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1. INTRODUCTION

PCTE is a major focus of activity in the field of Public Tool Interfaces, and of its standardisation of ECMA
was a significant event. The standardisation activity has several aspects of interest, notably the presentation
as an abstract (i.e. programming-language-independent) specification and dependent bindings to
programming languages (in this case Ada and C). The author believes that this process has broken new
ground in the writing of specifications, and thrown up a number of new problems. As these are the
problems that the publications of SC22/WG11 are intended to solve, our experiences in using those
publications should be of interest.

I hav e been actively involved in the PCTE standardisation from the beginning, first as a member of the task
group whose report laid the foundation for the standardisation, and then as Convenor of the task group
TC33-TGEP that has carried it out. Throughout this paper ’I’ means the author and ’we’ means the
members of TGEP, collectively or individually.

The views expressed in this paper are mine and not necessarily those of ECMA, TC33, TGEP, or ICL.

2. A BRIEF HISTORY OF PCTE

PCTE is a public tool interface, i.e. it is an interface to a set of facilities on which environments to support
systems engineering projects may be constructed out of integrated tools. The main facilities supported by
PCTE are: an object base (or data repository) based on an entity-relationship model; a schema management
system processes, with facilities for interprocess communication; transaction and locking facilities for
concurrency and integrity control and mandatory and discretionary security control.

PCTE started life in ESPRIT project 32, "A Basis for a Portable Common Tool Environemnt", which
produced a specification in C, an initial implementation, and some tools. The specification went through a
number of versions, ending in version 1.4 [PCTE86]. The CEC later commissioned an Ada version
[PCTE87] and a formal definition using an extension of VDM [VIPK88].

In order to maintain and exploit PCTE, the CEC established the PCTE Interface Management Board
(PIMB) in 1986. The PIMB published a revision known as PCTE 1.5, and then established an ad hoc task
group to consider the standardisation of PCTE. This group reported in June 1988 [ASTF88], strongly
recommending that the standard should be an abstract (language-independent) specification and separate
dependent language bindings.

In parallel, in 1986 several nations of the Independent European Programme Group (an independent
grouping of the European members of NAT O) embarked on a collaborative programme to enhance PCTE to
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make it equally suitable for military as for civil use. This project is called PCTE+; the result of the
definition phase is an enhanced specification called PCTE+ issue 3[PCTE+a, b; BGMT89], published in
October 1988. PCTE+ issue 3 is being assessed by implementing it independently with a variety of tools
on two different operating systems.

Upon request from the PIMB, ECMA undertook the standardisation of PCTE, and formed a Technical
Committee TC33 in February 1988 with this objective. [ASTF88] was accepted by TC33, and a task group
(Task Group for ECMA PCTE, TGEP) was formed in November 1988 to produce the Abstract
Specification and bindings for Ada and C. The basis for ECMA PCTE was to be PCTE+ issue 3, both Ada
and C versions.

The Abstract Specification was accepted by the General Assembly of December 1990 and published as
Standard ECMA-149. The C Binding was accepted by the General Assembly of June 1991 and published
as Standard ECMA-158. An Ada Binding is scheduled for consideration by the ECMA General Assembly
of December 1991, and work has begun on a C++ binding.

3. THE FORM OF THE ABSTRACT SPECIFICATION

Although the basis for the standardisation was the C and Ada version of PCTE+ issue 3, the task group was
also charged with considering all relevant technical concerns raised by members. The consequence was
that the task group’s efforts could not be spent wholely on converting PCTE+ issue 3 into an abstract
specification plus bindings; many proposed changes of functionality had to be considered also. The
practical outcome was that the Abstract Specification, which acted as the vehicle for recording decisions on
these questions of functionality and as the medium for conducting the discussions, was fairly well on the
way to completion before serious consideration was given to problems of producing the bindings. Some of
the consequences are described below.

[ASTF88] distinguished between formality and abstractness of a specification such as PCTE: formality is to
do with rigour and precision, whereas abstractness is to do with freedom from implementation-dependent
detail. [ASTF88] recommended an informal abstract specification as the PCTE standard, i.e. one
expressed largely in natural English, at a level of abstraction above the details of the programming language
bindings, for the following reasons.

