
1

C9X Complex Arithmetic
(Draft 1997-01-24)

Jim Thomas5
517 Hendon Court

Sunnyvale, CA 94087
jthomas@best.com

Fred J. Tydeman10
Tydeman Consulting

3711 Del Robles Drive
Austin, TX 78727-1814

tydeman@tybor.com

15

This specification has been accepted for inclusion in the C9X draft standard. It is
WG14/N596, X3J11/96-060 (Draft 1996-09-12), but with the changes approved at the
SC22/WG14 meetings in Toronto last month. These changes are20

1. The changes in the Monday paper, “Complex Arithmetic Edits—Update”,
WG14/N620 X3J11/96-84 (Draft 1996-10-15)

2. Use of the translation directive macros (FP_CONTRACT_xxx, CX_LIMITED_RANGE_xxx)
no longer entails a trailing semicolon25

3. Use of the translation directive macros (CX_LIMITED_RANGE_xxx) inside a compound
statement is now required to be before any explicit declarations (with the word
explicit added)

4. The style for curly braces in examples now matches the current standard.
30

Additional changes not discussed in Toronto are

5. The special case behavior for the cexp function for IEC 559 implementations has
been changed slightly to be more consistent with the other functions.

35
6. The complex division sample has been fixed to handle certain infinity/zero cases.

(Note that the page number is not printed on the blank pages inserted in order for major
sections to begin on right-hand pages.)

40

3

C9X Edits

6.1.1 Keywords
5

In Syntax, add the keyword:

complex

Append to Semantics this paragraph:10

The token complex is a keyword in translation units where the header <complex.h>
is included, but not otherwise. If the token is used prior to the first inclusion of the
header, the behavior is undefined.

15
6.1.2.5 Types

In the first sentence of [6], replace “floating types” with “real floating types”.

After [6], insert these paragraphs:20

There are three complex types, designated as float complex , double complex , and
long double complex . The real floating and complex types are collectively called the
floating types.

25
For each floating type there is a corresponding real type, which is always a real

floating type. For real floating types, it is the same type. For complex types, it is the
type given by deleting the keyword complex from the type name.

Each complex type has the same representation and alignment requirements as a30
structured type containing exactly two elements of the corresponding real type; the first
element is equal to the real part, and the second element to the imaginary part, of the
complex number.

Footnote the first sentence of the first inserted paragraph above with:35

Annex Y specifies pure imaginary types, for implementations supporting the infinite, NaN, and signed-zero
values in IEC 559.

After the first sentence in [13], insert:40

The integral and real floating types are collectively called the real types.

In the last sentence in [13], replace “floating types” with “ real floating types”.
45

After [14], insert the paragraph:

Each arithmetic type belongs to one type-domain. The real type-domain comprises
the real types. The complex type-domain comprises the complex types.

50
6.2.1.3 Floating and integral

Replace all occurrences (including in the title) of “floating” with “ real floating”.

1997-01-24

4 C9X Complex Arithmetic—Edits

6.2.1.4 Floating types

In the title, replace “Floating” with “ Real floating”.
5

6.2.1 Arithmetic operands

After subclause 6.2.1.4, add these subclauses, and renumber 6.2.1.5:

6.2.1.5 Complex types10

When a value of complex type is converted to another complex type, both the real and
imaginary parts follow the conversion rules for the corresponding real types.

6.2.1.6 Real and complex15

When a value of real type is converted to a complex type, the real part of the complex
result value is determined by the rules of conversion to the corresponding real type and
the imaginary part of the complex result value is a positive zero or an unsigned zero.

20
When a value of complex type is converted to a real type, the imaginary part of the

complex value is discarded and the value of the real part is converted according to the
conversion rules for the corresponding real type.

6.2.1.5 (before insertions above) Usual arithmetic conversions25

Replace the second and third sentence up through the third list item with

The purpose is to determine a common real type for the operands and result. For the
operands, each operand is converted, without change of type-domain, to a type whose30
corresponding real type is the common real type. The common real type is also the
corresponding real type of the result, whose type-domain is determined by the operator.
This pattern is called the usual arithmetic conversions:

First, if the corresponding real type of either operand is long double , the other35
operand is converted, without change of type-domain, to a type whose
corresponding real type is long double .

Otherwise, if the corresponding real type of either operand is double , the other
operand is converted, without change of type-domain, to a type whose40
corresponding real type is double .

Otherwise, if the corresponding real type of either operand is float , the other
operand is converted, without change of type-domain, to a type whose
corresponding real type is float .45

Footnote the second sentence of the inserted text above with:

For example, addition of a double complex and a float entails just the conversion of the float operand
to double (and yields a double complex result).50

Draft 1997-01-24

C9X Complex Arithmetic—Edits 5

6.3.5 Multiplicative operators

Append to Semantics the paragraph:

If either operand has complex type, then the result has complex type.5

6.3.6 Additive operators

Append to Semantics the paragraph:
10

If either operand has complex type, then the result has complex type.

