maximum or minimum requirements on the parameters. These are included when referring to
IEC 60559 conforming datatype below.

For each TEC 60559 conforming datatype, the binding must provide:

a) a method for denoting positive infinity,
b) a method for denoting at least one quiet NaN (not-a-number),

c¢) a method for denoting at least one signalling NaN (not-a-number).

For each IEC 60559 conforming datatype provided, the binding should provide the notation
for invoking each of the following operations.

a) Homogeneous general-computational operations.

sourceFormat roundTolntegral TiesToEven(source) roundingp
sourceFormat roundTolntegral TiesToAway (source)

sourceFormat roundTolntegral TowardZero(source)

sourceFormat roundTolntegral TowardPositive(source)  ceilingp
sourceFormat roundTolntegral TowardNegative(source)  floorp
sourceFormat roundTolntegralExact(source)

sourceFormat nextUp(source) succy

sourceFormat nextDown(source) predp

sourceFormat remainder(source, source) residuer

sourceFormat minNum(source, source) mming

sourceFormat maxNum(source, source) mmazx g

sourceFormat minNumMag(source, source) mming(absp(x),absp(y))
sourceFormat maxNumMag(source, source) mmaxp(absp(x),absp(y))

sourceFormat quantize(source, source)

sourceFormat scaleB(source, logBFormat) scalep,
logBFormat logB(source) exponentp_y(x) — 1
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b) formatOf general-computational operations. The basic arithmetic operations are also re-
quired by LIA-1, though not with built-in conversion of the arguments are of different type,
and in LIA-1 not permitted to be rounding mode dependent, changing the rounding mode
may change the implementation to be in a state not conforming to LIA-1.

formatOf-addition(sourcel, source2) addp_,pr, add; T addﬁﬂ N
formatOf-subtraction(sourcel, source2) subp_, pr, sub} N sub% N
formatOf-multiplication(sourcel, source2) mulp_ mul} N mul%7 N
formatOf-division(sourcel, source2) divp_ pr, div; g iV
formatOf-squareRoot (source) sqrtp_yr, sqrtTF L sqrtﬁ, N

formatOf-fusedMultiply Add(sourcel, source2, source3) mul_addp_,pr, mul,add;7 D
mul,aald%7 N

formatOf-convertFromInt(int) converty g, convert; N com)ert% oF
intFormatOf-convert ToInteger TiesToEven (source) roundingp_g
intFormatOf-convert ToInteger TowardZero(source)

intFormatOf-convert ToInteger TowardPositive(source) cetlingp 1

intFormatOf-convert ToIntegerTowardNegative(source) — floorp_,
intFormatOf-convert ToInteger TiesToAway (source)
intFormatOf-convert ToIntegerExact TiesToEven(source)
intFormatOf-convert ToIntegerExact TowardZero(source)
intFormatOf-convert ToIntegerExact TowardPositive(source)
intFormatOf-convert ToIntegerExact TowardNegative(source)
intFormatOf-convert ToIntegerExact TiesToAway (source)

formatOf-convertFormat(source) convertp_,pr, com/ert} N
com;em‘}L7 L
formatOf-convertFromDecimalCharacter(decimalCharacterSequence)
rpr =10 and rp = 10
convertp: _,r, convertp_p

1) T
convert b convert DoF

—F>
converty, _, p, convert% F
decimalCharacterSequence convertToDecimalCharacter(source, conversionSpecification)
rp =10 and rp = 10
convertp_,pr, convertp_p
convert}7 L convert} ~D

1 1
converty_, pr, convertp_ p

formatOf-convertFromHexCharacter (hexCharacterSequence)
rpe =16, rp = 16, and rp = 2
convertp:_yr, convertp_sr
convert}, P convert% ~F
convertﬁ, F convert% ~F
hexCharacterSequence convert ToHexCharacter(source, conversionSpecification)
rpr =16, rp = 16, and rp = 2
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convertp_,pr, convertp_p
T i)

com)ertfﬁF, , com}ertf_}D

converty,_, pr, convertn_ p

NOTE - mul_addr (mul-addp_,F) is specified in LIA-2 (part 2 of ISO/IEC 10967).

¢) Quiet-computational operations.

sourceFormat copy (source) convertp_, g, but non-signalling
sourceFormat negate(source) similar to negr, but non-signalling
sourceFormat abs(source) similar to absp, but non-signalling

decimalEncoding encodeDecimal(decimal)
decimal decodeDecimal(decimalEncoding)
binaryEncoding encodeBinary(decimal)
decimal decodeBinary(binaryEncoding)

d) Signaling-computational operations. The basic comparisons are also required by LIA-1,
though not with built-in conversion if the arguments are of different type.

boolean compareQuietEqual(sourcel,source2) eqr

boolean compareQuietNotEqual(sourcel,source2) neqr
boolean compareSignallingGreater(sourcel,source2) gtre
boolean compareSignallingGreaterEqual(sourcel,source2) geqp
boolean compareSignallingLess(sourcel,source2) lssp

boolean compareSignallingLessEqual(sourcel,source2)  legp
boolean compareSignalingEqual(sourcel, source2)

boolean compareSignalingNotEqual(sourcel, source2)
boolean compareSignalingNotGreater(sourcel,source2)
boolean compareSignalingLessUnordered(sourcel,source2)
boolean compareSignalingNotLess(sourcel,source2)

boolean compareSignalingGreaterUnordered(sourcel source2)
boolean compareQuietGreater(sourcel,source2)

boolean compareQuietGreaterEqual(sourcel,source2)
boolean compareQuietLess(sourcel,source2)

boolean compareQuietLessEqual(sourcel,source2)

boolean compareQuietUnordered(sourcel,source2)

boolean compareQuietNotGreater(sourcel,source2)

boolean compareQuietLessUnordered(sourcel,source2)
boolean compareQuietNotLess(sourcel,source2)

boolean compareQuietGreaterUnordered(sourcel,source2)
boolean compareQuietOrdered(sourcel,source2)

e) Non-computational operations.

boolean is754version1985(void)

boolean is754version2008(void)

enum class(source)

boolean isSignMinus(source) similar to eqp(signump(x),—1)
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boolean isNormal(source) similar to geqr(absp(x), fminNp)
boolean isFinite(source) similar to lssp(absp(z),+00)
boolean isZero(source) eqr(z,0)

boolean isSubnormal(source) similar to istinyp(z) && neqp(z,0)
boolean isInfinite(source) eqr(absp(z),+00)

boolean isNaN (source) isnanp ()

boolean isSignaling(source) issignang(x)

boolean isCanonical(source)

enum radix(source) g

boolean totalOrder(source, source)
boolean totalOrderMag(source, source)
boolean sameQuantum(source, source)

f) Handling of notification recordings.

void lowerFlags(exceptionGroup) clear_indicators
void raiseFlags(exceptionGroup) set_indicators
boolean testFlags(exceptionGroup) test_indicators

boolean testSavedFlags(flags, exceptionGroup)
void restoreFlags(flags, exceptionGroup)
flags saveAllFlags(void) current_indicators

Note that several of the above facilities are already required by LIA-1 even for implementations
that do not conform to IEC 60559.

IEC 60559 allows for dynamic change of rounding mode. Note though that LIA requires that
the rounding is static for an operation (which may be simulated at lower level by setting and
resetting a dynamic rounding mode, provided that the rounding mode is local to each thread).
Thus explicitly using rounding mode setting at a “higher level” may change an LIA conforming
implementation to (a mode in which it is) a non-conforming implementation.

IEC 60559 recommend a number of other operations (some of which are covered by LIA-2),
but these are not listed here. See IEC 60559 for details.

B.2 Notification

The default notification handling in IEC 60559 is by recording in indicators, called exception flags
in IEC 60559. One appropriate way to access the IEC 60559 exception flags is to use the functions
defined in [6.2.7]

IEC 60559 also allows for alternate exception handling. In LIA this is modelled by notification
by change of control.

B.2 Notification 55



ISO/IEC FDIS 10967-1:2011(E) © ISO/IEC 2011 — All rights reserved

56 IEC 60559 bindings



© ISO/IEC 2011 — All rights reserved ISO/IEC FDIS 10967—1:2011(E)

Annex C
(informative)

Rationale

This annex explains and clarifies some of the ideas behind Information technology — Language
independent arithmetic — Part 1: Integer and floating point arithmetic (LIA-1). This allows the
standard itself to be more concise. Many of the major requirements are discussed in detail,
including the merits of possible alternatives. The clause numbering matches that of the standard,
although additional clauses have been added.

C.1 Scope

The scope of LIA-1 includes the traditional primitive arithmetic operations usually provided in
hardware. The standard also includes several other useful primitive operations which could be
provided in hardware or software. An important aspect of all of these primitive operations is that
they are to be considered atomic (with respect to rounding and notifications, not necessarily with
respect to thread parallelism, though they may not interfere with the results of LIA operations
in other threads provided that arguments and results are thread separate) rather than noticeably
implemented as a sequence of yet more primitive operations. Hence, each primitive floating point
operation has a half ulp error bound when rounding to nearest, and is never interrupted by an
intermediate notification. The latter is true also for all integer operations.

LIA-1 provides a parameterised model for arithmetic. Such a model is needed to make concepts
such as “precision” or “exponent range” meaningful. However, there is no such thing as an “LIA-1
machine”. It makes no sense to write code intended to run on all machines describable with LIA-1
model — the model covers too wide a range for that. It does make sense to write code that uses
LIA-1 facilities to determine whether the platform it is running on is suitable for its needs.

C.1.1 Inclusions

This standard is intended to define the meaning of an “integer datatype” and a “floating point
datatype”, but not to preclude other arithmetic or related datatypes. The specifications for integer
and floating point datatypes are given in sufficient detail to

a) support detailed and accurate numerical analysis of arithmetic algorithms,
b) serve as the first of a family of standards, as outlined in

c) enable a precise determination of conformity or non-conformity, and

)
)
)
d) prevent exceptions (like overflow) from going undetected.

C.1.2 Exclusions

There are many arithmetic systems, such as fixed point arithmetic, significance arithmetic, interval
arithmetic, rational arithmetic, level-index arithmetic, slash arithmetic, and so on, which differ
considerably from traditional integer and floating point arithmetic, as well as among themselves.
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Some of these systems, like fixed point arithmetic, are in wide-spread use as datatypes in standard
languages; most are not. A form of floating point is defined by Kulisch and Miranker [53] 54] which
is compatible with the floating point model in LIA-1. For reasons of simplicity and clarity, these
alternate arithmetic systems are not treated in LIA-1. They should be the subject of other parts
of ISO/IEC 10967 if and when they become candidates for standardization.

The portability goal of LIA-1 is for programs, rather than data. LIA-1 does not specify the
internal representation of data. However, portability of data is a subject of IEC 60559, which
specifies internal representations that can also be used for data exchange.

Mixed mode operations in general, and other issues of expression semantics, are not addressed
directly by LIA-1. However, suitable documentation is required (see clause .

C.1.3 Companion parts to this part

The following topics are the subject of a family of standard parts, of which LIA-1 is the first
member:

a) Specifications for the usual elementary functions (LIA-2).

b) Specifications for complex and imaginary datatypes and operations (LIA-3).
This list is incomplete, and further parts may be created.

Each of these new sets of specifications is necessary to provide a total numerical environment
for the support of portable robust numerical software. The properties of the primitive operations
is used in the specifications of elementary and complex functions which

a) are realistic from an implementation point of view,
b) have acceptable performance, and

¢) have adequate accuracy to support numerical analysis.

C.2 Conformity

A conforming system consists of an implementation (which obeys the requirements) together with
documentation which shows how the implementation conforms to the standard. This documenta-
tion is vital since it gives crucial characteristics of the system, such as the range for integers, the
range and precision for floating point, and the actions taken by the system on the occurrence of
notifications.

The binding of LIA-1 facilities to a particular programming language should be as natural
as possible. Existing language syntax and features should be used for operations, parameters,
notification, and so on. For example, if a language expresses addition by “x+y,” then LIA-1
addition operations add; and addp_, pr should be bound to the infix “+” operator.

Most current implementations of floating point can be expected to conform to the specifications
in this standard. In particular, implementations of IEC 60559 (IEEE 754 [34]) in default mode
will conform, provided that the user is made aware of any status flags that remain set upon exit
from a program.

The documentation required by LIA-1 will highlight the differences between “almost IEEE”
systems and fully IEEE conforming ones.
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Note that a system can claim conformity for a single integer type, a single floating point type,
or a collection of arithmetic types.

An implementation is free to provide arithmetic datatypes (e.g. fixed point) or arithmetic op-
erations (e.g. exponentiation on integers) which may be required by a language standard but are
not specified by LIA-1. Similarly, an implementation may have modes of operation (e.g. notifica-
tions disabled) that do not conform to LIA-1. The implementation must not claim conformity to
LIA-1 for these arithmetic datatypes or modes of operation. Again, the documentation that dis-
tinguishes between conformity and non-conformity is critical. An example conformity statement
(for a Fortran implementation) is given in Annex

C.2.1 Validation

This standard gives a very precise description of the properties of integer and floating point
datatypes. This will expedite the construction of conformity tests. It is important that objective
tests be available. Schryer [56] has shown that such testing is needed for floating point since two
thirds of units tested by him contained serious design flaws. Another test suite is available for
floating point [43], which includes enhancements based upon experience with Schryer’s work [56].

LIA-1 does not define any process for validating conformity.

Independent assurance of conformity to LIA-1 could be by spot checks on products with a
validation suite, as for language standards, or via vendors being registered under ISO/TEC 9001
Model for quality assurance in production and installation [31] enhanced with the requirement that
their products claiming conformity are tested with the validation suite and checked to conform as
part of the release process.

Alternatively, checking could be regarded as the responsibility of the vendor, who would then
document the evidence supporting any claim to conformity.

C.3 Normative references

The referenced IEC 60559 standard is identical to IEEE 754. TEEE 754-2008 is a major revi-
sion of IEEE 754-1985, adding 124-bit floating point types, decimal radix floating point types
(formerly in IEEE 854, now withdrawn), removing “trapping” exception handling, removing im-
plementor options, adding operations, and more. IEC 60559 third edition (2011) will be identical
to IEEE 754-2008.

C.4 Symbols and definitions

An arithmetic standard must be understood by numerous people with different backgrounds:
numerical analysts, compiler-writers, programmers, microcoders, and hardware designers. This
raises certain practical difficulties. If the standard were written entirely in a natural language,
it might contain ambiguities. If it were written entirely in mathematical terms, it might be
inaccessible to some readers. These problems were resolved by using mathematical notation for
LIA-1, and providing this rationale in English to explain the notation.
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C.4.1 Symbols

LIA-1 uses the conventional notation for sets and operations on sets. The set Z denotes the
set of mathematical integers. This set is infinite, unlike the finite subset which a machine can
conveniently handle. The set of real numbers is denoted by R, which is also infinite. Numbers
such as 7, 1/3 and v/2 are in R, but usually they cannot be represented exactly in a floating point
type. (Some systems make provisions to represent a select few such numbers specially, and handle
them ‘symbolically’ as much as possible.)

C.4.2 Definitions of terms

A vital definition is that of “notification”. A notification is the report (to the program or user)
that results from an error or exception as defined in ISO/IEC TR 10176 [7].

The principle behind notification is that such events in the execution of a program should not
go unnoticed.

The preferred action is to use ‘recording in indicators’. Another possibility is to invoke a change
in the flow control of a program (for example, an Ada or Java “exception”), to allow the user
to take corrective action. Changes of control flow are, however, harder to handle and recover
from, especially if the notifications is not so serious and the computation may just continue. In
particular, for inexact and underflow it is usually ill-advised to make a change in control flow,
likewise for infinitary (usually divide-by-zero) notifications when infinity values are guaranteed
to be available in the datatype. The practice in some older systems is that a notification consists
of aborting execution with a suitable error message. This is hardly ever the proper action to take,
and can be highly dangerous.

The various forms of notification are given names, such as overflow, so that they can be dis-
tinguished. However, bindings are not require to handle each named notification the same way ev-
erywhere. For example, overflow may be split into integer-overflow and floating-overflow,
infinitary for integer results may result in a change of control flow, while infinitary on floating
point results are handled by recording in indicators, only returning an infinitary continuation
value while setting the indicator for infinitary.

One challenge is when computations are done in separate threads, and values communicated
between the treads (or, in general, different programs maybe even running on different computers).
When the method of notification is by change of control flow, the notification basically needs to
be handled within the thread, otherwise the thread will terminate, and no further communication
with it will take place. However, when the method of notification is by recording in indicators,
the handling may be deferred. It may even be deferred to recipients of values in other threads
(maybe even in other programs). For this to work, the indicators recording notifications need
also be communicated along with the communicated value(s). Normally, this is not (yet) done by
default, or automatically, so at present need to be done by explicit programming by application
programmers.

Another important definition is that of a rounding function. A rounding function is a mapping
from the real numbers onto a subset of the real numbers. Typically, the subset X is an “approxi-
mation” to R, having unbounded range but limited precision. X is a discrete subset of R, which
allows precise identification of the elements of X which are closest to a given real number in R.
A rounding function rnd maps each real number y to an approximation of y that lies in X. If
a real number y is in X, then clearly y is the best approximation for itself, so rnd(y) = y. If y
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is between two adjacent values x1 and xo in X, then one of these adjacent values must be the
approximation for y:

1 <y<zy = (rnd(y) =z1 or rnd(y) = x2)
Finally, if rnd(y) is the approximation for y, and z is between y and rnd(y), then rnd(y) is the
approximation for z also.

y<z<rnd(y) = rnd(z)=rnd(y)

rnd(y) < z <y = rnd(z) = rnd(y)
The last three rules are special cases of the monotonicity requirement

<y = rnd(z) < rnd(y)
which appears in the definition of a rounding function.

Note that the value of rnd(y) depends only on y and not on the arithmetic operation (or

operands) that gave rise to y.

The graph of a rounding function looks like a series of steps. As y increases, the value of rnd(y)
is constant for a while (equal to some value in X) and then jumps abruptly to the next higher
value in X.

Some examples may help clarify things. Consider a number of rounding functions from R to
Z. One possibility is to map each real number to the next lower integer:
rnd(u) = |u]
This gives rnd(1) = 1, rnd(1.3) = 1, rnd(1.99---) = 1, and rnd(2) = 2. Another possibility
would be to map each real number to the next higher integer. A third example maps each real
number to the closest integer (with half-way cases rounding toward plus infinity):
rnd(u) = [u+ 0.5]
This gives rnd(1) = 1, rnd(1.49---) = 1, rnd(1.5) = 2, and rnd(2) = 2. Each of these examples
corresponds to rounding functions in actual use. For some floating point result examples, see
Note, the value rnd(u) may not be representable in the target datatype. The absolute value
of the rounded result may be too large. The resulty function deals with this possibility. (See

C.5.2.5| for further discussion.)

There is a precise distinction between shall and should as used in this standard: shall implies
a requirement, while should implies a recommendation. One hopes that there is a good reason if
the recommendation is not followed.

Additional definitions specific to particular types appear in the relevant clauses.

C.5 Specifications for integer and floating point datatypes and operations

Each arithmetic datatype conforming to LIA-1 consists of a subset of the real numbers character-
ized by a small number of parameters. Additional values may be included in an LIA-1 conforming
datatype, especially infinities, negative zeroes, and NaNs (“not a number”). Two basic classes of
types are specified: integer and floating point. A typical system could support several of each.

In general, the parameters of all arithmetic types must be accessible to an executing program.

The signature of each operation partially characterizes the possible input and output values.
All operations are defined for all possible combinations of input values. Exceptions (like dividing

C.5 Specifications for integer and floating point datatypes and operations 61



ISO/IEC FDIS 10967-1:2011(E) © ISO/IEC 2011 — All rights reserved

3 by 0) are modelled by the return of non-numeric exceptional values (like invalid, infinitary,
etc.). The absence of an exceptional value in the result set of a signature does not indicate that
that exception cannot occur, but that it cannot occur for values in the input set of the signature.
Other exceptions, as well as other values, can be returned for inputs outside of the stated input
values, e.g. infinities. The operation specifications state precisely when notifications

must occur.

The philosophy of LIA-1 is that all operations either produce correct results or give a no-
tification. For the operations specified in LIA, a notification must be based on the final result;
there can be no spurious intermediate notifications. Arithmetic on bounded, non-modulo, integers
must be correct if the mathematical result lies between minint; and maxint; and must produce
a notification if the mathematically well-defined result lies outside this interval (overflow) or if
there is no mathematically well-defined (and finite) result (infinitary or invalid). Arithmetic
on floating point values must give a correctly rounded approximation if the approximation lies
between —fmaz and fmazrr and must produce a notification if the mathematically well-defined
approximation lies outside this interval (overflow) or if there is no mathematically well-defined
(and finite) approximation (infinitary or invalid).