1. To provide a single authoritative standard.

2. To provide a reference source for future language bindings.

3. To reduce duplication of work between the various language bindings.

4. To provide a firm basis for considering the consistency of different bindings.

5. To conform to the preferred approach of standardisation bodies.

These reasons have been largely vindicated in practice. 1) is hardly disputable. 2) will be demonstrated
when a new binding is produced; preliminary work has begun on a C++ binding, and it appears that few or
no changes are needed to the Abstract Specification to allow such a binding to make full use of the object-
orientatedness of C++. 3) and 4) have been borne out by the work on the C and Ada bindings, which were
developed in parallel with each other and the Abstract Specification. Although they rev ealed some
problems in the gap between the assumptions made by the Abstract Specification and the abstraction level
of the bindings (see below), both bindings took a fraction of the time to produce that would have been
required without the Abstract Specification. It can also now be demonstrated that the C and Ada bindings
(and any future bindings) are consistent in a well-defined sense, both being related in defined ways to the
same specification, this consistency being guaranteed by the conformance requirement on bindings. 5) was
perhaps rather anticipatory at the time (June 1988) but it is now accepted practice.

The ASTF decision to advise against a formal definition was not unanimous. A minority (including the
author) believed that not only was a formal definition possible and desirable but that it might well take less
time to produce than an informal one, and could then be the basis of an informal translation of high quality;
but this minority failed to carry the day, so the standard is not formal. However, partly as a result of a
presentation of the results of the VIP project [VIPK88], which impressed the members of TGEP a good
deal, formal methods were used to some extent: VDM notation (VDM-SL) was used to define the state,
some data types, and the operation signatures.

Had TGEP been more aware of CLIDT and CLIPCM, and had those documents been in a stabler state, then
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IDN would certainly have been considered for the Abstract Specification instead of VDM-SL. Its use
would have simplified the mappings to the binding languages, but would have lost one of the advantages of
VDM-SL: that it is formally defined, so there can be no ambiguity.

4. THE BINDINGS

4.1 Background

Although the PCTE Abstract Specification is pioneering effort in some ways, there is a good deal of
activity at present in this field, in particular in the Bindings working group ISO/IEC/JTC 1/SC22/WG11,
and TGEP tried to take full advantage of their work. Two documents in particular were relevant: the
Guidelines [DTR10182] and the Common Language-Independent Datatypes [CLID90].

Writing the Ada and C bindings started at about the same time, but the Ada bindings lagged behind due to
shortage of effort. However there was enough overlap so that a common approach could be worked out and
lessons learned from each binding could be fed back to the other. As the C binding is now published, most
of my examples are drawn from that binding.

The approach taken was based on the idea that the Binding standards would be completely dependent on
the Abstract Specification; no attempt would be made to make them self contained. This was an application
of the excellent rule of never to say anything twice (because the changes of saying it differently are
overwhelming). Each binding document was to contain only the specification of the interface in the
binding language, and the mapping between it and the abstract specification. In practice this rule has been
bent in a number of places, and information has been repeated from the Abstract Specification; notably the
operation signatures, to make reference easier.

The method producing a binding was in three stages.

1. A number of working papers were produced dealing with questions of strategy. These were
designed as issued affecting the binding as a whole; a few were obvious at the outset such as; how
data types and operations should be mapped, what the overall structures of the interface should be
and how errors should be handled.

2. Once the strategic questions had been at least provisionally settled, the next stage was to define the
mappings from the data types of the Abstract Specification to the binding language. This proved to
be the hardest part of the binding exercise, causing the most heated arguments, and requiring many
iterations before solutions were received that were acceptable to TGGP. The CLIDT was used
extensively in this stage for both C and Ada bindings; this is discussed below.

3. The final stage was the easiest, though not quite so straightforward and mechanical as we had
hoped; this was to write the operation specifications. Some problems were particular to the
operations, for example dealing with optional parameters; others caused the data type bindings to
be revisited. The CLIPCM was not considered for use at this stage as there seemed to be no
conceptual difficulty in mapping VDM operations directly to C functions or Ada subprograms in a
systematic way, and so no need for an intermediate level. Also, it seems aimed more a providing
mechanism for mixed-language programming than an abstraction of the normal procedure calls of
programming languages.

4.2 Use of the Guidelines

The Guidelines were used at the beginning of stage (1) of the Ada and C Bindings, and provided a valuable
checklist of strategic issues and source of suggested solutions. Some comments arising from this
experience [???] were submitted to WG11; they were positively received and are not repeated here.