6.3.8 Relational operators

In the first bullet in [3], replace “arithmetic” with “ real”.15

6.3.9 Equality operators

Append to Semantics the paragraph:
20

Values of complex types are equal if and only if both their real parts are equal and
also their imaginary parts are equal. Any two values of arithmetic types are equal if and
only if the results of their conversion to the complex type corresponding to the common
real type determined by the usual arithmetic conversions are equal.

25
5.2.4.2.2 Characteristics of floating types <float.h>

In the second sentence of the paragraph defining FLT_EVAL_METHOD (from FP->C9X),
footnote FLT_EVAL_METHOD with:

30
The evaluation method determines evaluation formats of expressions involving all floating types, not just
real types. For example, if FLT_EVAL_METHOD is 1, then the product of two float complex operands is
represented in the double complex format, and its parts are evaluated to double .

6.3.2.4 Postfix increment and decrement operators35

In Constraints replace “scalar” with “ real or pointer”.

6.3.3.1 Prefix increment and decrement operators
40

In Constraints replace “scalar” with “ real or pointer”.

6.5.2 Type specifiers

In Syntax, add to the list of type specifiers:45

complex

In Constraints, add to the bullet items:
50

— float complex
— double complex
— long double complex

1997-01-24

6 C9X Complex Arithmetic—Edits

6.5.6 Type definitions

Rework example 1 to use something other than complex, e.g. replace “re ” with “ hi ”,
“ im” with “ lo ”, and “ complex ” with “ double_double ”.

7

Complex Arithmetic <complex.h>

This section specifies a new header <complex.h> for inclusion in C9X.
5

7.x Complex arithmetic <complex.h>

The header <complex.h> defines macros and declares functions that support complex
arithmetic. Each synopsis specifies a function with one or two double complex
parameters and returning a double complex or double value; for each such function,10
there are similar functions with the same name but with f and l suffixes. The f suffix
indicates that float (instead of double) is the corresponding real type for the parameters
and result. Similarly the l suffix indicates that long double is the corresponding real
type for the parameters and result.

15
The macro

_Imaginary_I

expands to an expression with a const-qualified type whose corresponding real type is the20
narrowest real floating type used for expression evaluation1, and with the value of the
imaginary unit2. The macro is suitable for use in constant expressions.3

The macro
25

I

is defined to be _Imaginary_I . Notwithstanding the provisions of subclause 7.1.3, it is
permitted to undefine the macro I .

30
7.x.1 The CX_LIMITED_RANGE macros

Synopsis

#include <complex.h>35
CX_LIMITED_RANGE_ON
CX_LIMITED_RANGE_OFF
CX_LIMITED_RANGE_DEFAULT

The usual mathematical formula for multiplication of two complex numbers and the40
one for division by a complex number are problematic because of their treatment of
infinities and because of undue overflow and underflow. The CX_LIMITED_RANGE
macros can be used to inform the implementation that (where the state is on) the usual

1 If FLT_EVAL_METHOD equals 0, 1, or 2, then _Imaginary_I has the corresponding real type float ,
double , or l ong double , respectively.
2 The imaginary unit is a number i such that i*i = -1.
3 For those implementations that do not support imaginary types (specified in Annex Y), the macro
_Imaginary_I is intended to have a complex type.

1997-01-24

8 C9X Complex Arithmetic—<complex.h>

mathematical formulas for multiplication and division are acceptable.4 Each macro can
occur either outside external declarations or preceding all explicit declarations and
statements inside a compound statement. When outside external declarations, the macro
takes effect from its occurrence until another CX_LIMITED_RANGE macro is encountered,
or until the end of the translation unit. When inside a compound statement, the macro5
takes effect from its occurrence until another CX_LIMITED_RANGE macro is encountered
(within a nested compound statement), or until the end of the compound statement; at the
end of a compound statement the state for the macros is restored to its condition just
before the compound statement. The effect of one of these macros in any other context is
undefined. The default state for the macros is off.10

7.x.2 Complex functions

Values are interpreted as radians, not degrees. An implementation may set errno but
is not required to.15

7.x.2.1 Branch cuts

Some of the functions below have branch cuts, across which the function is
discontinuous. For implementations with a signed zero (including all IEC 55920
implementations) that follow the specification of Annex Y, the sign of zero distinguishes
one side of a cut from another so the function is continuous (except for format
limitations) as the cut is approached from either side. For example, for the square root
function, which has a branch cut along the negative real axis, the top of the cut, with
imaginary part +0, maps to the positive imaginary axis, and the bottom of the cut, with25
imaginary part -0, maps to the negative imaginary axis.

Implementations that do not support a signed zero (see Annex X) cannot distinguish
the sides of branch cuts. These implementations must map a cut so the function is
continuous as the cut is approached coming around the finite endpoint of the cut in a30
counter clockwise direction. (Branch cuts for the functions specified here have just one
finite endpoint.) For example, for the square root function, coming counter clockwise
around the finite endpoint of the cut along the negative real axis approaches the cut from
above, so the cut maps to the positive imaginary axis.