C.5.1 Integer datatypes and operations

Most traditional computer programming languages assume the existence of bounds on the range
of integers which can be values in integer types. Some languages place no limit on the range of
integers, or even allow the boundedness of an integer type to be an implementation choice.

This standard uses the parameter bounded; to distinguish between implementations which
place no restriction on the range of integer data values (bounded; = false) and those that do
(bounded; = true). If the integer datatype (corresponding to) I is bounded, then two additional
parameters are required, minint; and maxint;. For unbounded integers, minint; and maxinty
are required to have infinitary values. Infinitary values are required for unbounded integer types,
and are allowed for bounded integer types.

For bounded integers, there are two approaches to out-of-range values: notification and “wrap-
ping”. In the latter case, all computation except comparisons is done modulo the cardinality
of I (typically 2™ for some n), and no notification is required. The “wrapping” is modeled by
operations specified in part 2.

C.5.1.0.1 Unbounded integers

Unbounded integers were introduced because there are languages which provide integers with no
fixed upper limit. The value of the Boolean parameter bounded; must either be fixed in the
language definition or must be available at run-time. Some languages permit the existence of an
upper limit to be an implementation choice.

In an unbounded integer datatype implementation, every mathematical integer is potentially a
data object in that datatype. The actual values computable depend on resource limitations, not on
predefined bounds. Resource limitation problems are not modelled in LIA, but an implementation
will need to make use of some notification to report the error back to the program (or program
user). Note that also bounded integer datatypes may give rise to resource limitation errors, e.g.
if the (intermediary) computed result cannot be stored.
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LIA-1 does not specify how the unbounded integer datatype is implemented. Implementations
will use a variable amount of storage for an integer, as needed. Indeed, if an implementation
supplied a fixed amount of storage for each integer, this would establish a de facto maxint; and
mininty. It is important to note that this standard is not dependent upon hardware support for
unbounded integers (which rarely, if ever, exists). In essence, LIA-1 requires a certain abstract
functionality, and this can be implemented in hardware, software, or more typically, a combination
of the two.

Operations on unbounded integers will never overflow. However, the storage required for
unbounded integers can result in a program failing due to lack of memory. This is logically no
different from failure through other resource limits, such as time.

The implementation may be able to determine that it will not be able to continue processing in
the near future and may issue a warning. Some recovery may or may not be possible. It may be
impossible for the system to identify the specific location of the fault. However, the implementation
must not give false results without any indication of a problem. It may be impossible to give a
definite “practical” value below which integer computation is guaranteed to be safe, because the
largest representable integer at time ¢t may depend on the machine state at that instant. Sustained
computations with very large integers may lead to resource exhaustion.

Natural numbers (upwardly unbounded non-negative integers) are not modelled by LIA-1.

The signatures of the integer operations include overflow as a possible result because they
refer to bounded integer operations as well.

C.5.1.0.2 Bounded non-modulo integers

For bounded non-modulo integers, it is necessary to define the range of representable values,
and to ensure that notification occurs on any operation which would give a mathematical result
outside that range. Different ranges result in different integer types. The values of the parameters
mininty and maxint; must be accessible to an executing program.

The allowed ranges for integers fall into three classes:

a) minint; = 0, corresponding to unsigned integers. The operation negy would always produce
overflow (except on 0), and may be omitted.

The operation absy is the identity mapping and may also be omitted. The operation div;
never produces overflow.

b) minint; = —maxinty, corresponding to one’s complement or sign-magnitude integers. None
of the operations negy, absy or div; produces overflow.

c) minint; = —(maxint; + 1), corresponding to two’s complement integers. The operations
negr and absy produce overflow only when applied to minint;. The operation div; produces
overflow when minint; is divided by —1, since

mininty/(—1) = —minint; = mazxint; + 1 > mazint;.

The Pascal, Modula-2, and Ada programming languages support subranges of integers. Such
subranges typically do not satisfy the rules for maxint; and minint;. However, that is not to say
that these languages have non-conforming integer datatypes. Each subrange type can be viewed
as a subset of an integer datatype that does conform to LIA-1. Integer operations are defined on
those integer datatypes, and the subrange constraints only affect the legality of assignment and
parameter passing.
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C.5.1.0.3 Modulo integers

Modulo arithmetic operations on integers were introduced because there are languages that man-
date wrapping operations for some integer types (e.g., C’s unsigned int type), and make it
optional for others (e.g., C’s signed int type).

Modulo arithmetic operations on integer datatypes behave as above, but wrap rather than
overflow when an operation would otherwise return a value outside of the range of the datatype.
However, in this edition, this is modelled as separate operations from the add; etc. operations.
A binding may however use the same syntax for add; and add_wrapy (etc. for other operations),
and let the datatypes of the arguments, or a modulo; parameter, imply which LIA operation is
invoked.

Bounded modulo integers (in the limited form defined here) are definitely useful in certain
applications. However, bounded integers are most commonly used as an efficient hardware ap-
proximation to true mathematical integers. In these latter cases, a wrapped result would be
severely inaccurate, and should result in a notification. Unwary use of modulo integers can easily
lead to undetected programming errors.

The developers of a programming language standard (or binding standard) should carefully
consider which (if any) of the integral programming language types are bound to modulo integers.
Since modulo integers are dangerous, programmers should always have the option of using non-
modulo (overflow checking) integers instead.

Some languages, like Ada, allow programmers to declare new modulo integer datatypes, usually
unsigned. Since the upper limit is then also programmer defined, the lower limit usually fixed at
zero, these datatypes are more flexible, and very useful.

C.5.1.1 Integer result function

The integer result function, resulty, takes as argument the exact mathematical result of an integer
operation, and checks that it is in the bounds of the integer datatype. If so, the value is returned.
If not, the exceptional value overflow is returned.

The result; helper function is used in the specifications of the integer operations, and is used
to consistently and succinctly express the overflow notification cases. The continuation value on
overflow is binding or implementation defined.

The helper function wrapy (LIA-2), used to specify modulo operations (or “modulo integers”)
produces results in the range [minint;, maxints|, and never produces an overflow notification.
These results are positive for unsigned integer types, but may be negative for signed types.

C.5.1.2 Integer operations
C.5.1.2.1 Comparisons

The comparisons are always exact and never produce any notification.

64 Rationale



© ISO/IEC 2011 — All rights reserved ISO/IEC FDIS 10967—1:2011(E)

C.5.1.2.2 Basic arithmetic

The ratio of two integers is not necessarily an integer. Thus, the result of an integer division may
require rounding. Two rounding rules are in common use: round toward minus infinity (quoty),
and round toward zero. The latter is not specified by LIA-1, due to proneness for erroneous use,
when the arguments are of different signs. For example,

quoty(—3,2) = =2 round toward minus infinity, specified in LIA-1
divh(—3,2) = —1 round toward zero, no longer specified by any part of LTA

quot (called aliv}c in the first edition of LIA-1) as well as ratior and group;y (specified in LIA-2)
all satisfy a broadly useful translation invariant:

quotr(x +ixy,y) = quotr(z,y) +1 if y # 0, and no overflow occurs

(and similarly for the ratio; and groupr). quoty is the form of integer division preferred by many
mathematicians. divt (no longer specified by LIA) is the form of division introduced by Fortran.

Integer division is frequently used for grouping. For example, if a series of indexed items are to
be partitioned into groups of n items, it is natural to put item i into group i/n. This works fine
if quot; is used for integer division. However if divt (no longer specified by LIA) is used, and i
can be negative, group 0 will get 2-n — 1 items rather than the desired n. This uneven behaviour
for negative i can cause subtle program errors, and is a strong reason against the use of div}, and
for the use of the other integer division operations.

mod; gives the remainder after quot; division. It is coupled to quot; by the following identities:

x = quotr(x,y) x y + mody(z,y) if y # 0, and no overflow occurs
y < modr(x,y) <0 if y <O
0 < mody(z,y) <y ify>0

Thus, quot; and mod; form a logical pair. So do ratio;r and residuey, as well as groupy and
negated(!) pad; (specified in LIA-2). Note that computing mod;(z,y) only as

subr(x, muly(quotr(z,y),y))

is not correct for asymmetric bounded integer types, because quot;(x,y) can overflow but mod;(z, y)
cannot.

C.5.2 Floating point datatypes and operations

Floating point values are traditionally represented as

X =xgxr% =£0.fifo. . fpp x7%
where 0.f1 fo...fp, is the pp-digit fraction g (represented in base, or radix, rr) and e is the
exponent. This includes subnormal numbers, including zero and negative zero. (Usually, f; =0

is permitted only for the minimal value for the exponent, in order to get unique representation of
values. However, IEC 60559 does not make this restriction for base 10.)

The exponent e is an integer in [eming, emazxp|. The fraction digits are integers in {0, ...,rp —
1}. If the floating point number is normalized, fi is not zero, and hence the minimum normalised
value of the fraction g is 1/rF and the maximum value is 1 — r;p ¥, Subnormal values, including
0, cannot be represented in normalised form, since that would call for an exponent smaller than
eming, indeed, for 0 the exponent would be negative infinity.
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This description gives rise to five parameters that characterize the set of non-special values of
a floating point datatype:

radix rg: the “base” of the number system.
precision pg: the number of radix rr digits provided by the type.
eming and emazp: the smallest and largest exponent values. They define the range of the type.

denormp (a Boolean): true if the datatype includes the subnormal values; false if the only
subnormal values included are zeroes (non-conforming case).

For normalised values, the fraction g can also be represented as i % r;p T where ¢ is a pp digit
integer in the interval [r2F ™' +PF — 1]. Thus
X =dgsrs =x(xr ") xrS = 2ixry PP
This is the form of the floating point values used in defining the finite set Fy. The exponent e is

often represented with a bias added to the true exponent, in order to avoid having to deal with
negative integer representations for the exponent.

denormp must be true for a fully conforming datatype. It is allowed to be false only for
partially conforming datatypes.

The IEEE 754 [34] (same as IEC 60559) present a slightly different model for the floating point
type. Normalized floating point numbers are represented as

ifO-fl---pr—l * 7"%

where fo.f1...fpp—1 is the pp-digit significand (represented in radix 7, where rp is 2 or 10), and
e is an integer exponent between eming — 1 (now, confusingly, called emin in IEEE 754) and
emazp — 1 (now, confusingly, called emaz in IEEE 754). For rp = 2 the minimum value of the
significand for a normalised value is 1 and the maximum value is rp — 1 /T%F 1 For rp = 10
the minimum value of the significand is 0 and the maximum value is rp — 1 /T%F _1, allowing
for denormal values that need not be subnormal. LIA does not distinguish between normal and
denormal representations of the same value. The IEEE significand is equivalent to g * rp.

The fraction model and the significand model are equivalent in that they can generate precisely
the same sets of floating point values. Currently, all ISO/TEC JTC1/SC22 programming language
standards that present a model of floating point to the programmer use the fraction model rather
than the significand one. LIA-1 has chosen to conform to this trend.

Note though, that the fractionp and exponentr_; operations return values for subnormal
(including 0) numbers, as if the exponent range was unlimited, and not tied to the integer repre-
senting the exponent part in the usual representations for floating point values. Thus the result
of exponentp_, is not limited to [eming, emazp).

C.5.2.0.1 Constraints on the floating point parameters

The constraints placed on the floating point parameters are intended to be close to the minimum
necessary to have the model provide meaningful information. We will explain why each of these
constraints is required, and then suggest some constraints which have proved to be characteristic
of useful floating point datatypes.

LIA-1 requires that 7 > 2 and pr > 2 - max{1,[log, (2 - )]} in order to ensure that a
meaningful set of values. At present, only 2, 8 10, and 16 appear to be in use as values for
rr (except for string representations, where sometimes, as for Ada, a wider range of radices are
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permitted: like for Ada, from 2 to 36). The first edition of LIA-1 only required that pr > 2, but
such a low bound gives trouble in the specifications of some of the elementary function operations
(LIA-2). Indeed, pr should be such that pr > 2 + [log,,(1000)], so that the trigonometric
operations can be meaningful for more than just one cycle, but at 100 or so cycles. If the radix
is 2, that means at least 12 binary digits in the fraction part. As a comparison, note that the
IEEE 754 storage format ‘binaryl6’ has pp = 11, and is thus not suitable for computations.

The requirement that eming < 2 — pp ensures that epsilong is representable in F'.

The requirement that emazrp > pp ensures that 1/epsilonp is representable in F. It also
implies that all integers from 1 to 75" — 1 are exactly representable.

The parameters rr and pp logically must be less than rF, so they are automatically in F.
The additional requirement that emaxr and —eming are at most T%F — 1 guarantees that emazxp
and eming are in F' as well.

A consequence of the above restrictions is that a language binding can choose to report rg, pg,
eming, and emaxp to the programmer either as integers or as floating point values without loss
of accuracy.

Constraints designed to provide:
a) adequate precision for scientific applications,

b) “balance” between the overflow and underflow thresholds, and

c) “balance” between the range and precision parameters

are applied to safe model numbers in Ada [I1]. No such constraints are included in LIA-1, since
LIA-1 emphasizes descriptive, rather than prescriptive, specifications for arithmetic datatypes.
However, the following restrictions have some useful properties:

a) rp should be even

An even value of rr makes certain rounding rules easier to implement. In particular, round-
ing to nearest would pose a problem because with rr odd and d = |rp/2] we would have
% = .ddd--- . Hence, for z; < x < z1 + ulpp(z1) a reliable test for x relative to
1+ %ulpp(xl) could require retention of many guard digits.

b) rhrt > 106

This gives a maximum relative error (epsilonp) of one in a million. This is easily accom-
plished by 24 binary or 6 hexadecimal digits.

c) eming —1 < —k«* (pp — 1) with k£ > 2 and k as large an integer as practical

This guarantees that epsilon’} is in F which makes it easier to simulate higher levels of
precision than would be offered directly by the values in the datatype.

d) emazp > k* (pp — 1)
This guarantees that epsilon;k is in F' and is useful for the same reasons as given above.

e) —2 < (eminp — 1) + emazp < 2

This guarantees that the geometric mean \/ fminNp * fmazrp of fminNp and fmazp lies
between 1/rp and rp.
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All of these restrictions are satisfied by most (if not all) implementations. A few implemen-
tations present a floating point model with the radix point in the middle or at the low end of
the fraction. In this case, the exponent range given by the implementation must be adjusted to
yield the LIA-1 eming and emaxp. In particular, even if the minimum and maximum exponent
given in the implementation’s own model were negatives of one another, the adjusted eming and
emaxr become asymmetric.

C.5.2.0.2 Radix complement floating point

LIA-1 presents an abstract model for a floating point datatype, defined in terms of parameters.
An implementation is expected to be able to map its own floating point numbers to the elements
in this model, but LIA-1 places no restrictions on the actual internal representation of the floating
point values.

The floating point model presented in LIA-1 is sign-magnitude. A few implementations keep
their floating point fraction in a radix-complement format. Several different patterns for radix-
complement floating point have been used, but a common feature is the presence of one “extra”
negative floating point number, that has no positive counterpart: the most negative. Its value is
—fmazp — ulpp(fmaz ). Some radix-complement implementations also omit the negative coun-
terpart of fminp.

In order to accommodate radix-complement floating point, LIA-1 would have to make at least
the following changes:

a) define additional derived constants which correspond to the negative counterparts of fmin
(the “least negative” floating point number) and fmaz (the “most negative” floating point
number) and change the definitions of Fy, Fg, etc.;

b) negation and absolute value will also be inexact for some values close to exponent bound-
aries;

c¢) add overflow to the signature of negr (because negr evaluated on the most negative number
will now overflow);

d) add overflow to the signature of absp (because absy will now overflow when evaluated on
the most negative number);

e) add underflow to the signature of negp, if —fminp is omitted;

f) expand the definitions of subp and truncp, and redefine these operations and also roundp
operations to ensure that these operations behave correctly.

g) redefine the predp and succp operations to treat the new most negative floating point
number properly.

Because of this complexity, LIA-1 does not include radix-complement floating point.

Floating point implementations with sign-magnitude or (radix—1)-complement fractions can
map the floating point numbers directly to LIA-1 model without these adjustments.

C.5.2.1 Conformity to IEC 60559

TEC 60559 is the international version of IEEE 754.
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Note that “methods shall be provided for a program to access each [IEC 60559 facility”. This
means that a complete LIA-1 binding will include a binding for IEC 60559 as well.

C.5.2.1.1 Subnormal numbers

IEEE 754 (IEC 60559) datatypes and some non-IEEE floating point datatypes include subnormal
numbers. 0 and —0 are two of the subnormal numbers. Floating point formats can in general
represent subnormal numbers, since the floating point representation must be able to represent
0, and that is usually done in a way that can readily be generalised to represent any subnormal
number. LIA-1 models a subnormal floating point number as a real number of the form

4y EMINE—DR
X ==dixrg

where 7 is an integer in the interval [0, ’I“%F - 1]. The corresponding fraction g lies in the interval
0,1/rp —r;P"]; its most significant digit is zero. Subnormal numbers partially fill the “underflow
emingp—1 eminF—l[)

gap” in F: the interval |—fminNp, fminNp[ (that is: |—rjy T
apart from —O0, they comprise the set Fg.

Taken together,

The values in Fg are linearly distributed with the same spacing as the values in the neighbouring

; me ed 1€ S¢ '
ranges |—rg ", —r@ T and [r T r@™F [in Fy. Thus they have a maximum absolute

representation error of r;mmF ~PF However, since subnormal numbers have less than pr digits of
precision, the relative representation error varies widely. The relative error varies from epsilong =
rllr_p 7 at the high ends of Fg to 1 at the low ends of Fg. Near 0, in [—fminDg, fminDg]|, the relative

error may be unboundedly large.

Whenever an addition or subtraction, resulting in the same datatype as the arguments, pro-
duces a result in Fg, that result is exact — the relative error is zero. Even for an “effective
subtraction” no accuracy is lost, because the decrease in the number of significant digits is exactly
the same as the number of digits cancelled in the subtraction. For multiplication, division, scaling,
and some conversions, significant digits (and hence accuracy) may be lost if the result is in Fgs.
This loss of significant digits is called denormalisation loss.

The entire set of floating point numbers F is either FyUFg (if subnormal numbers are provided),
or Fy U {0} (if all available non-special numbers, except 0, are normalized). For full conformity
LIA-1 requires the use of subnormal numbers.

C.5.2.1.2 Signed zero

The IEEE standards define both 0 and —0. Very few non-IEEE floating point datatypes provide
the user with two “different” zeros. Even for an IEEE datatype, the two zeroes can only be
distinguished with a few operations, not including comparisons, but e.g. using dividing by zero
to obtain signed infinity, by (correctly) converting to a character string numeral, or by using
operations that have a branch cut along an axis, like arcyp (LIA-2) or some complex inverse
trigonometric operation (LIA-3). Programs that require that 0 and —0 are distinct might not be
portable to systems without IEEE floating point datatypes.

C.5.2.1.3 Infinities and NalNs

IEEE 754 [34] provides special values to represent infinities and Not-a-Numbers. Infinity represents
an exact quantity (for instance from dividing a finite number by zero). Infinities are also used as an
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inexact continuation value for overflow. A NaN represents an indeterminate or unrepresentable
quantity (e.g. from dividing zero by zero, or square root of —1 when that result cannot be
represented).

Most non-IEEE floating point datatypes do not provide infinities or (quiet) NaNs. Thus,
programs that make use of infinity or quiet NaNs will not be portable to systems that do not
provide them.

Note also that LIA-1 requires the presence of both negative and positive infinity in unbounded
integer datatypes. Also quiet NaNs should be provided. Such requirements are not made for
bounded integer datatypes, since such datatypes are most often supported directly by hardware.

C.5.2.2 Range and granularity constants

The positive real numbers fmax p, fming, fminNp, and fminDE are interesting boundaries in the
set F'. fmaz is the “overflow threshold” (though overflow may be tested before or after rounding).
It is the largest value in F' (and thereby also Fy). fminp is the value of smallest magnitude in
F. fminNp is the “subnormal threshold”. It is the smallest normalized value in F: the point
where the number of significant digits begins to decrease. Finally, fminDg is the smallest strictly
positive subnormal value, representable only if denormpg is true.

This standard requires that the values of fmazp, fming, and fminNg be accessible to an ex-
ecuting program. All non-zero floating point values fall in the ranges [—fmazp, —fming] and
[fmin g, fmaz ], and values in the ranges [—fmaz p, —fminNp| and [fminNp, fmaz ;| can be repre-
sented with full precision.

The derived constant fminDr need not be given as a run-time parameter. For a datatype in
which subnormal numbers are provided (and enabled), the value of fminDg is fmin . If subnormal
numbers are not present, the constant fminDp is not representable, and fminp = fminNp.

The derived constant epsilonr must also be accessible to an executing program:

. 1—
epsilonp = rp ¥

It is defined as ratio of the weight of the least significant digit of the fraction g, r"", to the
minimum value of a normalised g, 1/rp. So epsilonp can be described as the largest relative
representation error for the set of normalised values in Fly.

