ISO/IEC JTC 1/SC22/WG21 N 2135

Date: 2006-11-06
ISO/IEC IS 14882

ISO/IEC JTC 1/SC22

Programming Languages - C++

Langages de programmation - $\mathrm{C}++$

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Document type: Draft International Standard
Document stage: (20) Preparation
Document Language: E

Copyright notice

This ISO document is a working draft or committee draft and is copyright-protected by ISO. While the reproduction of working drafts or committee drafts in any form for use by participants in the ISO standards development process is permitted without prior permission from ISO, neither this document nor any extract from it may be reproduced, stored or transmitted in any form for any other purpose without prior written permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown below or to ISO's member body in the country of the requestor.

ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41227490111
Fax +41227490947
E-mail copyright@iso.org
Web www.iso.org
Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

Contents

1 General 1
1.1 Scope 1
1.2 Normative references 1
1.3 Definitions 2
1.4 Implementation compliance 4
1.5 Structure of this International Standard 5
1.6 Syntax notation 5
1.7 The C++ memory model 6
1.8 The C++ object model 6
1.9 Program execution 6
1.10 Concurrency memory model 10
1.11 Acknowledgments 10
2 Lexical conventions 11
2.1 Phases of translation 11
2.2 Character sets 12
2.3 Trigraph sequences 13
2.4 Preprocessing tokens 14
2.5 Alternative tokens 14
2.6 Tokens 15
2.7 Comments 15
2.8 Header names 15
2.9 Preprocessing numbers 16
2.10 Identifiers 16
2.11 Keywords 17
2.12 Operators and punctuators 17
2.13 Literals 18
3 Basic concepts 25
3.1 Declarations and definitions 25
3.2 One definition rule 27
3.3 Declarative regions and scopes 29
3.4 Name lookup 34
3.5 Program and linkage 48
3.6 Start and termination 51
3.7 Storage duration 54
3.8 Object Lifetime 57
3.9 Types 61
3.10 Lvalues and rvalues 66
4 Standard conversions 69
4.1 Lvalue-to-rvalue conversion 70
4.2 Array-to-pointer conversion 70
4.3 Function-to-pointer conversion 70
4.4 Qualification conversions 70
4.5 Integral promotions 72
4.6 Floating point promotion 72
4.7 Integral conversions 72
4.8 Floating point conversions 72
4.9 Floating-integral conversions 73
4.10 Pointer conversions 73
4.11 Pointer to member conversions 73
4.12 Boolean conversions 74
4.13 Integer conversion rank 74
5 Expressions 75
5.1 Primary expressions 77
5.2 Postfix expressions 78
5.3 Unary expressions 90
5.4 Explicit type conversion (cast notation) 97
5.5 Pointer-to-member operators 98
5.6 Multiplicative operators 99
5.7 Additive operators 100
5.8 Shift operators 101
5.9 Relational operators 101
5.10 Equality operators 103
5.11 Bitwise AND operator 103
5.12 Bitwise exclusive OR operator 104
5.13 Bitwise inclusive OR operator 104
5.14 Logical AND operator 104
5.15 Logical OR operator 104
5.16 Conditional operator 104
5.17 Assignment and compound assignment operators 106
5.18 Comma operator 106
5.19 Constant expressions 107
6 Statements 109
6.1 Labeled statement 109
6.2 Expression statement 109
6.3 Compound statement or block 110
6.4 Selection statements 110
6.5 Iteration statements 112
6.6 Jump statements 114
6.7 Declaration statement 115
6.8 Ambiguity resolution 116
7 Declarations 119
7.1 Specifiers 120
7.2 Enumeration declarations 131
7.3 Namespaces 133
7.4 The asm declaration 147
7.5 Linkage specifications 147
8 Declarators 151
8.1 Type names 152
8.2 Ambiguity resolution 153
8.3 Meaning of declarators 154
8.4 Function definitions 166
8.5 Initializers 167
9 Classes 177
9.1 Class names 178
9.2 Class members 180
9.3 Member functions 182
9.4 Static members 186
9.5 Unions 188
9.6 Bit-fields 189
9.7 Nested class declarations 190
9.8 Local class declarations 191
9.9 Nested type names 192
10 Derived classes 193
10.1 Multiple base classes 194
10.2 Member name lookup 196
10.3 Virtual functions 200
10.4 Abstract classes 204
11 Member access control 207
11.1 Access specifiers 209
11.2 Accessibility of base classes and base class members 210
11.3 Access declarations 212
11.4 Friends 214
11.5 Protected member access 217
11.6 Access to virtual functions 218
11.7 Multiple access 219
11.8 Nested classes 219
12 Special member functions 221
12.1 Constructors 221
12.2 Temporary objects 223
12.3 Conversions 225
12.4 Destructors 228
12.5 Free store 231
12.6 Initialization 233
12.7 Construction and destruction 239
12.8 Copying class objects 242
13 Overloading 249
13.1 Overloadable declarations 249
13.2 Declaration matching 252
13.3 Overload resolution 253
13.4 Address of overloaded function 270
13.5 Overloaded operators 271
13.6 Built-in operators 275
14 Templates 279
14.1 Template parameters 280
14.2 Names of template specializations 283
14.3 Template arguments 285
14.4 Type equivalence 291
14.5 Template declarations 292
14.6 Name resolution 306
14.7 Template instantiation and specialization 319
14.8 Function template specializations 332
14.9 Concepts 350
15 Exception handling 351
15.1 Throwing an exception 352
15.2 Constructors and destructors 354
15.3 Handling an exception 355
15.4 Exception specifications 357
15.5 Special functions 360
15.6 Exceptions and access 361
16 Preprocessing directives 363
16.1 Conditional inclusion 365
16.2 Source file inclusion 366
16.3 Macro replacement 367
16.4 Line control 373
16.5 Error directive 373
16.6 Pragma directive 374
16.7 Null directive 374
16.8 Predefined macro names 374
16.9 Pragma operator 375
17 Library introduction 377
17.1 Definitions 377
17.2 Additional definitions 380
17.3 Method of description (Informative) 380
17.4 Library-wide requirements 386
18 Language support library 397
18.1 Types 397
18.2 Implementation properties 398
18.3 Integer types 408
18.4 Start and termination 409
18.5 Dynamic memory management 410
18.6 Type identification 415
18.7 Exception handling 417
18.8 Other runtime support 421
19 Diagnostics library 423
19.1 Exception classes 423
19.2 Assertions 427
19.3 Error numbers 427
20 General utilities library 429
20.1 Requirements 431
20.2 Utility components 434
20.3 Tuples 437
20.4 Metaprogramming and type traits 442
20.5 Function objects 453
20.6 Memory 474
20.7 Date and time 496
21 Strings library 497
21.1 Character traits 497
21.2 String classes 502
21.3 Class template basic_string 504
21.4 Null-terminated sequence utilities 530
22 Localization library 535
22.1 Locales 535
22.2 Standard locale categories 545
22.3 C Library Locales 588
23 Containers library 589
23.1 Container requirements 589
23.2 Sequences 605
23.3 Associative containers 634
23.4 Unordered associative containers 657
24 Iterators library 671
24.1 Iterator requirements 671
24.2 Header <iterator> synopsis 676
24.3 Iterator primitives 679
24.4 Predefined iterators 682
24.5 Stream iterators 693
25 Algorithms library 701
25.1 Non-modifying sequence operations 711
25.2 Mutating sequence operations 715
25.3 Sorting and related operations 722
25.4 C library algorithms 735
26 Numerics library 737
26.1 Numeric type requirements 737
26.2 The floating-point environment 738
26.3 Complex numbers 739
26.4 Random number generation 749
26.5 Numeric arrays 794
26.6 Generalized numeric operations 815
26.7 C Library 819
27 Input/output library 825
27.1 Iostreams requirements 825
27.2 Forward declarations 825
27.3 Standard iostream objects 828
27.4 Iostreams base classes 830
27.5 Stream buffers 849
27.6 Formatting and manipulators 859
27.7 String-based streams 885
27.8 File-based streams 894
28 Regular expressions library 907
28.1 Definitions 907
28.2 Requirements 908
28.3 Regular expressions summary 910
28.4 Header <regex> synopsis 910
28.5 Namespace tr1: :regex_constants 917
28.6 Class regex_error 920
28.7 Class template regex_traits 921
28.8 Class template basic_regex 923
28.9 Class template sub_match 928
28.10Class template match_results 934
28.11 Regular expression algorithms 938
28.12Regular expression Iterators 943
28.13Modified ECMAScript regular expression grammar 949
29 Atomic operations library 953
30 Thread support library 955
A Grammar summary 957
A. 1 Keywords 957
A. 2 Lexical conventions 957
A. 3 Basic concepts 961
A. 4 Expressions 961
A. 5 Statements 964
A. 6 Declarations 965
A. 7 Declarators 968
A. 8 Classes 969
A. 9 Derived classes 970
A. 10 Special member functions 970
A. 11 Overloading 971
A. 12 Templates 971
A. 13 Exception handling 972
A. 14 Preprocessing directives 972
B Implementation quantities 975
C Compatibility 977
C. $1 \mathrm{C}++$ and ISO C 977
C. 2 Standard C library 987
D Compatibility features 993
D. 1 Increment operator with bool operand 993
D. 2 static keyword 993
D. 3 Access declarations 993
D. 4 Implicit conversion from const strings 993
D. 5 Standard C library headers 993
D. 6 Old iostreams members 994
D. 7 char* streams 995
D. 8 Binders 1006
E Universal-character-names 1009
F Cross references 1011

List of Tables

1 trigraph sequences 13
2 alternative tokens 15
3 keywords 17
4 alternative representations 17
5 Types of Integer Constants 19
6 escape sequences 21
7 relations on const and volatile 65
8 simple-type-specifiers and the types they specify 128
9 relationship between operator and function call notation 258
10 conversions 265
11 Library Categories 381
12 C++ Library Headers 387
13 C++ Headers for C Library Facilities 387
$14 \mathrm{C}++$ Headers for Freestanding Implementations 388
15 Language support library summary 397
16 Header <cstddef> synopsis 398
17 Header <climits> synopsis 407
18 Header <cfloat> synopsis 407
19 Header <cstdlib> synopsis 409
20 Header <cstdarg> synopsis 421
21 Header <csetjmp> synopsis 421
22 Header <ctime> synopsis 421
23 Header <csignal> synopsis 422
24 Header <cstdlib> synopsis 422
25 Header <cstdbool> synopsis 422
26 Diagnostics library summary 423
27 Header <cassert> synopsis 427
28 Header <cerrno> synopsis 427
29 General utilities library summary 429
30 EqualityComparable requirements 430
31 LessThanComparable requirements 430
32 CopyConstructible requirements 430
33 Swappable requirements 431
34 Descriptive variable definitions 432
35 Allocator requirements 433
36 Type traits library summary 443
37 Primary Type Category Predicates 445
38 Composite Type Category Predicates 446
39 Type Property Predicates 447
40 Type Property Queries 448
41 Type Relationship Predicates 449
42 Const-volatile modifications 450
43 Reference modifications 450
44 Array modifications 451
45 Pointer modifications 451
46 Other transformations 452
47 Header <cstdlib> synopsis 495
48 Header <cstring> synopsis 495
49 Header <ctime> synopsis 496
50 Strings library summary 497
51 Traits requirements 498
52 basic_string(const Allocator\&) effects 510
53 basic_string(basic_string, size_type, size_type, const Allocator\&) effects 510
54 basic_string(const charT*, size_type, const Allocator\&) effects 510
55 basic_string(const charT*, const Allocator\&) effects 511
56 basic_string(size_t, charT, const Allocator\&) effects 511
57 operator=(const basic_string<charT, traits, Allocator>\&) effects 512
58 compare() results 524
59 Header <cctype> synopsis 530
60 Header <cwctype> synopsis 530
61 Header <cstring> synopsis 531
62 Header <cwchar> synopsis 531
63 Header <cstdlib> synopsis 531
64 Localization library summary 535
65 Locale Category Facets 539
66 Required Specializations 540
67 do_in/do_out result values 555
68 do_unshift result values 556
69 Integer Conversions 560
70 Length Modifier 560
71 Integer Conversions 564
72 Floating-point Conversions 565
73 Length Modifier 565
74 Numeric conversions 565
75 Fill padding 566
76 do_get_date effects 573
77 Header <clocale> synopsis 588
78 Containers library summary 589
79 Assignable requirements 590
80 Container requirements 590
81 Reversible container requirements 592
82 Sequence requirements (in addition to container) 593
83 Optional sequence operations 595
84 Associative container requirements (in addition to container) 596
85 Container requirements that are not required for unordered associative containers 599
86 Unordered associative container requirements (in addition to container) 600
87 Iterators library summary 671
88 Relations among iterator categories 671
89 Input iterator requirements 673
90 Output iterator requirements 673
91 Forward iterator requirements 674
92 Bidirectional iterator requirements (in addition to forward iterator) 675
93 Random access iterator requirements (in addition to bidirectional iterator) 676
94 Algorithms library summary 701
95 Header <cstdlib> synopsis 735
96 Numerics library summary 737
97 Uniform random number generator requirements 750
98 Random number engine requirements 751
99 Random number engine adaptor requirements 753
100 Random number distribution requirements 754
101 Header <cmath> synopsis 819
102 Header <cstdlib> synopsis 820
103 Input/output library summary 825
104 fmtflags effects 835
105 fmtflags constants 835
106 iostate effects 835
107 openmode effects 836
108 seekdir effects 836
109 Position type requirements 841
110 basic_ios::init() effects 843
111 seekoff positioning 889
112 newoff values 889
113 File open modes 897
114 seekoff effects 900
115 Header <cstdio> synopsis 906
116 Header <cinttypes> synopsis 906
117 regular expression traits class requirements 908
118 syntax_option_type effects 918
119 regex_constants::match_flag_type effects when obtaining a match against a character container sequence [first,last) 919
120 error_type values in the C locale 920
121 match_results assignment operator effects 936
122 Effects of regex_match algorithm 939
123 Effects of regex_search algorithm 941
124 Standard Macros 987
125 Standard Values 988
126 Standard Types 988
127 Standard Structs 988
128 Standard Functions 989
129 C Headers 993
130 strstreambuf (streamsize) effects 997
131 strstreambuf(void* (*) (size_t), void (*) (void*)) effects 998
132 strstreambuf(charT*, streamsize, charT*) effects 998
133 seekoff positioning 1001
134 newoff values 1001

Preface

This document consists of the working draft for the ISO standard for the programming language $\mathrm{C}++$ with all the changes made through the October, 2006 meeting of WG21, as reflected in WG21 document number N2134, with the addition of placeholders for the following new features:

- Concurrency memory model, clause 1.10
- Thread-local storage, clause 3.7.2
- Programmer-controlled garbage collection, clause 3.7.5
- Concepts, clause 14.9
- Atomic operations library, clause 29
- Thread support library, clause 30

Chapter 1 General

1.1 Scope

[intro.scope]
1 This International Standard specifies requirements for implementations of the C++ programming language. The first such requirement is that they implement the language, and so this International Standard also defines C++. Other requirements and relaxations of the first requirement appear at various places within this International Standard.
$2 \mathrm{C}++$ is a general purpose programming language based on the C programming language as described in ISO/IEC 9899:1990 Programming languages - C (1.2). In addition to the facilities provided by $\mathrm{C}, \mathrm{C}++$ provides additional data types, classes, templates, exceptions, namespaces, inline functions, operator overloading, function name overloading, references, free store management operators, and additional library facilities.

1.2 Normative references

[intro.refs]
1 The following standards contain provisions which, through reference in this text, constitute provisions of this International Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

- Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.
- ISO/IEC 2382 (all parts), Information technology - Vocabulary
— ISO/IEC 9899:1990, Programming languages - C
- ISO/IEC 9899/Amd.1:1995, Programming languages - C, AMENDMENT 1: C Integrity
— ISO/IEC 9899:1999, Programming languages - C
— ISO/IEC 9899:1999/Cor.1:2001 Programming languages - C
— ISO/IEC 9899:1999/Cor.2:2004 Programming languages - C
— ISO/IEC 9945:2003, Information Technology—Portable Operating System Interface (POSIX)
- ISO/IEC 10646-1:1993 Information technology - Universal Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture and Basic Multilingual Plane
2 The library described in clause 7 of ISO/IEC 9899:1990 and clause 7 of ISO/IEC 9899/Amd.1:1995 is hereinafter called the Standard C Library. ${ }^{1)}$

[^0]3 The library described in clause 7 of ISO/IEC 9899:1999 and clause 7 of ISO/IEC 9899:1999/Cor.1:2001 and clause 7 of ISO/IEC 9899:1999/Cor.2:2003 is hereinafter called the Standard C99 Library.
4 The operating system interface described in ISO/IEC 9945:2003 is hereinafter called POSIX.
5 The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

1.3 Definitions

[intro.defs]
1 For the purposes of this International Standard, the definitions given in ISO/IEC 2382 and the following definitions apply. 17.1 defines additional terms that are used only in clauses 17 through 27 and Annex D.
2 Terms that are used only in a small portion of this International Standard are defined where they are used and italicized where they are defined.

1.3.1

[defns.argument]
argument
an expression in the comma-separated list bounded by the parentheses in a function call expression; a sequence of preprocessing tokens in the comma-separated list bounded by the parentheses in a function-like macro invocation; the operand of throw; or an expression, type-id or template-name in the comma-separated list bounded by the angle brackets in a template instantiation. Also known as an actual argument or actual parameter.

1.3.2

[defns.cond.supp]
conditionally-supported
a program construct that an implementation is not required to support. [Note: Each implementation documents all conditionally-supported constructs that it does not support. - end note]

1.3.3

[defns.diagnostic]

diagnostic message

a message belonging to an implementation-defined subset of the implementation's output messages.

1.3.4

[defns.dynamic.type]

dynamic type

the type of the most derived object (1.8) to which the lvalue denoted by an lvalue expression refers. [Example: if a pointer (8.3.1) p whose static type is "pointer to class B " is pointing to an object of class D, derived from B (clause 10), the dynamic type of the expression *p is "D." References (8.3.2) are treated similarly. -end example] The dynamic type of an rvalue expression is its static type.

1.3.5

[defns.ill.formed]
ill-formed program
input to a $\mathrm{C}++$ implementation that is not a well-formed program ().

1.3.6
 implementation-defined behavior

[defns.impl.defined]
behavior, for a well-formed program construct and correct data, that depends on the implementation and that each implementation documents.

1.3.7
 implementation limits

[defns.impl.limits]
restrictions imposed upon programs by the implementation.

1.3.8

[defns.locale.specific]
locale-specific behavior
behavior that depends on local conventions of nationality, culture, and language that each implementation documents.

1.3.9

[defns.multibyte]
multibyte character
a sequence of one or more bytes representing a member of the extended character set of either the source or the execution environment. The extended character set is a superset of the basic character set (2.2).

1.3.10

[defns.parameter] parameter
an object or reference declared as part of a function declaration or definition, or in the catch clause of an exception handler, that acquires a value on entry to the function or handler; an identifier from the comma-separated list bounded by the parentheses immediately following the macro name in a function-like macro definition; or a template-parameter. Parameters are also known as formal arguments or formal parameters.
the information about a function that participates in overload resolution (13.3): its parameter-type-list (8.3.5) and, if the function is a class member, the $c v$ - qualifiers (if any) on the function itself and the class in which the member function is declared. ${ }^{2)}$ The signature of a function template specialization includes the types of its template arguments (14.5.5.1).

1.3.12

[defns.static.type]
static type
the type of an expression (3.9), which type results from analysis of the program without considering execution semantics. The static type of an expression depends only on the form of the program in which the expression appears, and does not change while the program is executing.

1.3.13

[defns.undefined]
undefined behavior
behavior, such as might arise upon use of an erroneous program construct or erroneous data, for which this International Standard imposes no requirements. Undefined behavior may also be expected when this International Standard omits the description of any explicit definition of behavior. [Note: permissible undefined behavior ranges from ignoring the

[^1]situation completely with unpredictable results, to behaving during translation or program execution in a documented manner characteristic of the environment (with or without the issuance of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message). Many erroneous program constructs do not engender undefined behavior; they are required to be diagnosed. -end note]

1.3.14

[defns.unspecified] unspecified behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation. The implementation is not required to document which behavior occurs. [Note: usually, the range of possible behaviors is delineated by this International Standard. -end note]

1.3.15

[defns.well.formed] well-formed program
a C++ program constructed according to the syntax rules, diagnosable semantic rules, and the One Definition Rule (3.2).

1.4 Implementation compliance

[intro.compliance]
1 The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard except for those rules containing an explicit notation that "no diagnostic is required" or which are described as resulting in "undefined behavior."

2 Although this International Standard states only requirements on C++ implementations, those requirements are often easier to understand if they are phrased as requirements on programs, parts of programs, or execution of programs. Such requirements have the following meaning:

- If a program contains no violations of the rules in this International Standard, a conforming implementation shall, within its resource limits, accept and correctly execute ${ }^{3)}$ that program.
- If a program contains a violation of any diagnosable rule or an occurrence of a construct described in this Standard as "conditionally-supported" when the implementation does not support that construct, a conforming implementation shall issue at least one diagnostic message, except that
- If a program contains a violation of a rule for which no diagnostic is required, this International Standard places no requirement on implementations with respect to that program.

3 For classes and class templates, the library clauses specify partial definitions. Private members (clause 11) are not specified, but each implementation shall supply them to complete the definitions according to the description in the library clauses.
4 For functions, function templates, objects, and values, the library clauses specify declarations. Implementations shall supply definitions consistent with the descriptions in the library clauses.

5 The names defined in the library have namespace scope (7.3). A C++ translation unit (2.1) obtains access to these names by including the appropriate standard library header (16.2).

6 The templates, classes, functions, and objects in the library have external linkage (3.5). The implementation provides definitions for standard library entities, as necessary, while combining translation units to form a complete C++ program (2.1).

[^2]7 Two kinds of implementations are defined: hosted and freestanding. For a hosted implementation, this International Standard defines the set of available libraries. A freestanding implementation is one in which execution may take place without the benefit of an operating system, and has an implementation-defined set of libraries that includes certain language-support libraries (17.4.1.3).

8 A conforming implementation may have extensions (including additional library functions), provided they do not alter the behavior of any well-formed program. Implementations are required to diagnose programs that use such extensions that are ill-formed according to this International Standard. Having done so, however, they can compile and execute such programs.
9 Each implementation shall include documentation that identifies all conditionally-supported constructs that it does not support and defines all locale-specific characteristics. ${ }^{4)}$

1.5 Structure of this International Standard

[intro.structure]
1 Clauses 2 through 16 describe the C++ programming language. That description includes detailed syntactic specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifications.

2 Clauses 17 through 27 and Annex D (the library clauses) describe the Standard C++ library, which provides definitions for the following kinds of entities: macros (16.3), values (clause 3), types (8.1, 8.3), templates (clause 14), classes (clause 9), functions (8.3.5), and objects (clause 7).
3 Annex 18.2.1 recommends lower bounds on the capacity of conforming implementations.
4 Annex C summarizes the evolution of C++ since its first published description, and explains in detail the differences between $\mathrm{C}++$ and C . Certain features of $\mathrm{C}++$ exist solely for compatibility purposes; Annex D describes those features.

5 Finally, Annex E says what characters are valid in universal-character names in C++ identifiers (2.10).
6 Throughout this International Standard, each example is introduced by "[Example:" and terminated by " - end example]". Each note is introduced by "[Note:" and terminated by " - end note]". Examples and notes may be nested.

1.6 Syntax notation

1 In the syntax notation used in this International Standard, syntactic categories are indicated by italic type, and literal words and characters in constant width type. Alternatives are listed on separate lines except in a few cases where a long set of alternatives is presented on one line, marked by the phrase "one of." An optional terminal or nonterminal symbol is indicated by the subscript "opt", so
\{ expression ${ }_{\text {opt }}$ \}
indicates an optional expression enclosed in braces.
2 Names for syntactic categories have generally been chosen according to the following rules:

- X-name is a use of an identifier in a context that determines its meaning (e.g. class-name, typedef-name).
- X-id is an identifier with no context-dependent meaning (e.g. qualified-id).
- X-seq is one or more X 's without intervening delimiters (e.g. declaration-seq is a sequence of declarations).

[^3]- X-list is one or more X 's separated by intervening commas (e.g. expression-list is a sequence of expressions separated by commas).

1.7 The C++ memory model

[intro.memory]
1 The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to contain any member of the basic execution character set and is composed of a contiguous sequence of bits, the number of which is implementation-defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order bit. The memory available to a C++ program consists of one or more sequences of contiguous bytes. Every byte has a unique address.
2 [Note: the representation of types is described in 3.9. -end note]

1.8 The C++ object model

[intro.object]

1 The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is a region of storage. [Note: A function is not an object, regardless of whether or not it occupies storage in the way that objects do. - end note] An object is created by a definition (3.1), by a new-expression (5.3.4) or by the implementation (12.2) when needed. The properties of an object are determined when the object is created. An object can have a name (clause 3). An object has a storage duration (3.7) which influences its lifetime (3.8). An object has a type (3.9). The term object type refers to the type with which the object is created. Some objects are polymorphic (10.3); the implementation generates information associated with each such object that makes it possible to determine that object's type during program execution. For other objects, the interpretation of the values found therein is determined by the type of the expressions (clause 5) used to access them.
2 Objects can contain other objects, called subobjects. A subobject can be a member subobject (9.2), a base class subobject (clause 10), or an array element. An object that is not a subobject of any other object is called a complete object.
3 For every object x , there is some object called the complete object of x , determined as follows:

- If x is a complete object, then x is the complete object of x .
- Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

4 If a complete object, a data member (9.2), or an array element is of class type, its type is considered the most derived class, to distinguish it from the class type of any base class subobject; an object of a most derived class type or of a non-class type is called a most derived object.

5 Unless it is a bit-field (9.6), a most derived object shall have a non-zero size and shall occupy one or more bytes of storage. Base class subobjects may have zero size. An object of POD^{5}) type (3.9) shall occupy contiguous bytes of storage.

6 [Note: C++ provides a variety of built-in types and several ways of composing new types from existing types (3.9). - end note]

1.9 Program execution

[intro.execution]
1 The semantic descriptions in this International Standard define a parameterized nondeterministic abstract machine. This International Standard places no requirement on the structure of conforming implementations. In particular, they need

[^4]not copy or emulate the structure of the abstract machine. Rather, conforming implementations are required to emulate (only) the observable behavior of the abstract machine as explained below. ${ }^{6)}$

2 Certain aspects and operations of the abstract machine are described in this International Standard as implementationdefined (for example, sizeof (int)). These constitute the parameters of the abstract machine. Each implementation shall include documentation describing its characteristics and behavior in these respects. ${ }^{7)}$ Such documentation shall define the instance of the abstract machine that corresponds to that implementation (referred to as the "corresponding instance" below).
3 Certain other aspects and operations of the abstract machine are described in this International Standard as unspecified (for example, order of evaluation of arguments to a function). Where possible, this International Standard defines a set of allowable behaviors. These define the nondeterministic aspects of the abstract machine. An instance of the abstract machine can thus have more than one possible execution sequence for a given program and a given input.

4 Certain other operations are described in this International Standard as undefined (for example, the effect of dereferencing the null pointer). [Note: this International Standard imposes no requirements on the behavior of programs that contain undefined behavior. - end note]

5 A conforming implementation executing a well-formed program shall produce the same observable behavior as one of the possible execution sequences of the corresponding instance of the abstract machine with the same program and the same input. However, if any such execution sequence contains an undefined operation, this International Standard places no requirement on the implementation executing that program with that input (not even with regard to operations preceding the first undefined operation).

6 The observable behavior of the abstract machine is its sequence of reads and writes to volatile data and calls to library I/O functions. ${ }^{8)}$

7 Accessing an object designated by a volatile lvalue (3.10), modifying an object, calling a library I/O function, or calling a function that does any of those operations are all side effects, which are changes in the state of the execution environment. Evaluation of an expression might produce side effects. At certain specified points in the execution sequence called sequence points, all side effects of previous evaluations shall be complete and no side effects of subsequent evaluations shall have taken place. ${ }^{9)}$
8 Once the execution of a function begins, no expressions from the calling function are evaluated until execution of the called function has completed. ${ }^{10)}$

9 When the processing of the abstract machine is interrupted by receipt of a signal, the values of objects with type other than volatile std::sig_atomic_t are unspecified, and the value of any object not of volatile std::sig_atomic_t that is modified by the handler becomes undefined.

[^5]10 An instance of each object with automatic storage duration (3.7.3) is associated with each entry into its block. Such an object exists and retains its last-stored value during the execution of the block and while the block is suspended (by a call of a function or receipt of a signal).