35
7.x.2.2 The cacos function

Synopsis

#include <complex.h>40
double complex cacos(double complex z);

Description

The cacos function computes the complex arc cosine of z, with branch cuts outside45
the interval [-1, 1] along the real axis.

4 The purpose of the macros is to allow the implementation to use the formulas

(x + y* I) * (u + v* I) = (x*u - y*v) + (y*u + x*v)* I
(x + y* I) / (u + v* I) = (x*u + y*v) / (u*u + v*v) + ((y*u - x*v) / (u*u + v*v))* I

where the programmer can determine they are safe.

Draft 1997-01-24

C9X Complex Arithmetic—<compex.h> 9

Returns

The cacos function returns the complex arc cosine of z , in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0, π] along the
real axis.5

7.x.2.3 The casin function

Synopsis
10

#include <complex.h>
double complex casin(double complex z);

Description
15

The casin function computes the complex arc sine of z, with branch cuts outside the
interval [-1, 1] along the real axis.

Returns
20

The casin function returns the complex arc sine of z , in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-π/2, π/2] along
the real axis.

7.x.2.4 The catan function25

Synopsis

#include <complex.h>
double complex catan(double complex z);30

Description

The catan function computes the complex arc tangent of z, with branch cuts outside
the interval [-i, i] along the imaginary axis.35

Returns

The catan function returns the complex arc tangent of z , in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-π/2, π/2] along40
the real axis.

7.x.2.5 The ccos function

Synopsis45

#include <complex.h>
double complex ccos(double complex z);

Description50

The ccos function computes the complex cosine of z.

1997-01-24

10 C9X Complex Arithmetic—<complex.h>

Returns

The ccos function returns the complex cosine of z.

7.x.2.6 The csin function5

Synopsis

#include <complex.h>
double complex csin(double complex z);10

Description

The csin function computes the complex sine of z.
15

Returns

The csin function returns the complex sine of z.

7.x.2.7 The ctan function20

Synopsis

#include <complex.h>
double complex ctan(double complex z);25

Description

The ctan function computes the complex tangent of z.
30

Returns

The ctan function returns the complex tangent of z.

7.x.2.8 The cacosh function35

Synopsis

#include <complex.h>
double complex cacosh(double complex z);40

Description

The cacosh function computes the complex arc hyperbolic cosine of z, with a branch
cut at values less than 1 along the real axis.45

Returns

The cacosh function returns the complex arc hyperbolic cosine of z, in the range of a
half-strip of non-negative values along the real axis and in the interval [-iπ, iπ] along the50
imaginary axis.

Draft 1997-01-24

C9X Complex Arithmetic—<compex.h> 11

7.x.2.9 The casinh function

Synopsis

#include <complex.h>5
double complex casinh(double complex z);

Description

The casinh function computes the complex arc hyperbolic sine of z, with branch cuts10
outside the interval [-i, i] along the imaginary axis.

Returns

The casinh function returns the complex arc hyperbolic sine of z , in the range of a15
strip mathematically unbounded along the real axis and in the interval [-iπ/2, iπ/2] along
the imaginary axis.

7.x.2.10 The catanh function
20

Synopsis

#include <complex.h>
double complex catanh(double complex z);

25
Description

The catanh function computes the complex arc hyperbolic tangent of z, with branch
cuts outside the interval [-1, 1] along the real axis.

30
Returns

The catanh function returns the complex arc hyperbolic tangent of z, in the range of
a strip mathematically unbounded along the real axis and in the interval [-iπ/2, iπ/2] along
the imaginary axis.35

7.x.2.11 The ccosh function

Synopsis
40

#include <complex.h>
double complex ccosh(double complex z);

Description
45

The ccosh function computes the complex hyperbolic cosine of z.

Returns

The ccosh function returns the complex hyperbolic cosine of z.50

1997-01-24

12 C9X Complex Arithmetic—<complex.h>

7.x.2.12 The csinh function

Synopsis

#include <complex.h>5
double complex csinh(double complex z);

Description

The csinh function computes the complex hyperbolic sine of z.10

Returns

The csinh function returns the complex hyperbolic sine of z.
15

7.x.2.13 The ctanh function

Synopsis

#include <complex.h>20
double complex ctanh(double complex z);

Description

The ctanh function computes the complex hyperbolic tangent of z.25

Returns

The ctanh function returns the complex hyperbolic tangent of z.
30

7.x.2.14 The cexp function

Synopsis

#include <complex.h>35
double complex cexp(double complex z);

Description

The cexp function computes the complex base-e exponential of z.40

Returns

The cexp function returns the complex base-e exponential of z.
45

7.x.2.15 The clog function

Synopsis

#include <complex.h>50
double complex clog(double complex z);

Draft 1997-01-24

C9X Complex Arithmetic—<compex.h> 13

Description

The clog function computes the complex natural (base-e) logarithm of z , with a
branch cut along the negative real axis.