An alternate definition of epsilonp currently in use is the smallest floating point number such
that the expression 1 + epsilonp yields a value greater than 1. This definition is flawed because
it depends on the characteristics of the rounding function. For example, using round to nearest,
epsilony would be half of what it is defined to be in LIA. In the extreme, on an IEEE floating
point datatype using round-to-positive-infinity, epsilong would be fminDp.

C.5.2.2.1 Relations among floating point datatypes
An implementation may provide more than one conforming floating point datatype, and most
systems do. It is usually possible to order those with a given radix as Fi, Fb, F3,---  such that

pFl <pF2 <pF3
eming, = eNMINg, = eming, - - -
emarp, < emarp, < emaxp, -« .
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A number of systems do not increase the exponent range with precision. However, the following
constraints

2 : pFl < pFi+1

2 (eminp, — 1) = (eming, , — 1)

2-emaxp, < emarp,,,
for each pair F; and F;;1 would provide advantages to programmers of numerical software (for
floating point datatypes not at the widest level of range-precision):

a) The constraint on the increase in precision expedites the accurate calculation of residuals
in an iterative procedure. It also provides exact products for the calculation of an inner
product or a Euclidean norm.

b) The constraints on the increase in the exponent range makes it easy to avoid the occurrence
of an overflow or underflow in the intermediate steps of a calculation, for which the final
result is in range.

C.5.2.3 Approximate operations

As an example, apply a three stage model to multiplication (mulp_p(x,y)) (for simplicity, as-
suming the target type is the same as the argument type, F'):

a) First, compute the perfect result, = * y, as an element of R.
b) Second, modify this to form a rounded result, nearesty(x % y), as an element of FT,

c) Finally, decide whether to accept the rounded result or to cause a notification.

Putting this all together, we get the defining case for multiplication when both arguments and
the result are in F"

mulp_p(x,y) = resultp(z - y,nearestp) if v,y € F

The resulty function is defined to compute the rounded result internally, since the result depend
on the properties of the rounding function itself, as well as the exact value, not just the rounded
result.

Note that in reality, step @ only needs to compute enough of = -y to be able to complete steps
@ and , i.e., to produce a rounded result and to decide on overflow, inexact, and underflow.

The helper functions nearestp, resultp, are the same for all the operations of a given floating
point type.

The helper functions are not visible to the programmer, but they are included in the required
documentation of the type. This is because these functions form the most concise description of
the semantics of the approximate operations.

C.5.2.4 Rounding and rounding constants

Floating point operations are rarely exact. The true mathematical result seldom lies in F, so
the mathematical result must be rounded to a nearby value that does lie in F'. For convenience,
this process is described in three steps: first the exact value is computed, then a determination is
made about overflow, underflow, or inexact, finally the exact value is rounded to the appropriate
precision and a continuation value is determined.
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A rounding rule is specified by a rounding function which maps values in R onto values in F'.
FT is the set FgU Fy augmented with all values of the form =i * fr;_pF where T%F_l <1< T%F -1
(as in Fiy) but e > emazp. The extra values in F', i.e. F, are unbounded in range, but all have
exactly pr digits of precision. These are “helper values”, and are not representable in the type F.

The round to nearest rule is “sign symmetric”, nearestp(—z) = —nearestp(z). This assures
that the arithmetic operations addp_,pr, subp_ g/, mulp_p/, and divp_, g have the expected
behaviour with respect to sign, as described in

In addition to being a rounding function (as defined in [4.2)), nearestp does not depend upon
the exponent of its input (except for subnormal values). This is captured by a “scaling rule”:

nearestp(x - T%) = nearestp(x) - r%
which holds as long as z and « - r{; have magnitude greater than or equal to fminNg.

Subnormal values have a wider relative spacing than ‘normal’ values. Thus, the scaling rule
above does not hold for all x in the subnormal range. When the scaling rule fails, we say that
nearestr has a denormalization loss at x, and the relative error

x—nearestp(x) ’
x
is typically larger than for ‘normal’ values.

A constant may be provided, and must be provided if the operation variants specified in are
allowed, to give the programmer access to some information about the rounding function in use.
rnd_errorp describes the maximum rounding error (in ulps). Floating point datatypes that fully
conform to LIA-1 have rnd_errorp = 0.5. This is a value of the rounding error that is actually
allowed, that is, the actual rounding error for any inexact LIA-1 operation is in the interval [0, 0.5]
ulp. Partially conforming floating point datatypes can have an rnd_errorry = 1. This is a value of
the (partially conforming) rounding error that is not actually allowed, that is, the actual rounding
error for any inexact LIA-1 operation is in the interval [0, 1] ulp.

IEEE 754 [34] defines five rounding methods. IEEE 754 allows for dynamic setting of a rounding
mode to choose between them, but sometimes have different operations for different rounding
methods.

a) Round to nearest, ties to even last digit. In the case of a value exactly half-way between two
neighbouring values in FT, select the “even” result. That is, for non-negative z in Ff

rnd(z + 3 - up(z)) = + up(z) if z/up(x) is odd
=z if x/up(x) is even

This is the default rounding mode in IEEE 754.

b) Round to nearest, ties away from zero. In the case of a half-way value, round away from
zero. That is, for non-negative z in F'f

rnd(z + § - up(z)) = + up(z)

This rounding mode is in IEEE 754 specified only for radix 10 datatypes, though it has
traditionally been used also for other radices (2, 8, 16).

¢) Round toward zero.
d) Round toward minus infinity.

e) Round toward plus infinity.
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The first three of these rounding rules are sign symmetric, but the last two are not. However,
the last two are useful for getting tighter error bounds for interval arithmetic, provided that “flush
to zero” on underflow is not used or is compensated for. The first two rounding methods give
a half ulp error bound, so rnd_errorg is 0.5. The last three rounding methods give a one ulp
error bound, so rnd_errorg is 1. Most non-IEEE implementations provide either the second or
the third rule.

C.5.2.5 Floating point result function

The rounding function, like nearestr, can return values that are not bounded by fmazp. A result
function is then used to check whether the result is within range, and to generate an exceptional
value if required. The result function resultr takes two arguments. The first one is a real value
x (typically the mathematically correct result) and the second one is a rounding function rnd to
be applied to zx.

If F' does not include subnormal numbers, and rnd(z) is representable, then resultp returns
rnd(x) (as a continuation value to inexact if = # rnd(x)). If rnd(x) is too large or too small to
be represented as a normal value, then resulty returns overflow or underflow.

The only difference when F' does contain subnormal values occurs when rnd returns a sub-
normal value. If there was a denormalization loss in computing the rounded value, then resultp
must return underflow with rnd(x) as continuation value. On the other hand, if there was no
denormalization loss, then the implementation is to return rnd(z) as a continuation value either
to inexact or underflow exceptional value return.

resultp(x,rnd) takes rnd as its second argument (rather than taking rnd(x)) because one of
the final parts of the definition of resulty refers to denormalization loss. Denormalization loss is
a property of the function rnd at x rather than of the individual value rnd(z). In addition, the
continuation value upon overflow, depends on the rounding function.

C.5.2.6 Floating point operations

This clause describes the floating point operations defined by the standard.

An implementation can easily provide any of these operations in software. However, portable
versions of these operations will not be as efficient as those which an implementation provides and
“tunes” to the architecture.

C.5.2.6.1 Comparisons

The comparison operations are atomic operations which never produce a notification when the ar-
guments are in F', and then always return true or false in accordance with the exact mathematical
result.

C.5.2.6.2 Basic arithmetic

a) The operations addp_,pr, subp_ g, mulp_,pr, and divp_ g carry out the usual basic arith-
metic operations of addition, subtraction, multiplication, and division.
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b)

c)

The operations negr and absp produce the negative and absolute value, respectively, of the
input argument. They never overflow or underflow.

The operation signum g returns a floating point 1 or —1, depending on whether its argument
is positive (including zero) or negative (including negative zero).

C.5.2.6.3 Value dissection

a)

The operation exponentr gives the exponent of the floating point number in the model as
presented in LIA-1, but as though the range of exponent values was unbounded. The value
of exponentr can also be thought of as the “order of magnitude” of its argument, i.e., if n
is an integer such that %" < x < %, then exponentp(z) = n. exponentr(0) is negative
infinity (with a infinitary notification).

The operation fractiony scales its argument (by a power of rp) until it is in the range
+[1/rp, 1[. Thus, for x # 0,

x = fractionp(x) * r;xponentp(x)

The operation scaler scales a floating point number by an integer power of the radix.

The operation succg returns the closest element of F' greater than the argument, the “suc-
cessor” of the argument.

The operation predg returns the closest element of F' less than the argument, its “predeces-

sor”.

The succp and predp operations are useful for generating adjacent floating point numbers,
e.g. in order to test an algorithm in the neighbourhood of a “sensitive” point.

The operation ulpr gives the value of one unit in the last place, i.e., its value is the weight of

the least significant digit. It will underflow catastrophically if denormp = false in the range

=@ tPF ra *PP[ but will never return an exceptional value if denormp = true.

Standardizing functions such as exponentpr and ulpp helps shield programs from explicit de-
pendence on the underlying format.

Note that the helper function er is not the same as the exponentr operation. They agree on
‘normal’ numbers in F', but differ if the argument is subnormal (including zero). exponentp(z) is
chosen to be the exponent of x as though x were in normalized form and the range and precision
were unbounded. For subnormal numbers, ep(z) is equal to eming. In addition, e is defined for
an argument in R, while exponentr is defined for arguments in F' (plus special values).

C.5.2.6.4 Value splitting

a)

b)
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The operation truncp(z,n) zeros out the low (pp — n) digits of the first argument. When
n < 0 then 0 is returned; and when n > pp the argument is returned.

The operation roundg(x,n) rounds the first argument to n significant digits. That is, the
nearest n-digit floating point value is returned. Values exactly half-way between two adjacent
n-digit floating point numbers round away from zero. roundp differs from truncg by at most
1 in the n-th digit.
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The truncr and roundp operations can be used to split a floating point number into a
number of “shorter” parts in order to expedite the simulation of multiple precision operations
without use of operations at a higher level of precision.

c) The operation intpartp isolates the integer part of the argument and returns this result in
floating point form. Note that this is done by truncation, so it is sign symmetric bot not
translation regular.

d) The operation fractpart returns the value of the argument minus its integer part obtained
by intpartp. So this is sign symmetric but not invariant (apart from rounding) by integer
translation (since the integer part is computed by truncation, and not by floor, ceiling, nor
nearest (ties to even)). However, this way an exact result is obtained with no loss of accuracy
due to rounding.

C.5.2.7 Levels of predictability

This clause explains why the method used to specify floating point types was chosen. The main
question is, “How precise should the specifications be?” The possibilities range from completely
prescriptive (specifying every last detail) to loosely descriptive (giving a few axioms which essen-
tially every floating point system already satisfies).

IEEE 754 [34] takes the highly prescriptive approach, allowing relatively little latitude for
variation. It even stipulates much of the representation. The Brown model [42] comes close to
the other extreme, even permitting non-deterministic behaviour.

There are (at least) five interesting points on the range from a strong specification to a very
weak one. These are

a) Specify the set of representable values exactly; define the operations exactly; but leave the
representations unspecified.

b) Allow limited variation in the set of representable values, and limited variation in the oper-
ation semantics. The variation in the value set is provided by a small set of parameters.

c) Use parameters to define a “minimum” set of representable values, and an idealized set of
operations. This is called a model. Implementations may provide more values (extra preci-
sion), and different operation semantics, as long as the implemented values and operations
are sufficiently close to the model. The standard would have to define “sufficiently close”.

d) Allow any set of values and operation semantics as long as the operations are deterministic
and satisfy certain accuracy constraints. Accuracy constraints would typically be phrased
as maximum relative errors.

e) Allow non-deterministic operations.

The IEEE model is close to @ The Brown model is close to @ LIA-1 selects the second
approach because it permits conformity by most current systems, provides flexibility for high
performance designs, and discourages increase in variation among future systems.

Note that the Brown model allows “parameter penalties” (reducing pr or eming or emaxp)
to compensate for inaccurate hardware. The LIA-1 model does not permit parameter penalties.

A major reason for rejecting a standard based upon the Brown model is that the relational
operations do not (necessarily) have the properties one expects. For instance, with the Brown
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model, x < y and y < z does not imply that x < z (assuming < here is in some programming
language).

C.5.2.8 Identities

By choosing a relatively strong specification of floating point, certain useful identities are guar-
anteed to hold. The following is a sample list of such identities. These identities can be derived
from the axioms defining the arithmetic operations.

The approximate operations (addp_,pr, subp_,pr, mulp_pr, divp_pr, sqrtp_ps, ...) compute
approximations to the ideal mathematical functions. Note that in this version of LIA-1 the
approximate operations all have a source and a target type. This way double rounding is avoided
when the target type has less precision than the argument type. IEC 60559 (IEEE 754), also in
the version from 1989, requires this avoidance of double rounding for these operations. Some of
the double rounding avoiding operations were previously (only) in LIA-2, but are now covered by
LIA-1.

Since the approximate operations specified in LIA-1 are all so similar, it is convenient to give
a series of rules that apply to all of them (with some qualifications). Let ® be any of the LIA-1
approximate operations with arguments in F' and result in F’, and let ¢ be the corresponding
ideal mathematical function (in the case of conversions, ¢ is the identity function). If ¢ is a single
argument function, ignore the second argument.

When ¢(z,y) is defined for z,y € F, and no notification apart from inexact occurs (for
inexact, consider the continuation value),
u< o(z,y) <v = u<P(z,y) < @
when u,v € F’.

When ¢(z,y) is defined for z,y € F,
¢z, y) € F' = P(z,y) = ¢(z,y) (I1)

When ¢(u, z) and ¢(v,y) are defined for z,y,u,v € F, and no notification apart from inexact
occurs (for inexact, consider the continuation value),
o(u, ) < P(v,y) = P(u,z) < 2(v,y) (I1I)
When ¢(x,y) is defined for z,y € F, and no notification apart from inexact occurs (for
inexact, consider the continuation value),
When ¢(z,y) is defined for x,y € F, non-zero, is in the range [—fmazp, fmaz ], and no

notification apart from inexact occurs (for inexact, consider the continuation value),

W’ L ulpp (1) = epsilong W)

When ¢(z,y) and ¢(x - rfv,y - %) are defined for z,y € F and j,k € Z, are in the range
[—fmaz g, fmaz ], and no notification apart from inexact occurs (for inexact, consider the
continuation value), for some n € Z

Sz iy -Th) = $(x,y) - rE = D@ v,y Th) = Blay) R (VD)
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Rules (I) through (VI) apply to the approximate operations of LIA-1. This is true also with
the relaxations in Annex with one exception. Rule (III) may then fail for addp and subp
when the approximate addition function is not equal to the true sum (i.e., add}.(u,x) # u + z, or
addy(v,y) # v+ y). However, the following weaker rules always hold:

u<Lv
u<v
u<Lv
u<v

=
=
=
=

addp_pr(u,x) < addp_pr (v, x)

addp_p(x,u) < addp_pr(2,v)

subp_ypr(u, z) < subp_ypr (v, x)

SUbF%F’(xa u) > SUbF%F’(xa U)
)

Rules (I) through (VI) also apply to the exact operations, but then they do not say anything

of interest.

Here are some identities that apply to specific operations, when no notification apart from

inexact occurs:

addp_, g ($, y) = addp_, (y7 1‘)

mulp_p(z,y) = mulp_p(y, )

subp_,pr(x,y) = negp (subp_ (Y, x))

addp_pr(negr(x),negr(y)) = negp (addp_ g (z,y))

subp_ g (negr(z), negr(y)) = negr (subp—pr (z,y))

mulp_, pr (negFa:), y) = mulp_, (1’7 negp(y)) = negrr (mUlF—>F/($, y))

divp_pr(negr(x),y) = divp_p/(x,negr(y)) = negr (divp—p (x,y))
For = # 0,

x € Fn = exponentp(x) € [eming, emaz ]

x € Fg = exponentp(x) € [eming — pr + 1,eming — 1]

T;:cponentp(x)—l cF

F

TexponentF (z)—1

exponentp(x
< ‘$| < TFp F(2)

|fractionp(x)| € [1/rp, 1]

scalep(fractionp(x), exponentp(x)) = x

scalep(z,n) is exact (= x - r}) if « - r} is in one of the ranges [—fmazp, —fminNp] or
[fminNp, fmazp] or is 0, or if n > 0 and |z - r}i| < fmazp.

For x # 0 and y # 0,

x = +i - ulpp(zx) for some integer i which satisfies

pr—1

TR

<i<r1}F ifx e Fy

1<i<rbr! if x € Fg
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exponentp(x) = exponentr(y) = ulpp(z) =ulpr(y) ifz,ye€ Fy

x€eFy = ulpp(x) = epsilonp * T;J?ponentF(m)_l

Note that if denormp = true, ulprp is defined on all floating point values. If denormp = false
(not conforming to LIA-1), ulpp underflows catastrophically (returning 0) on all values less than
fminNg/epsilonp, i.e., on all values for which ep(z) < eming + pp — 1.

For |z| > 1,
intpartp(xz) = truncp(z,ep(x)) = truncp(x, exponentp(x))
For any z € F', when no notification occurs,

succp(predp(x)) =z
predp(succp(x)) =z
succp(—x) = —predp(z)

predp(—z) = —succp(x)
For positive z € F, when no notification occurs,

succp(z) =z + ulpp(x)

predp(x) =z — ulpp(x) if z is not 7} for any integer n > emingp
=2 —ulpp(x)/rp if z is r} for some integer n > eming
ulpp(z) - 87 = T?F(m)

For any = and any integer n > 0, when no notification occurs,

T;ﬂﬂponemF(I)_l < [truncp(z,n)| < |z

roundp(x,n) = truncp(xz,n), or
= truncp(z,n) + signump(x) - ulpp(x) - rH "

C.5.2.9 Precision, accuracy, and error

LIA-1 uses the term precision to mean the number of radix rg digits in the fraction of a floating
point datatype. All floating point numbers of a given type are assumed to have the same precision.
(This does not hold for variable precision floating point datatypes. However, LIA-1 does not cover
variable precision floating point datatypes.) A subnormal number has the same number of radix
rr digits, but the presence of leading zeros in its fraction means that fewer of these digits are
significant.

In general, numbers of a given datatype will not have the same accuracy. Most will contain
combinations of errors which can arise from many sources.

a) The error introduced by a single atomic arithmetic operation.

b) The error introduced by approximations in mathematical constants, such as m, 1/3, or /2,
used as program constants.
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c¢) The errors incurred in converting data between external format (decimal text) and internal
format.

d) The error introduced by use of a numerical library routine.
e) The errors arising from limited resolution in measurements.
f) Two types of modelling errors:

1) Approximations made in the formulation of a mathematical model for the application
at hand.

2) Conversion of the mathematical model into a computational model, including approx-
imations imposed by the discrete nature of numerical calculations.

g) The maximum possible accumulation of such errors in a calculation.
h) The true accumulation of such errors in a calculation.

i) The final difference between the computed result and the mathematically accurate result.

The last item is the goal of error analysis. To obtain this final difference, it is necessary to
understand the other eight items, some of which are discussed below.

C.5.2.9.1 LIA-1 and error

LIA-1 interprets the error in a single atomic arithmetic operation to mean the error introduced
into the result by the operation, without regard to any error which may have been present in the
input operands.

The rounding function introduced in produces the only source of error contributed by
arithmetic operations. If the results of an arithmetic operation are exactly representable, they
must be returned without error. Otherwise, LIA-1 requires that the error in the result of a
conforming operation be bounded in magnitude by one half ulp, and bounded in magnitude by
one ulp for partial conformity.

Rounding that results in a subnormal number may result in a loss of significant digits. A
subnormal result is always exact for an addp_,p or subp_,p operation (same type for arguments
and result), provided denormp = true. Such subnormal results will not give rise to underflow
notifications. However, a subnormal result for a mulp_,p or divp_,r operation (same type for
arguments and result) usually is not exact, which introduces an error of at most one half ulp (or
one ulp, if the relaxations of are allowed), provided denormp = true. When there is loss of
significant digits in producing a subnormal result, the relative error due to rounding exceeds that
for rounding a ‘normal’ result. Hence accuracy of a subnormal result for a mulp_.p or divp_p
operation is usually lower than that for a ‘normal’ result. Such loss of accuracy is required to be
accompanied with an underflow notification.

Note that the error in the result of an operation on exact input operands becomes an “inherited”
error if and when this result appears as input to a subsequent operation. The interaction between
the intrinsic error in an operation and the inherited errors present in the input operands is discussed

below in
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C.5.2.9.2 Empirical and modelling errors

Empirical errors arise from data taken from sensors of limited resolution, uncertainties in the
values of physical constants, and so on. Such errors can be incorporated as initial errors in the
relevant input parameters or constants.