11 The least requirements on a conforming implementation are:

- At sequence points, volatile objects are stable in the sense that previous evaluations are complete and subsequent evaluations have not yet occurred.
- At program termination, all data written into files shall be identical to one of the possible results that execution of the program according to the abstract semantics would have produced.
- The input and output dynamics of interactive devices shall take place in such a fashion that prompting messages actually appear prior to a program waiting for input. What constitutes an interactive device is implementationdefined.
[Note: more stringent correspondences between abstract and actual semantics may be defined by each implementation. - end note]

12 A full-expression is an expression that is not a subexpression of another expression. If a language construct is defined to produce an implicit call of a function, a use of the language construct is considered to be an expression for the purposes of this definition. Conversions applied to the result of an expression in order to satisfy the requirements of the language construct in which the expression appears are also considered to be part of the full-expression. [Example:

```
struct S {
    S(int i): I(i) { }
    int& v() { return I; }
    private:
        int I;
    };
    S s1(1); // full-expression is call of S::S(int)
    S s2 = 2; // full-expression is call of S::S(int)
    void f() {
        if (S(3).v()) // full-expression includes lvalue-to-rvalue and
            // int to bool conversions, performed before
                // temporary is deleted at end of full-expression
        { }
    }
_ end example ]
```

13 [Note: the evaluation of a full-expression can include the evaluation of subexpressions that are not lexically part of the full-expression. For example, subexpressions involved in evaluating default argument expressions (8.3.6) are considered to be created in the expression that calls the function, not the expression that defines the default argument. - end note]

14 [Note: operators can be regrouped according to the usual mathematical rules only where the operators really are associative or commutative. ${ }^{11)}$ For example, in the following fragment

[^6]```
int a, b;
/* ... */
a = a + 32760 + b + 5;
```

the expression statement behaves exactly the same as

```
a = (((a + 32760) + b) + 5);
```

due to the associativity and precedence of these operators. Thus, the result of the sum $(a+32760)$ is next added to b , and that result is then added to 5 which results in the value assigned to a . On a machine in which overflows produce an exception and in which the range of values representable by an int is $[-32768,+32767]$, the implementation cannot rewrite this expression as

$$
a=((a+b)+32765)
$$

since if the values for a and b were, respectively, -32754 and -15 , the sum $\mathrm{a}+\mathrm{b}$ would produce an exception while the original expression would not; nor can the expression be rewritten either as

```
a = ((a+32765) + b);
```

or

```
a=(a+(b + 32765));
```

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12 . However on a machine in which overflows do not produce an exception and in which the results of overflows are reversible, the above expression statement can be rewritten by the implementation in any of the above ways because the same result will occur. - end note ]
15 There is a sequence point at the completion of evaluation of each full-expression ${ }^{12)}$.
16 When calling a function (whether or not the function is inline), there is a sequence point after the evaluation of all function arguments (if any) which takes place before execution of any expressions or statements in the function body. There is also a sequence point after the copying of a returned value and before the execution of any expressions outside the function ${ }^{13)}$. Several contexts in $\mathrm{C}++$ cause evaluation of a function call, even though no corresponding function call syntax appears in the translation unit. [Example: evaluation of a new expression invokes one or more allocation and constructor functions; see 5.3.4. For another example, invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax appears. -end example] The sequence points at function-entry and function-exit (as described above) are features of the function calls as evaluated, whatever the syntax of the expression that calls the function might be.

17 In the evaluation of each of the expressions

```
a \&\& b
\(a \| b\)
a ? \(\mathrm{b}: \mathrm{c}\)
a , b
```

[^7]using the built-in meaning of the operators in these expressions $(5.14,5.15,5.16,5.18)$, there is a sequence point after the evaluation of the first expression ${ }^{14)}$.

### 1.10 Concurrency memory model

[intro.concur]
This section is a placeholder. The next C++ standard is intended to include support for a concurrency memory model. This feature is intended to provide foundational support for concurrency by defining rules for the way programs' memory reads and writes may be transformed, optimized, and executed. For more information and snapshots of current draft proposals still under discussion and development, see:

- Sequencing and the Concurrency Memory Model http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2052.htm
- Prism: a Principle-based Sequential Memory Model for Microsoft Native Code Platforms http://www.open-std.org/jtc 1/sc22/wg21/docs/papers/2006/n2075.pdf


### 1.11 Acknowledgments

[intro.ack]
1 The C++ programming language as described in this International Standard is based on the language as described in Chapter R (Reference Manual) of Stroustrup: The C++ Programming Language (second edition, Addison-Wesley Publishing Company, ISBN 0-201-53992-6, copyright (C) 1991 AT\&T). That, in turn, is based on the C programming language as described in Appendix A of Kernighan and Ritchie: The C Programming Language (Prentice-Hall, 1978, ISBN 0-13-110163-3, copyright (C1978 AT\&T).

2 Portions of the library clauses of this International Standard are based on work by P.J. Plauger, which was published as The Draft Standard C++ Library (Prentice-Hall, ISBN 0-13-117003-1, copyright © 1995 P.J. Plauger).

3 All rights in these originals are reserved.

[^8]
## Chapter 2 Lexical conventions

1 The text of the program is kept in units called source files in this International Standard. A source file together with all the headers (17.4.1.2) and source files included (16.2) via the preprocessing directive \#include, less any source lines skipped by any of the conditional inclusion (16.1) preprocessing directives, is called a translation unit. [Note: a C++ program need not all be translated at the same time. - end note ]

2 [Note: previously translated translation units and instantiation units can be preserved individually or in libraries. The separate translation units of a program communicate (3.5) by (for example) calls to functions whose identifiers have external linkage, manipulation of objects whose identifiers have external linkage, or manipulation of data files. Translation units can be separately translated and then later linked to produce an executable program (3.5). - end note ]

### 2.1 Phases of translation

[lex.phases]
1 The precedence among the syntax rules of translation is specified by the following phases. ${ }^{15)}$

1. Physical source file characters are mapped, in an implementation-defined manner, to the basic source character set (introducing new-line characters for end-of-line indicators) if necessary. Trigraph sequences (2.3) are replaced by corresponding single-character internal representations. Any source file character not in the basic source character set (2.2) is replaced by the universal-character-name that designates that character. (An implementation may use any internal encoding, so long as an actual extended character encountered in the source file, and the same extended character expressed in the source file as a universal-character-name (i.e. using the \uXXXX notation), are handled equivalently.)
2. Each instance of a backslash character ( $($ ) immediately followed by a new-line character is deleted, splicing physical source lines to form logical source lines. Only the last backslash on any physical source line shall be eligible for being part of such a splice. If, as a result, a character sequence that matches the syntax of a universal-character-name is produced, the behavior is undefined. If a source file that is not empty does not end in a new-line character, or ends in a new-line character immediately preceded by a backslash character before any such splicing takes place, the behavior is undefined.
3. The source file is decomposed into preprocessing tokens (2.4) and sequences of white-space characters (including comments). A source file shall not end in a partial preprocessing token or in a partial comment. ${ }^{16)}$ Each comment is replaced by one space character. New-line characters are retained. Whether each nonempty sequence of whitespace characters other than new-line is retained or replaced by one space character is implementation-defined.
[^9]The process of dividing a source file's characters into preprocessing tokens is context-dependent. [Example: see the handling of < within a \#include preprocessing directive. - end example ]
4. Preprocessing directives are executed, macro invocations ar expanded, and _Pragma unary operator expressions are executed. If a character sequence that matches the syntax of a universal-character-name is produced by token concatenation (16.3.3), the behavior is undefined. A \#include preprocessing directive causes the named header or source file to be processed from phase 1 through phase 4, recursively. All preprocessing directives are then deleted.
5. Each source character set member, escape sequence, or universal-character-name in character literals and string literals is converted to the corresponding member of the execution character set $(2.13 .2,2.13 .4)$; if there is no corresponding member, it is converted to an implementation-defined member other than the null (wide) character. ${ }^{17)}$
6. Adjacent literal tokens are concatenated.
7. White-space characters separating tokens are no longer significant. Each preprocessing token is converted into a token. (2.6). The resulting tokens are syntactically and semantically analyzed and translated as a translation unit. [ Note: The process of analyzing and translating the tokens may occasionally result in one token being replaced by a sequence of other tokens (14.2). -end note] [Note: Source files, translation units and translated translation units need not necessarily be stored as files, nor need there be any one-to-one correspondence between these entities and any external representation. The description is conceptual only, and does not specify any particular implementation. - end note]
8. Translated translation units and instantiation units are combined as follows: [Note: some or all of these may be supplied from a library. - end note ] Each translated translation unit is examined to produce a list of required instantiations. [Note: this may include instantiations which have been explicitly requested (14.7.2). - end note] The definitions of the required templates are located. It is implementation-defined whether the source of the translation units containing these definitions is required to be available. [Note: an implementation could encode sufficient information into the translated translation unit so as to ensure the source is not required here. -end note] All the required instantiations are performed to produce instantiation units. [Note: these are similar to translated translation units, but contain no references to uninstantiated templates and no template definitions. - end note ] The program is ill-formed if any instantiation fails.
9. All external object and function references are resolved. Library components are linked to satisfy external references to functions and objects not defined in the current translation. All such translator output is collected into a program image which contains information needed for execution in its execution environment.

### 2.2 Character sets

1 The basic source character set consists of 96 characters: the space character, the control characters representing horizontal tab, vertical tab, form feed, and new-line, plus the following 91 graphical characters: ${ }^{18)}$


[^10]```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
012 345678 9
_ { } [ ] # ( ) < > % : ; . ? * + - / ~ & | ~ ! = , \ " ,
```

2 The universal-character-name construct provides a way to name other characters.
hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit
universal-character-name:
\u hex-quad
\U hex-quad hex-quad
The character designated by the universal-character-name \UNNNNNNNN is that character whose character short name in ISO/IEC 10646 is NNNNNNNN; the character designated by the universal-character-name \uNNNN is that character whose character short name in ISO/IEC 10646 is 0000 NNNN. If the hexadecimal value for a universal character name is less than 0×20 or in the range $0 \times 7 \mathrm{~F}-0 \mathrm{x} 9 \mathrm{~F}$ (inclusive), or if the universal character name designates a character in the basic source character set, then the program is ill-formed.

3 The basic execution character set and the basic execution wide-character set shall each contain all the members of the basic source character set, plus control characters representing alert, backspace, and carriage return, plus a null character (respectively, null wide character), whose representation has all zero bits. For each basic execution character set, the values of the members shall be non-negative and distinct from one another. In both the source and execution basic character sets, the value of each character after 0 in the above list of decimal digits shall be one greater than the value of the previous. The execution character set and the execution wide-character set are supersets of the basic execution character set and the basic execution wide-character set, respectively. The values of the members of the execution character sets are implementation-defined, and any additional members are locale-specific.

2.3 Trigraph sequences

1 Before any other processing takes place, each occurrence of one of the following sequences of three characters ("trigraph sequences") is replaced by the single character indicated in Table 1.

Table 1: trigraph sequences

trigraph	replacement	trigraph	replacement	trigraph	replacement
$? ?=$	$\#$	$? ?($	$[$	$? ?<$	$\{$
$? ? /$	$\\) & \(? ?)$	$]$	$? ?>$	$\}$	
$? ?$,	\sim	$? ?!$	l	$? ?-$	\sim

2

[Example:

```
??=define arraycheck(a,b) a??(b??) ??!??! b??(a??)
```

becomes

```
#define arraycheck(a,b) a[b] || b[a]
```


- end example]

3 No other trigraph sequence exists. Each ? that does not begin one of the trigraphs listed above is not changed.

2.4 Preprocessing tokens

[lex.pptoken]

```
preprocessing-token:
header-name
identifier
pp-number
character-literal
string-literal
preprocessing-op-or-punc
each non-white-space character that cannot be one of the above
```

1 Each preprocessing token that is converted to a token (2.6) shall have the lexical form of a keyword, an identifier, a literal, an operator, or a punctuator.

2 A preprocessing token is the minimal lexical element of the language in translation phases 3 through 6 . The categories of preprocessing token are: header names, identifiers, preprocessing numbers, character literals, string literals, preprocessing-op-or-punc, and single non-white-space characters that do not lexically match the other preprocessing token categories. If a' or a " character matches the last category, the behavior is undefined. Preprocessing tokens can be separated by white space; this consists of comments (2.7), or white-space characters (space, horizontal tab, new-line, vertical tab, and form-feed), or both. As described in clause 16, in certain circumstances during translation phase 4, white space (or the absence thereof) serves as more than preprocessing token separation. White space can appear within a preprocessing token only as part of a header name or between the quotation characters in a character literal or string literal.

3 If the input stream has been parsed into preprocessing tokens up to a given character, the next preprocessing token is the longest sequence of characters that could constitute a preprocessing token, even if that would cause further lexical analysis to fail.

4 [Example: The program fragment 1Ex is parsed as a preprocessing number token (one that is not a valid floating or integer literal token), even though a parse as the pair of preprocessing tokens 1 and Ex might produce a valid expression (for example, if Ex were a macro defined as +1). Similarly, the program fragment 1 E 1 is parsed as a preprocessing number (one that is a valid floating literal token), whether or not E is a macro name. - end example]
5 [Example: The program fragment $\mathrm{x}+++++\mathrm{y}$ is parsed as $\mathrm{x}+++++\mathrm{y}$, which, if x and y are of built-in types, violates a constraint on increment operators, even though the parse $\mathrm{x}+++++\mathrm{y}$ might yield a correct expression. - end example]

2.5 Alternative tokens

[lex.digraph]

1 Alternative token representations are provided for some operators and punctuators. ${ }^{19)}$

[^11]2 In all respects of the language, each alternative token behaves the same, respectively, as its primary token, except for its spelling. ${ }^{20)}$ The set of alternative tokens is defined in Table 2.

Table 2: alternative tokens

alternative	primary	alternative	primary	alternative	primary
$<\%$	$\{$	and	$\& \&$	and_eq	$\&=$
$\%>$	$\}$	bitor	\mid	or_eq	$\mid=$
$<:$	$[$	or	$\|\mid$	xor_eq	$\sim=$
$:>$	$]$	xor	\sim	not	$!$
$\%:$	$\#$	compl	\sim	not_eq	$!=$
$\%: \%:$	$\# \#$	bitand	$\&$		

2.6 Tokens

[lex.token]
token:
identifier
keyword
literal
operator
punctuator
1 There are five kinds of tokens: identifiers, keywords, literals, ${ }^{21)}$ operators, and other separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments (collectively, "white space"), as described below, are ignored except as they serve to separate tokens. [Note: Some white space is required to separate otherwise adjacent identifiers, keywords, numeric literals, and alternative tokens containing alphabetic characters. - end note]

2.7 Comments

[lex.comment]
1 The characters /* start a comment, which terminates with the characters $* /$. These comments do not nest. The characters // start a comment, which terminates with the next new-line character. If there is a form-feed or a vertical-tab character in such a comment, only white-space characters shall appear between it and the new-line that terminates the comment; no diagnostic is required. [Note: The comment characters $/ /, / *$, and $* /$ have no special meaning within a // comment and are treated just like other characters. Similarly, the comment characters $/ /$ and $/ *$ have no special meaning within a /* comment. -end note]

2.8 Header names

[lex.header]
header-name:
< h-char-sequence >
" q-char-sequence "
h-char-sequence:
h-char
h-char-sequence h-char
h-char:
any member of the source character set except new-line and >

[^12]```
q-char-sequence:
 q-char
 q-char-sequence q-char
q-char:
 any member of the source character set except new-line and "
```

1 Header name preprocessing tokens shall only appear within a \#include preprocessing directive (16.2). The sequences in both forms of header-names are mapped in an implementation-defined manner to headers or to external source file names as specified in 16.2.

2 If either of the characters ' or $\backslash$, or either of the character sequences $/ *$ or // appears in a $q$-char-sequence or a $h$-char-sequence, or the character " appears in a h-char-sequence, the behavior is undefined. ${ }^{22)}$

### 2.9 Preprocessing numbers

[lex.ppnumber]

```
pp-number:
 digit
 . digit
 pp-number digit
 pp-number nondigit
 pp-number e sign
 pp-number E sign
 pp-number.
```

1 Preprocessing number tokens lexically include all integral literal tokens (2.13.1) and all floating literal tokens (2.13.3).
2 A preprocessing number does not have a type or a value; it acquires both after a successful conversion (as part of translation phase 7, 2.1) to an integral literal token or a floating literal token.

### 2.10 Identifiers

[lex.name]
identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters
nondigit: one of
a b c defghijklm
n opqretuvexyz
A B C D E F G H I J K L M
N O P QRSTUVWXYZ
digit: one of
0123456789
1 An identifier is an arbitrarily long sequence of letters and digits. Each universal-character-name in an identifier shall designate a character whose encoding in ISO 10646 falls into one of the ranges specified in Annex E. Upper- and

[^13]lower-case letters are different. All characters are significant. ${ }^{23)}$
2 In addition, some identifiers are reserved for use by C++ implementations and standard libraries (17.4.3.1.2) and shall not be used otherwise; no diagnostic is required.

### 2.11 Keywords

1 The identifiers shown in Table 3 are reserved for use as keywords (that is, they are unconditionally treated as keywords in phase 7):

Table 3: keywords

| asm | do | if | return | try |
| :--- | :--- | :--- | :--- | :--- |
| auto | double | inline | short | typedef |
| bool | dynamic_cast | int | signed | typeid |
| break | else | long | sizeof | typename |
| case | enum | mutable | static | union |
| catch | explicit | namespace | static_assert | unsigned |
| char | export | new | static_cast | using |
| class | extern | operator | struct | virtual |
| const | false | private | switch | void |
| const_cast | float | protected | template | volatile |
| continue | for | public | this | wchar_t |
| default | friend | register | throw | while |
| delete | goto | reinterpret_cast | true |  |

2 Furthermore, the alternative representations shown in Table 4 for certain operators and punctuators (2.5) are reserved and shall not be used otherwise:

Table 4: alternative representations

| and | and_eq | bitand | bitor | compl | not |
| :--- | :--- | :--- | :--- | :--- | :--- |
| not_eq | or | or_eq | xor | xor_eq |  |

### 2.12 Operators and punctuators

[lex.operators]
1 The lexical representation of C++ programs includes a number of preprocessing tokens which are used in the syntax of the preprocessor or are converted into tokens for operators and punctuators:

[^14]| \{ | \} | [ | ] | \# | \#\# | ( | ) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| <: | :> | <\% | \%> | \% : | \% : \% : | ; | : | . . |
| new | delete | ? | : | - | .* |  |  |  |
| + | - | * | / | \% | - | \& | 1 | $\sim$ |
| ! | = | $<$ | > | += | -= | *= | /= | $\%=$ |
| ${ }^{\sim}=$ | \& $=$ | \|= | << | >> | >>= | <<= | = | ! = |
| <= | $>=$ | \&\& | \|| | ++ | -- |  | ->* | -> |
| and | and_eq | bitand | bitor | compl | not | not_eq |  |  |
| or | or_eq | xor | xor_eq |  |  |  |  |  |

Each preprocessing-op-or-punc is converted to a single token in translation phase 7 (2.1).

### 2.13 Literals

[lex.literal]
1 There are several kinds of literals. ${ }^{24)}$
literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
2.13.1 Integer literals
integer-literal:
decimal-literal integer-suffix $x_{\text {opt }}$
octal-literal integer-suffix opt
hexadecimal-literal integer-suffix opt
decimal-literal:
nonzero-digit
decimal-literal digit
octal-literal:
0
octal-literal octal-digit
hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit
nonzero-digit: one of
123456789
octal-digit: one of
01234567
hexadecimal-digit: one of
0123456789
abledef
A B C D EF

[^15]```
integer-suffix:
    unsigned-suffix long-suffix opt
    unsigned-suffix long-long-suffixopt
    long-suffix unsigned-suffix opt
    long-long-suffix unsigned-suffix opt
unsigned-suffix: one of
    u U
long-suffix: one of
    l L
long-long-suffix: one of
    ll LL
```

1 An integer literal is a sequence of digits that has no period or exponent part. An integer literal may have a prefix that specifies its base and a suffix that specifies its type. The lexically first digit of the sequence of digits is the most significant. A decimal integer literal (base ten) begins with a digit other than 0 and consists of a sequence of decimal digits. An octal integer literal (base eight) begins with the digit 0 and consists of a sequence of octal digits. ${ }^{25)}$ A hexadecimal integer literal (base sixteen) begins with 0 x or XX and consists of a sequence of hexadecimal digits, which include the decimal digits and the letters a through f and A through F with decimal values ten through fifteen. [Example: the number twelve can be written 12, 014, or 0XC. - end example]

2 The type of an integer constant is the first of the corresponding list in Table 5 in which its value can be represented.

3 If an integer literal cannot be represented by any type in its list and an extended integer type can represent its value, it may have that extended integer type. If all of the types in the list for the literal are signed, the extended integer type shall be signed. If all of the types in the list for the literal are unsigned, the extended integer type shall be unsigned. If the list contains both signed and unsigned types, the extended integer type may be signed or unsigned. A program is ill-formed if one of its translation units contains an integer literal that cannot be represented by any of the allowed types.

2.13.2 Character literals

[lex.ccon]

```
character-literal:
    'c-char-sequence'
    L'c-char-sequence '
c-char-sequence:
    c-char
    c-char-sequence c-char
c-char:
    any member of the source character set except
        the single-quote', backslash \, or new-line character
    escape-sequence
    universal-character-name
escape-sequence:
    simple-escape-sequence
    octal-escape-sequence
    hexadecimal-escape-sequence
simple-escape-sequence: one of
    \' \" \? \\
    \a \b \f \n \r \t \v
octal-escape-sequence:
    \octal-digit
    \octal-digit octal-digit
    \ ~ o c t a l - d i g i t ~ o c t a l - d i g i t ~ o c t a l - d i g i t ~
hexadecimal-escape-sequence:
    \x hexadecimal-digit
    hexadecimal-escape-sequence hexadecimal-digit
```

1 A character literal is one or more characters enclosed in single quotes, as in ' x ', optionally preceded by the letter L, as in L' x '. A character literal that does not begin with L is an ordinary character literal, also referred to as a narrow-character literal. An ordinary character literal that contains a single c-char has type char, with value equal to the numerical value of the encoding of the c-char in the execution character set. An ordinary character literal that contains more than one c-char is a multicharacter literal. A multicharacter literal has type int and implementation-defined value.

2 A character literal that begins with the letter L, such as L' x ', is a wide-character literal. A wide-character literal has type wchar_t. ${ }^{26)}$ The value of a wide-character literal containing a single c-char has value equal to the numerical value of the encoding of the c-char in the execution wide-character set. The value of a wide-character literal containing multiple c-chars is implementation-defined.

[^16]3 Certain nongraphic characters, the single quote ', the double quote ", the question mark ?, and the backslash
, can be represented according to Table 6. The double quote " and the question mark ?, can be represented as themselves or by the escape sequences \backslash " and \backslash ? respectively, but the single quote' and the backslash \backslash shall be represented by the escape sequences \backslash ' and $\backslash \backslash$ respectively. Escape sequences in which the character following the backslash is not listed in Table 6 are conditionally-supported, with implementation-defined semantics. An escape sequence specifies a single character.

Table 6: escape sequences

new-line	NL(LF)	$\backslash \mathrm{n}$
horizontal tab	HT	$\backslash \mathrm{t}$
vertical tab	VT	$\backslash \mathrm{v}$
backspace	BS	$\backslash \mathrm{b}$
carriage return	CR	$\backslash \mathrm{r}$
form feed	FF	$\backslash \mathrm{f}$
alert	BEL	$\backslash \mathrm{a}$
backslash	\backslash	$\backslash \backslash$
question mark	$?$	$\backslash ?$
single quote	,	$\backslash \backslash$
double quote	$"$	$\backslash "$
octal number	ooo	$\backslash o o o$
hex number	$h h h$	$\backslash \mathrm{xhhh}$

4 The escape looo consists of the backslash followed by one, two, or three octal digits that are taken to specify the value of the desired character. The escape lxhhh consists of the backslash followed by x followed by one or more hexadecimal digits that are taken to specify the value of the desired character. There is no limit to the number of digits in a hexadecimal sequence. A sequence of octal or hexadecimal digits is terminated by the first character that is not an octal digit or a hexadecimal digit, respectively. The value of a character literal is implementation-defined if it falls outside of the implementation-defined range defined for char (for ordinary literals) or wchar_t (for wide literals).

5 A universal-character-name is translated to the encoding, in the execution character set, of the character named. If there is no such encoding, the universal-character-name is translated to an implementation-defined encoding. [Note: in translation phase 1, a universal-character-name is introduced whenever an actual extended character is encountered in the source text. Therefore, all extended characters are described in terms of universal-character-names. However, the actual compiler implementation may use its own native character set, so long as the same results are obtained. -end note]

2.13.3 Floating literals

[lex.fcon]
floating-literal:
fractional-constant exponent-part opt floating-suffix $_{\text {opt }}$ digit-sequence exponent-part floating-suffix opt
fractional-constant:
digit-sequence $_{\text {opt }}$. digit-sequence
digit-sequence .

```
exponent-part:
    e sign opt digit-sequence
    E sign opt digit-sequence
    sign: one of
    + -
    digit-sequence:
    digit
    digit-sequence digit
floating-suffix: one of
    f l F L
```

1 A floating literal consists of an integer part, a decimal point, a fraction part, an e or E, an optionally signed integer exponent, and an optional type suffix. The integer and fraction parts both consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction part (not both) can be omitted; either the decimal point or the letter e (or E) and the exponent (not both) can be omitted. The integer part, the optional decimal point and the optional fraction part form the significant part of the floating literal. The exponent, if present, indicates the power of 10 by which the significant part is to be scaled. If the scaled value is in the range of representable values for its type, the result is the scaled value if representable, else the larger or smaller representable value nearest the scaled value, chosen in an implementation-defined manner. The type of a floating literal is double unless explicitly specified by a suffix. The suffixes f and F specify float, the suffixes 1 and L specify long double. If the scaled value is not in the range of representable values for its type, the program is ill-formed.

2.13.4 String literals

[lex.string]

```
string-literal:
    "s-char-sequence opt"
    L"s-char-sequence opt"
s-char-sequence:
    s-char
    s-char-sequence s-char
s-char:
    any member of the source character set except
        the double-quote ", backslash \, or new-line character
    escape-sequence
    universal-character-name
```

1 A string literal is a sequence of characters (as defined in 2.13.2) surrounded by double quotes, optionally beginning with the letter L, as in " . . " or L" . . ". A string literal that does not begin with L is an ordinary string literal, also referred to as a narrow string literal. An ordinary string literal has type "array of n const char" and static storage duration (3.7), where n is the size of the string as defined below, and is initialized with the given characters. A string literal that begins with L, such as L"asdf", is a wide string literal. A wide string literal has type "array of n const wchar_t" and has static storage duration, where n is the size of the string as defined below, and is initialized with the given characters.

2 Whether all string literals are distinct (that is, are stored in nonoverlapping objects) is implementation-defined. The effect of attempting to modify a string literal is undefined.

3 In translation phase 6 (2.1), adjacent string literals are concatenated. If a narrow string literal token is adjacent to a wide string literal token, the result is a wide string literal. Characters in concatenated strings are kept distinct. [Example:

[^17]contains the two characters ' $\backslash x A$ ' and ' B ' after concatenation (and not the single hexadecimal character ' $\backslash x A B$ '). - end example]

4 After any necessary concatenation, in translation phase 7 (2.1), ' $\backslash 0$ ' is appended to every string literal so that programs that scan a string can find its end.

5 Escape sequences and universal-character-names in string literals have the same meaning as in character literals (2.13.2), except that the single quote' is representable either by itself or by the escape sequence \backslash ', and the double quote " shall be preceded by a \backslash. In a narrow string literal, a universal-character-name may map to more than one char element due to multibyte encoding. The size of a wide string literal is the total number of escape sequences, universal-character-names, and other characters, plus one for the terminating $L^{\prime} \backslash 0^{\prime}$. The size of a narrow string literal is the total number of escape sequences and other characters, plus at least one for the multibyte encoding of each universal-character-name, plus one for the terminating ' $\backslash 0$ '.

2.13.5 Boolean literals

boolean-literal:
false
true
1 The Boolean literals are the keywords false and true. Such literals have type bool. They are not lvalues.

Chapter 3 Basic concepts

[basic]

1 [Note: this clause presents the basic concepts of the C++ language. It explains the difference between an object and a name and how they relate to the notion of an lvalue. It introduces the concepts of a declaration and a definition and presents C++'s notion of type, scope, linkage, and storage duration. The mechanisms for starting and terminating a program are discussed. Finally, this clause presents the fundamental types of the language and lists the ways of constructing compound types from these.

2 This clause does not cover concepts that affect only a single part of the language. Such concepts are discussed in the relevant clauses. - end note]

3 An entity is a value, object, subobject, base class subobject, array element, variable, function, instance of a function, enumerator, type, class member, template, or namespace.
4 A name is a use of an identifier (2.10) that denotes an entity or label (6.6.4,6.1). A variable is introduced by the declaration of an object. The variable's name denotes the object.
5 Every name that denotes an entity is introduced by a declaration. Every name that denotes a label is introduced either by a goto statement (6.6.4) or a labeled-statement (6.1).
6 Some names denote types, classes, enumerations, or templates. In general, it is necessary to determine whether or not a name denotes one of these entities before parsing the program that contains it. The process that determines this is called name lookup (3.4).

7 Two names are the same if

- they are identifiers composed of the same character sequence; or
- they are the names of overloaded operator functions formed with the same operator; or
- they are the names of user-defined conversion functions formed with the same type.

8 An identifier used in more than one translation unit can potentially refer to the same entity in these translation units depending on the linkage (3.5) of the identifier specified in each translation unit.

3.1 Declarations and definitions

[basic.def]
1 A declaration (clause 7) introduces names into a translation unit or redeclares names introduced by previous declarations. A declaration specifies the interpretation and attributes of these names.

2 A declaration is a definition unless it declares a function without specifying the function's body (8.4), it contains the extern specifier (7.1.1) or a linkage-specification ${ }^{27}$) (7.5) and neither an initializer nor a function-body, it declares a static data member in a class definition (9.4), it is a class name declaration (9.1), or it is a typedef declaration (7.1.3), a using-declaration (7.3.3), or a using-directive(7.3.4).
[Example: all but one of the following are definitions:

```
int a; // defines a
extern const int c = 1; // defines c
int f(int x) { return x+a; } // defines f and defines x
struct S { int a; int b; }; // defines S, S::a, and S::b
struct X { // defines X
    int x; // defines non-static data member x
    static int y; // declares static data member y
    X(): x(0) { } // defines a constructor of X
};
int X::y = 1; // defines X::y
enum { up, down }; // defines up and down
namespace N { int d; } // defines N and N::d
namespace N1 = N; // defines N1
X anX; // defines anX
```

whereas these are just declarations:

```
extern int a; // declares a
extern const int c; // declares c
int f(int); // declares f
struct S; // declares S
typedef int Int; // declares Int
extern X anotherX; // declares anotherX
using N::d; // declares N::d
- end example ]
```

3 [Note: in some circumstances, C++ implementations implicitly define the default constructor (12.1), copy constructor (12.8), assignment operator (12.8), or destructor (12.4) member functions. [Example: given

```
#include <string>
struct C {
    std::string s; // std::string is the standard library class (clause 21)
};
int main()
{
    C a;
    C b = a;
    b = a;
}
```

${ }^{27)}$ Appearing inside the braced-enclosed declaration-seq in a linkage-specification does not affect whether a declaration is a definition.
the implementation will implicitly define functions to make the definition of C equivalent to

```
struct C {
    std::string s;
    C(): s() { }
    C(const C& x): s(x.s) { }
    C& operator=(const C& x) { s = x.s; return *this; }
    ~C() { }
};
- end example ] - end note]
```

4 [Note: a class name can also be implicitly declared by an elaborated-type-specifier (3.3.1). - end note]
5 A program is ill-formed if the definition of any object gives the object an incomplete type (3.9).

3.2 One definition rule

[basic.def.odr]
1 No translation unit shall contain more than one definition of any variable, function, class type, enumeration type or template.

2 An expression is unevaluated if it is the operand of the sizeof operator (5.3.3), or if it is the operand of the typeid operator and it is not an lvalue of a polymorphic class type (5.2.8). All other expressions are potentially evaluated. An object or non-overloaded function whose name appears as a potentially-evaluated expression is used unless it is an object that satisfies the requirements for appearing in an integral constant expression (5.19) and the lvalue-to-rvalue conversion (4.1) is immediately applied. A virtual member function is used if it is not pure. An overloaded function is used if it is selected by overload resolution when referred to from a potentially-evaluated expression. [Note: this covers calls to named functions (5.2.2), operator overloading (clause 13), user-defined conversions (12.3.2), allocation function for placement new (5.3.4), as well as non-default initialization (8.5). A copy constructor is used even if the call is actually elided by the implementation. - end note] An allocation or deallocation function for a class is used by a new expression appearing in a potentially-evaluated expression as specified in 5.3.4 and 12.5. A deallocation function for a class is used by a delete expression appearing in a potentially-evaluated expression as specified in 5.3.5 and 12.5. A non-placement allocation or deallocation function for a class is used by the definition of a constructor of that class. A non-placement deallocation function for a class is used by the definition of the destructor of that class, or by being selected by the lookup at the point of definition of a virtual destructor (12.4). ${ }^{28)} \mathrm{A}$ copy-assignment function for a class is used by an implicitly-defined copy-assignment function for another class as specified in 12.8. A default constructor for a class is used by default initialization or value initialization as specified in 8.5. A constructor for a class is used as specified in 8.5. A destructor for a class is used as specified in 12.4.

3 Every program shall contain exactly one definition of every non-inline function or object that is used in that program; no diagnostic required. The definition can appear explicitly in the program, it can be found in the standard or a user-defined library, or (when appropriate) it is implicitly defined (see 12.1, 12.4 and 12.8). An inline function shall be defined in every translation unit in which it is used.