5
Returns

The clog function returns the complex natural logarithm of z, in the range of a strip
mathematically unbounded along the real axis and in the interval [-iπ, iπ] along the
imaginary axis.10

7.x.2.16 The csqrt function

Synopsis
15

#include <complex.h>
double complex csqrt(double complex z);

Description
20

The csqrt function computes the complex square root of z, with a branch cut along
the negative real axis.

Returns
25

The csqrt function returns the complex square root of z , in the range of the right
half-plane (including the imaginary axis).

7.x.2.17 The cabs function
30

Synopsis

#include <complex.h>
double cabs(double complex z);

35
Description

The cabs function computes the complex absolute value (also called norm, modulus,
or magnitude) of z.

40
Returns

The cabs function returns the complex absolute value of z.

7.x.2.18 The cpow function45

Synopsis

#include <complex.h>
double complex cpow(double complex x, double complex y);50

1997-01-24

14 C9X Complex Arithmetic—<complex.h>

Description

The cpow function computes the complex power function xy , with a branch cut for
the first parameter along the negative real axis.

5
Returns

The cpow function returns the complex power function xy.

7.x.2.19 The carg function10

Synopsis

#include <complex.h>
double carg(double complex z);15

Description

The carg function computes the argument or phase angle of z , with a branch cut
along the negative real axis.20

Returns

The carg function returns the argument or phase angle of z, in the range [-π, π].
25

7.x.2.20 The conj function

Synopsis

#include <complex.h>30
double complex conj(double complex z);

Description

The conj function computes the complex conjugate of z, by reversing the sign of its35
imaginary part.

Returns

The conj function returns the complex conjugate of z.40

7.x.2.21 The cimag function

Synopsis
45

#include <complex.h>
double cimag(double complex z);

Description
50

The cimag function computes the imaginary part of z.5

5 For a variable z of complex type, z == creal(z) + cimag(z)*I .

Draft 1997-01-24

C9X Complex Arithmetic—<compex.h> 15

Returns

The cimag function returns the imaginary part of z (as a real).
5

7.x.2.22 The cproj function

Synopsis

#include <complex.h>10
double complex cproj(double complex z);

Description

The cproj function computes a projection of z onto the Riemann sphere: z projects15
to z except that all complex infinities (even ones with one infinite part and one NaN part)
project to positive infinity on the real axis. If z has an infinite part, then cproj(z) is
equivalent to INFINITY + I * copysign(0.0, cimag(z)) .

Returns20

The cproj function returns a projection of z onto the Riemann sphere.

7.x.2.23 The creal function
25

Synopsis

#include <complex.h>
double creal(double complex z);

30
Description

The creal function computes the real part of z.

Returns35

The creal function returns the real part of z.

17

Annex Y: IEC 559-Compatible Complex Arithmetic
Insert the following annex:

Annex Y5
(informative)

IEC 559-compatible complex arithmetic

Y.1 Introduction10

This annex supplements Annex X to specify complex arithmetic for compatibility
with IEC 559 real floating-point arithmetic. An implementation supports this
specification if and only if it defines the macro __STDC_IEC_559_COMPLEX__; the macro
expands to the decimal constant 1.15

Y.2 Keywords

The syntax in subclause 6.1.1 is extended to include the keyword
20

imaginary

The token imaginary is a keyword in translation units where the header
<complex.h> is included, but not otherwise. If the token is used prior to the first
inclusion of the header, the behavior is undefined.25

Y.3 Types

There are three imaginary types, designated as f l oa t imag ina ry ,
double imaginary , and long double imaginary . The imaginary types (along with the30
real floating and complex types) are floating types.

For imaginary types, the corresponding real type is given by deleting the keyword
imaginary from the type name.

35
Each imaginary type has the same representation and alignment requirements as the

corresponding real type. The value of an object of imaginary type is the value of the real
representation times the imaginary unit.

The imaginary type-domain comprises the imaginary types.40

Y.4 Conversions

Y.4.1 Imaginary types
45

Conversions among imaginary types follow rules analogous to those for real floating
types.

1997-01-24

18 C9X Complex Arithmetic—IEC 559 Annex

Y.4.2 Real and imaginary

When a value of imaginary type is converted to a real type, the result is a positive
zero.

5
When a value of real type is converted to an imaginary type, the result is a positive

imaginary zero.

Y.4.3 Imaginary and complex
10

When a value of imaginary type is converted to a complex type, the real part of the
complex result value is a positive zero and the imaginary part of the complex result value
is determined by the conversion rules for the corresponding real types.

When a value of complex type is converted to an imaginary type, the real part of the15
complex value is discarded and the value of the imaginary part is converted according to
the conversion rules for the corresponding real types.

Y.5 Binary operators
20

The following subclauses supplement 6.3 in order to specify the type of the result for
an operation with an imaginary operand.