Modelling errors arise from a sequence of approximations:
a) Formulation of the problem in terms of the laws and principles relevant to the application.

The underlying theory may be incompletely formulated or understood.

b) Formulation of a mathematical model for the underlying theory. At this stage approxima-
tions may enter from neglect of effects expected to be small.

c¢) Conversion of the mathematical model into a computer model by replacing infinite series
by a finite number of terms, transforming continuous into discrete processes (e.g. numerical
integration), and so on.

Estimates of the modelling errors can be incorporated as additions to the computational errors
discussed in the next section. The complete error model will determine whether the final accuracy
of the output of the program is adequate for the purposes at hand.

Finally, comparison of the output of the computer model with observations may shed insight
on the validity of the various approximations made.

C.5.2.9.3 Propagation of errors

Let each variable in a program be given by the sum of its true value (denoted with subscript ¢)
and its error (denoted with subscript e). That is, the program variable x

T =Tt + ¢

consists of the “true” value plus the accumulated “error”. Note that the values taken on by x are
“machine numbers” in the set F', while z; and x. are mathematical quantities in R.

The following example illustrates how to estimate the total error contributed by the combi-
nation of errors in the input operands and the intrinsic error in addition. First, the result of
an LIA-1 operation on approximate data can be described as the sum of the result of the true
operation on that data and the “rounding error”, where

rounding_error = computed_value — true_value

Next, the true operation on approximate data is rewritten in terms of true operations on true
data and errors in the data. Finally, the magnitude of the error in the result can be estimated
from the errors in the data and the rounding error.

Consider the result, z, of LTA-1 addition operation on x and y:
z = addp_r(z,y) = (z +y) + rounding_error
where the true mathematical sum of z and y is
(+y) =2+ e+ Y+ Ye = (T + yt) + (Te + Ye)
By definition, the “true” part of z is
zZt = Tt + Yt
so that

2z = 2zt + (e + Ye) + rounding_error
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Hence
Ze = (Te + Ye) + rounding_error

The rounding error is bounded in magnitude by 0.5 - ulpr(2) (ulpr(z) if the relaxation in is
allowed) (this can be a slight overestimate at exponent boundaries). If bounds on z. and y, are
also known, then a bound on z. can be calculated for use in subsequent operations for which z is
an input operand.

Although it is a lengthy and tedious process, an analysis of an entire program can be carried out
from the first operation through the last. At each stage the worst case combination of signs and
magnitudes in the errors must be assumed. Thus, it is likely that the estimates for the final errors
will be unduly pessimistic because the signs of the various errors are usually unknown. Under
some circumstances it is possible to obtain a realistic estimate of the true accumulation of error
instead of the maximum possible accumulation, e.g. in sums of terms with known characteristics.

C.5.2.10 Extra precision

The use of a higher level of range and /or precision is a time-honoured way of eliminating overflow
and underflow problems and providing “guard digits” for the intermediate calculations of a prob-
lem. In fact, one of the reasons that programming languages have more than one floating point
type is to permit programmers to control the precision of calculations.

Clearly, programmers should be able to control the precision of calculations whenever the
accuracy of their algorithms require it. Conversely, programmers should not be bothered with
such details in those parts of their programs that are not precision sensitive.

Some programming language implementations calculate intermediate values inside expressions
to a higher precision than is called for by either the input variables or the result variable. This
“extended intermediate precision” strategy has the following advantages:

a) The result value may be closer to the mathematically correct result than if “normal” precision
had been used.

b) The programmer is not bothered with explicitly calling for higher precision calculations.
However, there are also some disadvantages:

a) Since the use of extended precision varies with implementation, programs become less
portable.

b) It is difficult to predict the results of calculations and comparisons, even when all floating
point parameters and rounding functions are known.

c¢) It is impossible to rely on techniques that depend on the number of digits in working preci-
sion.

d) Programmers lose the advantage of extra precision if they cannot reliably store parts of a
long, complicated expression in a temporary variable at the higher precision.

e) Programmers cannot exercise precise control when needed.

f) Programmers cannot trade off accuracy against performance.

Assuming that a programming language designer or implementor wants to provide extended
intermediate precision in a way consistent with the LIA-1, how can it be done? Implementations
must follow the following rules detailed in clause
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a) Each floating point type, even those that are only used in extended intermediate precision
calculations, must be documented.

b) The translation of expressions into LIA-1 operations must be documented. This includes
any implicit conversions to or from extended precision types occurring inside expressions.

This documentation allows programmers to predict what each implementation will do. To the
extent that a programming language standard constrains what implementations can do in this
area, the programmer will be able to make predictions across all implementations. In addition,
the implementation should also provide the user some explicit controls (perhaps with compiler
directives or other declarations) to prevent or enable this “silent” widening of precision.

C.5.3 Operations for conversion between numeric datatypes

LIA-1 covers conversions from an integer type to another integer type and to a floating point
type, as well as between floating point types. These conversions are often between two datatypes
conforming to this document. But, unlike for other operations, the source or target datatype for
a conversion may be a datatype that does not conform to LIA. An example of such a conversions
are conversions to and from strings. Indeed it is common for string formats to include fixed-
point formats. LIA-1 does not cover fixed-point datatypes otherwise, but does so for conversions,
specifically due to the fixed-point string formats.

String formats also need to cover special values. For —0, strings like “—0”, “—0.0”, “—0.00e—4",
“~0.00 - 10~%" are among the possible representations. 400 can, for instance, be represented by
strings like “+00”, “00”, “+infinity”, or “positiva odndligheten”. In ordinary string formats for
numerals, the string “Hello world!” is an example of a signalling NaN.

LIA-1 does not specify any string formats, not even for the special values —0, 400, —o00,
and quiet NaN. The strings used may depend on preference settings. For instance, one may
use different notation for the decimal separator character (like period, comma, Arabic comma,
...), use superscript digits for exponents in scientific notation, or use Arabic digits or traditional
Thai digits. String formats for numerical values, and if and how they may depend on preference
settings, is also an issue for bindings or programming language specifications, not for this part of
LIA.

If the value converted is greater than those representable in the target datatype, or less than
those representable in the target datatype, even after rounding, then an overflow will result. E.g.,
if the target is a character string of at most 3 digits, and the target radix is 10, then an integer
source value of 1000 will result in an overflow. As for other operations, if the notification handling
is by recording in indicators, a suitable continuation value must be used.

Most language standards contain (partial) format specifications for conversion to and from
strings, usually for a decimal representation.

LIA-1 requires, like C [15], that all floating point conversion operations be such that the error
is at most 0.5 ulp. This is now also required by IEC 60559 (IEEE 754) for the round-to-nearest
conversions.
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C.5.4 Numerals as operations in a programming language
C.5.4.1 Numerals for integer datatypes

Negative values (except minint; if minint; = —maxint; — 1) can be obtained by using the
negation operation (negy).

Integer numerals in radix 10 are normally available in programming languages. Other radices
may also be available for integer numerals, and the radix used may be part of determining the
target integer datatype. E.g., radix 10 may be for signed integer datatypes, and radix 8 or 16 may
be for unsigned integer datatypes.

Syntaxes for numerals for different integer datatypes need not be different, nor need they be
the same. This part does not further specify the format for integer numerals. That is an issue for
bindings.

Overflow for integer numerals can be detected at “compile time”, and warned about. Likewise
can notifications about invalid, e.g. for infinitary or NaN numerals that cannot be converted to
the target type, be detected at “compile time” and be warned about.

C.5.4.2 Numerals for floating point datatypes

If the numerals used as operations in a program, and numerals read from other sources use the
same radix, then “internal” numerals and “external” numerals (strings) denoting the same value
in R and converted to the same target datatype should be converted to the same value. Indeed,
the requirement on such conversions to round to nearest implies this.

Negative values (including negative 0, —0, if avaliable) can be obtained by using the negation
operation (negr).

Radices other than 10 may also be available for floating point numerals.

Integer numerals may also be floating point numerals, i.e. their syntaxes need not be different.
Nor need syntaxes for numerals for different floating point datatypes be different, nor need they
be the same. This part does not specify the syntax for numerals. That is an issue for bindings or
programming language specifications.

Overflow or underflow for floating point numerals can be detected at “compile time”, and
warned about. Likewise can notifications about infinitary or invalid, e.g. for infinitary or NaN
numerals that cannot be converted to the target type, be detected at “compile time” and be
warned about.

C.6 Notification

The essential goal of the notification process is that it should be possible for a program (efficiently
and at reasonable convenience to the programmer) to find out about relevant problems that have
occurred when evaluating a set of values. For reasons of efficiency, it may not be possible to tie
the reported problems to individual values, just a set of values. However, it must be possible to
determine which set of values the reported problems are in relation to.

Given these notifications, a program can take action to recompute the result (using higher
precision, or some other way of trying to avoid the problem), or report the problem to the user of
the program in some suitable way.
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C.6.1 Model handling of notifications

In the mathematical framework of LIA, every value is accompanied by a set of exceptional values,
or actually, set of indicators. And in a floating point processor pipeline, this is often the actual
case as well. At a higher level, it is usually not very efficient to let every value be individually
accompanied by a set of indicators.

C.6.2 Notification alternatives

LIA-1 provides a choice of notification mechanisms to fit the requirements of various programming
languages. The first alternative (recording in indicators) provides a standard notification handling
mechanism for all programming languages. The second alternative (alteration of control flow)
essentially says “if a programming language already provides an exception handling mechanism
for some kinds of notification, it may be used for some of the arithmetic notifications too”. The
recording in indicators mechanism must be provided, and should be the default handling.

The third alternative (termination of program with message) is provided for use when the
programmer has not (yet) programmed any exception handling code for the alteration of control
flow alternative. It should be noted that this may terminate just an affected thread, while the
rest of the program may continue.

Implementations are encouraged to provide additional mechanisms which would be useful for
debugging. For example, pausing and dropping into a debugger, or continuing execution while
writing to a log file.

In order to provide the full advantage of these notification capabilities, information describing
the nature of the reason for the notification should be complete and available as close in time to
the occurrence of the violation as possible.

C.6.2.1 Notification by recording in indicators

This alternative gives a programmer the primitives needed to obtain exception handling capabil-
ities in cases where the programming language does not provide such a mechanism directly. An
implementation of this alternative for notification should not need extensions to most program-
ming languages. The status of the indicators is maintained by the system. The operations for
testing and manipulating the indicators can be implemented as a library of callable routines.

This alternative can be implemented on any system with an “interrupt” capability, and on
some without such a capability.

This alternative can be implemented on an IEEE system by making use of the required status
flags. The mapping between the IEEE status flags and the LIA-1 indicators is as follows:

IEEE flag LIA notification (can be recorded in indicator)
invalid invalid
overflow overflow
underflow underflow
division by zero | infinitary
inexact inexact
(no counterpart) | absolute_precision_underflow (LIA-2 and LIA-3)
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Non-IEEE implementations are unlikely to detect inexactness of floating point results.

For a zero divisor, IEEE specifies an invalid exception if the dividend is zero, and a division
by zero (infinitary in LIA) otherwise. Note that the continuation value also varies. Other ar-
chitectures are not necessarily capable of making this distinction. In order to provide a reasonable
mapping for an exception associated with a zero divisor, LIA allows that a binding may map both
notification types to the same actual notification, like invalid.

Different notification types need not be handled the same. E.g. inexact and underflow should
be handled by recording in indicators, or even be ignored if a binding so specifies, regardless of
how other notifications are handled.

A program should check the set of indicators and handle indicators that are set in an appropriate
way. Most programs are likely to ignore if the indicator for inexact is set, but other indicators
should be dealt with by either recalculation in a different way, or by indicating the problem to
the user in a suitable way, like an error message. For some computations it may be appropriate
to ignore even notifications about invalid, for instance when using max/min operations that skip
NaNs.

The mechanism of recording in indicators is general enough to be applied to a broad range of
phenomena by simply extending the value set E to include indicators for other types of conditions.
However, in order to maintain portability across implementations, such extensions should be made
in conformity with other standards, such as language standards.

Notification indicators may be a form of thread global variable, but can be more local (but
not more global). A single thread of computation must have at least one set of these indicators
local to the thread, not interfering with other threads. However, care should be taken in designing
systems with multiple threads or “interrupts” so that

a) logically asynchronous computations do not interfere with each other’s indicators, and

b) notifications do not get lost when threads are rejoined (unless the whole computation of the
thread is ignored) or data exchanged between threads.

Similarly, any kind of evaluation “modes”, like rounding mode, or notification handling “modes”
may be thread global modes, but can be more local (e.g. static per operation), but never more
global. So the mode settings and changes in different threads do not interfere. The modes may
be inherited from the logical parent of a thread, or be default if there is no logical parent to the
thread. Note that LIA does not use a rounding mode model, different roundings have different
operations. IEEE 754 has a partial rounding mode model, some operations are sensitive to the
set rounding mode, while for other operations the rounding is fixed for the operation (as in LIA).

The details on how to do this is part of the design of the programming language, threads system,
or hardware, and is not within the scope of LIA-1. Still, these details should be documented in a
binding.

C.6.2.2 Notification by alteration of control flow

This alternative requires the programmer to provide application specific code which decides
whether the computation should proceed, and if so how it should proceed. This alternative places
the responsibility for the decision to proceed with the programmer who is presumed to have the
best understanding of the needs of the application.

C.6.2 Notification alternatives 85



ISO/IEC FDIS 10967-1:2011(E) © ISO/IEC 2011 — All rights reserved

Ada and PL/I are examples of standard languages which include syntax that allows the pro-
grammer to describe this type of alteration of control flow.

Note, however, that a programmer may not have provided code for all trouble-spots in the
program. This implies that program termination (or thread termination) must be an available
alternative.

Designers of programming languages and binding standards should keep in mind the basic
principle that a program should not be allowed to take significant irreversible action (for example,
printing out apparently accurate results, or even terminating “normally”) based on erroneous
arithmetic computations.

C.6.2.3 Notification by termination with message

This alternative results in the termination of the program following a notification. It is intended
mainly for use when a programmer has failed to exploit one of the other alternatives provided.

C.6.3 Delays in notification

Many modern floating point implementations are pipelined, or otherwise execute instructions
in parallel. This can lead to an apparent delay in reporting violations, since an overflow in a
multiply operation might be detected after a subsequent, but faster, add operation completes.
The provisions for delayed notification are designed to accommodate these implementations.

Parallel implementations may also not be able to distinguish a single overflow from two or more
“almost simultaneous” overflows. Hence, some merging of notifications is permitted.

Imprecise interrupts (where the offending instruction cannot be identified) can be accommo-
dated as notification delays. Such interrupts may also result in not being able to report the kind
of violation that occurred, or to report the order in which two or more violations occurred.

In general the longer the notification is delayed the greater the risk to the continued execution
of the program.

C.6.4 User selection of alternative for notification

On some machine architectures, the notification alternative selected may influence code generation.
In particular, the optimal code that can be generated for change of control flow (6.2.2) may differ
substantially from the optimal code for recording in indicators . Because of this, it is unwise
for a language or binding standard to require the ability to switch between notification alternatives
during execution. Compile time selection should be sufficient.

An implementation can provide separate selection for each kind of notification (overflow,
underflow, etc).

If a system had a mode of operation in which exceptions were totally ignored, then for this
mode, the system would not conform to ISO/IEC 10967. However, modes of operation that
ignore exceptions may have some uses, particularly if they are otherwise LIA-1 conforming. For
example, a user may find it desirable to verify and debug a program’s behaviour in a fully LIA-1
conforming mode (exception checking on), and then run the resulting “trusted” program with
exception checking off.
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In any case, it is essential for an implementation to provide documentation on how to select
among the various LIA-1 conforming notification alternatives provided.

C.7 Relationship with language standards

Language standards vary in the degree to which the underlying datatypes are specified. For
example, Pascal [25] merely gives the largest integer value (maxint), while Ada [11] gives a
large number of attributes of the underlying integer and floating point types. LIA-1 provides a
language independent framework for giving the same level of detail that Ada requires, specific to
a particular implementation.

LIA-1 gives the meaning of individual operations on numeric values of particular type. It does
not specify the semantics of expressions, since expressions are sequences of operations which could
be mapped into individual operations in more than one way. LIA-1 does require documentation
of the range of possible mappings.

The essential requirement is to document the semantics of expressions well enough so that a rea-
sonable error analysis can be done. There is no requirement to document the specific optimisation
technology in use.

An implementation might conform to the letter of LIA-1, but still violate its “spirit” — the
principles behind LIA-1 — by providing, for example, a sin function that returned values greater
than 1 or that was highly inaccurate for input values greater than one cycle. LIA-2 takes care of
this particular example. Beyond this, implementors are encouraged to provide numerical facilities
that

a) are highly accurate,

b) obey useful identities like those in [C.5.2.0.1| or |[C.5.2.8]

c¢) notify the user whenever the mathematically correct result would be out of range, not
accurately representable, or undefined,

d) are defined on as wide a range of input values as is consistent with the three items above.

LIA-1 does not cover programming language issues such as type errors or the effects of unini-
tialised variables. Implementors are encouraged to catch such errors — at compile time whenever
possible, at run time if necessary. Uncaught programming errors of this kind can produce the
very unpredictable and false results that this standard was designed to avoid.

A list of the information that every implementation of LIA-1 must document is given in clause[8]
Some of this information, like the value of emaxr for a particular programming language floating
point type, may vary from implementation to implementation. However, due to the success of
IEEE 754, this will be much less of an issue. Other information, like the syntax for accessing
the value of emazxp, should be the same for all implementations of a particular programming
language. See annex |D| for information on how this might be done.

To maximize the portability of programs, most of the information listed in clause [8] should be
standardized for a given language — either by inclusion in the language standard itself, or by a
language specific binding standard.

To further promote portability, the numeric datatype parameters should be standardised per
programming language and datatype.
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The allowed translations of expressions into combinations of LIA operations should allow rea-
sonable flexibility for compiler optimisation. The programming language standard must determine
what is reasonable. In particular, languages intended for the careful expression of numeric algo-
rithms are urged to provide ways for programmers to control order of evaluation and intermediate
precision within expressions. Note that programmers may wish to distinguish between such “con-
trolled” evaluation of some expressions and “don’t care” evaluation of others.

Developers of language standards or binding standards may find it convenient to reference LIA-
1. For example, the specification method and the helper functions may prove useful in defining
additional arithmetic operations.

C.8 Documentation requirements

To make good use of an implementation of this standard, programmers need to know not only
that the implementation conforms, but how the implementation conforms. Clause [§] requires
implementations to document the binding between LIA-1 types and operations and the total
arithmetic environment provided by the implementation.

An example conformity statement (for a Fortran implementation) is given in annex

It is expected that an implementation will meet part of its documentation requirements by
incorporation of the relevant language standard. However, there will be aspects of the implemen-
tation that the language standard does not specify in the required detail, and the implementation
needs to document those details. For example, the language standard may specify a range of
allowed parameter values, but the implementation must document the value actually used. The
combination of the language standard and the implementation documentation together should
meet all the requirements in clause [§

Most of the documentation required can be provided easily. The only difficulties might be in
defining helper functions like add}, (for partially conforming implementations, see annex , or in
specifying the translation of arithmetic expressions into combinations of LIA-1 operations.

Compilers often “optimise” code as part of the compilation process. Popular optimisations
include moving code to less frequently executed spots, eliminating common subexpressions, and
reduction in strength (replacing expensive operations with cheaper ones).

Compilers are always free to alter code in ways that preserve the semantics (the values computed
and the notifications generated). However, when a code transformation may change the semantics
of an expression, this must be documented by listing the alternative combinations of operations
that might be generated. (There is no need to include semantically equivalent alternatives in this
list.) This includes evaluations that are done at compile time instead of at runtime. For instance
evaluating quot;(mininty,—1) at compile time (as a constant expression) may yield an overflow
which might not be visible at runtime (having replaced the expression with the continuation value
alone, not triggering the overflow notification at runtime), if this expression is allowed to compile
at all.
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Annex D
(informative)

Example bindings for specific languages

This annex describes how a computing system can simultaneously conform to a language stan-
dard and to LIA-1. It contains suggestions for binding the “abstract” operations specified in
LIA-1 to concrete language syntax.

Portability of programs can be improved if two conforming LIA-1 systems using the same
language agree in the manner with which they adhere to LIA-1. For instance, LIA-1 requires
that the derived constant epsilong be provided, but if one system provides it by means of the
identifier EPS and another by the identifier EPSILON, portability is impaired. Clearly, it would be
best if such names were defined in the relevant language standards or binding standards, but in
the meantime, suggestions are given here to aid portability.

The following clauses are suggestions rather than requirements because the areas covered are
the responsibility of the various language standards committees. Until binding standards are in
place, implementors can promote “de facto” portability by following these suggestions on their
own.