The first point considered was the choice of functional binding methods in Chapter 2. The relevant
functional binding method for us was clearly Method 1: provide a completely defined procedural interface.
However the existence of Method 5: binding pre-existing language elements, brought to light the issue of
what to do about the functional facilities in the binding language that overlapped facilities provided by
PCTE; a typical example being the binding language input-output facilities. There seemed to be no ideal
answer to this. In the end it was decided to provide PCTE-defined input-output and to leave the effect of
using the binding language input-output to be defined by the implementation.
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Each guideline was examined and a response formulated: accepted, accepted with modification, not
applicable, or rejected. We intend to publish these responses (with reasons) in a Rationale to accompany
the Standards. Most of the applicable guidelines were accepted; the ones which were not, or which gav e
rise to discussion, are as follows.

Guidelines 2 and 3 : Either the language or the system facility committee should have primary
responsibility, and should consult the other as early as possible. Accepted.

Clearly the system facility committee (TGEP) had primary responsibility in this case. Guideline 3 has not
really been put into practice yet. In fact liaison with the JTC1 language committees for the binding
languages has been informal and one-way: members of TGEP have sat on both the Ada and the C Working
Groups of SC22, but the PCTE Bindings have nev er been considered by those Working Groups. This is a
concern that is being addressed now as part of the international standardization process for PCTE.

Guideline 4 : Specific guidelines should be produced for bindings of particular system facilities. Accepted.
The guidelines for PCTE Bindings have not yet been written down coherently, but again we hope to do so
as part of the Rationale. No language-specific guidelines have been seen, though it was believed that WG9
atone time intended to do something for Ada.

Guideline 5 : The binding standardization should not get ahead of the system facility or language
standardization. Accepted. The choice of binding languages was out of the hand of TGEP, as the decision
was made by the parent body, TC33, on the base of user need (issue 8, alternative 3). TGEP incline to
alternative 1 (only standardized languages), but in practice settle for alternative 2 (also languages being
standardized). The C Language Standard was greeted with relief, and the lack of a C++ Language Standard
is causing concern.

Guidelines 6 and 7 : Different language bindings should not differ unnecessarily. Accepted; in fact we
found that the C and Ada bindings we produced were far more similar in structure than the original C and
Ada versions of PCTE+ (where the Ada version was produced from the C version, but is self-contained). I
believe this is because we started from an appropriate level of abstraction, so that the structure of the
specification was not distorted by inessential details of the language; the two languages (which from an
abstract enough point of view are not all that different) could then be applied in a uniform way.

An example is the mapping of operations that return sequences of unknown length. In PCTE+, the C
version requires the caller to set up an array into which the operation returns as many values as it can,
indicating if there are more values to return; while the Ada version requires the caller to acquire an iterator,
i.e. a value of a private type which is passed to the operation which returns one value at a time. Both
methods could be (and were) defended as being in accord with the customary practice of the language, but
there appears to be no technical reason why Ada and C should use different methods, and probably the
same method will be used for both ECMA PCTE bindings.

Guidelines 18, 19 and 42 : Lists of abbreviations of function names, and guidelines for choosing one, are
needed. Rejected, but not without some difficulty. Many of the names in the Abstract Specification are
fairly long, and there was uncertainty about the length of identifiers allowed in C. It was decided that a list
of abbreviations to 29 characters was needed. Tw o rival lists were produced, one based on what its author
considered were the normal rules of abbreviation in English, the other (totally different) on what its author
considered were the normal rules of abbreviation in programming. Neither was based on omitting
redundant words (guideline 42). Luckily, protracted discussion was avoided by the realisation that standard
C does not place a limit on the lengths of identifiers, providing the first 31 characters are unique (except for
a concession to obsolescent compilers). It was ensured that all names were unique in the first 31 characters
and both lists of abbreviations were archived.

Guidelines 28, 29 and 30 : A generic binding may be provided. Not applicable. It is hard to imagine how a
generic binding could be prepared even for such similar languages as Ada and C, though some features of
all bindings are defined in a special clause of ECMA-149; these include the mapping of PCTE datatypes to
CLI datatypes, described below.