For most operand types, the value of the result of a binary operator with an imaginary
or complex operand is completely determined, with reference to real arithmetic, by the25
usual mathematical formula. For some operand types, the usual mathematical formula is
problematic because of its treatment of infinities and because of undue overflow or
underflow (7.X.1); in these cases the result satisfies certain properties (specified in
Y.5.1), but is not completely determined.

30

Y.5.1 Multiplicative operators

Semantics

If one operand has real type and the other operand has imaginary type, then the result35
has imaginary type. If both operands have imaginary type, then the result has complex
type. (If either operand has complex type, then the result has complex type.)

If the operands are not both complex, then the result and exception behavior of the *
operator is defined by the usual mathematical formula:40

* real x imaginary y*I complex x + y*I

real u x*u (y*u)*I (x*u) + (y*u)*I

imaginary v*I (x*v)*I -y*v + 0*I (-y*v) + (x*v)*I

complex u + v*I (x*u) + (x*v)*I (-y*v) + (y*u)*I

If the second operand is not complex, then the result of the / operator is defined by
the usual mathematical formula:

Draft 1997-01-24

C9X Complex Arithmetic—IEC 559 Annex 19

/ x y*I x + y*I

u x/u (y/u)*I (x/u) + (y/u)*I

v*I (-x/v)*I y/v + 0*I (y/v) + (-x/v)*I

A complex or imaginary value with at least one infinite part is regarded as an infinity
(even if its other part is a NaN). A complex or imaginary value is a finite number if each
of its parts is a finite number (neither infinite nor NaN). A complex or imaginary value is5
a zero if each of its parts is a zero. The * and / operators satisfy the following infinity
properties for all real, imaginary, and complex operands6:

• If one operand is an infinity and the other operand is a nonzero finite number or an
infinity, then the result of the * operator is an infinity.10

• If the first operand is an infinity and the second operand is a finite number, then the
result of the / operator is an infinity.

• If the first operand is a finite number and the second operand is an infinity, then the15
result of the / operator is a zero.

• If the first operand is a nonzero finite number or an infinity and the second operand is
a zero, then the result of the / operator is an infinity.

20
If both operands of the * operator are complex or if the second operand of the /

operator is complex, the operator raises exceptions if appropriate for the calculation of
the parts of the result, and may raise spurious exceptions.

Examples25

1. Multiplication of double complex operands could be implemented as follows. Note
that the imaginary unit I has imaginary type (see Y.6).

#include <math.h>30
#include <complex.h>
#define isinf(x) (fabs(x)==INFINITY)

/* Multiply z * w ... */
double complex _Cmultd(double complex z, double complex w)35
{

FP_CONTRACT_OFF
double a, b, c, d, ac, bd, ad, bc, x, y;
a = creal(z); b = cimag(z);
c = creal(w); d = cimag(w);40
ac = a * c; bd = b * d;
ad = a * d; bc = b * c;
x = ac - bd;
y = ad + bc;

6 These properties are already implied for those cases covered in the tables, but are required for all cases
(at least where the state for CX_LIMITED_RANGE is off).

1997-01-24

20 C9X Complex Arithmetic—IEC 559 Annex

/* Recover infinities that computed as NaN+iNaN ... */
if (isnan(x) && isnan(y)) {

int recalc = 0;
if (isinf(a) || isinf(b)) { /* z is infinite */

/* "Box" the infinity ... */5
a = copysign(isinf(a) ? 1.0 : 0.0, a);
b = copysign(isinf(b) ? 1.0 : 0.0, b);
/* Change NaNs in the other factor to 0 ... */
if (isnan(c)) c = copysign(0.0, c);
if (isnan(d)) d = copysign(0.0, d);10
recalc = 1;

}
if (isinf(c) || isinf(d)) { /* w is infinite */

/* "Box" the infinity ... */
c = copysign(isinf(c) ? 1.0 : 0.0, c);15
d = copysign(isinf(d) ? 1.0 : 0.0, d);
/* Change NaNs in the other factor to 0 ... */
if (isnan(a)) a = copysign(0.0, a);
if (isnan(b)) b = copysign(0.0, b);
recalc = 1;20

}
if (!recalc) {

/* Recover infinities from overflow cases ... */
if (isinf(ac) || isinf(bd) || isinf(ad) || isinf(bc)) {

/* Change all NaNs to 0 ... */25
if (isnan(a)) a = copysign(0.0, a);
if (isnan(b)) b = copysign(0.0, b);
if (isnan(c)) c = copysign(0.0, c);
if (isnan(d)) d = copysign(0.0, d);
recalc = 1;30

}
}
if (recalc) {

x = INFINITY * (a * c - b * d);
y = INFINITY * (a * d + b * c);35

}
}
return x + I * y;

}
40

In ordinary (finite) cases, the cost to satisfy the infinity property for the * operator is only
one isnan test. This implementation opts for performance over guarding against undue
overflow and underflow.