The languages covered in this annex are

Ada

C

C++

Fortran
Common Lisp

This list is not exhaustive. Other languages and other computing devices (like ‘scientific’ cal-

culators, ‘web script’ languages, and database ‘query languages’) are suitable for conformity to
LIA-1.

In this annex, the datatypes, parameters, constants, operations, and exception behaviour of
each language are examined to see how closely they fit the requirements of LIA-1. Where param-
eters, constants, or operations are not provided by the language, names and syntax are suggested.
(Already provided syntax is marked with a x.) Substantial additional suggestions to language
developers are presented in but a few general suggestions are reiterated below.

This annex describes only the language-level support for LIA-1. An implementation that wishes
to conform must ensure that the underlying hardware and software is also configured to conform
to LIA-1 requirements.

A complete binding for LIA-1 will include a binding for IEC 60559. Such a joint LIA-1/IEC 60559
binding should be developed as a single binding standard. To avoid conflict with ongoing devel-
opment, only LIA-1 specific portions of such a binding are presented in this annex.

Most language standards permit an implementation to provide, by some means, the parameters,
constants and operations required by LIA-1 that are not already part of the language. The
method for accessing these additional constants and operations depends on the implementation
and language, and is not specified in LIA-1. It could include external subroutine libraries; new
intrinsic functions supported by the compiler; constants and functions provided as global “macros”;
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and so on. The actual method of access through libraries, macros, etc. should of course be given
in a real binding.

A few parameters are completely determined by the language definition, e.g. whether the integer
type is bounded. Such parameters have the same value in every implementation of the language,
and therefore need not be provided as a run-time parameter.

During the development of standard language bindings, each language community should take
care to minimise the impact of any newly introduced names on existing programs. Techniques such
as “modules” or name prefixing may be suitable depending on the conventions of that language
community.

LIA-1 treats only single operations on operands of a single datatype (in some cases with a
different target type), but nearly all computational languages permit expressions that contain
multiple operations involving operands of mixed types. The rules of the language specify how
the operations and operands in an expression are mapped into the primitive operations described
by LIA-1. In principle, the mapping could be completely specified in the language standard.
However, the translator often has the freedom to depart from this precise specification: to reorder
computations, widen datatypes, short-circuit evaluations, and perform other optimisations that
yield “mathematically equivalent” results but remove the computation even further from the image
presented by the programmer.

We suggest that each language standard committee require implementations to provide a means
for the user to control, in a portable way, the order of evaluation of arithmetic expressions.

Some numerical analysts assert that user control of the precision of intermediate computations
is desirable. We suggest that language standard committee consider requirements which would

make such user control available in a portable way. (See|C.5.2.10})

Most language standards do not constrain the accuracy of floating point operations, or specify
the subsequent behaviour after a serious arithmetic violation occurs.

We suggest that each language standard committee require that the arithmetic operations
provided in the language satisfy LIA-1 requirements for accuracy and notification.

We also suggest that each language standard committee define a way of handling exceptions
within the language, e.g. to allow the user to control the form of notification, and possibly to “fix
up” the error and continue execution. The binding of the exception handling within the language
syntax must also be specified.

In the event that there is a conflict between the requirements of the language standard and
the requirements of LIA-1, the language binding standard should clearly identify the conflict and
state its resolution of the conflict.

D.1 Ada

The programming language Ada is defined by ISO/IEC 8652:1995, Information Technology —
Programming Languages — Ada [11].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this (example, and partial) language binding.

The operations or parameters marked “f” are not part of the language standard and must
be provided by an implementation that wishes to conform to LIA-1. For each of the marked
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items a suggested identifier is provided. The additional facilities can be provided by means of an
additional package, denoted by LIA.

The Ada datatype Boolean corresponds to the LIA-1 datatype Boolean.

Ada has a predefined signed integer type named Integer. It is a bounded integer type. Ada also
has a predefined type Natural, which is an unsigned type with the same upper limit as Integer.
Natural is a non-modulo (see below) datatype. A programmer can declare other subtypes of
root_integer (an “anonymous” integer type). Those declared as “modulo” go from zero to a given
upper limit. They can conform to LIA-1 integer datatypes in the value set. However, all arithmetic
operations resulting in a “modulo” integer datatype (as determined by the Ada type system)
have an implicit modulo with one plus the max value of the resulting datatype (see add-wrapy,
sub_wrapy, and mul_wrap; of LIA-2). Non-modulo integer subtypes may be signed. But they
need not fulfill the requirements of LIA-1 on the minimum and maximum value. There may
be other predefined signed integer types: Short_Integer, Long Integer, Short_Short_Integer,
Long Long Integer, etc. The notation INT is used to stand for the name of any one of these
datatypes in what follows.

Ada exceptions do not distinguish between infinitary, overflow, and invalid, and the excep-
tion Constraint_Error is used by default for all three of these notifications. Integer operations
that, for a non-modulo integer target type, mathematically result in a value outside the range
[min, maz], i.e. results in an overflow notification, are required to raise the Constraint _Error
exception.

The LIA-1 parameters for an integer datatype can be accessed by the following syntax:
maxinty INT 'Last *
mininty INT 'First *

The parameter bounded; is always true, and the parameter hasinf; is always false, and they
need therefore not be provided to programs as named parameters. The parameter modulo; (see
annex is always false for non-modulo integer datatypes, and always true for modulo integer
datatypes (declared via the modulo keyword), and need not be provided for programs as a named
parameter.

The LIA-1 integer operations are listed below, along with the syntax used to invoke them:

eqr(z,y) x =y *
neqr(z,y) x /=y *
Issr(x,y) Tz <y *
leqi(x,y) T <=y *
gtri(z,y) x>y *
geqr(w,y) T >=y *
negr(z) -z * (if modulo; = false)
addy(z,y) T+ y * (if modulo; = false)
add_wrapr(z,y) T +y * (if modulor = true)
suby(z,y) T -y * (if modulo; = false)
sub_wrapr(z,y) xr -y * (if modulo; = true)
mul(z,y) x *ky * (if modulo; = false)
mul_wrapr(z,y) x ok y * (if modulo; = true)
absy(z) abs *
signumy(x) Signum(z) T
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quot;(x,y) Quotient (z, ¥) T
modr(x,y) x mod y

where x and y are expressions of type INT.

An implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer oper-
ations for all the integer datatypes for which LIA-1 conformity is claimed.

Ada has a predefined floating point datatype named Float. There may be other predefined
floating point types: Short_Float, Long Float, Short_Short_Float, Long Long Float, etc. The
notation F'LT are used to stand for the name of any one of these datatypes in what follows.

Ada exceptions do not distinguish between infinitary, overflow, and invalid, and the excep-
tion Constraint _Error is used by default for infinitary and invalid. If F'LT’Machine Overflows
is true, then floating point operations that mathematically result in a value outside the range
[min, max] (where min is, if conforming to LIA-1, the negative of maz), i.e. results in an overflow
notification, are required to raising the Constraint_Error exception. If F'LT’Machine Overflows
is false, no exception is raised for overflow (but the notification should be recorded in an indi-
cator).

The LIA-1 parameters and derived constants for a floating point datatype can be accessed by
the following syntax:

TR FLT'Machine_Radix *

Pr FLT'Machine Mantissa *

emax g F LT 'Machine_Emax *

eming FLT'Machine_Emin *

denormp F LT 'Denorm *

1ec_60559r FLT'IEC60559 T

hasnegzerop FLT'Signed Zeroes * (not LIA-1)
fmaz p FLT'Safe Last *

—fmaz FLT'Safe First *

fminNp FLT 'Model_Small *

fming FLT'Model Smallest 1

epsilonp F LT 'Model Epsilon *

rnd_errorp FLT'Rnd Error 1 (partial conf.)
rnd_stylep FLT'Rnd_Style T (partial conf.)

The value returned by FLT'Rnd _Style are from the enumeration type Rnd_Styles. Each
enumeration literal corresponds as follows to an LIA-1 rounding style value:

nearesttiestoeven NearestTiesToEven 1
nearest Nearest 1
truncate Truncate 1
other Other 1

As currently written, Ada formally only allows truncate and nearest-with-ties-away (which is
given by FLT'Rounds), not nearest-ties-to-even. This is not fully conforming to LIA-1, only
partially conforming. Note, however, that nearest-with-ties-away is not readily available for IEEE
754 (IEC 60559) binary floating point datatypes.
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There is no standard way of setting rounding mode (as per IEEE 754) in Ada. Note also that
LIA recommends using separate operations for separate roundings, rather than using dynamic
rounding modes. Separate operations are in this case more reliable and less error prone.

The LIA-1 floating point operations are listed below, along with the syntax used to invoke

them:

eqr(z,y)

neqr(z,y)
lssp(z,y)
leqr(z,y)
gtTF(xa y)
geqr(z,y)

isnegzerop(x)
istinyp(z)
isnang(x)
isnanp(x)
issignanp(z)

negp(z)

signump(x)
residuer(x,y)
sarty ()
3qrtF—>F’ (x)
sqrtF_>F, ()

exponentp_,1(x)
fraction p(z)
scalep r(x,n)
succp(x)
predp(x)
ulpr(z)

intpartp(z)

D.1 Ada
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isNegZero(x)
isTiny (x)
isNaN(x)

r /=
isSigNaN(x)

-z
Tty
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)

>y

<y

*y
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abs z

Signum(z)
FLT'Remainder(x, ¥)
Sqrt (x)

SqrtUp(z)

SqrtDwn (x)
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FLT 'Exponent (z)

FLT 'Fraction(x)

FLT'Scaling(z, n)
FLT'Adjacent(x, FLT'Safe Last)
FLT'Adjacent(z, FLT'Safe First)
FLT'Unit_Last_Place(x)

FLT'Truncation(z)
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(dev. at fmaxp)
(dev. at —fmazp)

i, S S S o

*

93

(dev.: 0 if eqp(x,0))



ISO/IEC FDIS 10967-1:2011(E)

fractpart ()
truncg r(z,n)
roundp (z,n)

x - FLT'Truncation(xz)
FLT'Leading Part(z, n)
FLT'Round_Places(xz, n)

© ISO/IEC 2011 — All rights reserved

*
* (invalid for n < 0)

T

where = and y are expressions of type F'LT and n is an expression of type INT.

An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point

operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in Ada are always explicit and usually use the destination datatype

name as the name of the conversion function, except when converting to/from string formats.
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converty_,p(x)

floorp_, 1 (y)
roundingr—1(y)
ceilingp—1(y)

convertrp(x)
com}ert}_}F(a:)
convert%ﬁF(a:)

convertp_, g (y)
)
convertfﬁp, (z)
converty, , g (x)
convertpn_,p(S)
i)
convert gy, _, p(s)
convertyy, _, p(s)
convertpn_,p
comjert},,

—F
convert joaN

(

(

(

(

(

(
convertp_pn (y
convert} (Y

(

(

(

(

1
converty_, pu (Y
convertp_,pr(y

convert} Y
convertﬁ7 Y

convertp_,p(2)
com}ertgﬁp(az)
convert%ﬁF(a:)
convertp (s

convert D' SF

(s)
convertg, _p(s)
(s)
convertp g (f)

INT2(x)

Get(s, n, w);

Get(f?, n, w?);
Put(s, z, base?);
Put(h?, =, w?, base?);

INT(FLT'Floor(y))
INT(FLT'Unbiased Rounding(y))
INT(FLT'Ceiling(y))

FLT(x)
FLT'Up(x)
FLT'Dun(x)

FLT2(y)

FLT2'Up(x)

FLT2'Dun(x)

Get(s, n, w?);

GetUp(s, n, w?);

GetDwn(s, n, w?);

Get(f?, n, w?);

GetUp(f?, n, w?);
GetDwn(f?, n, w?);

Put(s, y,Aft=>a?7,Exp=>e?);
PutUp(s, y,Aft=>a?,Exp=>e?);
PutDwn(s, y,Aft=>a?,Exp=>e?);

Put(h?, y,Fore=>i?,Aft=>a?,Exp=>€e?);

*

*
*
*
*

*

— —

— = ¥ — — % — — % — —

%

PutUp(h?, y,Fore=>i?,Aft=>a?,Exp=>e?);{
PutDwn(h?, y,Fore=>i7,Aft=>a7,Exp=>e7); 7

FLT(2)

FLT'Up(x)
FLT'Dun(x)
Get(s, n, w?);
GetUp(s, n, w?);
GetDwn(s, n, w?);
Get(f?, n, w?);

* — — o — —
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convertD,HF(f) GetUp(f?, n, w?); T
convertD,HF(f) GetDwn(f?, n, w?); T
convertFHD(y) FXD(y) *
convertF_}D@) FXD'Up(z) T
convertp_)D(x) FXD'Dwn(x) T
COn'UeT'tF_)D/(y) Put(s, y,Aft=>a?,Exp=>0); *
com)ertF_)D,(y) PutUp(s, y,Aft=>a?,Exp=>0); T
convertFﬁD,(y) PutDwn(s, y,Aft=>a?,Exp=>0); ]
com)ertpﬁD/(y) Put(h?, y,Fore=>i?,Aft=>a?,Exp=>0); *
convertp_m,(y) PutUp(h?, y,Fore=>i?,Aft=>a?,Exp=>0); f

convertfp_)D,(y) PutDwn(h?, y,Fore=>i?,Aft=>a7,Exp=>0);f

where x is an expression of type INT, y is an expression of type FLT, and z is an expression of type
FXD, where FXD is a fixed point type. INT2is the integer datatype that corresponds to I'. FLT2
is the floating point datatype that corresponds to F’. A ? above indicates that the parameter is
optional. f is an opened input text file (default is the default input file). h is an opened output
text file (default is the default output file). s is of type String or Wide String. For Get of a
floating point or fixed point numeral, the base is indicated in the numeral (default 10). For Put
of a floating point or fixed point numeral, only base 10 is required to be supported. For details
on Get and Put, see clause A.10.8 Input-Output for Integer Types, A.10.9 Input-Output for Real
Types, and A.11 Wide Text Input-Output, of ISO/IEC 8652:1995. base, n, w, i, a, and e are
expressions for non-negative integers. e is greater than 0. base is greater than 1.

Ada provides non-negative numerals for all its integer and floating point types. The default
base is 10, but any base from 2 to 16 can be used for a numeral. There is no differentiation
between the numerals for different floating point types, nor between numerals for different integer
types, but integer numerals (without a point) cannot be used for floating point types, and ‘real’
numerals (with a point) cannot be used for integer types. Integer numerals can have an exponent
part though. Integer numerals are of the “anonymous” type universal_integer, and real numerals
are of the “anonymous” type universal_real. The details are not repeated in this example binding,
see ISO/IEC 8652:1995, clause 2.4 Numeric Literals, clause 3.5.4 Integer Types, and clause 3.5.6
Real Types.

The Ada standard does not specify any numerals for infinities and NaNs. The following syntax
is suggested:

400 FLT'Infinity ]
qNaN FLT'NaN ]
sNalN FLT'NaNSignalling T

as well as string formats for reading and writing these values as character strings.

Ada has a notion of ‘exception’ that implies a non-returnable, but catchable, change of control
flow. Ada uses its exception mechanism as its default means of notification for overflow, in-
finitary, and invalid. Ada uses the exception Constraint Error for infinitary and overflow
notifications, and the exceptions Numerics.Argument Error, I0_Exceptions.Data Error, and
I0_Exceptions.End Error for invalid notifications. inexact and underflow does not cause any
exception in Ada, and the continuation value is used directly, since an Ada exception is inap-
propriate for these notifications. However, for LIA conformity, numeric notifications that do not
cause Ada exceptions must be recorded in indicators per Ada task.
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An implementation that wishes to follow LIA must provide recording in indicators as an alter-
native means of handling numeric notifications also for the notifications where the Ada standard
requires alternation of control flow (Ada exceptions). (See[6.2.1]) Recording of indicators is the
LIA preferred means of handling numeric notifications. In this suggested binding non-negative
integer values in the datatype Natural, are used to represent values in Ind. The datatype Ind is
identified with the datatype Natural. The values representing individual indicators are distinct
non-negative powers of two. Indicators can be accessed by the following syntax:

inexact lia_inexact 1
underflow lia_undeflow T
overflow lia overflow 1
infinitary lia infinitary T
invalid lia invalid 1
absolute_precision_underflow
lia_density_too_sparse T (LIA-2, -3)

union of all indicators lia_all_indicators T

The empty set can be denoted by 0. Other indicator subsets can be named by combining individual
indicators using bit-wise or, or just addition, or by subtracting from lia_all_indicators.

The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

clear_indicators(C, S) Clear Indicators(S) T
set_indicators(C, S) Set_Indicators(S) T
current_indicators(C') Current_Indicators() T
test_indicators(C, S) Test_Indicators(S) T

where S is an expression compatible with the datatype Natural. C is the Ada task the call to
the Ada function is made in.

It is vital that indicators are managed separately for separate Ada tasks (as required by LIA).
Likewise that dynamically set rounding modes (which LIA-1 does not recommend) are also man-
aged separately for separate tasks in such an environment.

In order not to lose notification indicators within an Ada program when the computation
is divided into several Ada tasks (threads), any in-parameter for a rendezvous must set in the
accepting task (when the call is accepted) the indicators that are set in the caller, and any out-
parameter will set in the caller (when the rendezvous finishes) the indicators that are then set in
the accepting task.

D.2 C

The programming language C is defined by ISO/IEC 9899:1999, Information technology — Pro-
gramming languages — C [15]. Some additions relevant for LIA are made in the technical report
ISO/IEC TR 24732:2009, Information technology — Programming languages, their environments
and system software interfaces — Extension for the programming language C' to support decimal
floating-point arithmetic [16].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this (example, and partial) language binding.

The operations or parameters marked “t” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
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identifier is provided. An implementation that wishes to conform to LIA-1 must supply declara-
tions of these items in a header <1ial.h>. Integer valued parameters and derived constants can
be used in preprocessor expressions.

The LIA-1 datatype Boolean is implemented as the C datatype _bool or in the C datatype
int (false = 0 and any other value (usually 1) represents true).

C names several integer datatypes: (signed) int, (signed) long (int), (signed) long
long (int), unsigned (int), unsigned long (int), and unsigned long long (int). The
here parenthesised part(s) of a name may be omitted when using the name in programs. Signed
integer datatypes use 2’s complement for representation for negative values. The notation INT
is used to stand for the name of any one of these datatypes in what follows.

The conformity to LIA of short int and char (signed or unsigned), and similar “short”
integer types are not relevant since values of these types are promoted to int (signed or unsigned
as appropriate) before arithmetic computations are done.

However, the basic integer datatypes, listed above, have portability issues. They may have
different limits in different implementations. Therefore, the C standard specifies a number of
additional integer datatypes, defined for programs in the headers <stdint.h> and <stddef.h>.
Similar portable integer datatypes have been defined in portable libraries. They are aliased, by
typedefs, to the basic integer datatypes, but the aliases are made in an implementation defined
way. The description here is not complete, see the C standard or the documentation for a portable
library that implement these aliases. Some of the integer datatypes have a predetermined bit
width, and the intn_t and uintn_t, where n is the bit width expressed as a decimal numeral.
Some bit widths are required by the C standard. There are also minimum width, fastest minimum
width, and special purpose integer datatypes (like size_t). Finally there are the integer datatypes
intmax_t and uintmax_t that are the largest provided signed and unsigned integer datatypes.

NOTES

1 The overflow behaviour for arithmetic operations on signed integer datatypes is unspeci-
fied in the C standard. For the signed datatypes signed int, signed long int, signed
long long int, and similar types (such as int64_t), for conformity with LIA the integer
operations must notify overflow upon overflow, by default via recording in indicators.

2 The unsigned datatypes unsigned int, unsigned long int, unsigned long long int,
and similar types (such as uint64_t), can partially conform if operations that properly
notify overflow are provided. The operations named +, (binary) -, and * are in the case of
the unsigned integer types bound to add_wrapy, sub_wrapy, and mul_wrapy (specified in
LIA-2). For (unary) -, and integer / similar wrapping operations for negation and integer
division are accessed. The latter operations are not specified by LIA.

3 For portability reasons, it is common to use the size specified integer datatypes (like
int32_t, etc. either the standard ones or such datatypes defined in portable libraries).

The LIA-1 parameters for an integer datatype can be accessed by the following syntax (those
in the standard are in the header <limits.h>):

maxinty T _MAX *
minint T _MIN * (for signed ints)
moduloy T _MODULO T (for signed ints)

where T is INT for signed int, LONG for signed long int, LLONG for signed long long int,
UINT for unsigned int, ULONG for unsigned long int, and ULLONG for unsigned long long
int.
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For the bit size specified integer datatypes the limits are fixed and need not have explicit pa-
rameters accessible to programs. For other integer datatypes, such as size_t and int_least32_t,
a complete binding must list how to access their parameters in a portable manner.