Guideline 32 : The binding should take account of likely language-processor limits. Accepted up to a
point. This was a liv e issue for the C Binding, as some existing implementations have limits which are
disallowed or deprecated in the Language Standard (e.g. on identifier lengths). We certainly did not want
more than one Binding (issue 9, alternative 2); in practice we tried to take some account of known
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widespread deficiencies in compilers, but mainly went by the Language Standard, on the grounds that
supporting the Standard would help ensure that compilers overcame their deficiencies. No such problems
are expected with the Ada Binding.

Guideline 33 : If error numbering is used, common errors and each set of language-specific errors need
disjoint sets of numbers. Accepted with modification, as ECMA PCTE does not use error numbering, but
still needs to keep common and language-specific errors separate.

Guideline 35 : Parameter order should be preserved. Accepted for the C Binding, but under discussion for
the Ada Binding where there are reasons for varying the order (to allow defaulted parameters to be omitted
with positional association).

Guideline 36 : Parameter direction (in/out) should be preserved. Accepted, but difficult to implement in C
which has no definite concept of parameter direction.

Guideline 48 : All binding documents should use a common schema based on the functional standard.
Accepted, although we rejected it at first on the grounds that the appropriate structure for a flat language
like C was inappropriate for a structured language like Ada. Indeed the PCTE+ Ada version is a highly
structured document, following the nested package structure in the nested section structure of the
document. However, when it came down to it, we all agreed that for ease of reference a flat structure
(exactly following the flat structure of the Abstract Specification: one clause per operation with a standard
layout) was the best, and could as easily be achieved for Ada as for C.

Of course, unlike the ECMA PCTE Bindings, the PCTE+ specifications are self-contained documents and
have to define the semantics as well.

5. DATATYPE MAPPING AND USE OF CLIDT.

5.1 General.

The other document from WG11 that gav e us a lot of help was the Common Language-Independent
Datatypes, CLIDT. This gives a definition with a strong mathematical flavour of a set of primitive
datatypes and constructors for defining further datatypes, and appeared to solve the problem of defining a
satisfactory mapping from the datatypes defined in the Abstract Specification (called "PCTE datatypes") to
those used in the Bindings (called "language datatypes"). This is done in two stages : first the PCTE
datatypes are mapped to a selection of CLI datatypes, and then those CLI datatypes are mapped to the
binding language datatypes.

By using CLI datatypes as an intermediate stage, it was hoped that for most PCTE datatypes the first stage
need be done only once. As it turned out, the Abstract Specification was published before the mappings
could be worked out in enough detail to give us confidence that that could be done, so ECMA-149 contains
mappings to CLI datatypes only for basic PCTE datatypes. It seems likely now that a generic mapping CLI
datatypes would be possible for most but not all PCTE datatypes, the main exceptions (discussed below)
being sets and optional types.

The conformance clause of ECMA-149 for Bindings demands a mapping from PCTE datatypes to the
language binding datatypes, but the mapping need not be one-to-one : different PCTE datatypes may be
mapped to the same language datatype, and subtypes of one PCTE datatype may be matched to different
language datatypes. Both these concessions were required.

The PCTE datatypes that need to be mapped are those used as operation parameter and result types : as
noted, they are defined in VDM-SL in the Abstract Specification. They fall into 3 classes, which can be
considered separately : basic datatypes, designator datatypes, and constructed datatypes.

5.2 Mapping Basic PCTE Datatypes.

Basic PCTE datatypes are the basic types of VDM : Boolean, natural, integer, real, and enumeration types:
time (which is not a VDM type) is also included. These present few problems; the mapping to primitive
CLI types is straightforward, and is contained in a separate clause of ECMA-149. One complication is that
the Standard allows implementation-defined limits to be imposed on certain quantities, such as the range of
integers supported, but defines bounds on those limits. This is easily accommodated by using CLI
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subtypes.