4 Exactly one definition of a class is required in a translation unit if the class is used in a way that requires the class type to be complete. [Example: the following complete translation unit is well-formed, even though it never defines X :
struct X ; // declare X as a struct type

[^18]```
struct X* x1;
X* x2;
// use X in pointer formation
// use X in pointer formation
```

-end example ] [Note: the rules for declarations and expressions describe in which contexts complete class types are required. A class type T must be complete if:
— an object of type $T$ is defined (3.1), or

- a non-static class data member of type T is declared (9.2), or
- T is used as the object type or array element type in a new-expression (5.3.4), or
- an lvalue-to-rvalue conversion is applied to an lvalue referring to an object of type T (4.1), or
- an expression is converted (either implicitly or explicitly) to type $T$ (clause 4, 5.2.3, 5.2.7, 5.2.9, 5.4), or
- an expression that is not a null pointer constant, and has type other than void $*$, is converted to the type pointer to T or reference to T using an implicit conversion (clause 4), a dynamic_cast (5.2.7) or a static_cast (5.2.9), or
- a class member access operator is applied to an expression of type $T$ (5.2.5), or
— the typeid operator (5.2.8) or the sizeof operator (5.3.3) is applied to an operand of type T, or
- a function with a return type or argument type of type $T$ is defined (3.1) or called (5.2.2), or
- a class with a base class of type T is defined (10), or
— an lvalue of type T is assigned to (5.17). - end note ]
5 There can be more than one definition of a class type (clause 9), enumeration type (7.2), inline function with external linkage (7.1.2), class template (clause 14), non-static function template (14.5.5), static data member of a class template (14.5.1.3), member function of a class template (14.5.1.1), or template specialization for which some template parameters are not specified $(14.7,14.5 .4)$ in a program provided that each definition appears in a different translation unit, and provided the definitions satisfy the following requirements. Given such an entity named D defined in more than one translation unit, then
- each definition of $D$ shall consist of the same sequence of tokens; and
- in each definition of $D$, corresponding names, looked up according to 3.4 , shall refer to an entity defined within the definition of $D$, or shall refer to the same entity, after overload resolution (13.3) and after matching of partial template specialization (14.8.3), except that a name can refer to a const object with internal or no linkage if the object has the same integral or enumeration type in all definitions of $D$, and the object is initialized with a constant expression (5.19), and the value (but not the address) of the object is used, and the object has the same value in all definitions of D ; and
- in each definition of D , the overloaded operators referred to, the implicit calls to conversion functions, constructors, operator new functions and operator delete functions, shall refer to the same function, or to a function defined within the definition of $D$; and
- in each definition of $D$, a default argument used by an (implicit or explicit) function call is treated as if its token sequence were present in the definition of $D$; that is, the default argument is subject to the three requirements
described above (and, if the default argument has sub-expressions with default arguments, this requirement applies recursively). ${ }^{29)}$
- if D is a class with an implicitly-declared constructor (12.1), it is as if the constructor was implicitly defined in every translation unit where it is used, and the implicit definition in every translation unit shall call the same constructor for a base class or a class member of D. [Example:

```
// translation unit 1:
struct X {
 X(int);
 X(int, int);
};
X::X(int = 0) { }
class D: public X { };
D d2; // X(int) called by D()
// translation unit 2:
struct X {
 X(int);
 X(int, int);
};
X::X(int = 0, int = 0) { }
class D: public X { }; // X(int, int) called by D();
// D()'s implicit definition
// violates the ODR
```

- end example ] If $D$ is a template, and is defined in more than one translation unit, then the last four requirements from the list above shall apply to names from the template's enclosing scope used in the template definition (14.6.3), and also to dependent names at the point of instantiation (14.6.2). If the definitions of D satisfy all these requirements, then the program shall behave as if there were a single definition of $D$. If the definitions of $D$ do not satisfy these requirements, then the behavior is undefined.


### 3.3 Declarative regions and scopes

[basic.scope]
1 Every name is introduced in some portion of program text called a declarative region, which is the largest part of the program in which that name is valid, that is, in which that name may be used as an unqualified name to refer to the same entity. In general, each particular name is valid only within some possibly discontiguous portion of program text called its scope. To determine the scope of a declaration, it is sometimes convenient to refer to the potential scope of a declaration. The scope of a declaration is the same as its potential scope unless the potential scope contains another declaration of the same name. In that case, the potential scope of the declaration in the inner (contained) declarative region is excluded from the scope of the declaration in the outer (containing) declarative region.

```
int j = 24;
int main()
{
 int i = j, j;
```

[^19]$$
j=42
$$
\}
the identifier $j$ is declared twice as a name (and used twice). The declarative region of the first $j$ includes the entire example. The potential scope of the first $j$ begins immediately after that $j$ and extends to the end of the program, but its (actual) scope excludes the text between the , and the \}. The declarative region of the second declaration of $j$ (the $j$ immediately before the semicolon) includes all the text between $\{$ and \}, but its potential scope excludes the declaration of $i$. The scope of the second declaration of $j$ is the same as its potential scope. -end example ]

3 The names declared by a declaration are introduced into the scope in which the declaration occurs, except that the presence of a friend specifier (11.4), certain uses of the elaborated-type-specifier (3.3.1), and using-directives (7.3.4) alter this general behavior.

4 Given a set of declarations in a single declarative region, each of which specifies the same unqualified name,

- they shall all refer to the same entity, or all refer to functions and function templates; or
- exactly one declaration shall declare a class name or enumeration name that is not a typedef name and the other declarations shall all refer to the same object or enumerator, or all refer to functions and function templates; in this case the class name or enumeration name is hidden (3.3.7). [Note: a namespace name or a class template name must be unique in its declarative region (7.3.2, clause 14). - end note ]
[Note: these restrictions apply to the declarative region into which a name is introduced, which is not necessarily the same as the region in which the declaration occurs. In particular, elaborated-type-specifiers (3.3.1) and friend declarations (11.4) may introduce a (possibly not visible) name into an enclosing namespace; these restrictions apply to that region. Local extern declarations (3.5) may introduce a name into the declarative region where the declaration appears and also introduce a (possibly not visible) name into an enclosing namespace; these restrictions apply to both regions. - end note ]

5 [Note: the name lookup rules are summarized in 3.4. -end note]

### 3.3.1 Point of declaration

[basic.scope.pdecl]
1 The point of declaration for a name is immediately after its complete declarator (clause 8) and before its initializer (if any), except as noted below. [Example:

```
int x = 12;
{ int x = x; }
```

Here the second x is initialized with its own (indeterminate) value. - end example ]
2 [Note: a nonlocal name remains visible up to the point of declaration of the local name that hides it. [Example:

```
const int i = 2;
{ int i[i]; }
```

declares a local array of two integers. - end example ] -end note ]
3 The point of declaration for a class first declared by a class-specifier is immediately after the identifier or simple-template-id (if any) in its class-head (Clause 9). The point of declaration for an enumeration is immediately after the identifier (if any) in its enum-specifier (7.2).

4 The point of declaration for an enumerator is immediately after its enumerator-definition. [ Example:

```
const int x = 12;
{ enum { x = x }; }
```

Here, the enumerator x is initialized with the value of the constant x , namely 12. - end example ]
5 After the point of declaration of a class member, the member name can be looked up in the scope of its class. [Note: this is true even if the class is an incomplete class. For example,

```
struct X {
 enum E { z = 16 };
 int b[X::z]; // OK
};
- end note]
```

6 The point of declaration of a class first declared in an elaborated-type-specifier is as follows:

## - for a declaraton of the form class-key identifier ;

the identifier is declared to be a class-name in the scope that contains the declaration, otherwise

- for an elaborated-type-specifier of the form class-key identifier
if the elaborated-type-specifier is used in the decl-specifier-seq or parameter-declaration-clause of a function defined in namespace scope, the identifier is declared as a class-name in the namespace that contains the declaration; otherwise, except as a friend declaration, the identifier is declared in the smallest non-class, non-functionprototype scope that contains the declaration. [Note: These rules also apply within templates. -end note] [ Note: Other forms of elaborated-type-specifier do not declare a new name, and therefore must refer to an existing type-name. See 3.4.4 and 7.1.5.3. -end note ]

7 The point of declaration for an injected-class-name (9) is immediately following the opening brace of the class definition.
8 [Note: friend declarations refer to functions or classes that are members of the nearest enclosing namespace, but they do not introduce new names into that namespace (7.3.1.2). Function declarations at block scope and object declarations with the extern specifier at block scope refer to delarations that are members of an enclosing namespace, but they do not introduce new names into that scope. -end note ]
9 [Note: For point of instantiation of a template, see 14.6.4.1. -end note]

### 3.3.2 Local scope

[basic.scope.local]
1 A name declared in a block (6.3) is local to that block. Its potential scope begins at its point of declaration (3.3.1) and ends at the end of its declarative region.
2 The potential scope of a function parameter name in a function definition (8.4) begins at its point of declaration. If the function has a function-try-block the potential scope of a parameter ends at the end of the last associated handler, else it ends at the end of the outermost block of the function definition. A parameter name shall not be redeclared in the outermost block of the function definition nor in the outermost block of any handler associated with a function-try-block.

3 The name in a catch exception-declaration is local to the handler and shall not be redeclared in the outermost block of the handler.

4 Names declared in the for-init-statement, and in the condition of if, while, for, and switch statements are local to the if, while, for, or switch statement (including the controlled statement), and shall not be redeclared in a subsequent condition of that statement nor in the outermost block (or, for the if statement, any of the outermost blocks) of the controlled statement; see 6.4.

### 3.3.3 Function prototype scope

## [basic.scope.proto]

1 In a function declaration, or in any function declarator except the declarator of a function definition (8.4), names of parameters (if supplied) have function prototype scope, which terminates at the end of the nearest enclosing function declarator.

### 3.3.4 Function scope

[basic.funscope]
1 Labels (6.1) have function scope and may be used anywhere in the function in which they are declared. Only labels have function scope.

### 3.3.5 Namespace scope

[basic.scope.namespace]
1 The declarative region of a namespace-definition is its namespace-body. The potential scope denoted by an original-namespace-name is the concatenation of the declarative regions established by each of the namespace-definitions in the same declarative region with that original-namespace-name. Entities declared in a namespace-body are said to be members of the namespace, and names introduced by these declarations into the declarative region of the namespace are said to be member names of the namespace. A namespace member name has namespace scope. Its potential scope includes its namespace from the name's point of declaration (3.3.1) onwards; and for each using-directive (7.3.4) that nominates the member's namespace, the member's potential scope includes that portion of the potential scope of the using-directive that follows the member's point of declaration. [Example:

```
namespace N {
 int i;
 int g(int a) { return a; }
 int j();
 void q();
}
namespace { int l=1; }
// the potential scope of l is from its point of declaration
// to the end of the translation unit
namespace N {
 int g(char a) // overloads N::g(int)
 {
 return l+a; // l is from unnamed namespace
 }
 int i; // error: duplicate definition
 int j(); // OK: duplicate function declaration
 int j() // OK: definition of N::j()
 {
 return g(i); // calls N::g(int)
 }
 int q(); // error: different return type
```

\}

- end example ]

2 A namespace member can also be referred to after the : : scope resolution operator (5.1) applied to the name of its namespace or the name of a namespace which nominates the member's namespace in a using-directive; see 3.4.3.2.

3 The outermost declarative region of a translation unit is also a namespace, called the global namespace. A name declared in the global namespace has global namespace scope (also called global scope ). The potential scope of such a name begins at its point of declaration (3.3.1) and ends at the end of the translation unit that is its declarative region. Names with global namespace scope are said to be global.

### 3.3.6 Class scope

[basic.scope.class]
1 The following rules describe the scope of names declared in classes.

1) The potential scope of a name declared in a class consists not only of the declarative region following the name's point of declaration, but also of all function bodies, default arguments, and constructor ctor-initializers in that class (including such things in nested classes).
2) A name $N$ used in a class $S$ shall refer to the same declaration in its context and when re-evaluated in the completed scope of S. No diagnostic is required for a violation of this rule.
3 ) If reordering member declarations in a class yields an alternate valid program under (1) and (2), the program is ill-formed, no diagnostic is required.
3) A name declared within a member function hides a declaration of the same name whose scope extends to or past the end of the member function's class.
4) The potential scope of a declaration that extends to or past the end of a class definition also extends to the regions defined by its member definitions, even if the members are defined lexically outside the class (this includes static data member definitions, nested class definitions, member function definitions (including the member function body and, for constructor functions (12.1), the ctor-initializer (12.6.2)) and any portion of the declarator part of such definitions which follows the identifier, including a parameter-declaration-clause and any default arguments (8.3.6). [ Example:
```
typedef int c;
enum { i = 1 };
class X {
 char v[i]; // error: i refers to ::i
 // but when reevaluated is X::i
 int f() { return sizeof(c); } // OK: X::c
 char c;
 enum { i = 2 };
};
typedef char* T;
struct Y {
 T a; // error: T refers to ::T
 // but when reevaluated is Y: :T
 typedef long T;
```

```
 T b;
};
typedef int I;
class D {
 typedef I I; // error, even though no reordering involved
};
- end example]
```

2 The name of a class member shall only be used as follows:
— in the scope of its class (as described above) or a class derived (clause 10) from its class,

- after the . operator applied to an expression of the type of its class (5.2.5) or a class derived from its class,
- after the -> operator applied to a pointer to an object of its class (5.2.5) or a class derived from its class,
- after the : : scope resolution operator (5.1) applied to the name of its class or a class derived from its class.


### 3.3.7 Name hiding

[basic.scope.hiding]
1 A name can be hidden by an explicit declaration of that same name in a nested declarative region or derived class (10.2).
2 A class name (9.1) or enumeration name (7.2) can be hidden by the name of an object, function, or enumerator declared in the same scope. If a class or enumeration name and an object, function, or enumerator are declared in the same scope (in any order) with the same name, the class or enumeration name is hidden wherever the object, function, or enumerator name is visible.

3 In a member function definition, the declaration of a local name hides the declaration of a member of the class with the same name; see 3.3.6. The declaration of a member in a derived class (clause 10) hides the declaration of a member of a base class of the same name; see 10.2 .

4 During the lookup of a name qualified by a namespace name, declarations that would otherwise be made visible by a using-directive can be hidden by declarations with the same name in the namespace containing the using-directive; see (3.4.3.2).

5 If a name is in scope and is not hidden it is said to be visible.

### 3.4 Name lookup

[basic.lookup]
1 The name lookup rules apply uniformly to all names (including typedef-names (7.1.3), namespace-names (7.3) and class-names (9.1)) wherever the grammar allows such names in the context discussed by a particular rule. Name lookup associates the use of a name with a declaration (3.1) of that name. Name lookup shall find an unambiguous declaration for the name (see 10.2). Name lookup may associate more than one declaration with a name if it finds the name to be a function name; the declarations are said to form a set of overloaded functions (13.1). Overload resolution (13.3) takes place after name lookup has succeeded. The access rules (clause 11) are considered only once name lookup and function overload resolution (if applicable) have succeeded. Only after name lookup, function overload resolution (if applicable) and access checking have succeeded are the attributes introduced by the name's declaration used further in expression processing (clause 5).

2 A name "looked up in the context of an expression" is looked up as an unqualified name in the scope where the expression is found.

3 The injected-class-name of a class (clause 9) is also considered to be a member of that class for the purposes of name hiding and lookup.

4 [Note: 3.5 discusses linkage issues. The notions of scope, point of declaration and name hiding are discussed in 3.3. - end note]

### 3.4.1 Unqualified name lookup

[basic.lookup.unqual]
1 In all the cases listed in 3.4.1, the scopes are searched for a declaration in the order listed in each of the respective categories; name lookup ends as soon as a declaration is found for the name. If no declaration is found, the program is ill-formed.

2 The declarations from the namespace nominated by a using-directive become visible in a namespace enclosing the using-directive; see 7.3.4. For the purpose of the unqualified name lookup rules described in 3.4.1, the declarations from the namespace nominated by the using-directive are considered members of that enclosing namespace.

3 The lookup for an unqualified name used as the postfix-expression of a function call is described in 3.4.2. [Note: for purposes of determining (during parsing) whether an expression is a postfix-expression for a function call, the usual name lookup rules apply. The rules in 3.4.2 have no effect on the syntactic interpretation of an expression. For example,

```
typedef int f;
namespace N {
 struct A {
 friend void f(A &);
 operator int();
 void g(A a) {
 int i = f(a);
 // f is the typedef, not the friend
 // function: equivalent to int(a)
 }
 };
}
```

Because the expression is not a function call, the argument-dependent name lookup (3.4.2) does not apply and the friend function $f$ is not found. - end note ]

4 A name used in global scope, outside of any function, class or user-declared namespace, shall be declared before its use in global scope.

5 A name used in a user-declared namespace outside of the definition of any function or class shall be declared before its use in that namespace or before its use in a namespace enclosing its namespace.

6 A name used in the definition of a function following the function's declarator-id ${ }^{30)}$ that is a member of namespace N (where, only for the purpose of exposition, $N$ could represent the global scope) shall be declared before its use in the block in which it is used or in one of its enclosing blocks (6.3) or, shall be declared before its use in namespace N or, if N is a nested namespace, shall be declared before its use in one of N 's enclosing namespaces.

[^20]
## [ Example:

```
namespace A {
 namespace N {
 void f();
 }
}
void A::N::f() {
 i = 5;
 // The following scopes are searched for a declaration of i:
 // 1) outermost block scope of A::N ::f, before the use of i
 // 2) scope of namespace N
 // 3) scope of namespace A
 // 4) global scope, before the definition of A::N::f
}
- end example]
```

7 A name used in the definition of a class X outside of a member function body or nested class definition ${ }^{31)}$ shall be declared in one of the following ways:

- before its use in class $X$ or be a member of a base class of $X$ (10.2), or
- if $X$ is a nested class of class $Y(9.7)$, before the definition of $X$ in $Y$, or shall be a member of a base class of $Y$ (this lookup applies in turn to $Y$ 's enclosing classes, starting with the innermost enclosing class), ${ }^{32)}$
- if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block enclosing the definition of class X , or
- if X is a member of namespace N , or is a nested class of a class that is a member of N , or is a local class or a nested class within a local class of a function that is a member of $N$, before the definition of class $X$ in namespace $N$ or in one of N 's enclosing namespaces.


## [ Example:

```
namespace M {
 class B { };
}
namespace N {
 class Y : public M::B {
 class X {
 int a[i];
 };
 };
}
```

// The following scopes are searched for a declaration of i:
// 1) scope of class $\mathrm{N}:: \mathrm{Y}:: \mathrm{X}$, before the use of i

[^21]```
// 2) scope of class N::Y, before the definition of N::Y::X
// 3) scope of N::Y's base class M::B
// 4) scope of namespace N, before the definition of N::Y
// 5) global scope, before the definition of N
```

-end example] [Note: when looking for a prior declaration of a class or function introduced by a friend declaration, scopes outside of the innermost enclosing namespace scope are not considered; see 7.3.1.2. - end note] [Note: 3.3.6 further describes the restrictions on the use of names in a class definition. 9.7 further describes the restrictions on the use of names in nested class definitions. 9.8 further describes the restrictions on the use of names in local class definitions. - end note]

8 A name used in the definition of a member function (9.3) of class X following the function's declarator-id ${ }^{33)}$ shall be declared in one of the following ways:

- before its use in the block in which it is used or in an enclosing block (6.3), or
- shall be a member of class X or be a member of a base class of $X(10.2)$, or
- if X is a nested class of class Y (9.7), shall be a member of Y, or shall be a member of a base class of Y (this lookup applies in turn to Y 's enclosing classes, starting with the innermost enclosing class), ${ }^{34)}$ or
- if X is a local class (9.8) or is a nested class of a local class, before the definition of class X in a block enclosing the definition of class X, or
- if X is a member of namespace N , or is a nested class of a class that is a member of N , or is a local class or a nested class within a local class of a function that is a member of N , before the member function definition, in namespace N or in one of N 's enclosing namespaces.

[Example:

```
class B { };
namespace M {
            namespace N {
            class X : public B {
                void f();
            };
    }
}
void M::N::X::f() {
    i = 16;
}
```

// The following scopes are searched for a declaration of i:
// 1) outermost block scope of $\mathrm{M}:: \mathrm{N}:: \mathrm{X}:: \mathrm{f}$, before the use of i
// 2) scope of class $\mathrm{M}: \mathrm{:N}: \mathrm{X}$
// 3) scope of $\mathrm{M}:: \mathrm{N}:: \mathrm{X}$'s base class B
// 4) scope of namespace $\mathrm{M}: \mathrm{N}$

[^22]```
// 5) scope of namespace M
// 6) global scope, before the definition of M::N : :X::f
```

- end example ] [Note: 9.3 and 9.4 further describe the restrictions on the use of names in member function definitions. 9.7 further describes the restrictions on the use of names in the scope of nested classes. 9.8 further describes the restrictions on the use of names in local class definitions. - end note]
9 Name lookup for a name used in the definition of a friend function (11.4) defined inline in the class granting friendship shall proceed as described for lookup in member function definitions. If the friend function is not defined in the class granting friendship, name lookup in the friend function definition shall proceed as described for lookup in namespace member function definitions.

10 In a friend declaration naming a member function, a name used in the function declarator and not part of a templateargument in a template-id is first looked up in the scope of the member function's class. If it is not found, or if the name is part of a template-argument in a template-id, the look up is as described for unqualified names in the definition of the class granting friendship. [ Example:

```
struct A {
 typedef int AT;
 void f1(AT);
 void f2(float);
};
struct B {
 typedef float BT;
 friend void A::f1(AT); // parameter type is A::AT
 friend void A::f2(BT); // parameter type is B::BT
};
- end example]
```

11 During the lookup for a name used as a default argument (8.3.6) in a function parameter-declaration-clause or used in the expression of a mem-initializer for a constructor (12.6.2), the function parameter names are visible and hide the names of entities declared in the block, class or namespace scopes containing the function declaration. [Note: 8.3.6 further describes the restrictions on the use of names in default arguments. 12.6.2 further describes the restrictions on the use of names in a ctor-initializer. - end note ]
12 A name used in the definition of a static data member of class $X$ (9.4.2) (after the qualified-id of the static member) is looked up as if the name was used in a member function of X. [Note: 9.4.2 further describes the restrictions on the use of names in the definition of a static data member. - end note]

13 If a variable member of a namespace is defined outside of the scope of its namespace then any name used in the definition of the variable member (after the declarator-id) is looked up as if the definition of the variable member occurred in its namespace. [ Example:

```
namespace N {
 int i = 4;
 extern int j;
}
int i = 2;
```

```
int N::j = i; //N::j == 4
_ end example]
```

14 A name used in the handler for a function-try-block (clause 15) is looked up as if the name was used in the outermost block of the function definition. In particular, the function parameter names shall not be redeclared in the exceptiondeclaration nor in the outermost block of a handler for the function-try-block. Names declared in the outermost block of the function definition are not found when looked up in the scope of a handler for the function-try-block. [Note: but function parameter names are found. - end note]
[Note: the rules for name lookup in template definitions are described in 14.6. -end note ]

### 3.4.2 Argument-dependent name lookup

[basic.lookup.argdep]
1 When an unqualified name is used as the postfix-expression in a function call (5.2.2), other namespaces not considered during the usual unqualified lookup (3.4.1) may be searched, and in those namespaces, namespace-scope friend function declarations (11.4) not otherwise visible may be found. These modifications to the search depend on the types of the arguments (and for template template arguments, the namespace of the template argument).

2 For each argument type $T$ in the function call, there is a set of zero or more associated namespaces and a set of zero or more associated classes to be considered. The sets of namespaces and classes is determined entirely by the types of the function arguments (and the namespace of any template template argument). Typedef names and using-declarations used to specify the types do not contribute to this set. The sets of namespaces and classes are determined in the following way:

- If $T$ is a fundamental type, its associated sets of namespaces and classes are both empty.
- If T is a class type (including unions), its associated classes are: the class itself; the class of which it is a member, if any; and its direct and indirect base classes. Its associated namespaces are the namespaces of which its associated classes are members. Furthermore, if T is a class template specialization, its associated namespaces and classes also include: the namespaces and classes associated with the types of the template arguments provided for template type parameters (excluding template template parameters); the namespaces of which any template template arguments are members; and the classes of which any member templates used as template template arguments are members. [ Note: Non-type template arguments do not contribute to the set of associated namespaces. - end note]
- If T is an enumeration type, its associated namespace is the namespace in which it is defined. If it is class member, its associated class is the member's class; else it has no associated class.
- If $T$ is a pointer to $U$ or an array of $U$, its associated namespaces and classes are those associated with $U$.
- If T is a function type, its associated namespaces and classes are those associated with the function parameter types and those associated with the return type.
- If $T$ is a pointer to a member function of a class $X$, its associated namespaces and classes are those associated with the function parameter types and return type, together with those associated with X .
- If $T$ is a pointer to a data member of class $X$, its associated namespaces and classes are those associated with the member type together with those associated with X .

In addition, if the argument is the name or address of a set of overloaded functions and/or function templates, its associated classes and namespaces are the union of those associated with each of the members of the set: the namespace
in which the function or function template is defined and the classes and namespaces associated with its (non-dependent) parameter types and return type.

3 If the ordinary unqualified lookup of the name finds the declaration of a class member function, or a block-scope function declaration that is not a using-declaration, the associated namespaces are not considered. Otherwise the set of declarations found by the lookup of the function name is the union of the set of declarations found using ordinary unqualified lookup and the set of declarations found in the namespaces associated with the argument types. [Note: the namespaces and classes associated with the argument types can include namespaces and classes already considered by the ordinary unqualified lookup. - end note] [ Example:

```
namespace NS {
 class T { };
 void f(T);
 void g(T, int);
}
NS::T parm;
void g(NS::T, float);
int main() {
 f(parm); // OK: calls NS::f
 extern void g(NS::T, float);
 g(parm, 1); // OK: calls g(NS::T, float)
}
_ end example]
```

4 When considering an associated namespace, the lookup is the same as the lookup performed when the associated namespace is used as a qualifier (3.4.3.2) except that:

- Any using-directive s in the associated namespace are ignored.
- Any namespace-scope friend functions declared in associated classes are visible within their respective namespaces even if they are not visible during an ordinary lookup (11.4).


### 3.4.3 Qualified name lookup

1 The name of a class or namespace member can be referred to after the : : scope resolution operator (5.1) applied to a nested-name-specifier that nominates its class or namespace. During the lookup for a name preceding the : : scope resolution operator, object, function, and enumerator names are ignored. If the name found is not a class-name (clause 9) or namespace-name (7.3.1), the program is ill-formed. [ Example:

```
class A {
public:
 static int n;
};
int main()
{
 int A;
 A::n = 42; // OK
 A b; // ill-formed: A does not name a type
}
```


## - end example ]

2 [Note: Multiply qualified names, such as $\mathrm{N} 1:: \mathrm{N} 2:: \mathrm{N} 3:: \mathrm{n}$, can be used to refer to members of nested classes (9.7) or members of nested namespaces. - end note ]

3 In a declaration in which the declarator-id is a qualified-id, names used before the qualified-id being declared are looked up in the defining namespace scope; names following the qualified-id are looked up in the scope of the member's class or namespace. [Example:

```
class X { };
class C {
class X { };
 static const int number = 50;
 static X arr [number];
};
X C::arr[number]; // ill-formed:
 // equivalent to: ::X C::arr [C::number];
 // not to: C::X C::arr [C::number];
```

- end example ]

4 A name prefixed by the unary scope operator : : (5.1) is looked up in global scope, in the translation unit where it is used. The name shall be declared in global namespace scope or shall be a name whose declaration is visible in global scope because of a using-directive (3.4.3.2). The use of : : allows a global name to be referred to even if its identifier has been hidden (3.3.7).

5 If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, the type-names are looked up as types in the scope designated by the nested-name-specifier. Similarly, in a qualified-id of the form:
: : opt nested-name-specifier $r_{\text {opt }}$ class-name : : ~ class-name
the second class-name is looked up in the same scope as the first. [Example:

```
struct C {
 typedef int I;
};
typedef int I1, I2;
extern int* p;
extern int* q;
p->C::I::~I(); // I is looked up in the scope of C
q->I1::~I2(); // I2 is looked up in the scope of
 // the postfix-expression
struct A {
 ~A();
};
typedef A AB;
int main()
{
 AB *p;
 p->AB:: ~ AB(); // explicitly calls the destructor for A
}
```

-end example ] [Note: 3.4.5 describes how name lookup proceeds after the . and $->$ operators. - end note ]

### 3.4.3.1 Class members

[class.qual]
1 If the nested-name-specifier of a qualified-id nominates a class, the name specified after the nested-name-specifier is looked up in the scope of the class (10.2), except for the cases listed below. The name shall represent one or more members of that class or of one of its base classes (clause 10). [Note: a class member can be referred to using a qualified-id at any point in its potential scope (3.3.6). - end note ] The exceptions to the name lookup rule above are the following:

- a destructor name is looked up as specified in 3.4.3;
- a conversion-type-id of an operator-function-id is looked up both in the scope of the class and in the context in which the entire postfix-expression occurs and shall refer to the same type in both contexts;
- the names in a template-argument of a template-id are looked up in the context in which the entire postfix-expression occurs.
- the lookup for a name specified in a using-declaration (7.3.3) also finds class or enumeration names hidden within the same scope (3.3.7).

2 In a lookup in which the constructor is an acceptable lookup result, if the nested-name-specifier nominates a class C, and the name specified after the nested-name-specifier, when looked up in C, is the injected-class-name of C (clause 9), the name is instead considered to name the constructor of class C. [ Note: For example, the constructor is not an acceptable lookup result in an elaborated-type-specifier so the constructor would not be used in place of the injected-class-name. - end note] Such a constructor name shall be used only in the declarator-id of a declaration that names a constructor. [Example:

```
struct A { A(); };
struct B: public A { B(); };
A::A() { }
B::B() { }
B::A ba; // object of type A
A::A a; // error, A::A is not a type name
struct A::A a2; // object of type A
- end example]
```

3 A class member name hidden by a name in a nested declarative region or by the name of a derived class member can still be found if qualified by the name of its class followed by the : : operator.

### 3.4.3.2 Namespace members

1 If the nested-name-specifier of a qualified-id nominates a namespace, the name specified after the nested-name-specifier is looked up in the scope of the namespace, except that the names in a template-argument of a template-id are looked up in the context in which the entire postfix-expression occurs.

2 Given $X:: m$ (where $X$ is a user-declared namespace), or given $:: m$ (where $X$ is the global namespace), let $S$ be the set of all declarations of $m$ in $X$ and in the transitive closure of all namespaces nominated by using-directives in $X$ and its used
namespaces, except that using-directives are ignored in any namespace, including X, directly containing one or more declarations of $m$. No namespace is searched more than once in the lookup of a name. If $S$ is the empty set, the program is ill-formed. Otherwise, if S has exactly one member, or if the context of the reference is a using-declaration (7.3.3), S is the required set of declarations of $m$. Otherwise if the use of $m$ is not one that allows a unique declaration to be chosen from S , the program is ill-formed. [Example:

```
int x;
namespace Y {
 void f(float);
 void h(int);
}
namespace Z {
 void h(double);
}
namespace A {
 using namespace Y;
 void f(int);
 void g(int);
 int i;
}
namespace B {
 using namespace Z;
 void f(char);
 int i;
}
namespace AB {
 using namespace A;
 using namespace B;
 void g();
}
void h()
{
 AB::g(); // g is declared directly in AB,
 // therefore S is { AB::g() } and AB::g() is chosen
 AB}::\textrm{f}(1);\quad//\textrm{f}\mathrm{ is not declared directly in }\textrm{AB}\mathrm{ so the rules are
 // applied recursively to A and B;
 // namespace Y is not searched and Y::f(float)
 // is not considered;
 // S is { A::f(int), B::f(char)} and overload
 // resolution chooses A::f (int)
 AB::f('c'); // as above but resolution chooses B::f (char)
 AB}::\textrm{x}++; // x is not declared directly in AB, and
// is not declared in A or B, so the rules are
// applied recursively to Y and Z,
```

```
 // S is { } so the program is ill-formed
 AB::i++; // i is not declared directly in }\textrm{AB}\mathrm{ so the rules are
 // applied recursively to A and B,
 // S is {A::i, B::i } so the use is ambiguous
 // and the program is ill-formed
 // h is not declared directly in AB and
 // not declared directly in A or B so the rules are
 // applied recursively to Y and Z,
 // S is { Y::h(int), Z::h(double) } and overload
 // resolution chooses Z::h(double)
}
```

3 The same declaration found more than once is not an ambiguity (because it is still a unique declaration). For example:

```
namespace A {
 int a;
}
namespace B {
 using namespace A;
}
namespace C {
 using namespace A;
}
namespace BC {
 using namespace B;
 using namespace C;
}
void f()
{
 BC::a++; // OK:S is {A::a,A::a }
}
namespace D {
 using A::a;
}
namespace BD {
 using namespace B;
 using namespace D;
}
void g()
{
 BD::a++; // OK:S is{ A::a, A::a }
```

4 Because each referenced namespace is searched at most once, the following is well-defined:

```
namespace B {
 int b;
}
namespace A {
 using namespace B;
 int a;
}
namespace B {
 using namespace A;
}
void f()
{
 A::a++; // OK: a declared directly in A, S is {A::a}
 B::a++; // OK: both A and B searched (once), S is {A::a}
 A::b++; // OK: both A and B searched (once), S is {B:: b}
 B::b++; // OK: b declared directly in }\textrm{B},\textrm{S}\mathrm{ is {B:: }\textrm{b}
}
_ end example]
```

5 During the lookup of a qualified namespace member name, if the lookup finds more than one declaration of the member, and if one declaration introduces a class name or enumeration name and the other declarations either introduce the same object, the same enumerator or a set of functions, the non-type name hides the class or enumeration name if and only if the declarations are from the same namespace; otherwise (the declarations are from different namespaces), the program is ill-formed. [Example:

```
namespace A {
 struct x { };
 int x;
 int y;
}
namespace B {
 struct y {};
}
namespace C {
 using namespace A;
 using namespace B;
 int i = C::x; // OK, A::x (of type int)
 int j = C::y; // ambiguous, A::y or B::y
}
_ end example]
```

6 In a declaration for a namespace member in which the declarator-id is a qualified-id, given that the qualified-id for the namespace member has the form nested-name-specifier unqualified-id the unqualified-id shall name a member of the namespace designated by the nested-name-specifier. [ Example:

```
namespace A {
 namespace B {
 void f1(int);
 }
 using namespace B;
}
```

void A::f1(int) \{ \} // ill-formed, $f 1$ is not a member of A

- end example] However, in such namespace member declarations, the nested-name-specifier may rely on usingdirectives to implicitly provide the initial part of the nested-name-specifier. [Example:

```
namespace A {
 namespace B {
 void f1(int);
 }
}
namespace C {
 namespace D {
 void f1(int);
 }
}
using namespace A;
using namespace C::D;
void B::f1(int){} // OK, defines A::B::f1(int)
- end example]
```


### 3.4.4 Elaborated type specifiers

1 An elaborated-type-specifier (7.1.5.3) may be used to refer to a previously declared class-name or enum-name even though the name has been hidden by a non-type declaration (3.3.7).

2 If the elaborated-type-specifier has no nested-name-specifier, and unless the elaborated-type-specifier appears in a declaration with the following form:

```
class-key identifier ;
```

the identifier is looked up according to 3.4.1 but ignoring any non-type names that have been declared. If the elaborated-type-specifier is introduced by the enum keyword and this lookup does not find a previously declared type-name, the elaborated-type-specifier is ill-formed. If the elaborated-type-specifier is introduced by the class-key and this lookup does not find a previously declared type-name, or if the elaborated-type-specifier appears in a declaration with the form:
class-key identifier ;
the elaborated-type-specifier is a declaration that introduces the class-name as described in 3.3.1.

3 If the elaborated-type-specifier has a nested-name-specifier, qualified name lookup is performed, as described in 3.4.3, but ignoring any non-type names that have been declared. If the name lookup does not find a previously declared type-name, the elaborated-type-specifier is ill-formed. [Example:

```
struct Node {
 struct Node* Next; // OK: Refers to Node at global scope
 struct Data* Data; // OK: Declares type Data
 // at global scope and member Data
};
struct Data {
 struct Node* Node; // OK: Refers to Node at global scope
 friend struct ::Glob; // error: Glob is not declared
 // cannot introduce a qualified type (7.1.5.3)
 friend struct Glob; // OK: Refers to (as yet) undeclared Glob
 // at global scope.
 /* ... */
};
struct Base {
 struct Data; // OK: Declares nested Data
 struct ::Data* thatData; // OK:Refers to ::Data
 struct Base::Data* thisData; // OK: Refers to nested Data
 friend class ::Data; // OK: global Data is a friend
 friend class Data; // OK: nested Data is a friend
 struct Data {/*... */ }; // Defines nested Data
};
struct Data; // OK: Redeclares Data at global scope
struct ::Data; // error: cannot introduce a qualified type (7.1.5.3)
struct Base::Data; // error: cannot introduce a qualified type (7.1.5.3)
struct Base::Datum; // error: Datum undefined
struct Base::Data* pBase; // OK: refers to nested Data
- end example]
```

[basic.lookup.classref]

### 3.4.5 Class member access

1 In a class member access expression (5.2.5), if the . or $->$ token is immediately followed by an identifier followed by $\mathrm{a}<$, the identifier must be looked up to determine whether the $<$ is the beginning of a template argument list (14.2) or a less-than operator. The identifier is first looked up in the class of the object expression. If the identifier is not found, it is then looked up in the context of the entire postfix-expression and shall name a class or function template. If the lookup in the class of the object expression finds a template, the name is also looked up in the context of the entire postfix-expression and

- if the name is not found, the name found in the class of the object expression is used, otherwise
- if the name is found in the context of the entire postfix-expression and does not name a class template, the name found in the class of the object expression is used, otherwise
- if the name found is a class template, it must refer to the same entity as the one found in the class of the object expression, otherwise the program is ill-formed.

2 If the id-expression in a class member access (5.2.5) is an unqualified-id, and the type of the object expression is of a class type C, the unqualified-id is looked up in the scope of class C. If the type of the object expression is of pointer to scalar type, the unqualified-id is looked up in the context of the complete postfix-expression.

3 If the unqualified-id is ~type-name, the type-name is looked up in the context of the entire postfix-expression. If the type T of the object expression is of a class type C , the type-name is also looked up in the scope of class C. At least one of the lookups shall find a name that refers to (possibly cv-qualified) T .

4 If the id-expression in a class member access is a qualified-id of the form

```
class-name-or-namespace-name::...
```

the class-name-or-namespace-name following the . or $->$ operator is looked up both in the context of the entire postfixexpression and in the scope of the class of the object expression. If the name is found only in the scope of the class of the object expression, the name shall refer to a class-name. If the name is found only in the context of the entire postfix-expression, the name shall refer to a class-name or namespace-name. If the name is found in both contexts, the class-name-or-namespace-name shall refer to the same entity.

5 If the qualified-id has the form

```
::class-name-or-namespace-name::...
```

the class-name-or-namespace-name is looked up in global scope as a class-name or namespace-name.
6 If the nested-name-specifier contains a simple-template-id (14.2), the names in its template-arguments are looked up in the context in which the entire postfix-expression occurs.

7 If the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both the context in which the entire postfix-expression occurs and in the context of the class of the object expression (or the class pointed to by the pointer expression).

### 3.4.6 Using-directives and namespace aliases

[basic.lookup.udir]
1 When looking up a namespace-name in a using-directive or namespace-alias-definition, only namespace names are considered.

### 3.5 Program and linkage

[basic.link]
1 A program consists of one or more translation units (clause 2) linked together. A translation unit consists of a sequence of declarations.
translation-unit:
declaration-seq opt

2 A name is said to have linkage when it might denote the same object, reference, function, type, template, namespace or value as a name introduced by a declaration in another scope:

- When a name has external linkage, the entity it denotes can be referred to by names from scopes of other translation units or from other scopes of the same translation unit.
- When a name has internal linkage, the entity it denotes can be referred to by names from other scopes in the same translation unit.
- When a name has no linkage, the entity it denotes cannot be referred to by names from other scopes.

3 A name having namespace scope (3.3.5) has internal linkage if it is the name of

- an object, reference, function or function template that is explicitly declared static or,
- an object or reference that is explicitly declared const and neither explicitly declared extern nor previously declared to have external linkage; or
- a data member of an anonymous union.

4 A name having namespace scope has external linkage if it is the name of

- an object or reference, unless it has internal linkage; or
- a function, unless it has internal linkage; or
- a named class (clause 9), or an unnamed class defined in a typedef declaration in which the class has the typedef name for linkage purposes (7.1.3); or
- a named enumeration (7.2), or an unnamed enumeration defined in a typedef declaration in which the enumeration has the typedef name for linkage purposes (7.1.3); or
- an enumerator belonging to an enumeration with external linkage; or
- a template, unless it is a function template that has internal linkage (clause 14); or
- a namespace (7.3), unless it is declared within an unnamed namespace.

5 In addition, a member function, static data member, a named class or enumeration of class scope, or an unnamed class or enumeration defined in a class-scope typedef declaration such that the class or enumeration has the typedef name for linkage purposes (7.1.3), has external linkage if the name of the class has external linkage.

6 The name of a function declared in block scope, and the name of an object declared by a block scope extern declaration, have linkage. If there is a visible declaration of an entity with linkage having the same name and type, ignoring entities declared outside the innermost enclosing namespace scope, the block scope declaration declares that same entity and receives the linkage of the previous declaration. If there is more than one such matching entity, the program is ill-formed. Otherwise, if no matching entity is found, the block scope entity receives external linkage.

```
[Example:
```

```
static void f();
```

static void f();
static int i = 0; // 1
static int i = 0; // 1
void g() {
void g() {
extern void f(); // internal linkage
extern void f(); // internal linkage
int i; // 2: i has no linkage
int i; // 2: i has no linkage
{
{
extern void f(); // internal linkage
extern void f(); // internal linkage
extern int i; // 3: external linkage
extern int i; // 3: external linkage
}

```
}
```

There are three objects named i in this program. The object with internal linkage introduced by the declaration in global scope (line //1), the object with automatic storage duration and no linkage introduced by the declaration on line $/ / 2$, and the object with static storage duration and external linkage introduced by the declaration on line $/ / 3$. - end example]

7 When a block scope declaration of an entity with linkage is not found to refer to some other declaration, then that entity is a member of the innermost enclosing namespace. However such a declaration does not introduce the member name in its namespace scope. [Example:

```
namespace X {
 void p()
 {
 q(); // error: q not yet declared
 extern void q(); // q is a member of namespace X
 }
 void middle()
 {
 q(); // error: q not yet declared
 }
 void q() { /* .. */ } // definition of X::q
}
void q() { /* ... */ } // some other, unrelated q
_ end example]
```

8 Names not covered by these rules have no linkage. Moreover, except as noted, a name declared in a local scope (3.3.2) has no linkage. A type is said to have linkage if and only if:

- it is a class or enumeration type that is named (or has a name for linkage purposes (7.1.3) and the name has linkage; or
— it is a specialization of a class template $(14)^{35)}$; or
- it is a fundamental type (3.9.1); or
- it is a compound type (3.9.2) other than a class or enumeration, compounded exclusively from types that have linkage; or
- it is a cv-qualified (3.9.3) version of a type that has linkage.

A type without linkage shall not be used as the type of a variable or function with linkage, unless the variable or function has extern " C " linkage (7.5). [ Note: in other words, a type without linkage contains a class or enumeration that cannot be named outside its translation unit. An entity with external linkage declared using such a type could not correspond to any other entity in another translation unit of the program and thus is not permitted. Also note that classes with linkage may contain members whose types do not have linkage, and that typedef names are ignored in the determination of whether a type has linkage. - end note] [Example:

[^23]```
void f()
{
    struct A { int x; }; // no linkage
    extern A a; // ill-formed
    typedef A B;
    extern B b; // ill-formed
}
```

—end example] This implies that names with no linkage cannot be used as template arguments (14.3).
9 Two names that are the same (clause 3) and that are declared in different scopes shall denote the same object, reference, function, type, enumerator, template or namespace if

- both names have external linkage or else both names have internal linkage and are declared in the same translation unit; and
- both names refer to members of the same namespace or to members, not by inheritance, of the same class; and
- when both names denote functions, the parameter-type-lists of the functions (8.3.5) are identical; and
- when both names denote function templates, the signatures (14.5.5.1) are the same.

10 After all adjustments of types (during which typedefs (7.1.3) are replaced by their definitions), the types specified by all declarations referring to a given object or function shall be identical, except that declarations for an array object can specify array types that differ by the presence or absence of a major array bound (8.3.4). A violation of this rule on type identity does not require a diagnostic.

11 [Note: linkage to non-C++ declarations can be achieved using a linkage-specification (7.5). -end note]

3.6 Start and termination

[basic.start]

3.6.1 Main function

1 A program shall contain a global function called main, which is the designated start of the program. It is implementationdefined whether a program in a freestanding environment is required to define a main function. [Note: in a freestanding environment, start-up and termination is implementation-defined; start-up contains the execution of constructors for objects of namespace scope with static storage duration; termination contains the execution of destructors for objects with static storage duration. - end note]

2 An implementation shall not predefine the main function. This function shall not be overloaded. It shall have a return type of type int, but otherwise its type is implementation-defined. All implementations shall allow both of the following definitions of main:

```
int main() { /* ... */ }
```

and

```
int main(int argc, char* argv[]) { /* ... */ }
```

In the latter form argc shall be the number of arguments passed to the program from the environment in which the program is run. If argc is nonzero these arguments shall be supplied in argv [0] through argv [argc-1] as pointers to the initial characters of null-terminated multibyte strings (NTMBSs) (17.3.2.1.3.2) and argv[0] shall be the pointer to
the initial character of a NTMBS that represents the name used to invoke the program or "". The value of argc shall be nonnegative. The value of $\operatorname{argv}[\operatorname{argc}]$ shall be 0 . [Note: it is recommended that any further (optional) parameters be added after argv. - end note]

3 The function main shall not be used (3.2) within a program. The linkage (3.5) of main is implementation-defined. A program that declares main to be inline or static is ill-formed. The name main is not otherwise reserved. [Example: member functions, classes, and enumerations can be called main, as can entities in other namespaces. - end example]
4 Calling the function std: : exit (int) declared in <cstdlib> (18.4) terminates the program without leaving the current block and hence without destroying any objects with automatic storage duration (12.4). If std : : exit is called to end a program during the destruction of an object with static storage duration, the program has undefined behavior.

5 A return statement in main has the effect of leaving the main function (destroying any objects with automatic storage duration) and calling std: :exit with the return value as the argument. If control reaches the end of main without encountering a return statement, the effect is that of executing

```
return 0;
```


3.6.2 Initialization of non-local objects

[basic.start.init]

1 Objects with static storage duration (3.7.1) shall be zero-initialized (8.5) before any other initialization takes place. A reference with static storage duration and an object of POD type with static storage duration can be initialized with a constant expression (5.19); this is called constant initialization. Together, zero-initialization and constant initialization are called static initialization; all other initialization is dynamic initialization. Static initialization shall be performed before any dynamic initialization takes place. Dynamic initialization of an object is either ordered or unordered. Definitions of explicitly specialized class template static data members have ordered initialization. Other class template static data members (i.e., implicitly or explicitly instantiated specializations) have unordered initialization. Other objects defined in namespace scope have ordered initialization. Objects defined within a single translation unit and with ordered initialization shall be initialized in the order of their definitions in the translation unit. The order of initialization is unspecified for objects with unordered initialization and for objects defined in different translation units. [Note: 8.5.1 describes the order in which aggregate members are initialized. The initialization of local static objects is described in 6.7. - end note]

2 An implementation is permitted to perform the initialization of an object of namespace scope with static storage duration as a static initialization even if such initialization is not required to be done statically, provided that

- the dynamic version of the initialization does not change the value of any other object of namespace scope with static storage duration prior to its initialization, and
- the static version of the initialization produces the same value in the initialized object as would be produced by the dynamic initialization if all objects not required to be initialized statically were initialized dynamically.
- [Note: as a consequence, if the initialization of an object obj1 refers to an object obj2 of namespace scope with static storage duration potentially requiring dynamic initialization and defined later in the same translation unit, it is unspecified whether the value of obj2 used will be the value of the fully initialized obj2 (because obj2 was statically initialized) or will be the value of obj2 merely zero-initialized. For example,

```
inline double fd() { return 1.0; }
extern double d1;
double d2 = d1; // unspecified:
    // may be statically initialized to 0.0 or
```

```
    // dynamically initialized to 1.0
    double d1 = fd(); // may be initialized statically to 1.0
- end note]
```

3 It is implementation-defined whether or not the dynamic initialization (8.5, 9.4, 12.1, 12.6.1) of an object of namespace scope is done before the first statement of main. If the initialization is deferred to some point in time after the first statement of main, it shall occur before the first use of any function or object defined in the same translation unit as the object to be initialized. ${ }^{36)}$ [Example:

```
// - File 1 -
#include "a.h"
#include "b.h"
B b;
A::A(){
    b.Use();
}
// - File 2-
#include "a.h"
A a;
// - File 3-
#include "a.h"
#include "b.h"
extern A a;
extern B b;
int main() {
    a.Use();
    b.Use();
}
```

It is implementation-defined whether either a or b is initialized before main is entered or whether the initializations are delayed until a is first used in main. In particular, if a is initialized before main is entered, it is not guaranteed that b will be initialized before it is used by the initialization of a, that is, before $\mathrm{A}:: \mathrm{A}$ is called. If, however, a is initialized at some point after the first statement of main, b will be initialized prior to its use in $\mathrm{A}:: \mathrm{A}$. - end example]

4 If construction or destruction of a non-local static object ends in throwing an uncaught exception, the result is to call std: :terminate (18.7.3.3).

3.6.3 Termination

[basic.start.term]
1 Destructors (12.4) for initialized objects of static storage duration (declared at block scope or at namespace scope) are called as a result of returning from main and as a result of calling std: :exit (18.4). These objects are destroyed in the reverse order of the completion of their constructor or of the completion of their dynamic initialization. If an object is initialized statically, the object is destroyed in the same order as if the object was dynamically initialized. For an object

[^24]of array or class type, all subobjects of that object are destroyed before any local object with static storage duration initialized during the construction of the subobjects is destroyed.

2 If a function contains a local object of static storage duration that has been destroyed and the function is called during the destruction of an object with static storage duration, the program has undefined behavior if the flow of control passes through the definition of the previously destroyed local object.
3 If a function is registered with std: :atexit (see <cstdlib>, 18.4) then following the call to std: :exit, any objects with static storage duration initialized prior to the registration of that function shall not be destroyed until the registered function is called from the termination process and has completed. For an object with static storage duration constructed after a function is registered with std: : atexit, then following the call to std: :exit, the registered function is not called until the execution of the object's destructor has completed. If std: : atexit is called during the construction of an object, the complete object to which it belongs shall be destroyed before the registered function is called.

4 Calling the function std: :abort () declared in <cstdlib> terminates the program without executing destructors for objects of automatic or static storage duration and without calling the functions passed to std: :atexit ().

3.7 Storage duration

[basic.stc]
1 Storage duration is the property of an object that defines the minimum potential lifetime of the storage containing the object. The storage duration is determined by the construct used to create the object and is one of the following:

- static storage duration
- automatic storage duration
- dynamic storage duration

2 Static and automatic storage durations are associated with objects introduced by declarations (3.1) and implicitly created by the implementation (12.2). The dynamic storage duration is associated with objects created with operator new (5.3.4).

3 The storage class specifiers static and auto are related to storage duration as described below.
4 The storage duration categories apply to references as well. The lifetime of a reference is its storage duration.

3.7.1 Static storage duration

[basic.stc.static]

1 All objects which neither have dynamic storage duration nor are local have static storage duration. The storage for these objects shall last for the duration of the program (3.6.2, 3.6.3).

2 If an object of static storage duration has initialization or a destructor with side effects, it shall not be eliminated even if it appears to be unused, except that a class object or its copy may be eliminated as specified in 12.8.

3 The keyword static can be used to declare a local variable with static storage duration. [Note: 6.7 describes the initialization of local static variables; 3.6.3 describes the destruction of local static variables. - end note]

4 The keyword static applied to a class data member in a class definition gives the data member static storage duration.

3.7.2 Thread-local storage

[basic.stc.threadlocal]
This section is a placeholder. The next C++ standard is intended to include support for thread local storage. This allows declaration of storage unique to a particular thread and with lifetime of that thread. For more information and snapshots
of current draft proposals still under discussion and development, see:

- Thread-Local Storage
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1966.html

3.7.3 Automatic storage duration

[basic.stc.auto]

1 Local objects explicitly declared auto or register or not explicitly declared static or extern have automatic storage duration. The storage for these objects lasts until the block in which they are created exits.

2 [Note: these objects are initialized and destroyed as described in 6.7. - end note]
3 If a named automatic object has initialization or a destructor with side effects, it shall not be destroyed before the end of its block, nor shall it be eliminated as an optimization even if it appears to be unused, except that a class object or its copy may be eliminated as specified in 12.8 .

3.7.4 Dynamic storage duration

[basic.stc.dynamic]
1 Objects can be created dynamically during program execution (1.9), using new-expressions (5.3.4), and destroyed using delete-expressions (5.3.5). A C++ implementation provides access to, and management of, dynamic storage via the global allocation functions operator new and operator new [] and the global deallocation functions operator delete and operator delete[].

2 The library provides default definitions for the global allocation and deallocation functions. Some global allocation and deallocation functions are replaceable (18.5.1). A C++ program shall provide at most one definition of a replaceable allocation or deallocation function. Any such function definition replaces the default version provided in the library (17.4.3.4). The following allocation and deallocation functions (18.5) are implicitly declared in global scope in each translation unit of a program

```
void* operator new(std::size_t) throw(std::bad_alloc);
void* operator new[](std::size_t) throw(std::bad_alloc);
void operator delete(void*) throw();
void operator delete[](void*) throw();
```

These implicit declarations introduce only the function names operator new, operator new [], operator delete, operator delete[]. [Note: the implicit declarations do not introduce the names std, std::bad_alloc, and std : : size_t, or any other names that the library uses to declare these names. Thus, a new-expression, delete-expression or function call that refers to one of these functions without including the header <new> is well-formed. However, referring to std, std::bad_alloc, and std::size_t is ill-formed unless the name has been declared by including the appropriate header. -end note] Allocation and/or deallocation functions can also be declared and defined for any class (12.5).

3 Any allocation and/or deallocation functions defined in a C++ program, including the default versions in the library, shall conform to the semantics specified in 3.7.4.1 and 3.7.4.2.

3.7.4.1 Allocation functions

[basic.stc.dynamic.allocation]
1 An allocation function shall be a class member function or a global function; a program is ill-formed if an allocation function is declared in a namespace scope other than global scope or declared static in global scope. The return type shall be void*. The first parameter shall have type std: :size_t (18.1). The first parameter shall not have an associated
default argument (8.3.6). The value of the first parameter shall be interpreted as the requested size of the allocation. An allocation function can be a function template. Such a template shall declare its return type and first parameter as specified above (that is, template parameter types shall not be used in the return type and first parameter type). Template allocation functions shall have two or more parameters.

2 The allocation function attempts to allocate the requested amount of storage. If it is successful, it shall return the address of the start of a block of storage whose length in bytes shall be at least as large as the requested size. There are no constraints on the contents of the allocated storage on return from the allocation function. The order, contiguity, and initial value of storage allocated by successive calls to an allocation function is unspecified. The pointer returned shall be suitably aligned so that it can be converted to a pointer of any complete object type and then used to access the object or array in the storage allocated (until the storage is explicitly deallocated by a call to a corresponding deallocation function). Even if the size of the space requested is zero, the request can fail. If the request succeeds, the value returned shall be a non-null pointer value (4.10) p0 different from any previously returned value p1, unless that value p1 was subsequently passed to an operator delete. The effect of dereferencing a pointer returned as a request for zero size is undefined. ${ }^{37)}$

3 An allocation function that fails to allocate storage can invoke the currently installed new-handler function (18.5.2.2), if any. [Note: A program-supplied allocation function can obtain the address of the currently installed new_handler using the std: : set_new_handler function (18.5.2.3). _end note] If an allocation function declared with an empty exception-specification (15.4), throw (), fails to allocate storage, it shall return a null pointer. Any other allocation function that fails to allocate storage shall indicate failure only by throwing an exception of a type that would match a handler (15.3) of type std: : bad_alloc (18.5.2.1).

4 A global allocation function is only called as the result of a new expression (5.3.4), or called directly using the function call syntax (5.2.2), or called indirectly through calls to the functions in the C++ standard library. [Note: in particular, a global allocation function is not called to allocate storage for objects with static storage duration (3.7.1), for objects of type std: :type_info (5.2.8), for the copy of an object thrown by a throw expression (15.1). -end note]

3.7.4.2 Deallocation functions

[basic.stc.dynamic.deallocation]
1 Deallocation functions shall be class member functions or global functions; a program is ill-formed if deallocation functions are declared in a namespace scope other than global scope or declared static in global scope.

2 Each deallocation function shall return void and its first parameter shall be void*. A deallocation function can have more than one parameter. If a class T has a member deallocation function named operator delete with exactly one parameter, then that function is a usual (non-placement) deallocation function. If class T does not declare such an operator delete but does declare a member deallocation function named operator delete with exactly two parameters, the second of which has type std: :size_t (18.1), then this function is a usual deallocation function. Similarly, if a class T has a member deallocation function named operator delete [] with exactly one parameter, then that function is a usual (non-placement) deallocation function. If class T does not declare such an operator delete [] but does declare a member deallocation function named operator delete[] with exactly two parameters, the second of which has type std: : size_t, then this function is a usual deallocation function. A deallocation function can be an instance of a function template. Neither the first parameter nor the return type shall depend on a template parameter. [Note: that is, a deallocation function template shall have a first parameter of type void* and a return type of void (as specified above). - end note] A deallocation function template shall have two or more function parameters. A template instance is never a usual deallocation function, regardless of its signature.

[^25]3 The value of the first argument supplied to a deallocation functions may be a null pointer value; if so, and if the deallocation function is one supplied in the standard library, the call has no effect. Otherwise, the value supplied to operator delete (void*) in the standard library shall be one of the values returned by a previous invocation of either operator new (std::size_t) or operator new(std::size_t, const std::nothrow_t\&) in the standard library, and the value supplied to operator delete[] (void*) in the standard library shall be one of the values returned by a previous invocation of either operator new[] (std::size_t) or operator new[] (std::size_t, const std: :nothrow_t\&) in the standard library.

4 If the argument given to a deallocation function in the standard library is a pointer that is not the null pointer value (4.10), the deallocation function shall deallocate the storage referenced by the pointer, rendering invalid all pointers referring to any part of the deallocated storage. The effect of using an invalid pointer value (including passing it to a deallocation function) is undefined. ${ }^{38)}$

3.7.5 Programmer-controlled garbage collection

[basic.stc.collect]
This section is a placeholder. The next C++ standard is intended to include support for programmer-controlled garbage collection. This feature is intended to provide automatic memory management, whereby that explicit delete/free is not required for all objects (used if and only if a programmer requires it). For snapshots of current draft proposals still under discussion and development, see:

- Transparent Garbage Collection for C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1943.pdf

3.7.6 Duration of subobjects

[basic.stc.inherit]

1 The storage duration of member subobjects, base class subobjects and array elements is that of their complete object (1.8).

3.8 Object Lifetime

[basic.life]
1 The lifetime of an object is a runtime property of the object. The lifetime of an object of type T begins when:
— storage with the proper alignment and size for type T is obtained, and

- if T is a class type and the constructor invoked to create the object is non-trivial (12.1), the principal constructor call (12.6.2) has completed. [Note: the initialization can be performed by a constructor call or, in the case of an aggregate with an implicitly-declared non-trivial default constructor, an aggregate initialization 8.5.1. -end note]

The lifetime of an object of type T ends when:
— if T is a class type with a non-trivial destructor (12.4), the destructor call starts, or

- the storage which the object occupies is reused or released.

2 [Note: the lifetime of an array object or of an object of POD type (3.9) starts as soon as storage with proper size and alignment is obtained, and its lifetime ends when the storage which the array or object occupies is reused or released. 12.6.2 describes the lifetime of base and member subobjects. - end note]

[^26]3 The properties ascribed to objects throughout this International Standard apply for a given object only during its lifetime. [Note: in particular, before the lifetime of an object starts and after its lifetime ends there are significant restrictions on the use of the object, as described below, in 12.6.2 and in 12.7. Also, the behavior of an object under construction and destruction might not be the same as the behavior of an object whose lifetime has started and not ended. 12.6.2 and 12.7 describe the behavior of objects during the construction and destruction phases. - end note]

4 A program may end the lifetime of any object by reusing the storage which the object occupies or by explicitly calling the destructor for an object of a class type with a non-trivial destructor. For an object of a class type with a non-trivial destructor, the program is not required to call the destructor explicitly before the storage which the object occupies is reused or released; however, if there is no explicit call to the destructor or if a delete-expression (5.3.5) is not used to release the storage, the destructor shall not be implicitly called and any program that depends on the side effects produced by the destructor has undefined behavior.