The parameter hasinf ; is always false, and the parameter bounded; is always true for C integer
types, and need not be provided to programs as named parameters. The parameter mininty is
always 0 for the unsigned types, and need not provided for those types. The parameter moduloy
is always true for the unsigned types, and need not be provided for those types.

The LIA-1 integer operations are either operators, or macros declared in the header <stdlib.h>.

The integer operations are listed below, along with the syntax used to invoke them:

eqr(z,y) T ==y *

neqr(v,y) T =y *

Issp(z,y) T <y *

leqr(z,y) T <=y *

gtri(z,y) x>y *

geqr(x,y) T >=y *

negr(x) -x * (if modulo; = false)
addr(x,y) T +y * (if modulo; = false)
add-wrapr(z,y) T +y * (if modulo; = true)
subr(x,y) x -y * (if modulo; = false)
subwrapr(x,y) T -y * (if modulo; = true)
mulr(x,y) T *xy * (if modulo; = false)
mul_wrapr(z,y) T *y * (if modulor = true)
absy(zx) tabs () * (for signed ints)
signumy(x) tsgn(x) T (for signed ints)
quot(z,y) tquot (z, ) T

mody(x,y) tmod (z, y) T

where x and y are expressions of type signed int, signed long int, signed long long int,
unsigned int, unsigned long int, or unsigned long long int, as appropriate, t is the empty
string for int, 1 for long int, 11 for long long int, u for unsigned int, ul for unsigned long
int, and ull for unsigned long long int. The size determined integer datatypes do not have
special prefixes, nor are there type generic names for the operations that are not denoted by
operators. This may be an issue for portability.

Note that C requires a “modulo” interpretation for the ordinary addition, subtraction, and
multiplication operations for unsigned integer datatypes in C (i.e. modulo; = true for un-
signed integer datatypes), and is thus only partially conforming to LIA-1 for the unsigned integer
datatypes. For signed integer datatypes, the value of modulor is implementation defined. An
implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer operations
for all the integer datatypes for which LIA-1 conformity is claimed.

C names three floating point datatypes: float, double, and long double. In implementations
supporting IEC 60559 (IEEE 754) these datatypes are in practice expected to be binary32,
binary64, and binary128, respectively.

ISO/TEC TR 24732:2009 [16] suggest adding the new floating point datatypes Decimal32,
Decimal64, and Decimall28. These are intended for the IEC 60559 (IEEE 754) datatypes
decimal32, decimal64, and decimall28, respectively. Note that decimal32 is specified as
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a storage format only in IEC 60559 (IEEE 754), while ISO/IEC TR 24732:2009 suggests doing
computation also directly with _Decimal32 values, not requiring (but allowing) conversion to a
wider decimal type.

The notation F'LT is used to stand for the name of any one of these datatypes in what follows.

The LIA-1 parameters and derived constants for a floating point datatype can be accessed by
the following syntax:

TR FLT_RADIX * (float, double)
D T _MANT_DIG *

emax g T MAX_EXP *

eming T _MIN_EXP *

denormp T _DENORM T

iec_60559p __STDC_IEC_559__ * (float, double)
fmax p T MAX *

fminNg T MIN *

fming T _DEN * (proposed)
epsilonp T _EPSILON *

rnd_errorp T _RND_ERR T (partial conf.)
rnd_stylep FLT_ROUNDS * (partial conf.)

where 1" is FLT for float, DBL for double, LDBL for long double, DEC32 for Decimal32, DEC64 for
_Decimal64, and DEC128 for Decimal128. The decimal types are not yet part of the C standard,
just proposed in a TR.

Note that FLT RADIX (header float.h) gives the radix for all of float, double, and long
double, not for the decimal datatypes. Also note that FLT_ROUNDS (header float.h) gives the
rounding style for all of float, double, and long double, not for the decimal datatypes.

The C standard specifies that the values of the parameter FLT_ROUNDS are int values with the
following meaning in terms of the LIA-1 rounding styles.

truncate FLT_ROUNDS =0 *
nearest FLT_ROUNDS =1 *
other FLT ROUNDS =2 *(towards positive infinity)
other FLT_ROUNDS =3 *(towards negative infinity)
nearesttiestoeven FLT_ROUNDS =14 T

The value returned from fegetround() (header fenv.h, and the names below are defined only
if the rounding mode can be dynamically controlled) is one of:

truncate FE_TOWARDZERO *
other FE_UPWARD *
other FE_DOWNWARD *
nearesttiestoeven FE_TONEAREST * (default)

Only the rounding mode FE_TONEAREST (with ties to even last digit) conforms to LIA. LIA recom-
mends using separate operations for other roundings, rather than using dynamic rounding modes.
Separate operations are in this case more reliable and less error prone.

The LIA-1 floating point operations are bound either to operators, or to macros declared in the
header <math.h>. The operations are listed below, along with the syntax used to invoke them:

eqr(z,y) r ==y *
neqr(w,y) T =y *
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lssp(z,y) T <y *
leqr(z,y) x <=y *
gtre(z,y) x>y *
geqr(z,y) T >=y *
isnegzerop(x) isNegZero (z) T
istinyp(x) isTiny(z) T
istinyrp(x) -T MIN < z & x < T_MIN *
isnanp(x) isNaN(z) T
isnang(x) x =z *
issignanp(x) isSigNaN(x) T
negr(x) - (%) no invalid notification
addp_pr (z,y) T+ y *
add}HF,(x,y) T >y T
add?HF,(x,y) T <+ y T
subp_,pr(z,y) x -y *
sub}%F,(a:,y) x>y T
subp,_, (2, y) T <y T
mulp_,pr (1, y) T oxy *
mully (1, ) Ty f
muly_, g (2,Y) T <*xy T
divp_pr(x,y) x /vy *
div}HF,(x,y) T />y T
divy_, p (2, y) T </ y T
absp(x) fabst(x) *
signump(x) fsgnt () T
residuer(z,y) remaindert(x, y) or remainder(x, y) «*
SthF_>F/ () sqrtt(z) or sqrt(z) *
sqrtFHF,(x) sqrtUpt (x) T
sqrtFHF,(a:) sqrtDwnt () T
exponentp_,r(x) (int) (Logbt(z)) + 1 *, (or (long))
fractionp(x) fractt(z) T
scalep r(x,n) scalbnt(x, n) *
scalep p(xz,m) scalblnt(z, m) *
succr(x) nexttowardt(x, INFINITY) *
predp(z) nexttowardt(x, -INFINITY) *
ulpp(x) ulpt (z) 1
intpartp(x) intpartt(z) T
fractpart p(z) frcpartt(x) T
truncg (z,n) trunct(xz, n) T

roundp (x,n)

roundt(x, n)

© ISO/IEC 2011 — All rights reserved

f

where x and y are expressions of type float, double, or long double, n is of type int, and m
is of type long int, t is £ for float, the empty string for double, 1 for long double, d64 for
_Decimal64, and d128 for Decimall28. The operations on values of decimal types are not yet
part of the C standard, just proposed in a TR.
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An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point
operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in C can be explicit or implicit. The explicit arithmetic value
conversions are usually expressed as ‘casts’, except when converting to/from string formats. The
rules for when implicit conversions are applied is not repeated here, but work as if a cast had been
applied.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C standard for a full description.

In the format strings % is used to indicate the start of a format pattern. After the %, optionally
a string field width (w below) may be given as a positive decimal integer numeral.

For the floating and fixed point format patterns, there may then optionally be a ‘.’ followed
by a positive integer numeral (d below) indicating the number of fractional digits in the string.
The C operations below use HYPHEN-MINUS rather than MINUS (which would have been
typographically better), and only digits that are in ASCII, independently of so-called locale. For
generating or parsing other kinds of digits, say Arabic digits or Thai digits, another API must
be used, that is not standardised in C. For the floating and fixed point formats, 400 may be
represented as either inf or infinity, —oo may be represented as either —-inf or -infinity, and
a NalN may be represented as Nal; all independently of so-called locale. For language dependent
representations, or use of non-ASCII characters like 0o, of these values another API must be used,
that is not standardised in C.

For the integer formats then follows an internal type indicator. Not all C integer types have
internal type indicators, in particular the portable size fixed types do not have special type indica-
tors (which is an issue for portability). For ¢ below, hh indicates char, h indicates short int, the
empty string indicates int, 1 (the letter 1) indicates long int, 11 (the letters 1l) indicates long
long int, and j indicates intmax_t or uintmax_t. T'wo more of the ..._t integer datatypes have
formatting letters: z indicates size_t and t indicates ptrdiff_t in the format. Finally, there are
radix and signedness format letters (r below): d for signed decimal string; o, u, x, X for octal,
decimal, hexadecimal with small letters, and hexadecimal with capital letters, all unsigned. E.g.,
%jd indicates decimal numeral string for intmax_t, %2hhx indicates hexadecimal numeral string
for unsigned char, with a two character field width, and %1u indicates decimal numeral string
for unsigned long int.

For the floating point formats instead follows another internal type indicator. Not all C float-
ing point types have standard internal type indicators for the format strings. For u below the
empty string indicates double and L indicates long double; and there is a proposal to use H for
Decimal32, D for Decimal64, and DD for Decimall28. Finally, there is a radix (for the string
side) format letter: e or E for decimal, a or A for hexadecimal. E.g., %15.8LA indicates hexadeci-
mal floating point numeral string for long double, with capital letters for the letter components,
a field width of 15 characters, and 8 hexadecimal fractional digits.

For the fixed point formats also follows the internal type indicator as for the floating point
formats. But for the final part of the pattern, there is another radix (for the string side) format
letter (p below), only two are standardised, both for the decimal radix: f or F. E.g., %Lf indicates
decimal fixed point numeral string for long double, with a small letter for the letter component.
(There is also a combined floating/fixed point string format: g.)

converty_,p(x) (INTD =z *
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convertr_,(s) sscanf (s, "%wtr", &i) *
convertpr_r(f) fscanf (f, "%wtr", &i) *
converty_ i (x) sprintf (s, "Jwtr", x) *
converty i (x) fprintf (h, "%wtr", x) *
floorp_ 1 (y) (INT)floort(y) *
floorp_,;(y) (INT)nearbyintt(y) (when in round towards —oo mode) *
roundingr—1(y) (INT)nearbyintt(y) (when in round to nearest mode) x
ceilingr—1(y) (INT)nearbyintt(y) (when in round towards +o00 mode) *
ceilingp—1(y) (INT)ceilt(y) *
com)ertlﬁp(a:) (FLT)x *
convertIﬁF(x) (FLT>)x *
convertl_,F(x) KFLD)zx *
convertp_, g (y) (FLT2)y *
convert}%F,(y) (FLT2>)y *
conveTtF_)F, (y) (KFLT?2)y *
CO'I’LU@?"TSF//%F(S) sscanf (s, "%w.duv", &r) *
convertF,,%F(s) sscanf (s, "h>w.duv", &r) T
convertF,, (s) sscanf (s, "%h<w.duv", &r) 1
convertpn_)p(f) fscanf (f, "%w.duv", &r) *
convertF,,HF(f) fscanf (f, "%>w.duv", &r) T
converty, , p(f) fscanf (f, "%<w.duv", &r) T
convertp_mu (y) sprintf (s, "Jhw.duv", y) *
com;ertF_m,, (y) sprintf (s, "%>w.duv", y) T
convertFﬁF,, (y) sprintf (s, "%<w.duv", y) T
convertF%Fu (y) fprintf (h, "%w.duv", y) *
comjertFﬁF,,(y) fprintf (h, "%>w.duv", y) T
convertF%F,,(y) fprintf(h, "%<w.duv", y) T
convertpr_,p(s) sscanf (s, "Yw.dup", &g) *
convertg,_m(s) sscanf (s, "%>w.dup", &g) T
convert%,_m(s) sscanf (s, "%<w.dup", &g) T
convertp g (f) fscanf (f, "%w.dup", &g) *
com)ertg,_m(f) fscanf (f, "%>w.dup", &g) T
convertE,%F(f) fscanf (f, "%<w.dup", &g) T
convertp_,pr(y) sprintf (s, "Yw.dup", y) *
com)ert}HD, (y) sprintf (s, "%W>w.dup", y) T
convert%%D, (y) sprintf (s, "%h<w.dup", y) T
convertp_,p/(y) fprintf(h, "%w.dup", y) *
convert}_m, (y) fprintf (h, "%>w.dup", y) T
convertf,_m/ (y) fprintf(h, "%<w.dup", y) T

where s is an expression of type char*, f is an expression of type FILE*, 7 is an lvalue expression
of type int, ¢ is an lvalue expression of type double, x is an expression of type INT, y is an
expression of type FLT, INT2 is the integer datatype that corresponds to I’, and FLT2 is the
floating point datatype that corresponds to F”.
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C provides non-negative numerals for all its integer and floating point types. The default base
is 10, but base 8 (for integers) and 16 (both integer and floating point) can be used too. Numerals
for different integer types are distinguished by suffixes: no suffix for long int, and L for long
long int. Numerals for different floating point types are distinguished by suffix: £ for float, no
suffix for double, 1 for long double. There is a proposal to use the suffixes DF for Decimal32, DD
for Decimal64, and DL for _Decimal128. Numerals for floating point types must have a ‘.” or an
exponent in them. The details are not repeated in this example binding, see ISO/TEC 9899:1999,
clause 6.4.4.1 Integer constants, and clause 6.4.4.2 Floating constants.

C specifies numerals (as macros) for infinities and NaNs for float (header math.h):

+o00 INFINITY *
qNaN NAN *
sNalN NANSIGNALLING T

as well as string formats for reading and writing these values as character strings.

C has two ways of handling arithmetic errors. One, for backwards compatibility, is by assigning
to errno. The other is by recording of indicators, the method preferred by LIA, which can be
used for floating point errors. For C, the absolute_precision_underflow notification is ignored.
The behaviour when integer operations initiate a notification is, however, not defined by C.

An implementation that wishes to conform to LTA-1 must provide recording in indicators (for all
of the LIA notifications) as one method of notification. (See[6.2.1]) The datatype Ind is identified
with the datatype int. The values representing individual indicators are distinct non-negative
powers of two. Indicators can be accessed (header fenv.h) by the following syntax:

inexact FE_INEXACT *
underflow FE_UNDERFLOW *

overflow FE_OVERFLOW * (integers T)
infinitary FE_DIVBYZERO * (integers t)
invalid FE_INVALID * (integers T)
absolute_precision_underflow FE_ARGUMENT_TOO_IMPRECISE T, LIA-2, -3
union of all indicators FE_ALL_EXCEPT *

The empty set can be denoted by 0. Other indicator subsets can be named by combining individual
indicators using bit-wise or. For example, the indicator subset

{overflow, underflow, infinitary}
can be denoted by the expression
FE_OVERFLOW | FE_UNDERFLOW | FE_DIVBYZERO

The indicator interrogation and manipulation operations (header fenv.h) are listed below,
along with the syntax used to invoke them:

clear_indicators(C, S) feclearexcept (5) *
set_indicators(C, S) feraiseexcept (5) *
current_indicators(C') fegetexceptflag(returnvalue, FE_ALL EXCEPT) x
test_indicators(C, S) fetestexcept (S) *

where S is an expression of type int representing an indicator subset.

It is vital that indicators are managed separately for separate threads (as required by LIA), in
an environment where it is possible to have several threads within a C program. Likewise that
dynamically set rounding modes (which LIA-1 does not recommend) are also managed separately
for separate threads in such an environment.
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In order not to lose notification indicators within a C program when the computation is divided
into several threads, any in-parameter for thread communication must set in the accepting thread
(when the call is accepted) the indicators that are set in the caller, and any out-parameter or
result will set in the caller (when the communication call finishes) the indicators that are then set
in the accepting thread.

D.3 C++

The programming language C++ is defined by ISO/IEC 14882:2011, Programming languages —
C++ [17].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

The operations or parameters marked “{” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
identifier is provided. Integer valued parameters and derived constants can be used in preprocessor
expressions.

This example binding recommends that all identifiers suggested here be defined in the name-
space std: :math.

The LIA-1 datatype Boolean is implemented in the C++ datatype bool.

C++ names several integer datatypes: (signed) int, (signed) long (int), (signed) long
long (int), unsigned (int), and unsigned long (int), and unsigned long long (int).
The here parenthesised part of a name may be omitted when using the name in programs. Signed
integer datatypes use 2’s complement for representation for negative values. The notation INT
is used to stand for the name of any one of these datatypes in what follows.

The conformity to LIA of short int and char (signed or unsigned), and similar “short”
integer types are not relevant since values of these types are promoted to int (signed or unsigned
as appropriate) before arithmetic computations are done.

However, the basic integer datatypes, listed above, have portability issues. They may have
different limits in different implementations. Therefore, the C++ standard specifies a number of
additional integer datatypes, defined for programs in the headers <stdint.h> and <stddef.h>.
Similar portable integer datatypes have been defined in portable libraries. They are aliased, by
typedefs, to the basic integer datatypes, but the aliases are made in an implementation defined way.
The description here is not complete, see the C++ standard or the documentation for a portable
library that implement these aliases. Some of the integer datatypes have a predetermined bit
width, and the intn_t and uintn_t, where n is the bit width expressed as a decimal numeral. Some
bit widths are required by the C++ standard. There are also minimum width, fastest minimum
width, and special purpose integer datatypes (like size t). Finally there are the integer datatypes
intmax_t and uintmax_t that are the largest provided signed and unsigned integer datatypes.

NOTES

1 The overflow behaviour for arithmetic operations on signed integer datatypes is unspecified
in the C++ standard. For the signed datatypes signed int, signed long int, signed
long long int, and similar types (such as int64_t), for conformity with LIA the integer
operations must notify overflow upon overflow, by default via recording in indicators.

2 The unsigned datatypes unsigned int, unsigned long int, unsigned long long int,
and similar types (such as uint64_t), can partially conform if operations that properly
notify overflow are provided. The operations named +, (binary) -, and * are in the case of
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the unsigned integer types bound to add_wrapy, sub_wrapy, and mul_wrap; (specified in
LIA-2). For (unary) -, and integer / similar wrapping operations for negation and integer
division are accessed. The latter operations are not specified by LIA.

3 For portability reasons, it is common to use the size specified integer datatypes (like
int32_t, etc. either the standard ones or such datatypes defined in portable libraries).

The LIA-1 parameters for an integer datatype can be accessed by the following syntax:

maxint numeric_limits</NT>: :max() *

minint g numeric_limits<INT>::min() *

hasinf numeric_limits</NT>::has_infinity *

signed numeric limits<INT>::is_signed * (not LIA-1)
bounded numeric_limits<INT>::is_bounded *

moduloy numeric limits<I/NT>::is modulo * (partial conf.)

For the bit size specified integer datatypes the limits are fixed and need not have explicit pa-
rameters accessible to programs. For other integer datatypes, such as size_t and int_least32_t,
a complete binding must list how to access their parameters in a portable manner.

The parameter hasinf; is always false, and the parameter bounded; is always true for C++
integer types, and need not be provided to programs as named parameters. The parameter mininty
is always 0 for the unsigned types, and need not provided for those types. The parameter modulor
is always true for the unsigned types, and need not be provided for those types.

The LIA-1 integer operations are either operators, or declared in the header <stdlib.h>. The
integer operations are listed below, along with the syntax used to invoke them:

eqr(z,y) x ==y *

neqr(x,y) x =y *

Issr(x,y) T <y *

legr(x,y) x <=y *

gtri(z,y) x>y *

gear(x,y) r>=y *

negr(z) -z (%)

addr(x,y) T +y * (if modulo; = false)
add_wrapy(z,y) x +y * (if modulo; = true)
subr(z,y) x -y * (if modulo; = false)
sub_wrapr(z,y) x -y * (if modulo; = true)
mulr(z,y) x *ky * (if modulo; = false)
mul wrapr(z,y) T *y * (if modulo; = true)
absy(x) abs (x) *

signumy(x) sgn(x) T

quot (z,y) quot (z, ¥) t

mody(z,y) mod(x, y) T

where x and y are expressions of type signed int, signed long int, signed long long int,
unsigned int, or unsigned long int, or unsigned long long int, as appropriate.

Note that C++ requires a “modulo” interpretation for the ordinary addition, subtraction,
and multiplication operations for unsigned integer datatypes in C (i.e. modulo; = true for
unsigned integer datatypes), and is thus only partially conforming to LIA-1 for the unsigned
integer datatypes. For signed integer datatypes, the value of modulo; is implementation defined.
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An implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer operations
for all the integer datatypes for which LIA-1 conformity is claimed.

C++ names three floating point datatypes: float, double, and long double. In implementa-
tions supporting IEC 60559 (IEEE 754) these datatypes are in practice expected to be binary32,
binary64, and binary128, respectively.

The notation F'LT is used to stand for the name of any one of these datatypes in what follows.