In the Binding, all that is needed is to map these CLI primitive types and subtypes to appropriate language
datatypes, and to define code sequences to implement their characterizing functions

Enumerated types cause a particular problem. In VDM, an enumerated type definition such as

T1 = RED | BLUE | YELLOW

defines T1 to be the union of 3 types, each containing a single value. It follows that if another type overlaps
T1 :

T2 = RED | AMBER | GREEN

then the value RED is common to both types. It is unclear if this is true of CLI Enumerated (or State,
which we probably should have used) datatypes or not; it is certainly not true of C or Ada enumerated
typed. (In C all enumeration value identifiers must be different; in Ada the same identifier can be used in
two enumeration types but represents different values.) We therefore had to make a number of changes in
the enumeration types in the Bindings, combining them where common names were clearly meant to
denote the same values, and (for C) changing some names for uniqueness. For simplicity, and because the
latter change was needed for only one binding, we made these changes on the mapping from CLI datatypes
to language datatypes, keeping the PCTE TO CLI datatypes one-to-one for enumerated datatypes, and
assuming that IDN follows VDM-SL rather than C or Ada as regards names of enumeration literals. (One
of the advantages of an informally defined notation such as IDN is that it is possible to fudge issues such as
this. VDM-SL is formally defined and such issues cannot be dodged.)

The mapping of an enumerated datatype to C is further complicated if the set type of the enumerated
datatype is also required; indeed there are 3 mappings, according as the enumerated type, the set type, or
both are required. This is a language-specific technicality caused by the nature of C’s type declarations.

5.3 Mapping designator PCTE datatypes.

Designators are undefined values used in the Abstract Specification to refer to entities in the PCTE object
base - objects, links, attributes, and their types. As described above, they are idealized references, and the
mapping to CLI datatypes must take account of the process of accessing an entity from an actual reference.
One aspect of this is that an actual reference might not refer to an entity at all due to an error that the
accessing process must detect. Another aspect is that in some cases designators represent more than one
kind of actual references, for use in different situations, and that had to be described somehow in the
Standard.

The solution adopted is to introduce a new set of datatypes, corresponding to designators at a low
abstraction level, unimaginatively called references. They are defined either as abstract datatypes (object
references) or as strings with a certain internal syntax (the others). Operations are defined for creating and
handling references, and the process of accessing an entity from a reference is defined. The mapping to the
binding is then in terms of references and designators are not mentioned.

In fact, link, attribute, and type reference datatypes are strings and are mapped in the same way as other
strings (via the CLI datatype character-string). The object reference datatype is mapped to a CLI private
datatype and from there to a C opaque (word printer) type or an Ada private type.

5.4 Mapping constructed PCTE datatypes.

Constructed PCTE datatypes are those constructed by use of the VDM type constructors. The most used
type constructors in the Abstract Specification are sequence, set, union, and option; there are also some
uses of record and map.

Each type constructor raised particular problems, which are described below, but there is also a general
issue of the broad approach to be taken to their mapping. One approach is to map each VDM-SL type
constructor to a CLI datatype generator, defined in the CLIDT or specially by a datatype generator

Page 6



definition; and then to map each such family of CLI datatypes to an abstract datatype in the binding
language, i.e. an opaque type in C or a private type in Ada, with procedures to support the characterizing
functions of the CLI datatype family. This certainly gives a mapping consonant with software engineering
principles, particularly information hiding. On the other hand, it introduced a certain amount of complexity
and possible inefficiency into the use of such types, which is avoided by the other approach of mapping;
choose the most appropriate language datatype in each case and map to that. The disadvantage of that is
that all the implementation details have to be defined (or explicitly said to be implementation-defined)
which is tedious, messy, and out of place.

Sequences are an example. hey could be mapped to C sequences or Ada arrays, but only at the cost of
solving the problems of returning variable-length sequences from operations, which is really an
implementation design problem. Accordingly the VDM-SL sequence type constructor is mapped to a CLI
datatype generator Sequence, and all CLI sequence datatypes are mapped to an opaque C datatype Pcte-
sequence.

Sequence is derived from List, with a few more characterizing operations such as indexing, which it is felt
ev ery binding should support. Pcte-sequence is supported by an enumeration datatype representing all
possible element types.

However there is an exception to this mapping. Strings in VDM are just sequences of characters, but text
strings are handled specially in most programming languages, including Ada and C, and it would be outside
the spirit of the language to ignore these. Strings are used in the Abstract Specification for various
purposes, and analysis showed that they could be classified in two ways:

— the repertoire of characters is either the complete 8- bit character set, or else a subset of the ASC11
graphic set;

— the length is either limited to a fairly small maximum, or is unlimited or with a large upper bound.

Most cases were limited repertoire and length, or unlimited repertoire and length, and the few other cases
could be treated as one or the other. Accordingly two mappings of strings are defined : the first case (called
bounded strings) being mapped to the binding language native string type, and the second (unbounded
strings) as for any other sequence.