5 Before the lifetime of an object has started but after the storage which the object will occupy has been allocated ${ }^{39)}$ or, after the lifetime of an object has ended and before the storage which the object occupied is reused or released, any pointer that refers to the storage location where the object will be or was located may be used but only in limited ways. Such a pointer refers to allocated storage (3.7.4.2), and using the pointer as if the pointer were of type void*, is welldefined. Such a pointer may be dereferenced but the resulting lvalue may only be used in limited ways, as described below. If the object will be or was of a class type with a non-trivial destructor, and the pointer is used as the operand of a delete-expression, the program has undefined behavior. If the object will be or was of a non-POD class type, the program has undefined behavior if:

- the pointer is used to access a non-static data member or call a non-static member function of the object, or
- the pointer is implicitly converted (4.10) to a pointer to a base class type, or
- the pointer is used as the operand of a static_cast (5.2.9) (except when the conversion is to void*, or to void* and subsequently to char*, or unsigned char*).
- the pointer is used as the operand of a dynamic_cast (5.2.7). [Example:

```
#include <cstdlib>
struct B {
            virtual void f();
            void mutate();
            virtual ~}\mp@subsup{}{}{\prime}()
};
struct D1 : B { void f(); };
struct D2 : B { void f(); };
void B::mutate() {
    new (this) D2; // reuses storage - ends the lifetime of *this
    f(); // undefined behavior
    ... = this; // OK, this points to valid memory
}
void g() {
```

[^27]```
void* p = std::malloc(sizeof(D1) + sizeof(D2));
B* pb = new (p) D1;
pb->mutate();
&pb; // OK: pb points to valid memory
void* q = pb; // OK: pb points to valid memory
pb->f(); // undefined behavior, lifetime of *pb has ended
```

\}

- end example ]

6 Similarly, before the lifetime of an object has started but after the storage which the object will occupy has been allocated or, after the lifetime of an object has ended and before the storage which the object occupied is reused or released, any lvalue which refers to the original object may be used but only in limited ways. Such an lvalue refers to allocated storage (3.7.4.2), and using the properties of the lvalue which do not depend on its value is well-defined. If an lvalue-to-rvalue conversion (4.1) is applied to such an lvalue, the program has undefined behavior; if the original object will be or was of a non-POD class type, the program has undefined behavior if:

- the lvalue is used to access a non-static data member or call a non-static member function of the object, or
- the lvalue is implicitly converted (4.10) to a reference to a base class type, or
- the lvalue is used as the operand of a static_cast (5.2.9) except when the conversion is ultimately to $c v$ char\& or $c v$ unsigned char\& ), or
- the lvalue is used as the operand of a dynamic_cast (5.2.7) or as the operand of typeid.

7 If, after the lifetime of an object has ended and before the storage which the object occupied is reused or released, a new object is created at the storage location which the original object occupied, a pointer that pointed to the original object, a reference that referred to the original object, or the name of the original object will automatically refer to the new object and, once the lifetime of the new object has started, can be used to manipulate the new object, if:

- the storage for the new object exactly overlays the storage location which the original object occupied, and
- the new object is of the same type as the original object (ignoring the top-level cv-qualifiers), and
- the type of the original object is not const-qualified, and, if a class type, does not contain any non-static data member whose type is const-qualified or a reference type, and
- the original object was a most derived object (1.8) of type T and the new object is a most derived object of type T (that is, they are not base class subobjects). [ Example:

```
struct C {
 int i;
 void f();
 const C& operator=(const C&);
};
const C& C::operator=(const C& other)
{
 if (this != &other) {
 this-> ~C(); // lifetime of *this ends
 new (this) C(other); // new object of type C created
 f(); // well-defined
```

Draft

```
}
return *this;
}
C c1;
C c2;
c1 = c2; // well-defined
c1.f();
```

// well-defined
// well-defined; c1 refers to a new object of type C

```
- end example]
```

```
- end example]
```

8 If a program ends the lifetime of an object of type T with static (3.7.1) or automatic (3.7.3) storage duration and if T has a non-trivial destructor, ${ }^{40)}$ the program must ensure that an object of the original type occupies that same storage location when the implicit destructor call takes place; otherwise the behavior of the program is undefined. This is true even if the block is exited with an exception. [ Example:

```
class T { };
struct B {
 ~
};
void h() {
 B b;
 new (&b) T;
}
 // undefined behavior at block exit
- end example]
```

9 Creating a new object at the storage location that a const object with static or automatic storage duration occupies or, at the storage location that such a const object used to occupy before its lifetime ended results in undefined behavior. [ Example:

```
struct B {
 B();
 ~
};
const B b;
void h() {
 b. ~B();
 new (&b) const B; // undefined behavior
}
```

- end example ]

[^28]
### 3.9 Types

## [basic.types]

1 [Note: 3.9 and the subclauses thereof impose requirements on implementations regarding the representation of types. There are two kinds of types: fundamental types and compound types. Types describe objects (1.8), references (8.3.2), or functions (8.3.5). - end note ]

2 For any object (other than a base-class subobject) of POD type T, whether or not the object holds a valid value of type T, the underlying bytes (1.7) making up the object can be copied into an array of char or unsigned char. ${ }^{41)}$ If the content of the array of char or unsigned char is copied back into the object, the object shall subsequently hold its original value. [Example:

```
#define N sizeof(T)
char buf[N];
T obj; // obj initialized to its original value
std::memcpy(buf, &obj, N); // between these two calls to std::memcpy,
// obj might be modified
// at this point, each subobject of obj of scalar type
// holds its original value
```


## - end example ]

3 For any POD type T, if two pointers to T point to distinct T objects obj1 and obj2, where neither obj1 nor obj2 is a base-class subobject, if the value of obj1 is copied into obj2, using the std: :memcpy library function, obj2 shall subsequently hold the same value as obj1. [Example:

```
T* t1p;
T* t2p;
```

// provided that t 2 p points to an initialized object ... std: :memcpy ( $\mathrm{t} 1 \mathrm{p}, \mathrm{t} 2 \mathrm{p}$, sizeof $(\mathrm{T})$ ) ;// at this point, every subobject of POD type in $* \mathrm{t} 1 \mathrm{p}$ contains
// the same value as the corresponding subobject in $* \mathrm{t} 2 \mathrm{p}$

## - end example]

4 The object representation of an object of type T is the sequence of $N$ unsigned char objects taken up by the object of type T, where $N$ equals sizeof (T). The value representation of an object is the set of bits that hold the value of type T. For POD types, the value representation is a set of bits in the object representation that determines a value, which is one discrete element of an implementation-defined set of values. ${ }^{42)}$
5 Object types have alignment requirements (3.9.1, 3.9.2). The alignment of a complete object type is an implementationdefined integer value representing a number of bytes; an object is allocated at an address that meets the alignment requirements of its object type.

6 A class that has been declared but not defined, or an array of unknown size or of incomplete element type, is an incompletely-defined object type. ${ }^{43)}$ Incompletely-defined object types and the void types are incomplete types (3.9.1). Objects shall not be defined to have an incomplete type.

7 A class type (such as "class X") might be incomplete at one point in a translation unit and complete later on; the type "class $X$ " is the same type at both points. The declared type of an array object might be an array of incomplete class

[^29]type and therefore incomplete; if the class type is completed later on in the translation unit, the array type becomes complete; the array type at those two points is the same type. The declared type of an array object might be an array of unknown size and therefore be incomplete at one point in a translation unit and complete later on; the array types at those two points ("array of unknown bound of T" and "array of N T") are different types. The type of a pointer to array of unknown size, or of a type defined by a typedef declaration to be an array of unknown size, cannot be completed.
[ Example:

```
class X;
extern X* xp; // xp is a pointer to an incomplete type
extern int arr[]; // the type of arr is incomplete
typedef int UNKA[]; // UNKA is an incomplete type
UNKA* arrp;
UNKA** arrpp;
void foo()
{
 xp++; // ill-formed: X is incomplete
 arrp++; // ill-formed: incomplete type
 arrpp++; // OK: sizeof UNKA* is known
}
struct X { int i; }; // now X is a complete type
int arr[10]; // now the type of arr is complete
X x;
void bar()
{
 xp = &x; // OK; type is "pointer to X"
 arrp = &arr; // ill-formed: different types
 xp++; // OK: X is complete
 arrp++; // ill-formed: UNKA can't be completed
}
- end example]
```

8 [Note: the rules for declarations and expressions describe in which contexts incomplete types are prohibited. -end note]

9 An object type is a (possibly cv-qualified) type that is not a function type, not a reference type, and not a void type.
10 Arithmetic types (3.9.1), enumeration types, pointer types, and pointer to member types (3.9.2), and cv-qualified versions of these types (3.9.3) are collectively called scalar types. Scalar types, POD-struct types, POD-union types (clause 9), arrays of such types and cv-qualified versions of these types (3.9.3) are collectively called POD types.
11 If two types T1 and T2 are the same type, then T1 and T2 are layout-compatible types. [Note: Layout-compatible enumerations are described in 7.2. Layout-compatible POD-structs and POD-unions are described in 9.2. -end note]

### 3.9.1 Fundamental types

[basic.fundamental]
1 Objects declared as characters (char) shall be large enough to store any member of the implementation's basic character set. If a character from this set is stored in a character object, the integral value of that character object is equal to the
value of the single character literal form of that character. It is implementation-defined whether a char object can hold negative values. Characters can be explicitly declared unsigned or signed. Plain char, signed char, and unsigned char are three distinct types. A char, a signed char, and an unsigned char occupy the same amount of storage and have the same alignment requirements (3.9); that is, they have the same object representation. For character types, all bits of the object representation participate in the value representation. For unsigned character types, all possible bit patterns of the value representation represent numbers. These requirements do not hold for other types. In any particular implementation, a plain char object can take on either the same values as a signed char or an unsigned char; which one is implementation-defined.

2 There are five standard signed integer types: "signed char", "short int", "int", "long int", and "long long int". In this list, each type provides at least as much storage as those preceding it in the list. There may also be implementation-defined extended signed integer types. The standard and extended signed integer types are collectively called signed integer types. Plain ints have the natural size suggested by the architecture of the execution environment ${ }^{44)}$; the other signed integer types are provided to meet special needs.

3 For each of the standard signed integer types, there exists a corresponding (but different) standard unsigned integer type: "unsigned char", "unsigned short int", "unsigned int", "unsigned long int", and "unsigned long long int", each of which occupies the same amount of storage and has the same alignment requirements (3.9) as the corresponding signed integer type ${ }^{45)}$; that is, each signed integer type has the same object representation as its corresponding unsigned integer type. Likewise, for each of the extended signed integer types there exists a corresponding extended unsigned integer type with the same amount of storage and alignment requirements. The standard and extended unsigned integer types are collectively called unsigned integer types. The range of nonnegative values of a signed integer type is a subrange of the corresponding unsigned integer type, and the value representation of each corresponding signed/unsigned type shall be the same. The standard signed integer types and standard unsigned integer types are collectively called the standard integer types, and the extended signed integer types and extended unsigned integer types are collectively called the extended integer types.

4 Unsigned integers, declared unsigned, shall obey the laws of arithmetic modulo $2^{n}$ where $n$ is the number of bits in the value representation of that particular size of integer. ${ }^{46)}$

5 Type wchar_t is a distinct type whose values can represent distinct codes for all members of the largest extended character set specified among the supported locales (22.1.1). Type wchar_t shall have the same size, signedness, and alignment requirements (3.9) as one of the other integral types, called its underlying type.
6 Values of type bool are either true or false. ${ }^{47)}$ [Note: there are no signed, unsigned, short, or long bool types or values. - end note ] As described below, bool values behave as integral types. Values of type bool participate in integral promotions (4.5).

7 Types bool, char, wchar_t, and the signed and unsigned integer types are collectively called integral types. ${ }^{48)}$ A synonym for integral type is integer type. The representations of integral types shall define values by use of a pure binary numeration system. ${ }^{49 \text { ) }}$ [Example: this International Standard permits 2's complement, 1's complement and

[^30]signed magnitude representations for integral types. - end example ]
8 There are three floating point types: float, double, and long double. The type double provides at least as much precision as float, and the type long double provides at least as much precision as double. The set of values of the type float is a subset of the set of values of the type double; the set of values of the type double is a subset of the set of values of the type long double. The value representation of floating-point types is implementation-defined. Integral and floating types are collectively called arithmetic types. Specializations of the standard template std: :numeric_limits (18.2) shall specify the maximum and minimum values of each arithmetic type for an implementation.
9 The void type has an empty set of values. The void type is an incomplete type that cannot be completed. It is used as the return type for functions that do not return a value. Any expression can be explicitly converted to type $c v$ void (5.4). An expression of type void shall be used only as an expression statement (6.2), as an operand of a comma expression (5.18), as a second or third operand of ?: (5.16), as the operand of typeid, or as the expression in a return statement (6.6.3) for a function with the return type void.

10 [Note: even if the implementation defines two or more basic types to have the same value representation, they are nevertheless different types. - end note]

### 3.9.2 Compound types

[basic.compound]
1 Compound types can be constructed in the following ways:

- arrays of objects of a given type, 8.3.4;
- functions, which have parameters of given types and return void or references or objects of a given type, 8.3.5;
— pointers to void or objects or functions (including static members of classes) of a given type, 8.3.1;
- references to objects or functions of a given type, 8.3.2. There are two types of references:


## - lvalue reference

- rvalue reference
- classes containing a sequence of objects of various types (clause 9), a set of types, enumerations and functions for manipulating these objects (9.3), and a set of restrictions on the access to these entities (clause 11);
- unions, which are classes capable of containing objects of different types at different times, 9.5;
- enumerations, which comprise a set of named constant values. Each distinct enumeration constitutes a different enumerated type, 7.2;
- pointers to non-static ${ }^{50)}$ class members, which identify members of a given type within objects of a given class, 8.3.3.

2 These methods of constructing types can be applied recursively; restrictions are mentioned in 8.3.1, 8.3.4, 8.3.5, and 8.3.2.

3 A pointer to objects of type T is referred to as a "pointer to T." [ Example: a pointer to an object of type int is referred to as "pointer to int" and a pointer to an object of class X is called a "pointer to X ." - end example ] Except for pointers to static members, text referring to "pointers" does not apply to pointers to members. Pointers to incomplete types are allowed although there are restrictions on what can be done with them (3.9). A valid value of an object pointer

[^31]type represents either the address of a byte in memory (1.7) or a null pointer (4.10). If an object of type T is located at an address A , a pointer of type $c v \mathrm{~T} *$ whose value is the address A is said to point to that object, regardless of how the value was obtained. [Note: for instance, the address one past the end of an array (5.7) would be considered to point to an unrelated object of the array's element type that might be located at that address. - end note ] The value representation of pointer types is implementation-defined. Pointers to cv-qualified and cv-unqualified versions (3.9.3) of layout-compatible types shall have the same value representation and alignment requirements (3.9).

4 Objects of cv-qualified (3.9.3) or cv-unqualified type void* (pointer to void), can be used to point to objects of unknown type. A void* shall be able to hold any object pointer. A cv-qualified or cv-unqualified (3.9.3) void* shall have the same representation and alignment requirements as a cv-qualified or cv-unqualified char*.

### 3.9.3 CV-qualifiers

## [basic.type.qualifier]

1 A type mentioned in 3.9.1 and 3.9.2 is a cv-unqualified type. Each type which is a cv-unqualified complete or incomplete object type or is void (3.9) has three corresponding cv-qualified versions of its type: a const-qualified version, a volatilequalified version, and a const-volatile-qualified version. The term object type (1.8) includes the cv-qualifiers specified when the object is created. The presence of a const specifier in a decl-specifier-seq declares an object of const-qualified object type; such object is called a const object. The presence of a volatile specifier in a decl-specifier-seq declares an object of volatile-qualified object type; such object is called a volatile object. The presence of both cv-qualifiers in a decl-specifier-seq declares an object of const-volatile-qualified object type; such object is called a const volatile object. The cv-qualified or cv-unqualified versions of a type are distinct types; however, they shall have the same representation and alignment requirements (3.9). ${ }^{51)}$

2 A compound type (3.9.2) is not cv-qualified by the cv-qualifiers (if any) of the types from which it is compounded. Any cv-qualifiers applied to an array type affect the array element type, not the array type (8.3.4).

3 Each non-static, non-mutable, non-reference data member of a const-qualified class object is const-qualified, each nonstatic, non-reference data member of a volatile-qualified class object is volatile-qualified and similarly for members of a const-volatile class. See 8.3.5 and 9.3.2 regarding cv-qualified function types.

4 There is a (partial) ordering on cv-qualifiers, so that a type can be said to be more $c v$-qualified than another. Table 7 shows the relations that constitute this ordering.

Table 7: relations on const and volatile

| no $c v$-qualifier | $<$ | const |
| :---: | :---: | :---: |
| no $c v$-qualifier | $<$ | volatile |
| no $c v$-qualifier | $<$ | const volatile |
| const | $<$ | const volatile |
| volatile | $<$ | const volatile |

5 In this International Standard, the notation $c v$ (or $c v 1, c v 2$, etc.), used in the description of types, represents an arbitrary set of cv-qualifiers, i.e., one of \{const \}, \{volatile \}, \{const, volatile\}, or the empty set. Cv-qualifiers applied to an array type attach to the underlying element type, so the notation " $c v \mathrm{~T}$," where T is an array type, refers to an array whose elements are so-qualified. Such array types can be said to be more (or less) cv-qualified than other types based on the cv -qualification of the underlying element types.

[^32]
### 3.10 Lvalues and rvalues

1 Every expression is either an lvalue or an rvalue.
2 An lvalue refers to an object or function. Some rvalue expressions-those of (possibly cv-qualified) class or array type-also refer to objects. ${ }^{52)}$

3 [ Note: some built-in operators and function calls yield lvalues. [Example: if E is an expression of pointer type, then $* \mathrm{E}$ is an lvalue expression referring to the object or function to which E points. As another example, the function

```
int& f();
```

yields an lvalue, so the call f() is an lvalue expression. - end example ] - end note ]
4 [Note: some built-in operators expect lvalue operands. [Example: built-in assignment operators all expect their lefthand operands to be lvalues. - end example ] Other built-in operators yield rvalues, and some expect them. [Example: the unary and binary + operators expect rvalue arguments and yield rvalue results. - end example] The discussion of each built-in operator in clause 5 indicates whether it expects lvalue operands and whether it yields an lvalue. -end note]

5 The result of calling a function that does not return an lvalue reference is an rvalue. User defined operators are functions, and whether such operators expect or yield lvalues is determined by their parameter and return types.

6 An expression which holds a temporary object resulting from a cast to a type other than an lvalue reference type is an rvalue (this includes the explicit creation of an object using functional notation (5.2.3)).

7 Whenever an lvalue appears in a context where an rvalue is expected, the lvalue is converted to an rvalue; see 4.1, 4.2, and 4.3.

8 The discussion of reference initialization in 8.5 .3 and of temporaries in 12.2 indicates the behavior of lvalues and rvalues in other significant contexts.

9 Class rvalues can have cv-qualified types; non-class rvalues always have cv-unqualified types. Rvalues shall always have complete types or the void type; in addition to these types, lvalues can also have incomplete types.

10 An lvalue for an object is necessary in order to modify the object except that an rvalue of class type can also be used to modify its referent under certain circumstances. [ Example: a member function called for an object (9.3) can modify the object. - end example ]

11 Functions cannot be modified, but pointers to functions can be modifiable.
12 A pointer to an incomplete type can be modifiable. At some point in the program when the pointed to type is complete, the object at which the pointer points can also be modified.

13 The referent of a const-qualified expression shall not be modified (through that expression), except that if it is of class type and has a mutable component, that component can be modified (7.1.5.1).

14 If an expression can be used to modify the object to which it refers, the expression is called modifiable. A program that attempts to modify an object through a nonmodifiable lvalue or rvalue expression is ill-formed.

[^33]15 If a program attempts to access the stored value of an object through an lvalue of other than one of the following types the behavior is undefined ${ }^{53)}$

- the dynamic type of the object,
- a cv-qualified version of the dynamic type of the object,
- a type similar (as defined in 4.4) to the dynamic type of the object,
— a type that is the signed or unsigned type corresponding to the dynamic type of the object,
- a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type of the object,
- an aggregate or union type that includes one of the aforementioned types among its members (including, recursively, a member of a subaggregate or contained union),
- a type that is a (possibly cv-qualified) base class type of the dynamic type of the object,
- a char or unsigned char type.

[^34]
## Chapter 4 Standard conversions

1 Standard conversions are implicit conversions defined for built-in types. Clause 4 enumerates the full set of such conversions. A standard conversion sequence is a sequence of standard conversions in the following order:

- Zero or one conversion from the following set: lvalue-to-rvalue conversion, array-to-pointer conversion, and function-to-pointer conversion.
- Zero or one conversion from the following set: integral promotions, floating point promotion, integral conversions, floating point conversions, floating-integral conversions, pointer conversions, pointer to member conversions, and boolean conversions.
- Zero or one qualification conversion.
[ Note: a standard conversion sequence can be empty, i.e., it can consist of no conversions. - end note] A standard conversion sequence will be applied to an expression if necessary to convert it to a required destination type.
2 [Note: expressions with a given type will be implicitly converted to other types in several contexts:
- When used as operands of operators. The operator's requirements for its operands dictate the destination type (clause 5).
- When used in the condition of an if statement or iteration statement (6.4, 6.5). The destination type is bool.
- When used in the expression of a switch statement. The destination type is integral (6.4).
- When used as the source expression for an initialization (which includes use as an argument in a function call and use as the expression in a return statement). The type of the entity being initialized is (generally) the destination type. See 8.5, 8.5.3.
—end note]
3 An expression e can be implicitly converted to a type T if and only if the declaration $\mathrm{T} t=\mathrm{e}$; is well-formed, for some invented temporary variable $t$ (8.5). The effect of the implicit conversion is the same as performing the declaration and initialization and then using the temporary variable as the result of the conversion. The result is an lvalue if T is an lvalue reference type (8.3.2), and an rvalue otherwise. The expression e is used as an lvalue if and only if the initialization uses it as an lvalue.

4 [ Note: For user-defined types, user-defined conversions are considered as well; see 12.3. In general, an implicit conversion sequence (13.3.3.1) consists of a standard conversion sequence followed by a user-defined conversion followed by another standard conversion sequence.

5 There are some contexts where certain conversions are suppressed. For example, the lvalue-to-rvalue conversion is not done on the operand of the unary \& operator. Specific exceptions are given in the descriptions of those operators and

```
contexts. - end note]
```


### 4.1 Lvalue-to-rvalue conversion

[conv.lval]
1 An lvalue (3.10) of a non-function, non-array type T can be converted to an rvalue. If T is an incomplete type, a program that necessitates this conversion is ill-formed. If the object to which the lvalue refers is not an object of type T and is not an object of a type derived from T, or if the object is uninitialized, a program that necessitates this conversion has undefined behavior. If $T$ is a non-class type, the type of the rvalue is the cv -unqualified version of T . Otherwise, the type of the rvalue is $\mathrm{T} .{ }^{54}$ )

2 When an lvalue-to-rvalue conversion occurs within the operand of sizeof (5.3.3) the value contained in the referenced object is not accessed, since that operator does not evaluate its operand. Otherwise, if the lvalue has a class type, the conversion copy-initializes a temporary of type T from the lvalue and the result of the conversion is an rvalue for the temporary. Otherwise, the value contained in the object indicated by the lvalue is the rvalue result.

3 [ Note: See also 3.10. -end note ]

### 4.2 Array-to-pointer conversion

[conv.array]
1 An lvalue or rvalue of type "array of N T" or "array of unknown bound of T" can be converted to an rvalue of type "pointer to T". The result is a pointer to the first element of the array.

2 A string literal (2.13.4) that is not a wide string literal can be converted to an rvalue of type "pointer to char"; a wide string literal can be converted to an rvalue of type "pointer to wchar_t". In either case, the result is a pointer to the first element of the array. This conversion is considered only when there is an explicit appropriate pointer target type, and not when there is a general need to convert from an lvalue to an rvalue. [Note: this conversion is deprecated. See Annex D. -end note ] For the purpose of ranking in overload resolution (13.3.3.1.1), this conversion is considered an array-to-pointer conversion followed by a qualification conversion (4.4). [Example: "abc" is converted to "pointer to const char" as an array-to-pointer conversion, and then to "pointer to char" as a qualification conversion. -end example]

### 4.3 Function-to-pointer conversion <br> [conv.func]

1 An lvalue of function type T can be converted to an rvalue of type "pointer to T ." The result is a pointer to the function. ${ }^{55)}$
2 [Note: See 13.4 for additional rules for the case where the function is overloaded. - end note]

### 4.4 Qualification conversions

[conv.qual]
1 An rvalue of type "pointer to $c v 1 \mathrm{~T}$ " can be converted to an rvalue of type "pointer to $c v 2 \mathrm{~T}$ " if " $c v 2 \mathrm{~T}$ " is more cv-qualified than "cvl T ."

2 An rvalue of type "pointer to member of X of type $c v 1 \mathrm{~T}$ " can be converted to an rvalue of type "pointer to member of X of type $c v 2 \mathrm{~T}$ " if " $c v 2 \mathrm{~T}$ " is more $c v$-qualified than " $c v 1 \mathrm{~T}$."
3 [Note: Function types (including those used in pointer to member function types) are never cv-qualified (8.3.5). -end note]

[^35]4 A conversion can add cv-qualifiers at levels other than the first in multi-level pointers, subject to the following rules: ${ }^{.56)}$
Two pointer types T1 and T2 are similar if there exists a type $T$ and integer $n>0$ such that:
$T 1$ is $c v_{1,0}$ pointer to $c v_{1,1}$ pointer to $\cdots c v_{1, n-1}$ pointer to $c v_{1, n} T$
and
$T 2$ is $c v_{2,0}$ pointer to $c v_{2,1}$ pointer to $\cdots c v_{2, n-1}$ pointer to $c v_{2, n} T$
where each $c v_{i, j}$ is const, volatile, const volatile, or nothing. The n-tuple of cv-qualifiers after the first in a pointer type, e.g., $c v_{1,1}, c v_{1,2}, \cdots, c v_{1, n}$ in the pointer type $T 1$, is called the $c v$-qualification signature of the pointer type. An expression of type $T 1$ can be converted to type $T 2$ if and only if the following conditions are satisfied:

- the pointer types are similar.
- for every $j>0$, if const is in $c v_{1, j}$ then const is in $c v_{2, j}$, and similarly for volatile.
- if the $c v_{1, j}$ and $c v_{2, j}$ are different, then const is in every $c v_{2, k}$ for $0<k<j$.
[ Note: if a program could assign a pointer of type $\mathrm{T} * *$ to a pointer of type const $\mathrm{T} * *$ (that is, if line //1 below was allowed), a program could inadvertently modify a const object (as it is done on line $/ / 2$ ). For example,

```
int main() {
 const char c = 'c';
 char* pc;
 const char** pcc = &pc; // 1: not allowed
 *pcc = &c;
 *pc = 'C'; // 2: modifies a const object
}
- end note]
```

5 A multi-level pointer to member type, or a multi-level mixed pointer and pointer to member type has the form:
$c v_{0} P_{0}$ to $c v_{1} P_{1}$ to $\cdots c v_{n-1} P_{n-1}$ to $c v_{n} T$
where $P_{i}$ is either a pointer or pointer to member and where $T$ is not a pointer type or pointer to member type.
6 Two multi-level pointer to member types or two multi-level mixed pointer and pointer to member types T1 and T2 are similar if there exists a type $T$ and integer $n>0$ such that:
$T 1$ is $c v_{1,0} P_{0}$ to $c v_{1,1} P_{1}$ to $\cdots c v_{1, n-1} P_{n-1}$ to $c v_{1, n} T$
and
$T 2$ is $c v_{2,0} P_{0}$ to $c v_{2,1} P_{1}$ to $\cdots c v_{2, n-1} P_{n-1}$ to $c v_{2, n} T$
7 For similar multi-level pointer to member types and similar multi-level mixed pointer and pointer to member types, the rules for adding cv-qualifiers are the same as those used for similar pointer types.

[^36]
### 4.5 Integral promotions

1 An rvalue of an integer type other than bool or wchar_t whose integer conversion rank (4.13) is less than the rank of int can be converted to an rvalue of type int if int can represent all the values of the source type; otherwise, the source rvalue can be converted to an rvalue of type unsigned int.

2 An rvalue of type wchar_t (3.9.1) can be converted to an rvalue of the first of the following types that can represent all the values of its underlying type: int, unsigned int, long int, unsigned long int, long long int, or unsigned long long int. If none of the types in that list can represent all the values of its underlying type, an rvalue of type wchar_t can be converted to an rvalue of its underlying type. An rvalue of an enumeration type (7.2) can be converted to an rvalue of the first of the following types that can represent all the values of the enumeration (i.e. the values in the range $b_{\min }$ to $b_{\max }$ as described in 7.2: int, unsigned int, long int, unsigned long int, long long int, or unsigned long long int. If none of the types in that list can represent all the values of the enumeration, an rvalue of an enumeration type can be converted to an rvalue of the extended integer type with lowest integer conversion rank (4.13) greater than the rank of long long in which all the values of the enumeration can be represented. If there are two such extended types, the signed one is chosen.

3 An rvalue for an integral bit-field (9.6) can be converted to an rvalue of type int if int can represent all the values of the bit-field; otherwise, it can be converted to unsigned int if unsigned int can represent all the values of the bit-field. If the bit-field is larger yet, no integral promotion applies to it. If the bit-field has an enumerated type, it is treated as any other value of that type for promotion purposes.
4 An rvalue of type bool can be converted to an rvalue of type int, with false becoming zero and true becoming one.
5 These conversions are called integral promotions.

### 4.6 Floating point promotion

[conv.fpprom]
1 An rvalue of type float can be converted to an rvalue of type double. The value is unchanged.
2 This conversion is called floating point promotion.

### 4.7 Integral conversions

[conv.integral]
1 An rvalue of an integer type can be converted to an rvalue of another integer type. An rvalue of an enumeration type can be converted to an rvalue of an integer type.

2 If the destination type is unsigned, the resulting value is the least unsigned integer congruent to the source integer (modulo $2^{n}$ where $n$ is the number of bits used to represent the unsigned type). [Note: In a two's complement representation, this conversion is conceptual and there is no change in the bit pattern (if there is no truncation). - end note ]

3 If the destination type is signed, the value is unchanged if it can be represented in the destination type (and bit-field width); otherwise, the value is implementation-defined.
4 If the destination type is bool, see 4.12. If the source type is bool, the value false is converted to zero and the value true is converted to one.
5 The conversions allowed as integral promotions are excluded from the set of integral conversions.

### 4.8 Floating point conversions

[conv.double]
1 An rvalue of floating point type can be converted to an rvalue of another floating point type. If the source value can be exactly represented in the destination type, the result of the conversion is that exact representation. If the source value
is between two adjacent destination values, the result of the conversion is an implementation-defined choice of either of those values. Otherwise, the behavior is undefined.

2 The conversions allowed as floating point promotions are excluded from the set of floating point conversions.

### 4.9 Floating-integral conversions

## [conv.fpint]

1 An rvalue of a floating point type can be converted to an rvalue of an integer type. The conversion truncates; that is, the fractional part is discarded. The behavior is undefined if the truncated value cannot be represented in the destination type. [Note: If the destination type is bool, see 4.12. -end note]
2 An rvalue of an integer type or of an enumeration type can be converted to an rvalue of a floating point type. The result is exact if possible. Otherwise, it is an implementation-defined choice of either the next lower or higher representable value. [Note: loss of precision occurs if the integral value cannot be represented exactly as a value of the floating type. -end note ] If the source type is bool, the value false is converted to zero and the value true is converted to one.

### 4.10 Pointer conversions

[conv.ptr]
1 A null pointer constant is an integral constant expression (5.19) rvalue of integer type that evaluates to zero. A null pointer constant can be converted to a pointer type; the result is the null pointer value of that type and is distinguishable from every other value of pointer to object or pointer to function type. Two null pointer values of the same type shall compare equal. The conversion of a null pointer constant to a pointer to cv-qualified type is a single conversion, and not the sequence of a pointer conversion followed by a qualification conversion (4.4).

2 An rvalue of type "pointer to $c v \mathrm{~T}$," where T is an object type, can be converted to an rvalue of type "pointer to $c v$ void". The result of converting a "pointer to $c v \mathrm{~T}$ " to a "pointer to $c v$ void" points to the start of the storage location where the object of type $T$ resides, as if the object is a most derived object (1.8) of type $T$ (that is, not a base class subobject). The null pointer value is converted to the null pointer value of the destination type.
3 An rvalue of type "pointer to $c v \mathrm{D}$ ", where D is a class type, can be converted to an rvalue of type "pointer to $c v \mathrm{~B}$ ", where $B$ is a base class (clause 10) of $D$. If $B$ is an inaccessible (clause 11) or ambiguous (10.2) base class of $D$, a program that necessitates this conversion is ill-formed. The result of the conversion is a pointer to the base class subobject of the derived class object. The null pointer value is converted to the null pointer value of the destination type.

### 4.11 Pointer to member conversions

## [conv.mem]

1 A null pointer constant (4.10) can be converted to a pointer to member type; the result is the null member pointer value of that type and is distinguishable from any pointer to member not created from a null pointer constant. Two null member pointer values of the same type shall compare equal. The conversion of a null pointer constant to a pointer to member of cv-qualified type is a single conversion, and not the sequence of a pointer to member conversion followed by a qualification conversion (4.4).
2 An rvalue of type "pointer to member of B of type $c v \mathrm{~T}$ ", where B is a class type, can be converted to an rvalue of type "pointer to member of $D$ of type $c v T$ ", where $D$ is a derived class (clause 10) of B. If B is an inaccessible (clause 11), ambiguous (10.2), or virtual (10.1) base class of $D$, or a base class of a virtual base class of $D$, a program that necessitates this conversion is ill-formed. The result of the conversion refers to the same member as the pointer to member before the conversion took place, but it refers to the base class member as if it were a member of the derived class. The result refers to the member in D's instance of B. Since the result has type "pointer to member of D of type $c v T$ ", it can be dereferenced with a $D$ object. The result is the same as if the pointer to member of $B$ were dereferenced with the $B$ subobject of $D$. The
null member pointer value is converted to the null member pointer value of the destination type. ${ }^{57)}$

### 4.12 Boolean conversions

1 An rvalue of arithmetic, enumeration, pointer, or pointer to member type can be converted to an rvalue of type bool. A zero value, null pointer value, or null member pointer value is converted to false any other value is converted to true.

### 4.13 Integer conversion rank

1 Every integer type has an integer conversion rank defined as follows:

- No two signed integer types shall have the same rank, even if they have the same represesentation.
- The rank of a signed integer type shall be greater than the rank of any signed integer type with a smaller size.
- The rank of long long int shall be greater than the rank of long int, which shall be greater than the rank of int, which shall be greater than the rank of short int, which shall be greater than the rank of signed char.
- The rank of any unsigned integer type shall equal the rank of the corresponding signed integer type.
- The rank of any standard integer type shall be greater than the rank of any extended integer type with the same size.
- the rank of char shall equal the rank of signed char and unsigned char.
- The rank of bool shall be less than the rank of all other standard integer types.
- The rank of wchar_t shall equal the rank of its underlying type (3.9.1).
- The rank of any extended signed integer type relative to another extended signed integer type with the same size is implementation-defined, but still subject to the other rules for determining the integer conversion rank.
- For all integer types $\mathrm{T} 1, \mathrm{~T} 2$, and T 3 , if T 1 has greater rank than T 2 and T 2 has greater rank than T 3 , then T 1 shall have greater rank than T3.
[Note: The integer conversion rank is used in the definition of the integral promotions (4.5) and the usual arithmetic conversions (5). -end note ]

[^37]
## Chapter 5 Expressions

1 [Note: Clause 5 defines the syntax, order of evaluation, and meaning of expressions. An expression is a sequence of operators and operands that specifies a computation. An expression can result in a value and can cause side effects.
2 Operators can be overloaded, that is, given meaning when applied to expressions of class type (clause 9) or enumeration type (7.2). Uses of overloaded operators are transformed into function calls as described in 13.5. Overloaded operators obey the rules for syntax specified in clause 5, but the requirements of operand type, lvalue, and evaluation order are replaced by the rules for function call. Relations between operators, such as ++ a meaning $a+=1$, are not guaranteed for overloaded operators (13.5), and are not guaranteed for operands of type bool. - end note ]

3 Clause 5 defines the effects of operators when applied to types for which they have not been overloaded. Operator overloading shall not modify the rules for the built-in operators, that is, for operators applied to types for which they are defined by this Standard. However, these built-in operators participate in overload resolution, and as part of that process user-defined conversions will be considered where necessary to convert the operands to types appropriate for the builtin operator. If a built-in operator is selected, such conversions will be applied to the operands before the operation is considered further according to the rules in clause 5; see 13.3.1.2, 13.6.

4 Except where noted, the order of evaluation of operands of individual operators and subexpressions of individual expressions, and the order in which side effects take place, is unspecified. ${ }^{58)}$ Between the previous and next sequence point a scalar object shall have its stored value modified at most once by the evaluation of an expression. Furthermore, the prior value shall be accessed only to determine the value to be stored. The requirements of this paragraph shall be met for each allowable ordering of the subexpressions of a full expression; otherwise the behavior is undefined. [Example:

```
i = v[i++]; // the behavior is undefined
i = 7, i++, i++; // i becomes 9
i = ++i + 1; // the behavior is undefined
i = i + 1; // the value of i is incremented
```

```
- end example]
```

```
- end example]
```

5 If during the evaluation of an expression, the result is not mathematically defined or not in the range of representable values for its type, the behavior is undefined, unless such an expression appears where an integral constant expression is required (5.19), in which case the program is ill-formed. [Note: most existing implementations of C++ ignore integer overflows. Treatment of division by zero, forming a remainder using a zero divisor, and all floating point exceptions vary among machines, and is usually adjustable by a library function. - end note ]
6 If an expression initially has the type "lvalue reference to T " (8.3.2, 8.5.3), the type is adjusted to T prior to any further analysis, the expression designates the object or function denoted by the lvalue reference, and the expression is an lvalue.

[^38]7 If an expression initially has the type "rvalue reference to T" (8.3.2, 8.5.3), the type is adjusted to " T " prior to any further analysis, and the expression designates the object or function denoted by the rvalue reference. If the expression is the result of calling a function, whether implicitly or explicitly, it is an rvalue; otherwise, it is an lvalue. [Note: In general, the effect of this rule is that named rvalue references are treated as lvalues and unnamed rvalue references are treated as rvalues. - end note]

## [ Example:

```
struct A {};
A&& operator+(A, A);
A&& f();
A a;
A&& ar = a;
```

The expressions $f()$ and $a+$ a are rvalues of type A. The expression ar is an lvalue of type A. - end example ]
8 An expression designating an object is called an object-expression.
9 Whenever an lvalue expression appears as an operand of an operator that expects an rvalue for that operand, the lvalue-torvalue (4.1), array-to-pointer (4.2), or function-to-pointer (4.3) standard conversions are applied to convert the expression to an rvalue. [Note: because cv-qualifiers are removed from the type of an expression of non-class type when the expression is converted to an rvalue, an lvalue expression of type const int can, for example, be used where an rvalue expression of type int is required. -end note ]

10 Many binary operators that expect operands of arithmetic or enumeration type cause conversions and yield result types in a similar way. The purpose is to yield a common type, which is also the type of the result. This pattern is called the usual arithmetic conversions, which are defined as follows:

- If either operand is of type long double, the other shall be converted to long double.
- Otherwise, if either operand is double, the other shall be converted to double.
- Otherwise, if either operand is float, the other shall be converted to float.
- Otherwise, the integral promotions (4.5) shall be performed on both operands. ${ }^{59)}$ Then the following rules shall be applied to the promoted operands:
- If both operands have the same type, no further conversion is needed.
- Otherwise, if both operands have signed integer types or both have unsigned integer types, the operand with the type of lesser integer conversion rank shall be converted to the type of the operand with greater rank.
- Otherwise, if the operand that has unsigned integer type has rank greater than or equal to the rank of the type of the other operand, the operand with signed integer type shall be converted to the type of the operand with unsigned integer type.
- Otherwise, if the type of the operand with signed integer type can represent all of the values of the type of the operand with unsigned integer type, the operand with unsigned integer type shall be converted to the type of the operand with signed integer type.

[^39]- Otherwise, both operands shall be converted to the unsigned integer type corresponding to the type of the operand with signed integer type.

11 The values of the floating operands and the results of floating expressions may be represented in greater precision and range than that required by the type; the types are not changed thereby. ${ }^{60)}$

### 5.1 Primary expressions

[expr.prim]
1 Primary expressions are literals, names, and names qualified by the scope resolution operator : : .

```
primary-expression:
 literal
 this
 (expression)
 id-expression
id-expression:
 unqualified-id
 qualified-id
unqualified-id:
 identifier
 operator-function-id
 conversion-function-id
 ~ class-name
 template-id
```

2 A literal is a primary expression. Its type depends on its form (2.13). A string literal is an lvalue; all other literals are rvalues.

3 The keyword this names a pointer to the object for which a non-static member function (9.3.2) is invoked. The keyword this shall be used only inside a non-static class member function body (9.3) or in a constructor mem-initializer (12.6.2). The type of the expression is a pointer to the function's class (9.3.2), possibly with cv-qualifiers on the class type. The expression is an rvalue.

4 The operator : : followed by an identifier, a qualified-id, or an operator-function-id is a primary-expression. Its type is specified by the declaration of the identifier, qualified-id, or operator-function-id. The result is the entity denoted by the identifier, qualified-id, or operator-function-id. The result is an lvalue if the entity is a function or variable. The identifier, qualified-id, or operator-function-id shall have global namespace scope or be visible in global scope because of a using-directive (7.3.4). [Note: the use of : : allows a type, an object, a function, an enumerator, or a namespace declared in the global namespace to be referred to even if its identifier has been hidden (3.4.3). - end note ]

5 A parenthesized expression is a primary expression whose type and value are identical to those of the enclosed expression. The presence of parentheses does not affect whether the expression is an lvalue. The parenthesized expression can be used in exactly the same contexts as those where the enclosed expression can be used, and with the same meaning, except as otherwise indicated.

6 An id-expression is a restricted form of a primary-expression. [ Note: an id-expression can appear after . and -> operators (5.2.5). - end note ]

7 An identifier is an id-expression provided it has been suitably declared (clause 7). [Note: for operator-function-ids, see 13.5; for conversion-function-ids, see 12.3.2; for template-ids, see 14.2. A class-name prefixed by $\sim$ denotes a

[^40]destructor; see 12.4. Within the definition of a non-static member function, an identifier that names a non-static member is transformed to a class member access expression (9.3.1). - end note] The type of the expression is the type of the identifier. The result is the entity denoted by the identifier. The result is an lvalue if the entity is a function, variable, or data member.

```
qualified-id:
 : : opt nested-name-specifier template }\mp@subsup{}{\mathrm{ opt }}{}\mathrm{ unqualified-id
 :: identifier
 :: operator-function-id
 : : template-id
nested-name-specifier:
 type-name ::
 namespace-name ::
 nested-name-specifier identifier ::
 nested-name-specifier template opt simple-template-id ::
```

A nested-name-specifier that names a class, optionally followed by the keyword template (14.2), and then followed by the name of a member of either that class (9.2) or one of its base classes (clause 10), is a qualified-id; 3.4.3.1 describes name lookup for class members that appear in qualified-ids. The result is the member. The type of the result is the type of the member. The result is an lvalue if the member is a static member function or a data member. [Note: a class member can be referred to using a qualified-id at any point in its potential scope (3.3.6). - end note] Where classname : : class-name is used, and the two class-names refer to the same class, this notation names the constructor (12.1). Where class-name : : ~ class-name is used, the two class-names shall refer to the same class; this notation names the destructor (12.4). [ Note: a typedef-name that names a class is a class-name (9.1). -end note]

8 A nested-name-specifier that names a namespace (7.3), followed by the name of a member of that namespace (or the name of a member of a namespace made visible by a using-directive ) is a qualified-id; 3.4.3.2 describes name lookup for namespace members that appear in qualified-ids. The result is the member. The type of the result is the type of the member. The result is an lvalue if the member is a function or a variable.

9 In a qualified-id, if the id-expression is a conversion-function-id, its conversion-type-id shall denote the same type in both the context in which the entire qualified-id occurs and in the context of the class denoted by the nested-name-specifier.

An id-expression that denotes a non-static data member or non-static member function of a class can only be used:

- as part of a class member access (5.2.5) in which the object-expression refers to the member's class or a class derived from that class, or
- to form a pointer to member (5.3.1), or
— in the body of a non-static member function of that class or of a class derived from that class (9.3.1), or
— in a mem-initializer for a constructor for that class or for a class derived from that class (12.6.2).


### 5.2 Postfix expressions

[expr.post]
1 Postfix expressions group left-to-right.

```
postfix-expression:
 primary-expression
 postfix-expression [expression]
 postfix-expression (expression-list opt)
 simple-type-specifier (expression-listopt)
 typename-specifier (expression-list opt)
 postfix-expression . template opt id-expression
 postfix-expression -> template opt id-expression
 postfix-expression . pseudo-destructor-name
 postfix-expression -> pseudo-destructor-name
 postfix-expression ++
 postfix-expression --
 dynamic_cast < type-id> (expression)
 static_cast <type-id> (expression)
 reinterpret_cast <type-id> (expression)
 const_cast < type-id> (expression)
 typeid (expression)
 typeid (type-id)
expression-list:
 assignment-expression
 expression-list, assignment-expression
pseudo-destructor-name:
 :: opt nested-name-specifier opt type-name :: ~ type-name
 ::opt nested-name-specifier template simple-template-id :: ~ type-name
 :: opt nested-name-specifier opt ~ type-name
```

2 [Note:The > token following the type-id in a dynamic_cast, static_cast, reinterpret_cast, or const_cast may be the product of replacing a $\gg$ token by two consecutive $>$ tokens (14.2). - end note ]

### 5.2.1 Subscripting

[expr.sub]
1 A postfix expression followed by an expression in square brackets is a postfix expression. One of the expressions shall have the type "pointer to T" and the other shall have enumeration or integral type. The result is an lvalue of type "T." The type "T" shall be a completely-defined object type. ${ }^{61)}$ The expression E1[E2] is identical (by definition) to $*((\mathrm{E} 1)+(\mathrm{E} 2))$ [ Note: see 5.3 and 5.7 for details of $*$ and + and 8.3 .4 for details of arrays. -end note ]

### 5.2.2 Function call

[expr.call]
1 There are two kinds of function call: ordinary function call and member function ${ }^{62)}$ (9.3) call. A function call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of expressions which constitute the arguments to the function. For an ordinary function call, the postfix expression shall be either an lvalue that refers to a function (in which case the function-to-pointer standard conversion (4.3) is suppressed on the postfix expression), or it shall have pointer to function type. Calling a function through an expression whose function type has a language linkage that is different from the language linkage of the function type of the called function's definition is undefined (7.5). For a member function call, the postfix expression shall be an implicit (9.3.1, 9.4) or explicit class member access (5.2.5) whose id-expression is a function member name, or a pointer-to-member expression (5.5) selecting a function member. The first expression in the postfix expression is then called the object expression, and the call is as a member of the object

[^41]pointed to or referred to. In the case of an implicit class member access, the implied object is the one pointed to by this [Note: a member function call of the form $f()$ is interpreted as (*this).f() (see 9.3.1). - end note] If a function or member function name is used, the name can be overloaded (clause 13), in which case the appropriate function shall be selected according to the rules in 13.3. The function called in a member function call is normally selected according to the static type of the object expression (clause 10), but if that function is virtual and is not specified using a qualifiedid then the function actually called will be the final overrider (10.3) of the selected function in the dynamic type of the object expression [Note: the dynamic type is the type of the object pointed or referred to by the current value of the object expression. 12.7 describes the behavior of virtual function calls when the object-expression refers to an object under construction or destruction. - end note]

2 [Note: if a function or member function name is used, and name lookup (3.4) does not find a declaration of that name, the program is ill-formed. No function is implicitly declared by such a call. - end note ]

3 The type of the function call expression is the return type of the statically chosen function (i.e., ignoring the virtual keyword), even if the type of the function actually called is different. This type shall be a complete object type, a reference type or the type void.

4 When a function is called, each parameter (8.3.5) shall be initialized $(8.5,12.8,12.1)$ with its corresponding argument. If the function is a non-static member function, the this parameter of the function (9.3.2) shall be initialized with a pointer to the object of the call, converted as if by an explicit type conversion (5.4). [Note: There is no access or ambiguity checking on this conversion; the access checking and disambiguation are done as part of the (possibly implicit) class member access operator. See $10.2,11.2$, and 5.2 .5 . -end note ] When a function is called, the parameters that have object type shall have completely-defined object type. [Note: this still allows a parameter to be a pointer or reference to an incomplete class type. However, it prevents a passed-by-value parameter to have an incomplete class type. -end note ] During the initialization of a parameter, an implementation may avoid the construction of extra temporaries by combining the conversions on the associated argument and/or the construction of temporaries with the initialization of the parameter (see 12.2). The lifetime of a parameter ends when the function in which it is defined returns. The initialization and destruction of each parameter occurs within the context of the calling function. [Example: the access of the constructor, conversion functions or destructor is checked at the point of call in the calling function. If a constructor or destructor for a function parameter throws an exception, the search for a handler starts in the scope of the calling function; in particular, if the function called has a function-try-block (clause 15) with a handler that could handle the exception, this handler is not considered. -end example] The value of a function call is the value returned by the called function except in a virtual function call if the return type of the final overrider is different from the return type of the statically chosen function, the value returned from the final overrider is converted to the return type of the statically chosen function.

5 [Note: a function can change the values of its non-const parameters, but these changes cannot affect the values of the arguments except where a parameter is of a reference type (8.3.2); if the reference is to a const-qualified type, const_cast is required to be used to cast away the constness in order to modify the argument's value. Where a parameter is of const reference type a temporary object is introduced if needed (7.1.5, 2.13, 2.13.4, 8.3.4, 12.2). In addition, it is possible to modify the values of nonconstant objects through pointer parameters. - end note ]

6 A function can be declared to accept fewer arguments (by declaring default arguments (8.3.6)) or more arguments (by using the ellipsis, . . 8.3.5) than the number of parameters in the function definition (8.4). [Note: this implies that, except where the ellipsis (. . .) is used, a parameter is available for each argument. - end note ]
7 When there is no parameter for a given argument, the argument is passed in such a way that the receiving function can obtain the value of the argument by invoking va_arg (18.8). The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the argument expression. After these conversions, if the
argument does not have arithmetic, enumeration, pointer, pointer to member, or class type, the program is ill-formed. Passing an argument of non-POD class type (clause 9) with no corresponding parameter is conditionally-supported, with implementation-defined semantics. If the argument has integral or enumeration type that is subject to the integral promotions (4.5), or a floating point type that is subject to the floating point promotion (4.6), the value of the argument is converted to the promoted type before the call. These promotions are referred to as the default argument promotions.

8 The order of evaluation of arguments is unspecified. All side effects of argument expression evaluations take effect before the function is entered. The order of evaluation of the postfix expression and the argument expression list is unspecified.

9 Recursive calls are permitted, except to the function named main (3.6.1).
10 A function call is an lvalue if and only if the result type is an lvalue reference.

### 5.2.3 Explicit type conversion (functional notation)

[expr.type.conv]
1 A simple-type-specifier (7.1.5) followed by a parenthesized expression-list constructs a value of the specified type given the expression list. If the expression list is a single expression, the type conversion expression is equivalent (in definedness, and if defined in meaning) to the corresponding cast expression (5.4). If the simple-type-specifier specifies a class type, the class type shall be complete. If the expression list specifies more than a single value, the type shall be a class with a suitably declared constructor $(8.5,12.1)$, and the expression $\mathrm{T}(\mathrm{x} 1, \mathrm{x} 2, \ldots)$ is equivalent in effect to the declaration $\mathrm{T} t(x 1, x 2, \ldots)$; for some invented temporary variable $t$, with the result being the value of $t$ as an rvalue.

2 The expression T (), where T is a simple-type-specifier (7.1.5.2) for a non-array complete object type or the (possibly cv-qualified) void type, creates an rvalue of the specified type, which is value-initialized (8.5; no initialization is done for the void () case). [Note: if T is a non-class type that is $c v$-qualified, the cv -qualifiers are ignored when determining the type of the resulting rvalue (3.10). - end note ]

### 5.2.4 Pseudo destructor call

[expr.pseudo]
1 The use of a pseudo-destructor-name after a dot . or arrow $\rightarrow$ operator represents the destructor for the non-class type named by type-name. The result shall only be used as the operand for the function call operator (), and the result of such a call has type void. The only effect is the evaluation of the postfix-expression before the dot or arrow.

2 The left-hand side of the dot operator shall be of scalar type. The left-hand side of the arrow operator shall be of pointer to scalar type. This scalar type is the object type. The $c v$-unqualified versions of the object type and of the type designated by the pseudo-destructor-name shall be the same type. Furthermore, the two type-names in a pseudo-destructor-name of the form
: : opt nested-name-specifier ${ }_{\text {opt }}$ type-name : : ~ type-name
shall designate the same scalar type.

### 5.2.5 Class member access

[expr.ref]
1 A postfix expression followed by a dot . or an arrow $->$, optionally followed by the keyword template (14.8.1), and then followed by an id-expression, is a postfix expression. The postfix expression before the dot or arrow is evaluated; ${ }^{63)}$ the result of that evaluation, together with the id-expression, determine the result of the entire postfix expression.

[^42]2 For the first option (dot) the type of the first expression (the object expression ) shall be "class object" (of a complete type). For the second option (arrow) the type of the first expression (the pointer expression) shall be "pointer to class object" (of a complete type). In these cases, the id-expression shall name a member of the class or of one of its base classes. [Note: because the name of a class is inserted in its class scope (clause 9), the name of a class is also considered a nested member of that class. -end note ] [Note: 3.4.5 describes how names are looked up after the . and $\rightarrow$ operators. - end note]
3 If E1 has the type "pointer to class X," then the expression E1->E2 is converted to the equivalent form (* (E1)) .E2; the remainder of 5.2 .5 will address only the first option (dot) ${ }^{64)}$. Abbreviating object-expression.id-expression as E1.E2, then the type and lvalue properties of this expression are determined as follows. In the remainder of 5.2.5, cq represents either const or the absence of const $v q$ represents either volatile or the absence of volatile. $c v$ represents an arbitrary set of cv-qualifiers, as defined in 3.9.3.

4 If E2 is declared to have type "reference to T," then E1.E2 is an lvalue; the type of E1.E2 is T. Otherwise, one of the following rules applies.

- If E2 is a static data member, and the type of E2 is T, then E1.E2 is an lvalue; the expression designates the named member of the class. The type of E1.E2 is T.
- If E2 is a non-static data member, and the type of E 1 is "cq1 vq1 X ", and the type of E 2 is " $c q 2 v q 2 \mathrm{~T}$ ", the expression designates the named member of the object designated by the first expression. If E1 is an lvalue, then E1.E2 is an lvalue; otherwise, it is an rvalue. Let the notation vq12 stand for the "union" of $v q 1$ and $v q 2$; that is, if $v q 1$ or $v q 2$ is volatile, then $v q 12$ is volatile. Similarly, let the notation $c q 12$ stand for the "union" of $c q 1$ and $c q 2$; that is, if $c q 1$ or $c q 2$ is const, then $c q 12$ is const. If E2 is declared to be a mutable member, then the type of $\mathrm{E} 1 . \mathrm{E} 2$ is " $v q 12 \mathrm{~T}$ ". If E 2 is not declared to be a mutable member, then the type of $\mathrm{E} 1 . \mathrm{E} 2$ is "cq12 vql2 T".
- If E2 is a (possibly overloaded) member function, function overload resolution (13.3) is used to determine whether E1.E2 refers to a static or a non-static member function.
- If it refers to a static member function, and the type of E2 is "function of parameter-type-list returning T", then E1.E2 is an lvalue; the expression designates the static member function. The type of E1.E2 is the same type as that of E2, namely "function of parameter-type-list returning T".
- Otherwise, if E1.E2 refers to a non-static member function, and the type of E2 is "function of parameter-type-list $c v$ returning T", then E1.E2 is not an lvalue. The expression designates a non-static member function. The expression can be used only as the left-hand operand of a member function call (9.3). [Note: any redundant set of parentheses surrounding the expression is ignored (5.1). -end note] The type of E1.E2 is "function of parameter-type-list $c v$ returning T".
- If E2 is a nested type, the expression E1.E2 is ill-formed.
- If E2 is a member enumerator, and the type of E2 is T, the expression E1.E2 is not an lvalue. The type of E1.E2 is T .
[ Note: "class objects" can be structures (9.2) and unions (9.5). Classes are discussed in clause 9. -end note]
5 If E2 is a non-static data member or a non-static member function, the program is ill-formed if the class of which E2 is directly a member is an ambiguous base (10.2) of the naming class (11.2) of E2.

[^43]
### 5.2.6 Increment and decrement

[expr.post.incr]
1 The value obtained by applying a postfix ++ is the value that the operand had before applying the operator. [Note: the value obtained is a copy of the original value - end note ] The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer to a complete object type. After the result is noted, the value of the object is modified by adding 1 to it, unless the object is of type bool, in which case it is set to true. [Note: this use is deprecated, see Annex D. - end note] The result is an rvalue. The type of the result is the cv-unqualified version of the type of the operand. See also 5.7 and 5.17.
The operand of postfix -- is decremented analogously to the postfix ++ operator, except that the operand shall not be of type bool. [Note: For prefix increment and decrement, see 5.3.2. -end note]

### 5.2.7 Dynamic cast

[expr.dynamic.cast]
1 The result of the expression dynamic_cast<T>(v) is the result of converting the expression $v$ to type $T$. T shall be a pointer or reference to a complete class type, or "pointer to $c v$ void." Types shall not be defined in a dynamic_cast. The dynamic_cast operator shall not cast away constness (5.2.11).

2 If $T$ is a pointer type, $v$ shall be an rvalue of a pointer to complete class type, and the result is an rvalue of type $T$. If $T$ is an lvalue reference type, v shall be an lvalue of a complete class type, and the result is an lvalue of the type referred to by $T$. If $T$ is an rvalue reference type, $v$ shall be an expression having a complete class type, and the result is an rvalue of the type referred to by T .

3 If the type of $v$ is the same as the required result type (which, for convenience, will be called $R$ in this description), or it is the same as $R$ except that the class object type in $R$ is more $c v$-qualified than the class object type in $v$, the result is $v$ (converted if necessary).
4 If the value of $v$ is a null pointer value in the pointer case, the result is the null pointer value of type $R$.
5 If T is "pointer to $c v 1 \mathrm{~B}$ " and $v$ has type "pointer to $c v 2 \mathrm{D}$ " such that B is a base class of D , the result is a pointer to the unique $B$ subobject of the $D$ object pointed to by v. Similarly, if $T$ is "reference to $c v l B$ " and $v$ has type $c v 2 D$ such that $B$ is a base class of $D$, the result is the unique $B$ subobject of the $D$ object referred to by $v$. ${ }^{65)}$ The result is an lvalue if $T$ is an lvalue reference, or an rvalue if T is an rvalue reference. In both the pointer and reference cases, $c v l$ shall be the same cv-qualification as, or greater cv-qualification than, $c v 2$, and $B$ shall be an accessible unambiguous base class of $D$. [ Example:

```
struct B {};
struct D : B {};
void foo(D* dp)
{
 B* bp = dynamic_cast<B*>(dp); // equivalent to B* bp = dp;
}
- end example]
```

6 Otherwise, v shall be a pointer to or an lvalue of a polymorphic type (10.3).
7 If T is "pointer to $c v$ void," then the result is a pointer to the most derived object pointed to by v. Otherwise, a run-time check is applied to see if the object pointed or referred to by v can be converted to the type pointed or referred to by T .

[^44]8 The run-time check logically executes as follows:

- If, in the most derived object pointed (referred) to by v , v points (refers) to a public base class subobject of a $T$ object, and if only one object of type $T$ is derived from the subobject pointed (referred) to by $v$ the result is a pointer (an lvalue referring) to that T object.
- Otherwise, if v points (refers) to a public base class subobject of the most derived object, and the type of the most derived object has a base class, of type T , that is unambiguous and public, the result is a pointer (an lvalue referring) to the T subobject of the most derived object.
- Otherwise, the run-time check fails.

9 The value of a failed cast to pointer type is the null pointer value of the required result type. A failed cast to reference type throws std: :bad_cast (18.6.2).

## [ Example:

```
class A { virtual void f(); };
class B { virtual void g(); };
class D : public virtual A, private B {};
void g()
{
 D d;
 B* bp = (B*)&d; // cast needed to break protection
 A* ap = &d; // public derivation, no cast needed
 D& dr = dynamic_cast<D&>(*bp); // fails
 ap = dynamic_cast<A*>(bp); // fails
 bp = dynamic_cast<B*>(ap); // fails
 ap = dynamic_cast<A*>(&d); //succeeds
 bp = dynamic_cast<B*>(&d); //fails
}
class E : public D, public B {};
class F : public E, public D {};
void h()
{
 F f;
 A* ap = &f; // succeeds: finds unique A
 D* dp = dynamic_cast<D*>(ap); // fails: yields 0
 // f has two D subobjects
 E* ep = (E*)ap; // ill-formed:
 // cast from virtual base
 E* ep1 = dynamic_cast<E*>(ap); // succeeds
}
```

—end example ] [Note: 12.7 describes the behavior of a dynamic_cast applied to an object under construction or destruction. -end note ]

### 5.2.8 Type identification

[expr.typeid]
1 The result of a typeid expression is an lvalue of static type const std: :type_info (18.6.1) and dynamic type const std::type_info or const name where name is an implementation-defined class derived from std :: type_info which preserves the behavior described in 18.6.1. ${ }^{66)}$ The lifetime of the object referred to by the lvalue extends to the end of the program. Whether or not the destructor is called for the std: :type_info object at the end of the program is unspecified.

2 When typeid is applied to an lvalue expression whose type is a polymorphic class type (10.3), the result refers to a std: :type_info object representing the type of the most derived object (1.8) (that is, the dynamic type) to which the lvalue refers. If the lvalue expression is obtained by applying the unary $*$ operator to a pointer ${ }^{67)}$ and the pointer is a null pointer value (4.10), the typeid expression throws the std: : bad_typeid exception (18.6.3).

3 When typeid is applied to an expression other than an lvalue of a polymorphic class type, the result refers to a std::type_info object representing the static type of the expression. Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conversions are not applied to the expression. If the type of the expression is a class type, the class shall be completely-defined. The expression is not evaluated.

4 When typeid is applied to a type-id, the result refers to a std::type_info object representing the type of the type-id. If the type of the type-id is a reference to a possibly $c v$-qualified type, the result of the typeid expression refers to a std: :type_info object representing the $c v$-unqualified referenced type. If the type of the type-id is a class type or a reference to a class type, the class shall be completely-defined. Types shall not be defined in the type-id.

5 The top-level cv-qualifiers of the lvalue expression or the type-id that is the operand of typeid are always ignored. [ Example:

```
class D { ... };
D d1;
const D d2;
typeid(d1) == typeid(d2); // yields true
typeid(D) == typeid(const D); // yields true
typeid(D) == typeid(d2); // yields true
typeid(D) == typeid(const D&); // yields true
- end example]
```

6 If the header <typeinfo> (18.6.1) is not included prior to a use of typeid, the program is ill-formed.
7 [Note: 12.7 describes the behavior of typeid applied to an object under construction or destruction. -end note ]

### 5.2.9 Static cast

[expr.static.cast]
1 The result of the expression static_cast< $T>$ ( $v$ ) is the result of converting the expression $v$ to type $T$. If $T$ is an lvalue reference type, the result is an lvalue; otherwise, the result is an rvalue. Types shall not be defined in a static_cast. The static_cast operator shall not cast away constness (5.2.11).

2 An lvalue of type " $c v 1 \mathrm{~B}$," where B is a class type, can be cast to type "reference to $c v 2 \mathrm{D}$," where D is a class derived (clause 10) from B, if a valid standard conversion from "pointer to $D$ " to "pointer to $B$ " exists (4.10), cv2 is the same

[^45]cv-qualification as, or greater cv-qualification than, $c v 1$, and B is neither a virtual base class of D nor a base class of a virtual base class of D . The result has type " $c v 2 \mathrm{D}$." It is an lvalue if the type cast to is an lvalue reference; otherwise, it is an rvalue. An rvalue of type " $c v 1 \mathrm{~B}$ " may be cast to type "rvalue reference to $c v 2 \mathrm{D}$ " with the same constraints as for an lvalue of type "cvl B." The result is an rvalue. If the object of type "cvl B" is actually a subobject of an object of type D, the result refers to the enclosing object of type D. Otherwise, the result of the cast is undefined. [Example:

```
struct B {};
struct D : public B {};
D d;
B &br = d;
static_cast<D&>(br); // produces lvalue to the original d object
- end example]
```

3 Otherwise, an expression e can be explicitly converted to a type $T$ using a static_cast of the form static_cast<T>(e) if the declaration $T(e)$; is well-formed, for some invented temporary variable $t$ (8.5). The effect of such an explicit conversion is the same as performing the declaration and initialization and then using the temporary variable as the result of the conversion. The result is an lvalue if $T$ is an lvalue reference type (8.3.2), and an rvalue otherwise. The expression e is used as an lvalue if and only if the initialization uses it as an lvalue.

4 Otherwise, the static_cast shall perform one of the conversions listed below. No other conversion shall be performed explicitly using a static_cast.

5 Any expression can be explicitly converted to type $c v$ void. The expression value is discarded. [Note: however, if the value is in a temporary variable (12.2), the destructor for that variable is not executed until the usual time, and the value of the variable is preserved for the purpose of executing the destructor. - end note] The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not applied to the expression.
6 The inverse of any standard conversion sequence (clause 4), other than the lvalue-to-rvalue (4.1), array-to-pointer (4.2), function-to-pointer (4.3), and boolean (4.12) conversions, can be performed explicitly using static_cast. A program is ill-formed if it uses static_cast to perform the inverse of an ill-formed standard conversion sequence. [Example:

```
struct B {};
struct D : private B {};
void f() {
 static_cast<D*>((B*)0); // Error: B is a private base of D.
 static_cast<int B::*>((int D::*)0); // Error: B is a private base of D.
}
_ end example]
```

7 The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) conversions are applied to the operand. Such a static_cast is subject to the restriction that the explicit conversion does not cast away constness (5.2.11), and the following additional rules for specific cases:

8 A value of integral or enumeration type can be explicitly converted to an enumeration type. The value is unchanged if the original value is within the range of the enumeration values (7.2). Otherwise, the resulting enumeration value is unspecified.

9 An rvalue of type "pointer to $c v l \mathrm{~B}$," where B is a class type, can be converted to an rvalue of type "pointer to $c v 2 \mathrm{D}$," where $D$ is a class derived (clause 10) from $B$, if a valid standard conversion from "pointer to $D$ " to "pointer to $B$ " exists
(4.10), $c v 2$ is the same cv-qualification as, or greater cv-qualification than, $c v 1$, and B is neither a virtual base class of $D$ nor a base class of a virtual base class of $D$. The null pointer value (4.10) is converted to the null pointer value of the destination type. If the rvalue of type "pointer to $c v l B$ " points to a $B$ that is actually a subobject of an object of type $D$, the resulting pointer points to the enclosing object of type D. Otherwise, the result of the cast is undefined.

10 An rvalue of type "pointer to member of D of type $c v 1 \mathrm{~T}$ " can be converted to an rvalue of type "pointer to member of B" of type $c v 2$ T, where B is a base class (clause 10) of D, if a valid standard conversion from "pointer to member of B of type T" to "pointer to member of D of type T" exists (4.11), and $c v 2$ is the same cv-qualification as, or greater cv-qualification than, $c v 1 .{ }^{68)}$ The null member pointer value (4.11) is converted to the null member pointer value of the destination type. If class B contains the original member, or is a base or derived class of the class containing the original member, the resulting pointer to member points to the original member. Otherwise, the result of the cast is undefined. [Note: although class B need not contain the original member, the dynamic type of the object on which the pointer to member is dereferenced must contain the original member; see 5.5. - end note ]

11 An rvalue of type "pointer to $c v l$ void" can be converted to an rvalue of type "pointer to $c v 2 \mathrm{~T}$," where T is an object type and $c v 2$ is the same cv-qualification as, or greater cv-qualification than, $c v 1$. The null pointer value is converted to the null pointer value of the destination type. A value of type pointer to object converted to "pointer to $c v$ void" and back, possibly with different cv-qualification, shall have its original value.[ Example:

```
T* p1 = new T;
const T* p2 = static_cast<const T*>(static_cast<void*>(p1));
bool b = p1 == p2; // b will have the value true.
- end example]
```


### 5.2.10 Reinterpret cast

## [expr.reinterpret.cast]

1 The result of the expression reinterpret_cast<T> (v) is the result of converting the expression $v$ to type $T$. If $T$ is an lvalue reference type, the result is an lvalue; otherwise, the result is an rvalue and the lvalue-to-rvalue (4.1), array-topointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the the expression v. Types shall not be defined in a reinterpret_cast. Conversions that can be performed explicitly using reinterpret_cast are listed below. No other conversion can be performed explicitly using reinterpret_cast.

2 The reinterpret_cast operator shall not cast away constness. [ Note: see 5.2.11 for the definition of "casting away constness". Subject to the restrictions in this section, an expression may be cast to its own type using a reinterpret_cast operator. - end note]

3 The mapping performed by reinterpret_cast is implementation-defined. [Note: it might, or might not, produce a representation different from the original value. - end note ]

4 A pointer can be explicitly converted to any integral type large enough to hold it. The mapping function is implementationdefined. [ Note: it is intended to be unsurprising to those who know the addressing structure of the underlying machine. - end note]

5 A value of integral type or enumeration type can be explicitly converted to a pointer. A pointer converted to an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type will have its original value; mappings between pointers and integers are otherwise implementation-defined.

6 A pointer to a function can be explicitly converted to a pointer to a function of a different type. The effect of calling a function through a pointer to a function type (8.3.5) that is not the same as the type used in the definition of the function

[^46]is undefined. Except that converting an rvalue of type "pointer to T1" to the type "pointer to T2" (where T1 and T2 are function types) and back to its original type yields the original pointer value, the result of such a pointer conversion is unspecified. [Note: see also 4.10 for more details of pointer conversions. - end note ]
7 A pointer to an object can be explicitly converted to a pointer to an object of different type. ${ }^{69)}$ Except that converting an rvalue of type "pointer to T1" to the type "pointer to T2" (where T1 and T2 are object types and where the alignment requirements of T 2 are no stricter than those of T 1 ) and back to its original type yields the original pointer value, the result of such a pointer conversion is unspecified.
8 Converting a pointer to a function into a pointer to an object type or vice versa is conditionally-supported. The meaning of such a conversion is implementation defined, except that if an implementation supports conversions in both directions, converting an rvalue of one type to the other type and back, possibly with different cv-qualification, shall yield the original pointer value.

9 The null pointer value (4.10) is converted to the null pointer value of the destination type. [ Note: A null pointer constant, which has integral type, is not necessarily converted to a null pointer value. - end note ]

10 An rvalue of type "pointer to member of $X$ of type T1" can be explicitly converted to an rvalue of type "pointer to member of Y of type T2" if T1 and T2 are both function types or both object types. ${ }^{70 \text { ) }}$ The null member pointer value (4.11) is converted to the null member pointer value of the destination type. The result of this conversion is unspecified, except in the following cases:

- converting an rvalue of type "pointer to member function" to a different pointer to member function type and back to its original type yields the original pointer to member value.
- converting an rvalue of type "pointer to data member of $X$ of type $T 1$ " to the type "pointer to data member of $Y$ of type T 2 (where the alignment requirements of T 2 are no stricter than those of T 1 ) and back to its original type yields the original pointer to member value.

11 An lvalue expression of type T1 can be cast to the type "reference to T2" if an expression of type "pointer to T1" can be explicitly converted to the type "pointer to T2" using a reinterpret_cast. That is, a reference cast reinterpret_cast $\langle\mathrm{T} \&\rangle(\mathrm{x})$ has the same effect as the conversion *reinterpret_cast<T*>(\&x) with the built-in \& and * operators (and similarly for reinterpret_cast<T\&\& (x)). The result refers to the same object as the source lvalue, but with a different type. The result is an lvalue for lvalue references or an rvalue for rvalue references. No temporary is created, no copy is made, and constructors (12.1) or conversion functions (12.3) are not called. ${ }^{71)}$

### 5.2.11 Const cast

1 The result of the expression const_cast<T>(v) is of type T. If $T$ is an lvalue reference type, the result is an lvalue; otherwise, the result is an rvalue and the lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the expression v. Types shall not be defined in a const_cast. Conversions that can be performed explicitly using const_cast are listed below. No other conversion shall be performed explicitly using const_cast.
2 [Note: Subject to the restrictions in this section, an expression may be cast to its own type using a const_cast operator. - end note]

[^47]3 For two pointer types T1 and T2 where

$$
T 1 \text { is } c v_{1,0} \text { pointer to } c v_{1,1} \text { pointer to } \cdots c v_{1, n-1} \text { pointer to } c v_{1, n} T
$$

and
$T 2$ is $c v_{2,0}$ pointer to $c v_{2,1}$ pointer to $\cdots c v_{2, n-1}$ pointer to $c v_{2, n} T$
where T is any object type or the void type and where $c v_{1, k}$ and $c v_{2, k}$ may be different cv -qualifications, an rvalue of type T1 may be explicitly converted to the type T2 using a const_cast. The result of a pointer const_cast refers to the original object.

4 An lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast const_cast<T2\&> (where T1 and T2 are object types) if a pointer to T1 can be explicitly converted to the type "pointer to T2" using a const_cast. Similarly, for two object types T1 and T2, an expression of type T1 can be explicitly converted to an rvalue of type T2 using the cast const_cast<T2\&\&> if a pointer to T1 can be explicitly converted to the type "pointer to T2" using a const_cast. The result of a reference const_cast refers to the original object.

5 For a const_cast involving pointers to data members, multi-level pointers to data members and multi-level mixed pointers and pointers to data members (4.4), the rules for const_cast are the same as those used for pointers; the "member" aspect of a pointer to member is ignored when determining where the cv-qualifiers are added or removed by the const_cast. The result of a pointer to data member const_cast refers to the same member as the original (uncast) pointer to data member.

6 A null pointer value (4.10) is converted to the null pointer value of the destination type. The null member pointer value (4.11) is converted to the null member pointer value of the destination type.

7 [Note: Depending on the type of the object, a write operation through the pointer, lvalue or pointer to data member resulting from a const_cast that casts away a const-qualifier ${ }^{72}$ ) may produce undefined behavior (7.1.5.1). -end note]

8 The following rules define the process known as casting away constness. In these rules $\mathrm{T} n$ and $\mathrm{X} n$ represent types. For two pointer types:

> X 1 is $\mathrm{T} 1 c v_{1,1} * \cdots c v_{1, N} *$ where T 1 is not a pointer type
> X 2 is $\mathrm{T} 2 c v_{2,1} * \cdots c v_{2, M} *$ where T 2 is not a pointer type
> $K$ is $\min (N, M)$
casting from X1 to X2 casts away constness if, for a non-pointer type T there does not exist an implicit conversion (clause 4) from:

$$
\mathrm{T} c v_{1,(N-K+1)} * c v_{1,(N-K+2)} * \cdots c v_{1, N} *
$$

to

$$
\mathrm{T} c v_{2,(M-K+1)} * c v_{2,(M-K+2)} * \cdots c v_{2, M} *
$$

9 Casting from an lvalue of type T 1 to an lvalue of type T 2 using a reference cast casts away constness if a cast from an rvalue of type "pointer to T1" to the type "pointer to T2" casts away constness.

[^48]10 Casting from an rvalue of type "pointer to data member of $X$ of type T1" to the type "pointer to data member of $Y$ of type T2" casts away constness if a cast from an rvalue of type "pointer to T1" to the type "pointer to T2" casts away constness.

11 For multi-level pointer to members and multi-level mixed pointers and pointer to members (4.4), the "member" aspect of a pointer to member level is ignored when determining if a const cv-qualifier has been cast away.

12 [Note: some conversions which involve only changes in cv-qualification cannot be done using const_cast. For instance, conversions between pointers to functions are not covered because such conversions lead to values whose use causes undefined behavior. For the same reasons, conversions between pointers to member functions, and in particular, the conversion from a pointer to a const member function to a pointer to a non-const member function, are not covered. - end note]

### 5.3 Unary expressions

[expr.unary]
1 Expressions with unary operators group right-to-left.

```
unary-expression:
 postfix-expression
 ++ cast-expression
 -- cast-expression
 unary-operator cast-expression
 sizeof unary-expression
 sizeof (type-id)
 new-expression
 delete-expression
```

unary-operator: one of
*\& + -! ~

### 5.3.1 Unary operators

[expr.unary.op]
1 The unary * operator performs indirection: the expression to which it is applied shall be a pointer to an object type, or a pointer to a function type and the result is an lvalue referring to the object or function to which the expression points. If the type of the expression is "pointer to T," the type of the result is "T." [ Note: a pointer to an incomplete type (other than $c v$ void ) can be dereferenced. The lvalue thus obtained can be used in limited ways (to initialize a reference, for example); this lvalue must not be converted to an rvalue, see 4.1. - end note ]

2 The result of the unary \& operator is a pointer to its operand. The operand shall be an lvalue or a qualified-id. In the first case, if the type of the expression is "T," the type of the result is "pointer to T." In particular, the address of an object of type " $c v \mathrm{~T}$ " is "pointer to $c v \mathrm{~T}$," with the same cv-qualifiers. For a qualified-id, if the member is a static member of type " $T$ ", the type of the result is plain "pointer to T." If the member is a non-static member of class C of type T, the type of the result is "pointer to member of class C of type T." [ Example:

```
struct A { int i; };
struct B : A { };
... &B::i ... // has type int A::*
```

- end example ] [Note: a pointer to member formed from a mutable non-static data member (7.1.1) does not reflect the mutable specifier associated with the non-static data member. - end note]

3 A pointer to member is only formed when an explicit \& is used and its operand is a qualified-id not enclosed in parentheses. [Note: that is, the expression \& (qualified-id), where the qualified-id is enclosed in parentheses, does not form an expression of type "pointer to member." Neither does qualified-id, because there is no implicit conversion from a qualified-id for a non-static member function to the type "pointer to member function" as there is from an lvalue of function type to the type "pointer to function" (4.3). Nor is \&unqualified-id a pointer to member, even within the scope of the unqualified-id's class. - end note]

4 The address of an object of incomplete type can be taken, but if the complete type of that object is a class type that declares operator\& () as a member function, then the behavior is undefined (and no diagnostic is required). The operand of \& shall not be a bit-field.

5 The address of an overloaded function (clause 13) can be taken only in a context that uniquely determines which version of the overloaded function is referred to (see 13.4). [Note: since the context might determine whether the operand is a static or non-static member function, the context can also affect whether the expression has type "pointer to function" or "pointer to member function." - end note ]

6 The operand of the unary + operator shall have arithmetic, enumeration, or pointer type and the result is the value of the argument. Integral promotion is performed on integral or enumeration operands. The type of the result is the type of the promoted operand.

7 The operand of the unary - operator shall have arithmetic or enumeration type and the result is the negation of its operand. Integral promotion is performed on integral or enumeration operands. The negative of an unsigned quantity is computed by subtracting its value from $2^{n}$, where $n$ is the number of bits in the promoted operand. The type of the result is the type of the promoted operand.

8 The operand of the logical negation operator ! is implicitly converted to bool (clause 4); its value is true if the converted operand is false and false otherwise. The type of the result is bool.

9 The operand of ~ shall have integral or enumeration type; the result is the one's complement of its operand. Integral promotions are performed. The type of the result is the type of the promoted operand. There is an ambiguity in the unaryexpression $\sim \mathrm{X}()$, where X is a class-name. The ambiguity is resolved in favor of treating $\sim$ as a unary complement rather than treating ${ }^{\sim} \mathrm{X}$ as referring to a destructor.

### 5.3.2 Increment and decrement

## [expr.pre.incr]

1 The operand of prefix ++ is modified by adding 1, or set to true if it is bool (this use is deprecated). The operand shall be a modifiable lvalue. The type of the operand shall be an arithmetic type or a pointer to a completely-defined object type. The result is the updated operand; it is an lvalue, and it is a bit-field if the operand is a bit-field. If $x$ is not of type bool, the expression ++x is equivalent to $\mathrm{x}+=1$ [Note: see the discussions of addition (5.7) and assignment operators (5.17) for information on conversions. - end note ]

2 The operand of prefix -- is modified by subtracting 1. The operand shall not be of type bool. The requirements on the operand of prefix -- and the properties of its result are otherwise the same as those of prefix ++. [Note: For postfix increment and decrement, see 5.2.6. -end note ]

### 5.3.3 Sizeof

[expr.sizeof]
1 The sizeof operator yields the number of bytes in the object representation of its operand. The operand is either an expression, which is not evaluated, or a parenthesized type-id. The sizeof operator shall not be applied to an expression that has function or incomplete type, or to an enumeration type before all its enumerators have been declared, or to the parenthesized name of such types, or to an lvalue that designates a bit-field. sizeof (char), sizeof (signed
char) and sizeof (unsigned char) are 1. The result of sizeof applied to any other fundamental type (3.9.1) is implementation-defined. [Note: in particular, sizeof (bool) and sizeof (wchar_t) are implementation-defined. ${ }^{73 \text { ) }}$ - end note ] [ Note: See 1.7 for the definition of byte and 3.9 for the definition of object representation. - end note]

2 When applied to a reference or a reference type, the result is the size of the referenced type. When applied to a class, the result is the number of bytes in an object of that class including any padding required for placing objects of that type in an array. The size of a most derived class shall be greater than zero (1.8). The result of applying sizeof to a base class subobject is the size of the base class type. ${ }^{74)}$ When applied to an array, the result is the total number of bytes in the array. This implies that the size of an array of $n$ elements is $n$ times the size of an element.

3 The sizeof operator can be applied to a pointer to a function, but shall not be applied directly to a function.
4 The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not applied to the operand of sizeof.

Types shall not be defined in a sizeof expression.
6 The result is a constant of type std::size_t. [Note: std::size_t is defined in the standard header <cstddef> (18.1). - end note ]

### 5.3.4 New

[expr.new]
1 The new-expression attempts to create an object of the type-id (8.1) or new-type-id to which it is applied. The type of that object is the allocated type. This type shall be a complete object type, but not an abstract class type or array thereof (1.8, $3.9,10.4)$. [Note: because references are not objects, references cannot be created by new-expressions. -end note] [Note: the type-id may be a cv-qualified type, in which case the object created by the new-expression has a cv-qualified type. - end note]

```
new-expression:
 : :opt new new-placement opt new-type-id new-initializer orot
 : : opt new new-placement opt (type-id) new-initializer opt
new-placement:
 (expression-list)
new-type-id:
 type-specifier-seq new-declarator opt
new-declarator:
 ptr-operator new-declarator}\mp@subsup{}{opt}{
 direct-new-declarator
direct-new-declarator:
 [expression]
 direct-new-declarator [constant-expression]
new-initializer:
 (expression-list opt)
```

Entities created by a new-expression have dynamic storage duration (3.7.4). [Note: the lifetime of such an entity is not necessarily restricted to the scope in which it is created. - end note ] If the entity is a non-array object, the new-

[^49]expression returns a pointer to the object created. If it is an array, the new-expression returns a pointer to the initial element of the array.

2 If the auto type-specifier appears in the type-specifier-seq of a new-type-id or type-id of a new-expression, the type-specifier-seq shall contain no other type-specifiers except cv-qualifiers, and the new-expression shall contain a new-initializer of the form

```
(assignment-expression)
```

The allocated type is deduced from the new-initializer as follows: Let (e) be the new-initializer and T be the new-type-id or type-id of the new-expression, then the allocated type is the type deduced for the variable x in the invented declaration (7.1.5.4):

$$
T \mathrm{x}=\mathrm{e} ;
$$

## [ Example:

```
new auto(1); // allocated type is int
auto }\textrm{x}=\mathrm{ new auto('a'); // allocated type is char, x is of type char*
_ end example]
```

3 The new-type-id in a new-expression is the longest possible sequence of new-declarators. [Note: this prevents ambiguities between declarator operators \& , $*$, [], and their expression counterparts. - end note ] [Example:

```
new int * i; // syntax error: parsed as (new int*) i
 // not as (new int)*i
```

The $*$ is the pointer declarator and not the multiplication operator. - end example ]
4 [Note: parentheses in a new-type-id of a new-expression can have surprising effects. [Example:

```
new int(*[10])(); // error
```

is ill-formed because the binding is

```
(new int) (*[10])(); // error
```

Instead, the explicitly parenthesized version of the new operator can be used to create objects of compound types (3.9.2):

```
new (int (*[10])());
```

allocates an array of 10 pointers to functions (taking no argument and returning int. - end example] - end note]
5 The type-specifier-seq shall not contain class declarations, or enumeration declarations.
6 When the allocated object is an array (that is, the direct-new-declarator syntax is used or the new-type-id or type-id denotes an array type), the new-expression yields a pointer to the initial element (if any) of the array. [Note: both new int and new int [10] have type int* and the type of new int [i] [10] is int (*) [10] - end note ]

7 Every constant-expression in a direct-new-declarator shall be an integral constant expression (5.19) and evaluate to a strictly positive value. The expression in a direct-new-declarator shall be of integral type, enumeration type, or a class type for which a single conversion function to integral or enumeration type exists (12.3). If the expression is of class type, the expression is converted by calling that conversion function, and the result of the conversion is used in place of the original expression. If the value of the expression is negative, the behavior is undefined.[ Example: if n is a variable
of type int, then new float [ n ] [5] is well-formed (because n is the expression of a direct-new-declarator), but new float [5] [ $n$ ] is ill-formed (because $n$ is not a constant-expression). If $n$ is negative, the effect of new float [n] [5] is undefined. - end example ]

8 When the value of the expression in a direct-new-declarator is zero, the allocation function is called to allocate an array with no elements.

9 A new-expression obtains storage for the object by calling an allocation function (3.7.4.1). If the new-expression terminates by throwing an exception, it may release storage by calling a deallocation function (3.7.4.2). If the allocated type is a non-array type, the allocation function's name is operator new and the deallocation function's name is operator delete. If the allocated type is an array type, the allocation function's name is operator new [] and the deallocation function's name is operator delete[]. [Note: an implementation shall provide default definitions for the global allocation functions (3.7.4, 18.5.1.1, 18.5.1.2). A C++ program can provide alternative definitions of these functions (17.4.3.4) and/or class-specific versions (12.5). - end note ]

10 If the new-expression begins with a unary : : operator, the allocation function's name is looked up in the global scope. Otherwise, if the allocated type is a class type T or array thereof, the allocation function's name is looked up in the scope of T If this lookup fails to find the name, or if the allocated type is not a class type, the allocation function's name is looked up in the global scope.

11 A new-expression passes the amount of space requested to the allocation function as the first argument of type std: : size_t. That argument shall be no less than the size of the object being created; it may be greater than the size of the object being created only if the object is an array. For arrays of char and unsigned char, the difference between the result of the new-expression and the address returned by the allocation function shall be an integral multiple of the most stringent alignment requirement (3.9) of any object type whose size is no greater than the size of the array being created. [Note: Because allocation functions are assumed to return pointers to storage that is appropriately aligned for objects of any type, this constraint on array allocation overhead permits the common idiom of allocating character arrays into which objects of other types will later be placed. - end note ]

12 The new-placement syntax is used to supply additional arguments to an allocation function. If used, overload resolution is performed on a function call created by assembling an argument list consisting of the amount of space requested (the first argument) and the expressions in the new-placement part of the new-expression (the second and succeeding arguments). The first of these arguments has type std::size_t and the remaining arguments have the corresponding types of the expressions in the new-placement.

## [ Example:

— new $T$ results in a call of operator new (sizeof ( $T$ ) ),

- new (2,f) T results in a call of operator new (sizeof (T) , 2,f),
- new $T[5]$ results in a call of operator new [] (sizeof $(T) * 5+x)$, and
- new (2,f) $T[5]$ results in a call of operator new [] (sizeof $(T) * 5+y, 2, f)$.

Here, x and y are non-negative unspecified values representing array allocation overhead; the result of the new-expression will be offset by this amount from the value returned by operator new []. This overhead may be applied in all array new-expressions, including those referencing the library function operator new [] (std::size_t, void*) and other placement allocation functions. The amount of overhead may vary from one invocation of new to another. -end example]

14 [Note: unless an allocation function is declared with an empty exception-specification (15.4), throw(), it indicates failure to allocate storage by throwing a bad_alloc exception (clause 15, 18.5.2.1); it returns a non-null pointer otherwise. If the allocation function is declared with an empty exception-specification, throw(), it returns null to indicate failure to allocate storage and a non-null pointer otherwise. -end note] If the allocation function returns null, initialization shall not be done, the deallocation function shall not be called, and the value of the new-expression shall be null.

15 [Note: when the allocation function returns a value other than null, it must be a pointer to a block of storage in which space for the object has been reserved. The block of storage is assumed to be appropriately aligned and of the requested size. The address of the created object will not necessarily be the same as that of the block if the object is an array. - end note]

16 A new-expression that creates an object of type T initializes that object as follows:

- If the new-initializer is omitted:
- If T is a (possibly cv-qualified) non-POD class type (or array thereof), the object is default-initialized (8.5). If $T$ is a const-qualified type, the underlying class type shall have a user-declared default constructor.
- Otherwise, the object created has indeterminate value. If T is a const-qualified type, or a (possibly cvqualified) POD class type (or array thereof) containing (directly or indirectly) a member of const-qualified type, the program is ill-formed;
- If the new-initializer is of the form (), the item is value-initialized (8.5);
- If the new-initializer is of the form (expression-list) and T is a class type, the appropriate constructor is called, using expression-list as the arguments (8.5);
- If the new-initializer is of the form (expression-list) and T is an arithmetic, enumeration, pointer, or pointer-tomember type and expression-list comprises exactly one expression, then the object is initialized to the (possibly converted) value of the expression (8.5);
- Otherwise the new-expression is ill-formed.

17 If the new-expression creates an object or an array of objects of class type, access and ambiguity control are done for the allocation function, the deallocation function (12.5), and the constructor (12.1). If the new expression creates an array of objects of class type, access and ambiguity control are done for the destructor (12.4).
18 If any part of the object initialization described above ${ }^{75)}$ terminates by throwing an exception and a suitable deallocation function can be found, the deallocation function is called to free the memory in which the object was being constructed, after which the exception continues to propagate in the context of the new-expression. If no unambiguous matching deallocation function can be found, propagating the exception does not cause the object's memory to be freed. [Note: This is appropriate when the called allocation function does not allocate memory; otherwise, it is likely to result in a memory leak. -end note]

19 If the new-expression begins with a unary : : operator, the deallocation function's name is looked up in the global scope. Otherwise, if the allocated type is a class type T or an array thereof, the deallocation function's name is looked up in the scope of T. If this lookup fails to find the name, or if the allocated type is not a class type or array thereof, the deallocation function's name is looked up in the global scope.
20 A declaration of a placement deallocation function matches the declaration of a placement allocation function if it has the same number of parameters and, after parameter transformations (8.3.5), all parameter types except the first are

[^50]identical. Any non-placement deallocation function matches a non-placement allocation function. If the lookup finds a single matching deallocation function, that function will be called; otherwise, no deallocation function will be called. If the lookup finds the two-parameter form of a usual deallocation function (3.7.4.2) and that function, considered as a placement deallocation function, would have been selected as a match for the allocation function, the program is ill-formed. [Example:

```
struct S {
 // Placement allocation function:
 static void* operator new(std::size_t, std::size_t);
 // Usual (non-placement) deallocation function:
 static void operator delete(void*, std::size_t);
};
S* p = new (0) S; // ill-formed: non-placement deallocation function matches
 // placement allocation function
- end example]
```

21 If a new-expression calls a deallocation function, it passes the value returned from the allocation function call as the first argument of type void*. If a placement deallocation function is called, it is passed the same additional arguments as were passed to the placement allocation function, that is, the same arguments as those specified with the new-placement syntax. If the implementation is allowed to make a copy of any argument as part of the call to the allocation function, it is allowed to make a copy (of the same original value) as part of the call to the deallocation function or to reuse the copy made as part of the call to the allocation function. If the copy is elided in one place, it need not be elided in the other.

22 Whether the allocation function is called before evaluating the constructor arguments or after evaluating the constructor arguments but before entering the constructor is unspecified. It is also unspecified whether the arguments to a constructor are evaluated if the allocation function returns the null pointer or exits using an exception.

### 5.3.5 Delete

[expr.delete]
1 The delete-expression operator destroys a most derived object (1.8) or array created by a new-expression.

$$
\begin{aligned}
& \text { delete-expression: } \\
& \quad:: \text { opt delete cast-expression } \\
& \quad:: \text { opt delete [ ] cast-expression }
\end{aligned}
$$

The first alternative is for non-array objects, and the second is for arrays. The operand shall have a pointer type, or a class type having a single conversion function (12.3.2) to a pointer type. The result has type void.
2 If the operand has a class type, the operand is converted to a pointer type by calling the above-mentioned conversion function, and the converted operand is used in place of the original operand for the remainder of this section. In either alternative, the value of the operand of delete may be a null pointer value. If it is not a null pointer value, in the first alternative (delete object), the value of the operand of delete shall be a pointer to a non-array object or a pointer to a subobject (1.8) representing a base class of such an object (clause 10). If not, the behavior is undefined. In the second alternative (delete array), the value of the operand of delete shall be the pointer value which resulted from a previous array new-expression. ${ }^{76)}$ If not, the behavior is undefined. [Note: this means that the syntax of the delete-expression

[^51]must match the type of the object allocated by new, not the syntax of the new-expression. - end note ] [Note: a pointer to a const type can be the operand of a delete-expression; it is not necessary to cast away the constness (5.2.11) of the pointer expression before it is used as the operand of the delete-expression. - end note ]

3 In the first alternative (delete object), if the static type of the operand is different from its dynamic type, the static type shall be a base class of the operand's dynamic type and the static type shall have a virtual destructor or the behavior is undefined. In the second alternative (delete array ) if the dynamic type of the object to be deleted differs from its static type, the behavior is undefined. ${ }^{77)}$

4 The cast-expression in a delete-expression shall be evaluated exactly once.
5 If the object being deleted has incomplete class type at the point of deletion and the complete class has a non-trivial destructor or a deallocation function, the behavior is undefined.

6 If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will invoke the destructor (if any) for the object or the elements of the array being deleted. In the case of an array, the elements will be destroyed in order of decreasing address (that is, in reverse order of the completion of their constructor; see 12.6.2).

7 If the value of the operand of the delete-expression is not a null pointer value, the delete-expression will call a deallocation function (3.7.4.2). Otherwise, it is unspecified whether the deallocation function will be called. [Note: The deallocation function is called regardless of whether the destructor for the object or some element of the array throws an exception. - end note]
8 [Note: An implementation provides default definitions of the global deallocation functions operator delete() for non-arrays (18.5.1.1) and operator delete [] () for arrays (18.5.1.2). A C++ program can provide alternative definitions of these functions (17.4.3.4), and/or class-specific versions (12.5). -end note ] When the keyword delete in a delete-expression is preceded by the unary : : operator, the global deallocation function is used to deallocate the storage.

9 Access and ambiguity control are done for both the deallocation function and the destructor (12.4, 12.5).

### 5.4 Explicit type conversion (cast notation)

[expr.cast]
1 The result of the expression ( T ) cast-expression is of type T . The result is an lvalue if T is an lvalue reference type, otherwise the result is an rvalue. [Note: if T is a non-class type that is $c v$-qualified, the $c v$-qualifiers are ignored when determining the type of the resulting rvalue; see 3.10. - end note ]

2 An explicit type conversion can be expressed using functional notation (5.2.3), a type conversion operator (dynamic_cast, static_cast, reinterpret_cast, const_cast ), or the cast notation.
cast-expression:
unary-expression
( type-id ) cast-expression
3 Types shall not be defined in casts.
4 Any type conversion not mentioned below and not explicitly defined by the user (12.3) is ill-formed.
The conversions performed by

- a const_cast (5.2.11),
— a static_cast (5.2.9),

[^52]```
- a static_cast followed by a const_cast,
- a reinterpret_cast (5.2.10), or
- a reinterpret_cast followed by a const_cast,
```

can be performed using the cast notation of explicit type conversion. The same semantic restrictions and behaviors apply, with the exception that in performing a static_cast in the following situations the conversion is valid even if the base class is inaccessible:

- a pointer to an object of derived class type or an lvalue or rvalue of derived class type may be explicitly converted to a pointer or reference to an unambiguous base class type, respectively;
- a pointer to member of derived class type may be explicitly converted to a pointer to member of an unambiguous non-virtual base class type;
- a pointer to an object of an unambiguous non-virtual base class type, an lvalue or rvalue of an unambiguous nonvirtual base class type, or a pointer to member of an unambiguous non-virtual base class type may be explicitly converted to a pointer, a reference, or a pointer to member of a derived class type, respectively.