The LIA-1 parameters and derived constants for a floating point datatype can be accessed by

the following syntax:

rr

PF

emaxrp

eming

denormpg

hasinf
hasqnang
hassnang
1ec_60559r
trapsr
tinyness_before
fmazp

fminNg

fminp

epsilongp
rnd_errorg
rnd_stylep
approx_p-10p
appror_emax_10p
approx_emin_10p

numeric_limits<FLT>:
numeric_limits<F LT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<F LT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:

:radix
:digits
:max_exponent
:min_exponent
:has_denorm
:has_infinity
:has_quiet nan
:has_signalling nan
:is_iecbb9
:traps
:tinyness_before
:max ()

:min()
:denorm min ()
:epsilon()
:round_error ()
:round_style
:digitsi0
:max_exponent10
:min_exponent10

*
*
*
*
*
* (not LIA-1)
* (not LIA-1)
* (not LIA-1)
*
* (not LIA-1)
% (not LIA-1)

(partial conf.)
(partial conf.)
(not LIA-1)
(not LIA-1)
(

*
*
*
*
*
*
*
x
* (not LIA-1)

The C++ standard specifies that the values of the parameter round_style are from the enu-

meration type float_round_style.

enum float_round_style

{

round_indeterminate = -1, *
truncate round_toward_zero = O, *
nearest round_to_nearest = 1, *
other round _toward_infinity = 2, *
other round_toward neg_infinity = 3 *
nearesttiestoeven round_to_nearest_even = 4 T

s
The value returned from fegetround() (header fenv.h, and the names below are defined only
if the rounding mode can be dynamically controlled) is one of:

truncate FE_TOWARDZERO *
other FE_UPWARD *
other FE_DOWNWARD *
nearesttiestoeven FE_TONEAREST * (default)
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Only the rounding mode FE_TONEAREST (with ties to even last digit) conforms to LIA. LIA recom-
mends using separate operations for other roundings, rather than using dynamic rounding modes.
Separate operations are in this case more reliable and less error prone.

The LIA-1 floating point operations are either operators, or declared in the header <math.h>.
The operations are listed below, along with the syntax used to invoke them:

eqr(z,y) x ==y *
neqr(z,y) x 1=y *
Issp(z,y) T <y *
leqr(z,y) T <=y *
gtre(z,y) T >y *
geqr(x,y) x >=y *
isnegzerop(x) isNegZero(z) T
istinyp(zx) isTiny(z) T
istinyp () -numeric limits<FLT>::min() < = &&

x < numeric limits<FLT>::min()) *
isnanp(x) isNaN(x) T
isnang(x) x = *
issignanp(z) isSigNaN(x) T
negr(z) -x (%) no invalid notification
addp_pr(x,y) r+y *
add}—)F’(mvy) T +>y T
addp_, (2, y) T <ty ]
SUbFﬁF’(:E’y) r -y *
subl,_, g (z,y) T =>y f
subﬁ_m,(x,y) T <- T
mulp_p(2,y) x *ky *
muz;‘aF’(xvy) T *> Yy T
mul%%p(:ﬂ,y} T <* y T
divp_p (2, y) z/y *
dw}aF,(m,y) x />y T
divﬁ%F,(w,y) x </ vy T
absp(z) fabst(x) *
signump(z) fsgnt (z) T
residuer(x,y) remaindert(x, y) or remainder(zx, y) «*
Sq'f’tF*)F/(.’I,') sqrtt(z) or sqrt(x) *
sqrtF%F,(x) sqrtUpt (z) T
sqrtFﬁF,(x) sqrtDwnt () T
exponent p_ () expon(x) T
fraction p(z) fract (x) T
scalep (x,n) scale(z, n) T
succp(x) succ(z) T
predp(x) pred(x) T
ulpp(z) ulp(x) T
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intpartp(z) intpart (z) T
fractpart p(z) frcpart (x) T
truncg r(z,n) trunc(z, n) T
roundp r(z,n) round(x, n) T

where x and y are expressions of type float, double, or long double, and n is of type int.

An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point
operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in C++ can be explicit or implicit. The explicit arithmetic value
conversions are usually expressed as ‘casts’, except when converting to/from string formats. The
rules for when implicit conversions are applied is not repeated here, but work as if a cast had been
applied.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C++4 standard for a full description.

In the format strings % is used to indicate the start of a format pattern. After the %, optionally
a string field width (w below) may be given as a positive decimal integer numeral.

For the floating and fixed point format patterns, there may then optionally be a ‘.’ followed
by a positive integer numeral (d below) indicating the number of fractional digits in the string.
The C++ operations below use HYPHEN-MINUS rather than MINUS (which would have been
typographically better), and only digits that are in ASCII, independently of so-called locale. For
generating or parsing other kinds of digits, say Arabic digits or Thai digits, another API must
be used, that is not standardised in C++. For the floating and fixed point formats, 400 may be
represented as either inf or infinity, —oo may be represented as either —-inf or —~infinity, and
a NalN may be represented as NaN; all independently of so-called locale. For language dependent
representations of these values another API must be used, that is not standardised in C++.

For the integer formats then follows an internal type indicator. Not all C integer types have
internal type indicators, in particular the portable size fixed types do not have special type in-
dicators (which is an issue for portability). For ¢ below, the empty string indicates int, 1 (the
letter 1) indicates long int. Finally, there are radix and signedness format letters (r below): d for
signed decimal; o, u, x, X for octal, decimal, hexadecimal with small letters, and hexadecimal with
capital letters, all unsigned. E.g., %d indicates decimal numeral string for int and %1u indicates
decimal numeral string for unsigned long int.

For the floating point formats instead follows another internal type indicator. Not all C4++
floating point types have standard internal type indicators for the format strings. For u below
the empty string indicates double and L indicates long double. Finally, there is a radix (for the
string side) format letter: e or E for decimal. E.g., %15.8LE indicates hexadecimal floating point
numeral string for long double, with a capital letter for the letter component, a field width of
15 characters, and 8 hexadecimal fractional digits.

For the fixed point formats also follows the internal type indicator as for the floating point
formats. But for the final part of the pattern, there is another radix (for the string side) format
letter (p below), only two are standardised, both for the decimal radix: f or F. E.g., %Lf indicates
decimal fixed point numeral string for long double, with a small letter for the letter component.
(There is also a combined floating/fixed point string format: g.)
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converty_,p(x) static_cast<INT2>(x) *
convertr_1(s) sscanf (s, "%wtr", &) *
convert_(f) fscanf (f, "hwtr", &i) *
converty_n(x) sprintf (s, "%hwtr", x) *
converty_n(x) fprintf (h, "%hwtr", x) *
floorg_ 1 (y) static_cast<INT>(floor(y)) *
roundingr_1(y) static_cast<INT>(round(y)) T
ceilingr—1(y) static_cast<INT>(ceil(y)) *
convertr_,p(x) static_cast<FLT>(z) *
convert}HF(a;) (FLT>)x *
convertlﬁF(az) (KFLDz *
COTL’UE'I“tFA)F/(y) static_cast<FLT2>y *
convertF_)F,(y) (FLT2>)y *
convertF%F,(y) (KFLT2)y *
convertpn_,p(s) sscanf (s, "%hw.duv", &r) *
convertlﬁ”%F(s) sscanf (s, "%>w.duv", &r) T
converty,_, p(s) sscanf (s, "%<w.duv", &r) T
convertpn_p(f) fscanf (f, "%w.duv", &r) *
convert},,%F(f) fscanf (f, "%>w.duv", &r) T
convertiﬂ,,%F(f) fscanf (f, "%i<w.duv", &r) T
convertp g (y) sprintf (s, "%hw.duv", y) *
convert}_)F,,(y) sprintf (s, "Ww.duv", y) T
convertip_)p/(y) sprintf (s, "%<w.duv", y) T
convertp_, g (y) fprintf(h, "%w.duv", y) *
convert?HF,,(y) fprintf(h, "%w.duv", y) T
convert?HF,,(y) fprintf(h, "%<w.duv", y) T
convertpr_,p(S) sscanf (s, "%wup", &g) *
convert%,ﬁF(s) sscanf (s, "%>w.dup", &g) T
convertiD,%F(s) sscanf (s, "%<w.dup", &g) T
convertp g (f) fscanf (f, "hwup", &g) *
convertp,_, p(f) fscanf (f, "%>w.dup", &g) T
converty, , p(f) fscanf (f, "%<w.dup", &g) T
convertp_,pr(y) sprintf (s, "%w.dup", y) *
convert}ﬁD,(y) sprintf (s, "%Ww.dup", y) T
convertfp_)D,(y) sprintf (s, "%<w.dup", y) ]
convertp_,pr(y) fprintf(h, "%w.dup", y) *
convert}%D,(y) fprintf(h, "%>w.dup", y) T
convert%_)D,(y) fprintf(h, "%<w.dup", y) T

where s is an expression of type char*, f is an expression of type FILE*, i is an Ivalue expression
of type int, g is an lvalue expression of type double, x is an expression of type INT, y is an
expression of type FLT, INT2 is the integer datatype that corresponds to I’, and FLT?2 is the
floating point datatype that corresponds to F”.
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C++ provides non-negative numerals for all its integer and floating point types in base 10.
The default base is 10, but base 8 (for integers) and 16 (both integer and floating point) can be
used too. Numerals for different integer types are distinguished by suffixes: no suffix for long
int, and L for long long int. Numerals for different floating point types are distinguished by
suffix: £ for float, no suffix for double, 1 for long double. Numerals for floating point types
must have a ‘.’ or an exponent in them. The details are not repeated in this example binding, see
ISO/IEC 14882:2011.

C++ specifies numerals for infinities and NaNs (header 1limits):

400 numeric limits<FLT>::infinity() *
qNaN numeric_1imits<FLT>::quiet_NaN() *
sNalN numeric_ 1limits<FLT>::signaling NaN() *

as well as string formats for reading and writing these values as character strings.
C++ has completely undefined behaviour on arithmetic notification.

An implementation that wishes to conform to LIA-1 must provide recording in indicators (for all
of the LIA notifications) as one method of notification. (See[6.2.1]) The datatype Ind is identified
with the datatype int. The values representing individual indicators are distinct non-negative
powers of two. Indicators can be accessed by the following syntax:

inexact FE_INEXACT T

underflow FE_UNDERFLOW 1

overflow FE_OVERFLOW 1 (also for integers)
infinitary FE_DIVBYZERO T (also for integers)
invalid FE_INVALID T (also for integers)
absolute_precision_underflow FE_ARGUMENT_TOO_IMPRECISE 1, LIA-2, -3

union of all indicators FE_ALL _EXCEPT 1

The empty set can be denoted by 0. Other indicator subsets can be named by combining individual
indicators using bit-wise or. For example, the indicator subset

{overflow, underflow, infinitary}
would be denoted by the expression
FE_OVERFLOW | FE_UNDERFLOW | FE_DIVBYZERO

The indicator interrogation and manipulation operations (header fenv.h) are listed below,
along with the syntax used to invoke them:

clear indicators(C, S) feclearexcept (5) *
set_indicators(C, S) feraiseexcept (5) *
current_indicators(C') fegetexceptflag(returnvalue, FE_ALL EXCEPT) %
test_indicators(C, S) fetestexcept (S5) *

where S is an expression of type int representing an indicator subset.

It is vital that indicators are managed separately for separate threads (as required by LIA), in
an environment where it is possible to have several threads within a C++ program. Likewise that
dynamically set rounding modes (which LIA-1 does not recommend) are also managed separately
for separate threads in such an environment.

In order not to lose notification indicators within a C+4 program when the computation is
divided into several threads, any in-parameter for thread communication must set in the accepting
thread (when the call is accepted) the indicators that are set in the caller, and any out-parameter
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or result will set in the caller (when the communication call finishes) the indicators that are then
set in the accepting thread.

D.4 Fortran

The programming language Fortran is defined by ISO/IEC 1539-1:2010, Information technology
— Programming languages — Fortran — Part 1: Base language[21].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

The operations or parameters marked “f” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
identifier is provided.

The Fortran datatype logical corresponds to LIA-1 datatype Boolean.

Every implementation of Fortran has at least one integer datatype, named integer. An im-
plementation is permitted to offer additional integer types (such as integer(kind=8)) with a
different range, parameterized with the kind parameter.

The LIA-1 parameters for an integer datatype can be accessed by the following syntax:

maxinty huge (z) *
manint; minint (x) ]
moduloy modint (z) T (partial conf.)

where x is an expression of the appropriate integer type, and the result returned is appropriate for
the type of . The parameter bounded; is always true, and need not be provided. The parameter
hasinf; is always false, and need not be provided.

The LIA-1 integer operations are listed below, along with the syntax used to invoke them:

eqr(z,y) xr .eq. Yy or x ==y *
neqr(x,y) x .ne. y or x /=y *
Issp(z,y) z .1t. y or x <y *
legr(x,y) x .le. y or x <=y *
gtr(z,y) r .gt. y or T >y *
geqr(z,y) x .ge. y or I >=y *
negr(z) -x *
addr(x,y) T+ oy *
subr(z,y) T -y *
mulr(x,y) T ky *
absr(x) abs (x) *
signumy(x) sign(1l, x) *
muly(signumy(z),absr(y)) sign(y, x) *
quot;(x,y) quotient(z, y) T
mody(x,y) modulo(x, y) *

where x and y are expressions involving integers of the same kind.

An implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer oper-
ations for all the integer datatypes for which LIA-1 conformity is claimed.
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Implementation of Fortran have at least two floating point datatypes, denoted as real (single
precision) and real (kind=kind(0.0d0)) (double precision). In implementations supporting
IEC 60559 (IEEE 754) these datatypes are in practice expected to be binary32 and binary64,
respectively.

An implementation is permitted to offer additional real types with different precision or range,
parameterized with the kind parameter.

The LIA-1 parameters and derived constants for a floating point datatype can be accessed by
the following syntax:

rE radix(z) *

pr digits(x) *

emax g maxexponent (x) *

eming minexponent (x) *

denormp ieee_support_denormal (x) (%)

iec_60559p ieee_support_standard(x) (%)

fmazx g huge (z) *

fminNp tiny(x) *

fmingp tiniest (z) T

epsilonp epsilon(z) *

rnd_errorp rnd_error (z) T (partial conf.)
rnd_stylep ieee_get_rounding mode (x) (%) (partial conf.)

where z is an expression of the appropriate real (kind=k) datatype.

The allowed values returned from ieee_get _rounding mode are:

truncate ieee_to_zero *
nearest ieee nearest * (default)
other ieee_up *
other ieee_down *

Only the rounding mode ieee nearest conforms to LIA. LIA recommends using separate oper-
ations for other roundings, rather than using dynamic rounding modes. Separate operations are
in this case more reliable and less error prone.

The LIA-1 floating point operations are listed below, along with the syntax used to invoke
them:

eqr(z,y) x .EQ. y or x ==y *
neqr(x,y) x .NE. y or z /=y *
lssp(x,y) x .LT. y or = <y *
leqr(z,y) z .LE. y or xz <=y *
gtrp(z,y) x .GT. y or x >y *
geqr(x,y) x .GE. y or x >=y *
isnegzerop(x) x == 0.0 .and. ieee_is negative(z) (%)
istinyp(x) isTiny (x) T
istinyp(x) -tiny(x) < z .and. z < tiny(x) *
isnanp(x) ieee_is nan(x) (%)
issignanp(z) ieee_is_snan(x) T
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negp () - *
addp_,p(z,y) T+ y *
addpy_, i (x,y) T >y i
add%ﬁF/(m,y) x <+ y T
subp_y g (z,y) T -y *
sub;_m,(x,y) T >y T
sub%_ﬂ,,(x,y) T <-y T
mulp— g (,y) z*y *
mulF%F,(x,y) T *>y T
mul%_m,(x,y) T <x gy T
divp_pr(x,y) x /vy *
dw;HF/(:U,y) T />y T
divp_, i (,y) z </y f
absp(x) abs () *
signump(x) sign(1.0, x) *
mulp(signump(z), absp(y)) sign(y, x) *
residuer(x,y) ieee_rem(z, y) *
sartyyp (7 sqrt (z) «
sqrtF%F,(m) sqrtUpt (z) T
sqrtg_ p () sqrtDwnt () T
exponentp_,1(x) exponent (z) * (dev.: 0if z = 0)
exponentp r(x) floor(ieee_logb(z)) + 1 *
fraction p(z) fraction(z) *
scalep r(x,n) scale(x, n) *
scalep r(x,n) ieee_scalb(z, n) *
succp(x) nearest(z, 1.0) *
succp(x) ieee next after(z, ieee positive inf) «x
predp(z) nearest(xr, -1.0) *
succp(x) ieee next_after(x, ieee negative_inf) «*
ulpr(z) spacing(x) *
intpartp(z) aint (x) *
fractpart p(x) x - aint(x) *
truncp(x,n) trunc(z,n) T
roundp 1(x,n) round(z,n) T

where x and y are of a floating point datatype of the same kind, and n is of an integer type.

An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point
operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in Fortran can be explicit or implicit. Where they are explicit,
the conversion function is named like the target type, except when converting to and from string
formats. Conversion between numeric and string formats is achieved by using read and write
statements.

converty_,p(x) int (z, kindi2) *
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convertpr_1(f) read (s, 'Bn)') r *(binary)
converty_, () write (s, '(Bn)') =z *(binary)
convertpn_r(f) read (s, '(On)") r *(octal)
converty i (x) write (s, '(On)') =z *(octal)
convertpr_1(f) read (s, '(In)") r *(decimal)
converty i (x) write (s, '(In)') =z *(decimal)
convertpr_r(f) read (s, '(Zn)") r *(hexadecimal)
converty_ i (x) write (s, '(Zn)') =z *(hexadecimal)
floorp_ 1 (y) floor(y, kindi?) *
roundingr—1(y) rounding(y, kindi?) T
ceilingp—1(y) ceiling(y, kindi?) *
convertrp(x) real (z, kind) or for dbl. prec. dble(z) *

convertp_, g (y) real(y, kind2) or or for dbl. p. dble(y) =*
convertpn_p(f) read (s, fmt) t *
convertp_, i (y) write (s, fmt) y *

convertp g (f) read (s, fmt=lbl_z) t *

where x is an expression of type integer (kind=kind<), y is an expression of type real (kind=kind),
s is an string variable, w, d, and e are literal digit (0-9) sequences, giving total, decimals, and
exponent widths, and fmt is one of ' (Fw.d)', ' Qw.d)', '(Ew.d)', '(Ew.dEe) "', ' (ENw.d) "',
'(ENw.dEe) ', ' (ESw.d) ', or ' (ESw.dEe) "' (see the Fortran standard for details).

Fortran provides non-negative numerals for all its integer and floating point types in base 10.
Numerals for floating point types must have a ‘.” in them. The kind of a numeral is indicated
by a suffix (d for double precision). The details are not repeated in this example binding, see

ISO/IEC 1539-1:2010.

Numerals for infinities and NaNs:

—00 ieee negative_inf *
+o00 ieee_positive_inf *
qNaN ieee_quiet_nan *
sNalN ieee_signaling nan *

as well as string formats for reading and writing these values as character strings (which should
be detailed in a real binding).

Fortran implementations can provide recording of indicators for floating point arithmetic no-
tifications, the LIA preferred method. An implementation that wishes to conform to LIA-1 must
provide recording in indicators (for all of the LIA notifications) as one method of notification.
(See[6.2.1]) The datatype Ind is identified with the datatype integer. The values representing
individual indicators are distinct non-negative powers of two. Indicators can be accessed by the
following syntax:

inexact ieee_inexact *
underflow ieee_underflow *
overflow ieee_overflow * (integers 1)
infinitary ieee_divide_by_zero * (integers 1)
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invalid ieee_invalid * (integers T)
absolute_precision_underflow

lia density_too_sparse T, LIA-2, -3
union of all indicators ieee_all *

The empty set if indicators can be denoted by 0. Other indicator subsets can be named by adding
together individual indicators. For example, the indicator subset

{overflow, underflow}
would be denoted by the expression
ieee_overflow 4 ieee_underflow

The Fortran standard has subroutines that set or get the status of one exception flag (notifi-
cation indicator in LIA terminology) at the time:

ieee_set_flag(f, .false.)clear a single notification indicator
ieee set _flag(f, .true.) set (raise) a single notification indicator
ieee_get_flag(f, out) get the current value of a single notification indicator

where f is one of the values listed above, and out is a boolean variable.

However, handling arithmetic exception flags one by one is tedious and error-prone, and also
not conforming to LIA-1 nor to IEEE 754-2008.

The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

clear_indicators(C, S) lia_clear_indicators(S) T
set_indicators(C, S) lia raise_indicators(S) T
current_indicators(C') lia_get_indicators() T
test_indicators(C, S) lia test_indicators(S) T

where S is an integer representing the set of indicators.

It is vital that indicators are managed separately for separate threads (as required by LIA), in an
environment where it is possible to have several threads within a Fortran program. Likewise that
dynamically set rounding modes (which LIA-1 does not recommend) are also managed separately
for separate threads in such an environment.