For no very good reason the split occurs in the mapping from CLI to language datatypes, the PCTE
datatype string being mapped to the CLI datatype character string with a repertoire indicator intended to
indicate the entire 8-bit character set.

Sets are used a good deal in the Abstract Specification, and offer another good example of an abstraction
covering two different situations at a concrete level. Sets are handled in two different ways in normal
programming practice. Sets of elements from a small universe of values, e.g. an emuneration type, are
often represented by fixed-length bit arrays, with each bit position indicating the presence of absence of a
particular element. Sets of elements from a large universe of values, e.g. integers or records, are generally
represented by sequences of element values, possibly with a canonical ordering and with an appropriate
convention regarding repeated elements.

Set types of both kinds are used in PCTE, and it was decided to follow custom and map them differently.
This time, however, the split occurs in the PCTE to CLI datatype mapping, the reason being that two
different datatype generators were wanted. The VDM set type constructor for the first kind of set type
(called bounded set types) is mapped to a CLI datatype generator Bounded-set, derived from Set by
restricting the cardinality of the elements. Each CLI datatype of the bounded set family is then mapped to a
fixed- length bit array (in C, to an integer with an enumeration type to name the bit positions).

The VDM set type constructor for the second kind if set type (unbounded set types) is mapped to the
Sequence datatype generator; to take care of set operation (including set equality) an additional
characterizing operation Normalize is defined for Sequence datatypes, which removes repeated elements
and reorders the sequence into an implementation- defined canonical order.

Record types are used in a few places, but present no particular problems; they map straightforwardly via
CLI record datatypes to C structures and Ada records. There are no complications of discriminants or
variants in VDM-SL. Cartesran product types are used occasionally, and are treated as record types with no
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field names.

Map types are used only twice in the Abstract Specification, but cause disproportionate complications in the
mapping. The two types are different in nature, one is like a bounded set type, having a small domain and
an even smaller range (of only 4 values); the other is like an unbounded set type, with large domain and
range. The bounded map type could be conveniently and ingeniously mapped to pair of bounded sets,
while the unbounded map type needed to be mapped as an unbounded set of pairs of values representing the
maplets. A full mapping definition was devised, from the VDM map type constructor to a new CLI
datatype generator Map (derived from Table) and thence to the two C datatypes, complete with alternative
code fragments for the characterizing operations. However pressure of publication of the C Binding caused
it to be dropped, and all that remains is a mention of an undefined CLI datatype generator Map, and a direct
mapping to C of each of the PCTE map types.

The union datatype generator is easily handled. Unions of VDM enumeration datatypes map to CLI
enumerated datatypes as described above; otherwise the union type constructor is mapped to the CLI
datatype generator Choice, and each datatype of the family is mapped to an appropriate union datatype (C)
or discriminated record type (Ada). This is another case where to map all the datatypes of the family to a
single abstract language datatype seemed to ignore language facilities provided exactly for the purpose in
hand.

Optional types, on the other hand, presented a problem. An optional type such as [T12] in VDM represents
the union of type T1 with the nil type, which has the single value nil; this is used conventionally to
represent the absence of a value. It would be possible to map the VDM optional type constructor [] to the
CLI Datatype generator Choice using (I think) the CLI datatype Null to represent the VDM nil datatype.
This could then be mapped, as described above for the general Choice datatypes. However, this again
seemed to ignore specific language features (such as NULL pointers in C and null access values in Ada)
provided for the purpose, and to introduce unnecessary overheads in many cases. Analysis of the use of
optional types in the Abstract Specification showed there were 4 kinds of cases to deal with.

1. In some cases an optional parameter type was used to indicate a default value which could be
supplied. This kind of optionality is not mapped to C, but a note is given in the C Binding that the
effect of not supplying the value is got by supplying the default value. In the Ada Binding, the
optionality can be indicated by supplying a default value for the parameter; this raises the issue of
Guideline as to whether such Ada parameters should be moved to the end of the parameter list.

2. In other cases optional parameters were used because an operation had several functions, some of
which did not need the parameters. In these cases the abstract operations are mapped to several
binding operations, one per function.

3. In many of the remaining cases, an optional parameter or result type is mapped to a type with a
natural default value in the language; e.g. C pointer value NULL or Ada null access value. These
cases are mapped in the natural way.