Draft 1997-01-24

C9X Complex Arithmetic—IEC 559 Annex 21

2. Division of two double complex operands could be implemented as follows.

#include <math.h>
#include <complex.h>
/* isinf is as in example 1 above */5

/* Divide z / w ... */
double complex _Cdivd(double complex z, double complex w)
{

FP_CONTRACT_OFF10
double a, b, c, d, logbw, denom, x, y;
long llogbw = 0;
a = creal(z); b = cimag(z);
c = creal(w); d = cimag(w);
logbw = logb(fmax(fabs(c), fabs(d)));15
if (isfinite(logbw)) {

llogbw = (long)logbw;
c = scalb(c, -llogbw);
d = scalb(d, -llogbw);

}20
denom = c * c + d * d;
x = scalb((a * c + b * d) / denom, -llogbw);
y = scalb((b * c - a * d) / denom, -llogbw);
/*
 * Recover infinities and zeros that computed as NaN+iNaN;25
 * the only cases are infinite/finite, finite/infinite,
 * and non-zero/zero ...
 */
if (isnan(x) && isnan(y)) {

if ((denom == 0.0) && (!isnan(a) || !isnan(b))) {30
x = copysign(INFINITY, c) * a;
y = copysign(INFINITY, c) * b;

}
else if ((isinf(a) || isinf(b)) && isfinite(c) && isfinite(d)) {

a = copysign(isinf(a) ? 1.0 : 0.0, a);35
b = copysign(isinf(b) ? 1.0 : 0.0, b);
x = INFINITY * (a * c + b * d);
y = INFINITY * (b * c - a * d);

}
else if (isinf(logbw) && isfinite(a) && isfinite(b)) {40

c = copysign(isinf(c) ? 1.0 : 0.0, c);
d = copysign(isinf(d) ? 1.0 : 0.0, d);
x = 0.0 * (a * c + b * d);
y = 0.0 * (b * c - a * d);

}45
}
return x + I * y;

}

Scaling the denominator alleviates the main overflow and underflow problem, which is50
more serious than for multiplication. In the spirit of the multiplication example above,
this code does not defend against overflow and underflow in the calculation of the
numerator. Scaling with the scalb function, instead of with division, provides better
roundoff characteristics.

55

1997-01-24

22 C9X Complex Arithmetic—IEC 559 Annex

Y.5.2 Additive operators

Semantics

If one operand has real type and the other operand has imaginary type, then the result5
has complex type. If both operands have imaginary type, then the result has imaginary
type. (If either operand has complex type, then the result has complex type.)

In all cases the result and exception behavior of a + or - operator is defined by the
usual mathematical formula:10

± x y*I x + y*I

u x ± u ±u + y*I (x±u) + y*I

v*I x ± v*I (y±v)*I x + (y±v)*I

u + v*I (x±u) ± v*I ±u + (y±v)*I (x±u) + (y±v)*I

Y.6 <complex.h>

The macro15

_Imaginary_I

has an imaginary type.
20

This subclause contains specification for the <complex.h> functions that is
particularly suited to IEC 559 implementations.

The functions are continuous onto both sides of their branch cuts, taking into account
the sign of zero. For example, csqrt(-2 ± 0*I) == ± sqrt(2)*I .25

Since complex and imaginary values are composed of real values, each function may
be regarded as computing real values from real values. Except as noted, the functions
treat real infinities, NaNs, signed zeros, subnormals, and the exception flags in a manner
consistent with the specification for real functions in X.9.30

The functions conj , c imag , cpro j , and crea l are fully specified for all
implementations, including IEC 559 ones, in 7.x.2. These functions raise no exceptions.

Each of the functions cabs and carg is specified by a formula in terms of a real35
function (whose special cases are covered in annex X):

cabs(x + i*y) = hypot(x, y)
carg(x + i*y) = atan2(y, x)

40
Each of the functions casin , catan , ccos, csin, ctan , and cpow is specified

implicitly by a formula in terms of other complex functions (whose special cases are
specified below):

casin(z) = -i*casinh(i*z)45
catan(z) = -i*catanh(i*z)

Draft 1997-01-24

C9X Complex Arithmetic—IEC 559 Annex 23

ccos(z) = ccosh(i*z)
csin(z) = -i*csinh(i*z)
ctan(z) = -i*ctanh(i*z)
cpow(z, c) = cexp(c * clog(z))

5
For the other functions, the following subclauses specify behavior for special cases,

including treatment of the invalid and divide-by-zero exceptions. For a function f
satisfying f(conj(z)) = conj(f(z)), the specification for the upper half-plane implies the
specification for the lower half-plane; if also the function f is either even, f(-z) = f(z), or
odd, f(-z) = -f(z), then the specification for the first quadrant implies the specification for10
the other three quadrants.