In order not to lose notification indicators within a Fortran program when the computation is
divided into several threads, any in-parameter for thread communication must set in the accepting
thread (when the call is accepted) the indicators that are set in the caller, and any out-parameter
or result will set in the caller (when the communication call finishes) the indicators that are then
set in the accepting thread.

D.5 Common Lisp

The programming language Common Lisp is defined by ANSI X3.226-1994, Information Technol-
ogy — Programming Language — Common Lisp [37].

An implementation should follow all the requirements of LIA-1 unless otherwise specified by
this language binding.

The operations or parameters marked “f” are not part of the language and must be provided
by an implementation that wishes to conform to LIA-1. For each of the marked items a suggested
identifier is provided.
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Common Lisp does not have a single datatype that corresponds to the LIA-1 datatype Boolean.
Rather, NIL corresponds to false and T corresponds to true.

Every implementation of Common Lisp has one unbounded integer datatype. Any mathe-
matical integer is assumed to have a representation as a Common Lisp data object, subject only
to total memory limitations. Thus, the parameters bounded; (and modulor) are always false,
maxinty is positive infinity, and minint; is negative infinity. LIA-1 requires for unbounded in-
teger types that hasinf; shall be true, and thus for there to be representations of positive and
negative infinity. Since these parameters have fixed values, the same for all implementations, they
need not be provided as program accessible parameters.

The LIA-1 integer operations are listed below, along with the syntax used to invoke them:

eqr(x,y) =z y) *
neqr(z,y) (/=2 y) *
lssp(z,y) <z *
leqr(z,y) =z *
gtri(z,y) Gy *
geqr(z,y) =z y) *
negr(x) (- *
addr(x,y) + z y) *
suby(z,y) -z y *
mulr(z,y) (x z y) *
absy(x) (abs z) *
signumy(x) (sign ) T

(the floor, ceiling, round, and truncate can also accept floating point arguments)

(multiple-value-bind (flr md) (floor z ¥)) *
quot(z,y) flr or (floor z y) *
modr(x,y) md or (mod z y) *

(multiple-value-bind (rnd rm) (round z y)) *
ratior(x,y) rnd or (round z y) *
residuer(z,y) rm

(multiple-value-bind (ceil pd) (ceiling z y)) *
groupr(z,y) ceil or (ceiling z y) *
pady(z,y) (- pd)

*

(multiple-value-bind (trunc rest) (ceiling x y))
where x and y are expressions of type integer.

An implementation that wishes to conform to LIA-1 must provide all the LIA-1 integer oper-
ations for the integer datatype.

Common Lisp has four floating point types: short-float, single-float, double-float,
and long-float. Not all of these floating point types must be distinct, though in light of the
2008 version of IEEE 754, it may be recommendable to map them, respectively, to binary16,
binary32, binary64, and binary128.

The LIA-1 parameters and derived constants for a floating point datatype can be accessed by
the following syntax:

TR (float-radix z) *
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pPr

emarp
eming
denormpg
1ec_60559r
fmax p
fminNg
fming
epsilonp
rnd_errorg
rnd_stylep

(float-digits x)
maxexp-1'
minexp-T'
denorm-T7"
ieee-754-T
most-positive-T

least-positive-normalized-T

least-positive-T
T'-epsilon
T-rounding-error
rounding-style

ISO/IEC FDIS 10967-1:2011(E)

*
*
*
t
f
*
*
*
*
t

(partial conf.)
T (partial conf.)

where x is of type short-float, single-float, double-float or long-float, and 7' is the string

short-float, single-float, double-float, or long-float as appropriate.

NOTE - LIA-1 requires sign symmetry in the range of floating point numbers. Thus the
Common Lisp constants of the form *-negative-* are not needed since they are simply the
negatives of their *-positive-* counterparts.

The value of the parameter rounding-style is an object of type rounding-styles. The values
of rounding-styles have the following names corresponding to LIA-1 rnd_styler values:

nearesttiestoeven
nearest

truncate

other

nearesttiestoeven
nearest

truncate

other

t
t
T
t

There is no standard way of setting rounding mode (as per IEEE 754) in Common Lisp. Note
also that LIA recommends using separate operations for separate roundings, rather than using
dynamic rounding modes. Separate operations are in this case more reliable and less error prone.

The LIA-1 floating point operations are listed below, along with the syntax used to invoke

them:

eqr(z,y)

neqr(x,y)
lssp (.73, y)
legp(x,y
gtre(z,y
geqr(z,y)

isnegzerop(x)
istinyp(zx)
isnang(x)
isnang(x)
issignanp(x)

negr(x)

SUbF—>F’ (‘T’ )
(

;
subp_,
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=z 9y
(/= z y)
<z
<=z y)
oGz y
=z y

(isNegativeZero x)
(isTiny z)

(isNaN z)

(/=2 x)

(isSigNaN z)

(- z)

+ 2z
(+> x y)
<+ z y)
-z 9y
>z 1y

— ¥ — — — X % o X %

— ¥ — — X *
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sub%HF/(:c,y)
mulp_pr(x,y)
mul;%F,(:U,y)
muly_, i (2,Y)
divp (x’ y)
diU;HF,(a:,y)
diviﬂ%F,(m,y)
absp(x)
signump(x)

(multiple-value-bind (rnd rm) (fround z y))

residue p(z,y)
sqrtp—p(,y)
sqrt}%F,(x)
sqrt%_)F,(x)

(multiple-value-bind (frc xpn sg) (decode-float x))

exponentp_,r(x)
fraction p(x)
scalep 1(x,n)
succp(x)
predp(z)
ulpp(x)

(multiple-value-bind (int fract) (ftruncate x))

intpartp(x)
fractpart ()
truncr r(z,n)
roundp (z,n)

<=2
(x x )
> x 1y
(<x z y)
/ z y
(/> z y)
</ x
(abs z)
(float-sign x)

rm
(sqrt =)
(sqrtUp z)
(sqrtDwn x)

Xpn
frc

(scale-float = n)

(succ x)
(pred x)
(ulp =)

int
fract

(truncate-float z= n)

(round-float z n)
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— = %t X X o —F —F X — — ot —F

— == = >k X X Xt

— —= >t > X

where x and y are data objects of the same floating point type, and n is of integer type.

An implementation that wishes to conform to LIA-1 must provide the LIA-1 floating point
operations for all the floating point datatypes for which LIA-1 conformity is claimed.

Arithmetic value conversions in Common Lisp can be explicit or implicit. The rules for when

implicit conversions are done is implementation defined.
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converty_,n(x)
converty_ i (x)
converty_, i (x)
converty_ i (x)
converty_,(x)
converty_ i (x)
Jioorp_,1(y)
roundingr1(y)
ceilingr—1(y)

convert;_,p(x)

(format nil "~wB"
(format nil "~wO"
(format nil "~wD"
(format nil "~wX"
(format nil "~7,wR" z)

x)
x)
x)
x)

(format nil "~“@R" z)

(floor y)
(round y)
(ceiling %)

(float z kind)

*(binary)

*(octal)
*(decimal)
*(hexadecimal)
*(radix )
*(roman numeral)

*
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convertp_,p(y) (float y kind2) *
CO?’L’Ue?“tFﬁF”(y) (format nil "“wF" y) *
convertp_, i (y) (format nil "~w,e, k,cE" y) *
convertp_ g (y) (format nil "~“w,e, k,cG" y) *
convertp_,pr(y) (format nil "“r,w,0,#F" y) *

where z is an expression of type INT, y is an expression of type FLT, and kind and kind2 are
objects of the target floating point type. These functions should be complemented with £floatUp,
floatDwn, formatUp, and formatDwn (all 1) for directed roundings.

Conversion from string to numeric value is in Common Lisp done via a general read procedure,
which reads Common Lisp ‘S-expressions’. That function should be complemented with readUp
and readDwn (1) for directed roundings when encountering floating point values.

Common Lisp provides non-negative numerals for all its integer and floating point datatypes
in base 10.

There is no differentiation between the numerals for different floating point datatypes, nor
between numerals for different integer datatypes, and integer numerals can be used for floating
point values.

Common Lisp does not specify numerals for infinities and NaNs. Suggestion:

+00 infinity-integer ]
+o00 infinity-FLT ]
qNalN nan-FLT T
sNaN signan-FLT ]

as well as string formats for reading and writing these values as character strings.

Common Lisp has a notion of ‘exception’, alternation of control flow. However, Common Lisp
has no notion of compile time type checking, and an operation can return differently typed values
for different arguments. When justifiable, Common Lisp arithmetic operations return a rational
or a complex floating point value rather than giving a notification, even if the argument(s) to the
operation were not complex. For instance, (sqrt -1) (quietly) returns a representation of 0 + 4.

The notification method required by Common Lisp is alteration of control flow as described
in [6.2.2] Notification is accomplished by signaling a condition of the appropriate type. LIA-1
exceptional values (except inexact, which is unsuitable to handle via change of control flow) are
represented by the following Common Lisp condition types:

overflow floating-point-overflow *
underflow floating-point-underflow *
invalid arithmetic-error *
infinitary division-by-zero *
absolute_precision_underflow

floating-point-density-too-sparse T, LIA-2, -3

Note that there is no integer overflow notification, since the integer datatype in Common Lisp
is required to be unbounded. These condition types are subtypes of the serious-condition
error condition type, that is errors which are “serious enough to require interactive intervention
if not handled”. That includes floating-point-underflow, but treating underflow by change of
control flow is usually inappropriate. For LIA conformity, numeric notifications that do not cause
Common Lisp exceptions must be recorded in indicators.
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An implementation that wishes to follow LIA must provide recording in indicators as an al-
ternative means of handling numeric notifications also for the notifications where the Common
Lisp standard requires alternation of control flow. (See ) Recording of indicators is the
LIA preferred means of handling numeric notifications. In this suggested binding non-negative
integer values in the datatype integer, are used to represent values in Ind. The datatype Ind is
identified with the datatype integer. The values representing individual indicators are distinct
non-negative powers of two. Indicators can be accessed by the following syntax:

inexact lia-inexact 1
underflow lia-undeflow T
overflow lia-overflow 1
infinitary lia-infinitary T
invalid lia-invalid 1
absolute_precision_underflow
lia-density-too-sparse T (LIA-2, -3)

union of all indicators lia-all-indicators T

The empty set can be denoted by 0. Other indicator subsets can be named by combining individual
indicators using bit-wise or, or just addition, or by subtracting from lia_all_indicators.

The indicator interrogation and manipulation operations are listed below, along with the syntax
used to invoke them:

clear_indicators(C, S) (clear-indicators S) T
set_indicators(C, S) (raise-indicators 5) T
current_indicators(C') (current-indicators) T
test_indicators(C, S) (test-indicators S) T

where S is an expression of type integer representing an indicator subset.

It is vital that indicators are managed separately for separate threads (as required by LIA), in
an environment where it is possible to have several threads within a Common Lisp program. Like-
wise that dynamically set rounding modes (which LIA-1 does not recommend) are also managed
separately for separate threads in such an environment.

In order not to lose notification indicators within a Common Lisp program when the compu-
tation is divided into several threads, any in-parameter for thread communication must set in the
accepting thread (when the call is accepted) the indicators that are set in the caller, and any
out-parameter or result will set in the caller (when the communication call finishes) the indicators
that are then set in the accepting thread.
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Annex E
(informative)

Example of a conformity statement

This annex presents an example of a conformity statement for a hypothetical implementation
of Fortran. The underlying hardware is assumed to provide 32-bit two’s complement integers, and
32- and 64-bit floating point numbers that conform to the IEEE 754 (IEC 60559) standard.

The sample conformity statement follows.

This implementation of Fortran conforms to the following standards:

ISO/IEC 1539-1:2010, Information technology — Programming languages — Fortran —
Part 1: Base language

IEEE Standard 754-2008, Standard for floating-point arithmetic

ISO/IEC 10967-1, Information technology — Language independent arithmetic — Part:
1 Integer and floating point arithmetic (LIA-1)

It also conforms to the suggested Fortran binding standard in of LIA-1.

Only implementation dependent information is directly provided here. The information in the
suggested language binding standard for Fortran (see [D.4]) is provided by reference. Together,
these two items satisfy the LIA-1 documentation requirement.

E.1 Types

There is one integer type, called integer. There are two floating point types, called real and
double precision (or real(kind=kind(0.0d0))).

E.2 Integer parameters

The following table gives the parameters for integer, the names of the intrinsic inquiry functions
with which they can be accessed at run-time, and their values.

Parameters for integer
parameter mquiry function value
hasinf; (none) false
maxinty huge (x) 231 1
minint; | minint (x) or -huge(z) - 1 | —(23%)
moduloy modint () false

where x is an expression of type integer.
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E.3 Floating point parameters

The following table gives the parameters for real ( and real (kind=kind(0.0d0)), the names of
the intrinsic inquiry functions with which they can be accessed at run-time, and their values.

Parameters for floating point
parameters inquiry function real | real (kind=kind(0.0d0))
TR radix(x) 2 2
PF digits(x) 24 53
emaxrp maxexponent (z) 128 1024
eming minexponent (z) —125 —1021
denorm ieee_support_denormal(x) | true true
iec_60559 | ieee_support_standard(x) | true true

where z is an expression of type real or real (kind=kind (0.0d0)), as appropriate.

The third table gives the derived constants, the names of the intrinsic inquiry functions with
which they can be accessed at run-time, and the (approximate) values for real and real (kind=kind (0.0d0)).
The inquiry functions return exact values for the derived constants.

Derived constants for floating point (default values for rnd_errorp and rnd_styler)
constants mquiry function real real (kind=kind (0.0d40))
fmaz huge (z) 3.402823466 e+38 1.7976931349 e+308
fminNp tiny(x) 1.175494351 e—38 2.2250738585 e—308
fming tiniest(x) 1.401298464 e—45 4.9406564584 e—324
epsilonp epsilon(x) 1.192092896 e—07 2.2204460493 e—016
rnd_errorg rnd_error (x) 0.5 0.5
rnd_styler | ieee_get_rounding mode(x) ieee nearest ieee nearest

where x is an expression of type real or real (kind=kind (0.0d0)), as appropriate.

The Fortran standard function ieee_set _rounding mode can be used to dynamically change
the rounding mode, but only round-to-neares-ties-to-even conforms with LIA-1 (other roundings
are separate operations in LIA-1).

E.4 Expressions

Expressions that contain more than one LIA-1 arithmetic operation or that contain operands of
mixed precisions or types are evaluated strictly according to the rules of Fortran (see clause 7.1.7
of the Fortran standard).

E.5 Notification

Notifications are raised under all circumstances specified by the LIA-1 standard. The programmer
selects the method of notification by using a compiler directive. The relevant directives are:

'LIA$ NOTIFICATION=RECORDING (default)
ILIA$ NOTIFICATION=TERMINATE does not apply to inexact nor underflow
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If a notification (which is not inexact nor underflow) occurs when termination is the notifi-
cation method, execution of the program will be stopped and a termination message written on
the standard error output.

If an exception occurs when recording of indicators is the selected method of notification, the
value specified by IEEE 754 is used as the value of the operation and execution continues. If
any indicator remains set when execution of the program is complete, an abbreviated termination
message will be written on the standard error output.

A full termination message, given only if the source has been compiled for debugging, provides
the following information:

a) name of the exceptional value (infinitary, overflow, invalid, or absolute_precision_
underflow),

b) kind of operation whose execution caused the notification,
c¢) values of the arguments to that operation, and

d) point in the program where the failing operation was invoked (i.e. the name of the source
file and the line number within the source file).

An abbreviated termination message only gives the names of the indicators that remain set.
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Annex F
(informative)

Example programs

This annex presents a few examples of how various LIA-1 features might be used. The program
fragments given here are written in Fortran, C, or Ada, and assume the bindings suggested in

D.4], [D.2] and [D.1], respectively.

F.1 Verifying platform acceptability

A particular numeric program may not be able to function if the floating point type available has
insufficient accuracy or range. Other programs may have other constraints.

Whenever the characteristics of the arithmetic are crucial to a program, that program should
check those characteristics early on.

Assume that an algorithm needs a representation precision of at least 1 part in a million. Such
an algorithm should be protected (in Fortran) by

if (1/epsilon(x) < 1.0e6) then
print 3, 'The actual floating point type used has insufficient precision.'
stop

end if

A range test might look like
if ((huge(x) < 1.0e30) .or. (tiny(x) > 1.0e-10))
A check for %—ulp rounding would be
if (rnd_error(x) /= 0.5)
A program that only run on IEC 60559 (IEEE 754) platforms would test

if (.not. ieee_support_standard(x))

F.2 Selecting alternate code

Sometimes the ability to control rounding behaviour is very useful. This ability is provided by
IEC 60559 platforms. An example (in C) is

if (__STDC_IEC_559_.)

{

fesetround (FE_UPWARD) ;

calculate using round toward plus infinity ...
fesetround (FE_DOWNWARD) ;

calculate using round toward minus infinity ...
fesetround (FE_NEAREST) ;

combine the results ...

else
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perform more costly (or less accurate) calculations ...

}

LIA-1 recommends using separate operations for different roundings, rather than using a round-
ing mode setting.

F.3 Terminating a loop

Here’s an example of an iterative approximation algorithm. We choose to terminate the iteration
when two successive approximations are within N ulps of one another. In Ada, this is

Approx, Prev_Approx: Float;
N: constant Float := 6.0; -- max ulp difference for loop termination

Prev_Approx := First_Guess(input);

Approx := Next_Guess(input, Prev_Approx);

while abs(Approx - Prev_Approx) > N * Float’Unit_Last Place(Approx) loop
Prev_Approx := Approx;
Approx := Next_Guess(input, Prev_Approx);

end loop;

This example ignores exceptions and the possibility of non-convergence.

F.4 Estimating error

The following is a Fortran algorithm for dot product that makes an estimate of its own accuracy.
Again, we ignore exceptions to keep the example simple.

real A(100), B(100), dot, dotmax
integer I, loss
dot = 0.0
dotmax = 0.0
do I =1, 100

dot = dot + A(I) * B(I)

dotmax = max (abs(dot), dotmax)
end do

loss = exponent(dotmax) - exponent(dot)
if (loss > digits(dot)/2) then

print 3, ’Half the precision may be lost.’
end if

F.5 Saving exception state

Sometimes a section of code needs to manipulate the notification indicators without losing no-
tifications pertinent to the surrounding program. The following code (in C) saves and restores
indicator settings around such a section of code.
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int saved_flags;

saved flags = fetestexcept(FE_ALL_EXCEPT) ;
feclearexcept (FE_ALL_EXCEPT) ;
run desired code ...
examine indicators and take appropriate action ...
clear any indicators that were compensated for ..
feraiseexcept(saved flags); /* merge-in previous state */

The net effect of this is that the nested code sets only those indicators that denote exceptions
that could not be compensated for. Previously set indicators stay set.

F.6 Fast versus accurate

Consider a problem which has two methods of solution. The first solution method is a fast
algorithm that works most of the time. However, it occasionally gives incorrect answers because
of internal floating point overflows. The second solution method is much more reliable, but is a
lot slower.

The following Fortran code tries the fast solution first, and, if that fails (detected via indicator
recorded notification(s)), uses the slow but reliable one.

saved flags = lia get_indicators()

call lia clear_indicators(lia_all_indicators)

result = FAST SOLUTION(input)

if (lia_test_indicators(ieee_overflow)) then
call lia clear_indicators(lia_all_indicators)
result = RELIABLE SOLUTION (input)

end if

call lia raise_indicators(saved_flags)

Demmel and Li discuss a number of similar algorithms in [44].

F.7 High-precision multiply

In general, the exact product of two p-digit numbers requires about 2 - p digits to represent.
Various algorithms are designed to use such an exact product represented as the sum of two
p-digit numbers. That is, given X and Y, we must compute U and V such that

U+V=X=xY
using only p-digit operations.

Sorenson and Tang [55] present an algorithm to compute U and V. They assume that X and
Y are of moderate size, so that no exceptions will occur. The Sorensen and Tang algorithm starts
out (in C) as

X1 = (double) (float) X ;
X2 = X - X1;
Y1 = (double) (float) Y;
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Y2 =Y - Y1,
Al = X1xY1;
A2 = X1xY2;
A3 = X2xY1;
Ad = X2xY2;

where all values and operations are in double precision. The conversion to single precision and
back to double is intended to chop X and Y roughly in half. Unfortunately, this doesn’t always
work accurately, and as a result the calculation of one or more of the As is inexact.

Using LIA-1’s roundr operation, we can make all these calculations exact. This is done by
replacing the first four lines with

X1 = round (X, DBL_MANT_DIG/2);
X2 X - X1;

Y1 = round (Y, DBL_MANT.DIG/2);
Y2 = Y - Y1;

LIA-2 specifies the operations add_lowg, sub_lowg, mul_lowg, and other operations to support
higher precision calculations, or higher precision datatypes.
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