4. In the few remaining cases, the fallback mapping of a discriminated record with a special nil value
is used.

6. COMPLIANCE OF ECMA PCTE TO THE CLIDT

It is difficult to see how to apply the compliance clause of CLIDT to ECMA PCTE, which may indicate
that we have not used it exactly in the manner intended.

Ideally, perhaps, the Abstract Specification would define PCTE datatypes in CLIDT IDN instead of VDM-
SL and there would be standard mappings from CLI datatypes to all languages; a large part of the mapping
would then have been done. As it is, it seems clear that neither the Abstract Specification nor the Bindings
can comply directly, since they use datatypes not defined using CLIDT. Nor can they claim indirect
compliance, since the Abstract Specification defines only outward mappings and the bindings define inward
mappings, whereas the CLIDT requires both. And even partial compliance is beyond us, as we have no use
for Array.

The conclusion is perhaps that PCTE is not the sort of thing that can be compliant to the CLIDT; and yet
language bindings for abstract specification is surely exactly what CLIDT is aimed at.
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7. LESSONS LEARNT

7.1 Lessons for PCTE

We must give serious consideration to establishing a complete standard mapping of PCTE datatypes to CLI
datatypes. This would certainly require some changes to the interface, and is impossible until CLIDT is
itself standardised. It is probably too late to convert the Abstract Specification to use CLIDT IDN instead
of VDM-SL for defining datatypes; at least until the next major version.

We may need a standard mapping from abstract operations to CLIPCM procedure signatures, though this is
unclear. If the Abstract Specification is changed to use IDN for defining datatypes, then it should also use
IDN for defining operation signatures, for consistency (and the state, which is a collection of objects).

The whole exercise has certainly benefited from the fact that the Abstract Specification did not get too far
ahead of the Bindings - in fact it is expected that future bindings will continue to turn up improvements to
the Abstract Specification, though diminishing with each successive binding.

7.2 LESSONS FOR WG11

I thing the work reported here is one of the first efforts to use the WG11 products seriously. It would have
benefited from a clearer idea of how they were to be used, particularly CLIDT and (perhaps) CLIPCM.
This seems to me to indicate that WG11 should pursue a number of objectives; they compete for resources,
but I hav e not tried to prioritise them.

— To progress the standardisation of the documents as rapidly as possible we used versions 3,4, and 5
of CLIDT; though each improved on its successor, it would have been of more benefit to us if version
3 had been frozen. This is not to say that versions 4 and 5 should not have been produced, rather that
the point of diminishing returns should be recognised.

— To get the documents into real use and encourage reporting back experiences. This is not easy,
especially to persuade users to invest the effort required to report back experiences.

— To giv e some thought to the problem of how the documents are to be used. I hope this paper has
shown that this is not obvious, at least as shown by the problems of defining PCTE’s compliance. It
could be solved by writing a User’s Guide, but perhaps it would be better to include it in the
Guidelines.

PCTE datatype CLI datatype C datatype

Base:
Boolean ---> Boolean ---> Pcte_boolean

natural ---> Range of Integer ---> Pcte_natural

integer ---> (Range of Integer) ---> Pcte_integer

real ---> Real ( ) ---> Pcte_float

time ---> Date-and-Time ( ) ---> Pcte_time

enumerated ---> Enumerated (State) ---> enum

Constructed:
seq of T ---> Sequence of T ---> Pcte_sequence

unbounded (From List)

set of T ---> Bounded-set of T ---> Pcte natural
bounded (From Set)
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T :: F1 : T1 }  Record of (F1: T1 struct (F1 : T1
F2 : T2 } ---> F2 : T2 ---> F2 : T2

... } ... ) ... )

T1 x T2X...
unbounded Pcte_sequence

map T1 to T2 ---> (Map of (T1,T2)) ---> (of maplets)
(from Table)

pair of Pcte_natural

string ---> character_string unbounded Pcte
("all") ---> sequence (of char)

bounded string

T1/T2/... ---> Choice of (T1,T2...) ---> various (T1,T2..)
[T1] ---> (no CLI datatype) ---> various mappings

Designator:
object reference ---> private ---> word *

link ref. }
attribute ref. } ---> character-string ---> string

type ref. } ("all")
Figure 1: Tw o-stage mapping of PCTE datatypes
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