Y.6.1 The cacos function

• cacos (conj(z)) = conj(cacos (z)).15
• cacos (±0+i0) returns π/2-i0.
• cacos (-∞+i∞) returns 3π/4-i∞.
• cacos (+∞+i∞) returns π/4-i∞.
• cacos (x+i∞) returns π/2-i∞, for finite x.
• cacos (-∞+iy) returns π-i∞, for positive-signed finite y.20
• cacos (+∞+iy) returns +0-i∞, for positive-signed finite y.
• cacos (±∞+iNaN) returns NaN±i∞ (where the sign of the imaginary part of the result

is unspecified).
• cacos (±0+iNaN) returns π/2+iNaN.
• cacos (NaN+i∞) returns NaN-i∞.25
• cacos (x+iNaN) returns NaN+iNaN and optionally raises the invalid exception, for

nonzero finite x.
• cacos (NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for

finite y.
• cacos (NaN+iNaN) returns NaN+iNaN.30

Y.6.2 The cacosh function

• cacosh (conj(z)) = conj(cacosh (z)).
• cacosh (±0+i0) returns +0+iπ/2.35
• cacosh (-∞+i∞) returns +∞+i3π/4.
• cacosh (+∞+i∞) returns +∞+iπ/4.
• cacosh (x+i∞) returns +∞+iπ/2, for finite x.
• cacosh (-∞+iy) returns +∞+iπ, for positive-signed finite y.
• cacosh (+∞+iy) returns +∞+i0, for positive-signed finite y.40
• cacosh (NaN+i∞) returns +∞+iNaN.
• cacosh (±∞+iNaN) returns +∞+iNaN.
• cacosh (x+iNaN) returns NaN+iNaN and optionally raises the invalid exception, for

finite x.
• cacosh (NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for45

finite y.
• cacosh (NaN+iNaN) returns NaN+iNaN.

Y.6.3 The casinh function
50

• casinh (conj(z)) = conj(casinh (z)) and casinh is odd.
• casinh (+0+i0) returns 0+i0.
• casinh (∞+i∞) returns +∞+iπ/4.

1997-01-24

24 C9X Complex Arithmetic—IEC 559 Annex

• casinh (x+i∞) returns +∞+iπ/2 for positive-signed finite x.
• casinh (+∞+iy) returns +∞+i0 for positive-signed finite y.
• casinh (NaN+i∞) returns ±∞+iNaN (where the sign of the real part of the result is

unspecified).
• casinh (+∞+iNaN) returns +∞+iNaN.5
• casinh (NaN+i0) returns NaN+i0.
• casinh (NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for

finite nonzero y.
• casinh (x+iNaN) returns NaN+iNaN and optionally raises the invalid exception, for

finite x.10
• casinh (NaN+iNaN) returns NaN+iNaN.

Y.6.4 The catanh function

• catanh (conj(z)) = conj(catanh (z)) and catanh is odd.15
• catanh (+0+i0) returns +0+i0.
• catanh (+∞+i∞) returns +0+iπ/2.
• catanh (+∞+iy) returns +0+iπ/2, for finite positive-signed y.
• catanh (x+i∞) returns +0+iπ/2, for finite positive-signed x.
• catanh (+0+iNaN) returns +0+iNaN.20
• catanh (NaN+i∞) returns ±0+iπ/2 (where the sign of the real part of the result is

unspecified).
• catanh (+∞+iNaN) returns +0+iNaN.
• catanh (NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for

finite y.25
• catanh (x+iNaN) returns NaN+iNaN and optionally raises the invalid exception, for

nonzero finite x.
• catanh (NaN+iNaN) returns NaN+iNaN.

Y. 6.5 The ccosh function30

• ccosh (conj(z)) = conj(ccosh (z)) and ccosh is even.
• ccosh (+0+i0) returns 1+i0.
• ccosh (+0+i∞) returns NaN±i0 (where the sign of the imaginary part of the result is

unspecified) and raises the invalid exception.35
• ccosh (+∞+i0) returns +∞+i0.
• ccosh (+∞+i∞) returns +∞+iNaN and raises the invalid exception.
• ccosh (x+i∞) returns NaN+iNaN and raises the invalid exception, for finite nonzero x.
• ccosh (+∞+iy) returns (+∞)*cis(y), for finite nonzero y. 7
• ccosh (+0+iNaN) returns NaN±i0 (where the sign of the imaginary part of the result is40

unspecified).
• ccosh (+∞+iNaN) returns +∞+iNaN.
• ccosh (x+iNaN) returns NaN+iNaN and optionally raises the invalid exception, for

finite nonzero x.
• ccosh (NaN+i0) returns NaN±i0 (where the sign of the imaginary part of the result is45

unspecified).
• ccosh (NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for all

nonzero numbers y.
• ccosh (NaN+iNaN) returns NaN+iNaN.

50

7 cis(y) is defined by cos(y) + i*sin(y).

Draft 1997-01-24

C9X Complex Arithmetic—IEC 559 Annex 25

Y.6.6 The csinh function

• csinh (conj(z)) = conj(csinh (z)) and csinh is odd.
• csinh (+0+i0) returns +0+i0.
• csinh (+0+i∞) returns ±0+iNaN (where the sign of the real part of the result is5

unspecified) and raises the invalid exception.
• csinh (+∞+i0) returns +∞+i0.
• csinh (+∞+i∞) returns ±∞+iNaN (where the sign of the real part of the result is

unspecified) and raises the invalid exception.
• csinh (+∞+iy) returns (+∞)*cis(y), for positive finite y.10
• csinh (x+i∞) returns NaN+iNaN and raises the invalid exception, for positive finite x.
• csinh (+0+iNaN) returns ±0+iNaN (where the sign of the real part of the result is

unspecified).
• csinh (+∞+iNaN) returns ±∞+iNaN (where the sign of the real part of the result is

unspecified).15
• csinh (x+iNaN) returns NaN+iNaN and optionally raises the invalid exception, for

finite nonzero x.
• csinh (NaN+i0) returns NaN+i0.
• csinh (NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for all

nonzero numbers y.20
• csinh (NaN+iNaN) returns NaN+iNaN.

Y.6.7 The ctanh function

• ctanh (conj(z)) = conj(ctanh (z)) and ctanh is odd.25
• ctanh (+0+i0) returns +0+i0.
• ctanh (+∞+iy) returns 1+i0, for all positive-signed numbers y.
• ctanh (x+i∞) returns NaN+iNaN and raises the invalid exception, for finite x.
• ctanh (+∞+iNaN) returns 1±i0 (where the sign of the imaginary part of the result is

unspecified).30
• ctanh (NaN+i0) returns NaN+i0.
• ctanh (NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for all

nonzero numbers y.
• ctanh (x+iNaN) returns NaN+iNaN and optionally raises the invalid exception, for

finite x.35
• ctanh (NaN+iNaN) returns NaN+iNaN.

Y.6.8 The cexp function

• cexp (conj(z)) = conj(cexp (z)).40
• cexp (±0+i0) returns 1+i0.
• cexp (+∞+i0) returns +∞+i0.
• cexp (-∞+i∞) returns ±0±i0 (where the signs of the real and imaginary parts of the

result are unspecified).
• cexp (+∞+i∞) returns ±∞+iNaN and raises the invalid exception (where the signs of45

the real and imaginary parts of the result are unspecified).
• cexp (x+i∞) returns NaN+iNaN and raises the invalid exception, for finite x.
• cexp (-∞+iy) returns +0*cis(y), for finite y.
• cexp (+∞+iy) returns +∞*cis(y), for finite nonzero y.
• cexp (-∞+iNaN) returns ±0±i0 (where the signs of the real and imaginary parts of the50

result are unspecified).
• cexp (+∞+iNaN) returns ±∞+iNaN (where the sign of the real part of the result is

unspecified).

1997-01-24

26 C9X Complex Arithmetic—IEC 559 Annex

• cexp (NaN+i0) returns NaN+i0.
• cexp (NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for all

nonzero numbers y.
• cexp (x+iNaN) returns NaN+iNaN and optionally raises the invalid exception, for

finite x.5
• cexp (NaN+iNaN) returns NaN+iNaN.

Y.6.9 The clog function

• clog (conj(z)) = conj(clog (z)).10
• clog (-0+i0) returns -∞+iπ and raises the divide-by-zero exception.
• clog (+0+i0) returns -∞+i0 and raises the divide-by-zero exception.
• clog (-∞+i∞) returns +∞+i3π/4.
• clog (+∞+i∞) returns +∞+iπ/4.
• clog (x+i∞) returns +∞+iπ/2, for finite x.15
• clog (-∞+iy) returns +∞+iπ, for finite positive-signed y.
• clog (+∞+iy) returns +∞+i0, for finite positive-signed y.
• clog (±∞+iNaN) returns +∞+iNaN.
• clog (NaN+i∞) returns +∞+iNaN.
• clog (x+iNaN) returns NaN+iNaN and optionally raises the invalid exception, for20

finite x.
• clog (NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for

finite y.
• clog (NaN+iNaN) returns NaN+iNaN.

25
Y.6.10 The csqrt function

• csqrt (conj(z)) = conj(csqrt (z)).
• csqrt (±0+i0) returns +0+i0.
• csqrt (-∞+iy) returns +0+i∞, for finite positive-signed y.30
• csqrt (+∞+iy) returns +∞+i0, for finite positive-signed y.
• csqrt (x+i∞) returns +∞+i∞, for all x (including NaN).
• csqrt (-∞+iNaN) returns NaN±i∞ (where the sign of the imaginary part of the result

is unspecified).
• csqrt (+∞+iNaN) returns +∞+iNaN.35
• csqrt (x+iNaN) returns NaN+iNaN and optionally raises the invalid exception, for

finite x.
• csqrt (NaN+iy) returns NaN+iNaN and optionally raises the invalid exception, for

finite y.
• csqrt (NaN+iNaN) returns NaN+iNaN.40