If a conversion can be interpreted in more than one of the ways listed above, the interpretation that appears first in the list is used, even if a cast resulting from that interpretation is ill-formed. If a conversion can be interpreted in more than one way as a static_cast followed by a const_cast, the conversion is ill-formed. [Example:

```
struct A {};
struct I1 : A {};
struct I2 : A {};
struct D : I1, I2 {};
A *foo( D *p ) {
    return (A*)( p ); // ill-formed static_cast interpretation
}
- end example ]
```

6 The operand of a cast using the cast notation can be an rvalue of type "pointer to incomplete class type". The destination type of a cast using the cast notation can be "pointer to incomplete class type". In such cases, even if there is a inheritance relationship between the source and destination classes, whether the static_cast or reinterpret_cast interpretation is used is unspecified.

5.5 Pointer-to-member operators

1 The pointer-to-member operators $->*$ and.$*$ group left-to-right.
pm-expression:
cast-expression
pm-expression .* cast-expression
pm-expression ->* cast-expression
2 The binary operator .* binds its second operand, which shall be of type "pointer to member of T" (where T is a completely-defined class type) to its first operand, which shall be of class T or of a class of which T is an unambiguous and accessible base class. The result is an object or a function of the type specified by the second operand.

3 The binary operator ->* binds its second operand, which shall be of type "pointer to member of T" (where T is a completely-defined class type) to its first operand, which shall be of type "pointer to T" or "pointer to a class of which T is an unambiguous and accessible base class." The result is an object or a function of the type specified by the second operand.

4 If the dynamic type of the object does not contain the member to which the pointer refers, the behavior is undefined.
5 The restrictions on $c v$-qualification, and the manner in which the $c v$-qualifiers of the operands are combined to produce the $c v$-qualifiers of the result, are the same as the rules for E1. E2 given in 5.2.5. [Note: it is not possible to use a pointer to member that refers to a mutable member to modify a const class object. For example,

```
struct S {
        S() : i(0) { }
    mutable int i;
};
void f()
{
const S cs;
int S::* pm = &S::i; // pm refers to mutable member S::i
cs.*pm = 88; // ill-formed: cs is a const object
}
- end note]
```

6 If the result of.$*$ or $->*$ is a function, then that result can be used only as the operand for the function call operator (). [Example:

```
(ptr_to_obj->*ptr_to_mfct)(10);
```

calls the member function denoted by ptr_to_mfct for the object pointed to by ptr_to_obj. - end example] The result of a .* expression is an lvalue only if its first operand is an lvalue and its second operand is a pointer to data member. The result of an $->*$ expression is an lvalue only if its second operand is a pointer to data member. If the second operand is the null pointer to member value (4.11), the behavior is undefined.

5.6 Multiplicative operators

[expr.mul]
1 The multiplicative operators *, /, and $\%$ group left-to-right.

```
multiplicative-expression:
    pm-expression
    multiplicative-expression * pm-expression
    multiplicative-expression / pm-expression
    multiplicative-expression % pm-expression
```

2 The operands of $*$ and / shall have arithmetic or enumeration type; the operands of \% shall have integral or enumeration type. The usual arithmetic conversions are performed on the operands and determine the type of the result.

3 The binary * operator indicates multiplication.
4 The binary / operator yields the quotient, and the binary \% operator yields the remainder from the division of the first expression by the second. If the second operand of $/$ or $\%$ is zero the behavior is undefined; otherwise $(a / b) * b+a \% b$
is equal to a. If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is implementation-defined ${ }^{78)}$.

5.7 Additive operators

1 The additive operators + and - group left-to-right. The usual arithmetic conversions are performed for operands of arithmetic or enumeration type.
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
For addition, either both operands shall have arithmetic or enumeration type, or one operand shall be a pointer to a completely defined object type and the other shall have integral or enumeration type.
2 For subtraction, one of the following shall hold:

- both operands have arithmetic or enumeration type; or
- both operands are pointers to cv-qualified or cv-unqualified versions of the same completely defined object type; or
- the left operand is a pointer to a completely defined object type and the right operand has integral or enumeration type.

3 The result of the binary + operator is the sum of the operands. The result of the binary - operator is the difference resulting from the subtraction of the second operand from the first.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a pointer to the first element of an array of length one with the type of the object as its element type.

5 When an expression that has integral type is added to or subtracted from a pointer, the result has the type of the pointer operand. If the pointer operand points to an element of an array object, and the array is large enough, the result points to an element offset from the original element such that the difference of the subscripts of the resulting and original array elements equals the integral expression. In other words, if the expression P points to the i-th element of an array object, the expressions $(\mathrm{P})+\mathrm{N}$ (equivalently, $\mathrm{N}+(\mathrm{P})$) and $(\mathrm{P})-\mathrm{N}$ (where N has the value n) point to, respectively, the $i+n$-th and $i-n$-th elements of the array object, provided they exist. Moreover, if the expression P points to the last element of an array object, the expression $(P)+1$ points one past the last element of the array object, and if the expression Q points one past the last element of an array object, the expression (Q)-1 points to the last element of the array object. If both the pointer operand and the result point to elements of the same array object, or one past the last element of the array object, the evaluation shall not produce an overflow; otherwise, the behavior is undefined.
6 When two pointers to elements of the same array object are subtracted, the result is the difference of the subscripts of the two array elements. The type of the result is an implementation-defined signed integral type; this type shall be the same type that is defined as std: :ptrdiff_t in the <cstddef> header (18.1). As with any other arithmetic overflow, if the result does not fit in the space provided, the behavior is undefined. In other words, if the expressions P and Q point to, respectively, the i-th and j-th elements of an array object, the expression (P) - (Q) has the value $i-j$ provided the value fits in an object of type std: :ptrdiff_t. Moreover, if the expression P points either to an element of an array

[^53]object or one past the last element of an array object, and the expression Q points to the last element of the same array object, the expression $((Q)+1)-(P)$ has the same value as $((Q)-(P))+1$ and as $-((P)-((Q)+1))$, and has the value zero if the expression P points one past the last element of the array object, even though the expression (Q) +1 does not point to an element of the array object. Unless both pointers point to elements of the same array object, or one past the last element of the array object, the behavior is undefined. ${ }^{79)}$

7 If the value 0 is added to or subtracted from a pointer value, the result compares equal to the original pointer value. If two pointers point to the same object or both point one past the end of the same array or both are null, and the two pointers are subtracted, the result compares equal to the value 0 converted to the type std: :ptrdiff_t.

5.8 Shift operators

[expr.shift]
1 The shift operators << and >> group left-to-right.

```
shift-expression:
    additive-expression
    shift-expression << additive-expression
    shift-expression >> additive-expression
```

The operands shall be of integral or enumeration type and integral promotions are performed. The type of the result is that of the promoted left operand. The behavior is undefined if the right operand is negative, or greater than or equal to the length in bits of the promoted left operand.

2 The value of E1 << E2 is E1 (interpreted as a bit pattern) left-shifted E2 bit positions; vacated bits are zero-filled. If E1 has an unsigned type, the value of the result is E1 multiplied by the quantity 2 raised to the power E2, reduced modulo ULLONG_MAX+1 if E1 has type unsigned long long int, ULONG_MAX+1 if E1 has type unsigned long int, UINT_MAX +1 otherwise. [Note: the constants ULLONG_MAX, ULONG_MAX, and UINT_MAX are defined in the header <climits>. - end note]

3 The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a signed type and a nonnegative value, the value of the result is the integral part of the quotient of E1 divided by the quantity 2 raised to the power E2. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

5.9 Relational operators

1 The relational operators group left-to-right. [Example: $\mathrm{a}<\mathrm{b}<\mathrm{c}$ means $(\mathrm{a}<\mathrm{b})<\mathrm{c}$ and not $(\mathrm{a}<\mathrm{b}) \& \&(\mathrm{~b}<\mathrm{c})$. - end example]
relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression $<=$ shift-expression
relational-expression $>=$ shift-expression

[^54]The operands shall have arithmetic, enumeration or pointer type. The operators < (less than), > (greater than), <= (less than or equal to), and $>=$ (greater than or equal to) all yield false or true. The type of the result is bool.

2 The usual arithmetic conversions are performed on operands of arithmetic or enumeration type. Pointer conversions (4.10) and qualification conversions (4.4) are performed on pointer operands (or on a pointer operand and a null pointer constant) to bring them to their composite pointer type. If one operand is a null pointer constant, the composite pointer type is the type of the other operand. Otherwise, if one of the operands has type "pointer to $c v l$ void," then the other has type "pointer to $c v 2 T$ " and the composite pointer type is "pointer to $c v 12$ void," where $c v 12$ is the union of $c v 1$ and $c v 2$. Otherwise, the composite pointer type is a pointer type similar (4.4) to the type of one of the operands, with a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand types. [Note: this implies that any pointer can be compared to a null pointer constant and that any object pointer can be compared to a pointer to (possibly cv-qualified) void. - end note] [Example:

```
void *p;
const int *q;
int **pi;
const int *const *pci;
void ct()
{
    p <= q; // Both converted to const void* before comparison
    pi <= pci; // Both converted to const int *const * before comparison
}
```

- end example] Pointers to objects or functions of the same type (after pointer conversions) can be compared, with a result defined as follows:
- If two pointers p and q of the same type point to the same object or function, or both point one past the end of the same array, or are both null, then $p<=q$ and $p>=q$ both yield true and $p<q$ and $p>q$ both yield false.
- If two pointers p and q of the same type point to different objects that are not members of the same object or elements of the same array or to different functions, or if only one of them is null, the results of $p<q, p>q, p<=q$, and $p>=q$ are unspecified.
- If two pointers point to non-static data members of the same object, or to subobjects or array elements of such

5.10 Equality operators
 equality-expression.
 relational-expression
 equality-expression $==$ relational-expression
 equality-expression $!=$ relational-expression

1 The $==$ (equal to) and the $!=$ (not equal to) operators have the same semantic restrictions, conversions, and result type as the relational operators except for their lower precedence and truth-value result. [Note: $\mathrm{a}<\mathrm{b}==\mathrm{c}<\mathrm{d}$ is true whenever $\mathrm{a}<\mathrm{b}$ and $\mathrm{c}<\mathrm{d}$ have the same truth-value. - end note] Pointers to objects or functions of the same type (after pointer conversions) can be compared for equality. Two pointers of the same type compare equal if and only if they are both null, both point to the same function, or both represent the same address (3.9.2).

2 In addition, pointers to members can be compared, or a pointer to member and a null pointer constant. Pointer to member conversions (4.11) and qualification conversions (4.4) are performed to bring them to a common type. If one operand is a null pointer constant, the common type is the type of the other operand. Otherwise, the common type is a pointer to member type similar (4.4) to the type of one of the operands, with a cv-qualification signature (4.4) that is the union of the cv-qualification signatures of the operand types. [Note: this implies that any pointer to member can be compared to a null pointer constant. - end note] If both operands are null, they compare equal. Otherwise if only one is null, they compare unequal. Otherwise if either is a pointer to a virtual member function, the result is unspecified. Otherwise they compare equal if and only if they would refer to the same member of the same most derived object (1.8) or the same subobject if they were dereferenced with a hypothetical object of the associated class type. [Example:

```
struct B {
    int f();
};
struct L : B { };
struct R : B { };
struct D : L, R { };
int (B::*pb)() = &B::f;
int (L::*pl)() = pb;
int (R::*pr)() = pb;
int (D::*pdl)() = pl;
int (D::*pdr)() = pr;
bool x = (pdl == pdr); // false
_ end example ]
```


5.11 Bitwise AND operator

and-expression \& equality-expression

1 The usual arithmetic conversions are performed; the result is the bitwise AND function of the operands. The operator applies only to integral or enumeration operands.

5.12 Bitwise exclusive OR operator
 [expr.xor]
 exclusive-or-expression:
 and-expression
 exclusive-or-expression ^ and-expression

1 The usual arithmetic conversions are performed; the result is the bitwise exclusive or function of the operands. The operator applies only to integral or enumeration operands.

5.13 Bitwise inclusive OR operator

[expr.or]

```
inclusive-or-expression:
    exclusive-or-expression
    inclusive-or-expression | exclusive-or-expression
```

1 The usual arithmetic conversions are performed; the result is the bitwise inclusive OR function of its operands. The operator applies only to integral or enumeration operands.

5.14 Logical AND operator

[expr.log.and]
logical-and-expression:
inclusive-or-expression
logical-and-expression \&\& inclusive-or-expression
1 The \&\& operator groups left-to-right. The operands are both implicitly converted to type bool (clause 4). The result is true if both operands are true and false otherwise. Unlike \&, \&\& guarantees left-to-right evaluation: the second operand is not evaluated if the first operand is false.

2 The result is a bool. All side effects of the first expression except for destruction of temporaries (12.2) happen before the second expression is evaluated.

5.15 Logical OR operator
 logical-or-expression:
 logical-and-expression
 logical-or-expression || logical-and-expression

[expr.log.or]

1 The || operator groups left-to-right. The operands are both implicitly converted to bool (clause 4). It returns true if either of its operands is true, and false otherwise. Unlike |, || guarantees left-to-right evaluation; moreover, the second operand is not evaluated if the first operand evaluates to true.
2 The result is a bool. All side effects of the first expression except for destruction of temporaries (12.2) happen before the second expression is evaluated.

5.16 Conditional operator
 [expr.cond]
 conditional-expression:
 logical-or-expression
 logical-or-expression ? expression : assignment-expression

1 Conditional expressions group right-to-left. The first expression is implicitly converted to bool (clause 4). It is evaluated and if it is true, the result of the conditional expression is the value of the second expression, otherwise that of the third
expression. All side effects of the first expression except for destruction of temporaries (12.2) happen before the second or third expression is evaluated. Only one of the second and third expressions is evaluated.

2 If either the second or the third operand has type (possibly cv-qualified) void, then the lvalue-to-rvalue (4.1), array-topointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second and third operands, and one of the following shall hold:

- The second or the third operand (but not both) is a throw-expression (15.1); the result is of the type of the other and is an rvalue.
- Both the second and the third operands have type void; the result is of type void and is an rvalue. [Note: this includes the case where both operands are throw-expressions. - end note]

3 Otherwise, if the second and third operand have different types, and either has (possibly cv-qualified) class type, an attempt is made to convert each of those operands to the type of the other. The process for determining whether an operand expression E1 of type T1 can be converted to match an operand expression E2 of type T2 is defined as follows:

- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be implicitly converted (clause 4) to the type "lvalue reference to T2", subject to the constraint that in the conversion the reference must bind directly (8.5.3) to E1.
- If E2 is an rvalue, or if the conversion above cannot be done:
- if E1 and E2 have class type, and the underlying class types are the same or one is a base class of the other: E1 can be converted to match E2 if the class of T2 is the same type as, or a base class of, the class of T1, and the cv-qualification of T 2 is the same cv-qualification as, or a greater cv-qualification than, the cv-qualification of T1. If the conversion is applied, E1 is changed to an rvalue of type T2 by copy-initializing a temporary of type T2 from E1 and using that temporary as the converted operand.
- Otherwise (i.e., if E1 or E2 has a nonclass type, or if they both have class types but the underlying classes are not either the same or one a base class of the other): E1 can be converted to match E2 if E1 can be implicitly converted to the type that expression E2 would have if E2 were converted to an rvalue (or the type it has, if E 2 is an rvalue).

Using this process, it is determined whether the second operand can be converted to match the third operand, and whether the third operand can be converted to match the second operand. If both can be converted, or one can be converted but the conversion is ambiguous, the program is ill-formed. If neither can be converted, the operands are left unchanged and further checking is performed as described below. If exactly one conversion is possible, that conversion is applied to the chosen operand and the converted operand is used in place of the original operand for the remainder of this section.

4 If the second and third operands are lvalues and have the same type, the result is of that type and is an lvalue and it is a bit-field if the second or the third operand is a bit-field, or if both are bit-fields.

5 Otherwise, the result is an rvalue. If the second and third operands do not have the same type, and either has (possibly cv-qualified) class type, overload resolution is used to determine the conversions (if any) to be applied to the operands (13.3.1.2, 13.6). If the overload resolution fails, the program is ill-formed. Otherwise, the conversions thus determined are applied, and the converted operands are used in place of the original operands for the remainder of this section.

6 Lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are performed on the second and third operands. After those conversions, one of the following shall hold:

- The second and third operands have the same type; the result is of that type. If the operands have class type, the result is an rvalue temporary of the result type, which is copy-initialized from either the second operand or the third operand depending on the value of the first operand.
- The second and third operands have arithmetic or enumeration type; the usual arithmetic conversions are performed to bring them to a common type, and the result is of that type.
- The second and third operands have pointer type, or one has pointer type and the other is a null pointer constant; pointer conversions (4.10) and qualification conversions (4.4) are performed to bring them to their composite pointer type (5.9). The result is of the composite pointer type.
- The second and third operands have pointer to member type, or one has pointer to member type and the other is a null pointer constant; pointer to member conversions (4.11) and qualification conversions (4.4) are performed to bring them to a common type, whose cv-qualification shall match the cv-qualification of either the second or the third operand. The result is of the common type.

5.17 Assignment and compound assignment operators

[expr.ass]
1 The assignment operator (=) and the compound assignment operators all group right-to-left. All require a modifiable lvalue as their left operand and return an lvalue with the type and value of the left operand after the assignment has taken place. The result in all cases is a bit-field if the left operand is a bit-field.

```
assignment-expression.
        conditional-expression
        logical-or-expression assignment-operator assignment-expression
        throw-expression
assignment-operator: one of
        = *= /= %= += -= >>= <<= &= ^= |=
```

2 In simple assignment ($=$), the value of the expression replaces that of the object referred to by the left operand.
3 If the left operand is not of class type, the expression is implicitly converted (clause 4) to the cv-unqualified type of the left operand.

4 If the left operand is of class type, the class shall be complete. Assignment to objects of a class is defined by the copy assignment operator (12.8, 13.5.3).

5 [Note: For class objects, assignment is not in general the same as initialization (8.5, 12.1, 12.6, 12.8). - end note]
6 When the left operand of an assignment operator denotes a reference to T, the operation assigns to the object of type T denoted by the reference.

7 The behavior of an expression of the form $\mathrm{E} 1 o p=\mathrm{E} 2$ is equivalent to $\mathrm{E} 1=\mathrm{E} 1$ op E 2 except that E 1 is evaluated only once. In $+=$ and $-=$, E1 shall either have arithmetic type or be a pointer to a possibly cv-qualified completely defined object type. In all other cases, E1 shall have arithmetic type.

8 If the value being stored in an object is accessed from another object that overlaps in any way the storage of the first object, then the overlap shall be exact and the two objects shall have the same type, otherwise the behavior is undefined.

5.18 Comma operator

[expr.comma]
1 The comma operator groups left-to-right.
expression:
assignment-expression
expression, assignment-expression
A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is discarded. The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not applied to the left expression. All side effects (1.9) of the left expression, except for the destruction of temporaries (12.2), are performed before the evaluation of the right expression. The type and value of the result are the type and value of the right operand; the result is an lvalue if its right operand is an lvalue, and is a bit-field if its right operand is an lvalue and a bit-field.

2 In contexts where comma is given a special meaning, [Example: in lists of arguments to functions (5.2.2) and lists of initializers (8.5) -end example] the comma operator as described in clause 5 can appear only in parentheses. [Example:

```
f(a, (t=3, t+2), c);
```

has three arguments, the second of which has the value 5. -end example]

5.19 Constant expressions

[expr.const]
1 In several places, $C++$ requires expressions that evaluate to an integral or enumeration constant: as array bounds (8.3.4, 5.3.4), as case expressions (6.4.2), as bit-field lengths (9.6), as enumerator initializers (7.2), as static member initializers (9.4.2), and as integral or enumeration non-type template arguments (14.3).
constant-expression:
conditional-expression
An integral constant-expression shall involve only literals of arithmetic types (2.13, 3.9.1), enumerators, non-volatile const variables and static data members of integral and enumeration types initialized with constant expressions (8.5), non-type template parameters of integral and enumeration types, and sizeof expressions. Floating literals (2.13.3) shall appear only if they are cast to integral or enumeration types. Only type conversions to integral and enumeration types shall be used. In particular, except in sizeof expressions, functions, class objects, pointers, or references shall not be used, and assignment, increment, decrement, function call (including new-expressions and delete-expressions), comma operators, and throw-expressions shall not be used.
2 Other expressions are considered constant-expressions only for the purpose of non-local static object initialization (3.6.2). Such constant expressions shall evaluate to one of the following:

- a null pointer value (4.10),
- a null member pointer value (4.11),
- an arithmetic constant expression,
- an address constant expression,
- a reference constant expression,
- an address constant expression for a complete object type, plus or minus an integral constant expression, or
- a pointer to member constant expression.

3 An arithmetic constant expression shall satisfy the requirements for an integral constant expression, except that

- floating literals need not be cast to integral or enumeration type, and
- conversions to floating point types are permitted.

4 An address constant expression is a pointer to an lvalue designating an object of static storage duration, a string literal (2.13.4), or a function. The pointer shall be created explicitly, using the unary \& operator, or implicitly using a nontype template parameter of pointer type, or using an expression of array (4.2) or function (4.3) type. The subscripting operator [] and the class member access . and \rightarrow operators, the \& and $*$ unary operators, and pointer casts (except dynamic_casts, 5.2.7) can be used in the creation of an address constant expression, but the value of an object shall not be accessed by the use of these operators. If the subscripting operator is used, one of its operands shall be an integral constant expression. An expression that designates the address of a subobject of a non-POD class object (clause 9) is not an address constant expression (12.7). Function calls shall not be used in an address constant expression, even if the function is inline and has a reference return type.

5 A reference constant expression is an lvalue designating an object of static storage duration, a non-type template parameter of reference type, or a function. The subscripting operator [], the class member access . and $->$ operators, the \& and $*$ unary operators, and reference casts (except those invoking user-defined conversion functions (12.3.2) and except dynamic_casts (5.2.7)) can be used in the creation of a reference constant expression, but the value of an object shall not be accessed by the use of these operators. If the subscripting operator is used, one of its operands shall be an integral constant expression. An lvalue expression that designates a member or base class of a non-POD class object (clause 9) is not a reference constant expression (12.7). Function calls shall not be used in a reference constant expression, even if the function is inline and has a reference return type.

6 A pointer to member constant expression shall be created using the unary \& operator applied to a qualified-id operand (5.3.1), optionally preceded by a pointer to member cast (5.2.9).

Chapter 6 Statements

[stmt.stmt]

1 Except as indicated, statements are executed in sequence.
statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

6.1 Labeled statement

[stmt.label]
1 A statement can be labeled.
labeled-statement:
identifier : statement
case constant-expression : statement
default : statement
An identifier label declares the identifier. The only use of an identifier label is as the target of a goto. The scope of a label is the function in which it appears. Labels shall not be redeclared within a function. A label can be used in a goto statement before its definition. Labels have their own name space and do not interfere with other identifiers.

2 Case labels and default labels shall occur only in switch statements.

6.2 Expression statement

[stmt.expr]
1 Expression statements have the form
expression-statement:
expression $_{\text {opt }}$;
The expression is evaluated and its value is discarded. The lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not applied to the expression. All side effects from an expression statement are completed before the next statement is executed. An expression statement with the expression missing is called a null statement. [Note: Most statements are expression statements - usually assignments or function calls. A null statement is useful to carry a label just before the $\}$ of a compound statement and to supply a null body to an iteration statement
such as a while statement (6.5.1). -end note]

6.3 Compound statement or block

[stmt.block]
1 So that several statements can be used where one is expected, the compound statement (also, and equivalently, called "block") is provided.

```
compound-statement:
    { statement-seqopt }
statement-seq:
    statement
    statement-seq statement
```

A compound statement defines a local scope (3.3). [Note: a declaration is a statement (6.7). -end note]

6.4 Selection statements

[stmt.select]
1 Selection statements choose one of several flows of control.

```
selection-statement:
    if (condition) statement
    if (condition) statement else statement
    switch (condition) statement
condition:
    expression
    type-specifier-seq declarator = assignment-expression
```

In clause 6, the term substatement refers to the contained statement or statements that appear in the syntax notation. The substatement in a selection-statement (each substatement, in the else form of the if statement) implicitly defines a local scope (3.3). If the substatement in a selection-statement is a single statement and not a compound-statement, it is as if it was rewritten to be a compound-statement containing the original substatement. [Example:

```
if (x)
    int i;
```

can be equivalently rewritten as

```
if (x) {
    int i;
}
```

Thus after the if statement, i is no longer in scope. -end example]
2 The rules for conditions apply both to selection-statements and to the for and while statements (6.5). The declarator shall not specify a function or an array. The type-specifier-seq shall not contain typedef and shall not declare a new class or enumeration. If the auto type-specifier appears in the type-specifier-seq, the type-specifier-seq shall contain no other type-specifiers except $c v$-qualifiers, and the type of the identifier being declared is deduced from the assignment-expression as described in 7.1.5.4.

3 A name introduced by a declaration in a condition (either introduced by the type-specifier-seq or the declarator of the condition) is in scope from its point of declaration until the end of the substatements controlled by the condition. If the name is re-declared in the outermost block of a substatement controlled by the condition, the declaration that re-declares the name is ill-formed. [Example:

```
if (int x = f()) {
    int x; // ill-formed, redeclaration of x
}
else {
    int x; // ill-formed, redeclaration of x
}
- end example]
```

4 The value of a condition that is an initialized declaration in a statement other than a switch statement is the value of the declared variable implicitly converted to type bool. If that conversion is ill-formed, the program is ill-formed. The value of a condition that is an initialized declaration in a switch statement is the value of the declared variable if it has integral or enumeration type, or of that variable implicitly converted to integral or enumeration type otherwise. The value of a condition that is an expression is the value of the expression, implicitly converted to bool for statements other than switch; if that conversion is ill-formed, the program is ill-formed. The value of the condition will be referred to as simply "the condition" where the usage is unambiguous.

5 If a condition can be syntactically resolved as either an expression or the declaration of a local name, it is interpreted as a declaration.

6.4.1 The if statement

[stmt.if]
1 If the condition (6.4) yields true the first substatement is executed. If the else part of the selection statement is present and the condition yields false, the second substatement is executed. In the second form of if statement (the one including else), if the first substatement is also an if statement then that inner if statement shall contain an else part. ${ }^{80)}$

6.4.2 The switch statement

[stmt.switch]
1 The switch statement causes control to be transferred to one of several statements depending on the value of a condition.
2 The condition shall be of integral type, enumeration type, or of a class type for which a single conversion function to integral or enumeration type exists (12.3). If the condition is of class type, the condition is converted by calling that conversion function, and the result of the conversion is used in place of the original condition for the remainder of this section. Integral promotions are performed. Any statement within the switch statement can be labeled with one or more case labels as follows:
case constant-expression :
where the constant-expression shall be an integral constant-expression. The integral constant-expression (5.19) is implicitly converted to the promoted type of the switch condition. No two of the case constants in the same switch shall have the same value after conversion to the promoted type of the switch condition.

3 There shall be at most one label of the form
default :
within a switch statement.
4 Switch statements can be nested; a case or default label is associated with the smallest switch enclosing it.

[^55]5 When the switch statement is executed, its condition is evaluated and compared with each case constant. If one of the case constants is equal to the value of the condition, control is passed to the statement following the matched case label. If no case constant matches the condition, and if there is a default label, control passes to the statement labeled by the default label. If no case matches and if there is no default then none of the statements in the switch is executed.

6
case and def ault labels in themselves do not alter the flow of control, which continues unimpeded across such labels. To exit from a switch, see break, 6.6.1. [Note: usually, the substatement that is the subject of a switch is compound and case and default labels appear on the top-level statements contained within the (compound) substatement, but this is not required. Declarations can appear in the substatement of a switch-statement. - end note]

6.5 Iteration statements

[stmt.iter]
1 Iteration statements specify looping.

iteration-statement:

while (condition) statement
do statement while (expression) ;
for (for-init-statement condition ${ }_{\text {opt }}$; expression $_{\text {opt }}$) statement

for-init-statement:

expression-statement
simple-declaration
[Note: a for-init-statement ends with a semicolon. - end note]
2 The substatement in an iteration-statement implicitly defines a local scope (3.3) which is entered and exited each time through the loop.

If the substatement in an iteration-statement is a single statement and not a compound-statement, it is as if it was rewritten to be a compound-statement containing the original statement. [Example:

```
while (--x >= 0)
    int i;
```

can be equivalently rewritten as

```
while (--x >= 0) {
    int i;
}
```

3 Thus after the while statement, i is no longer in scope. -end example]
4 [Note: The requirements on conditions in iteration statements are described in 6.4. -end note]

6.5.1 The while statement

[stmt.while]
1 In the while statement the substatement is executed repeatedly until the value of the condition (6.4) becomes false. The test takes place before each execution of the substatement.

2 When the condition of a while statement is a declaration, the scope of the variable that is declared extends from its point of declaration (3.3.1) to the end of the while statement. A while statement of the form

```
while (T t = x) statement
```

is equivalent to

```
label:
{
                                    // start of condition scope
    T t = x;
    if (t) {
        statement
        goto label;
    }
}
// end of condition scope
```

The object created in a condition is destroyed and created with each iteration of the loop. [Example:

```
struct A {
    int val;
    A(int i) : val(i) { }
    ~A() { }
    operator bool() { return val != 0; }
};
int i = 1;
while (A a = i) {
    // ...
    i = 0;
}
```

In the while-loop, the constructor and destructor are each called twice, once for the condition that succeeds and once for the condition that fails. - end example]

6.5.2 The do statement

[stmt.do]
1 The expression is implicitly converted to bool; if that is not possible, the program is ill-formed.
2 In the do statement the substatement is executed repeatedly until the value of the expression becomes false. The test takes place after each execution of the statement.
6.5.3 The for statement
[stmt.for]
1 The for statement
for (for-init-statement condition ${ }_{\text {opt }}$; expression $_{\text {opt }}$) statement
is equivalent to
\{
for-init-statement while (condition) \{ statement expression ;
\}
\}
except that names declared in the for-init-statement are in the same declarative-region as those declared in the condition, and except that a continue in statement (not enclosed in another iteration statement) will execute expression before re-evaluating condition. [Note: Thus the first statement specifies initialization for the loop; the condition (6.4) specifies
a test, made before each iteration, such that the loop is exited when the condition becomes false; the expression often specifies incrementing that is done after each iteration. -end note]

2 Either or both of the condition and the expression can be omitted. A missing condition makes the implied while clause equivalent to while (true).

3 If the for-init-statement is a declaration, the scope of the name(s) declared extends to the end of the for-statement. [Example:

```
    int i = 42;
    int a[10];
    for (int i = 0; i < 10; i++)
        a[i] = i;
    int j = i; // j = 42
_ end example ]
```


6.6 Jump statements

[stmt.jump]
1 Jump statements unconditionally transfer control.

```
jump-statement:
    break ;
    continue ;
    return expression opt ;
    goto identifier ;
```

2 On exit from a scope (however accomplished), destructors (12.4) are called for all constructed objects with automatic storage duration (3.7.3) (named objects or temporaries) that are declared in that scope, in the reverse order of their declaration. Transfer out of a loop, out of a block, or back past an initialized variable with automatic storage duration involves the destruction of variables with automatic storage duration that are in scope at the point transferred from but not at the point transferred to. (See 6.7 for transfers into blocks). [Note: However, the program can be terminated (by calling std: :exit() or std: : abort() (18.4), for example) without destroying class objects with automatic storage duration. - end note]

6.6.1 The break statement

[stmt.break]
1 The break statement shall occur only in an iteration-statement or a switch statement and causes termination of the smallest enclosing iteration-statement or switch statement; control passes to the statement following the terminated statement, if any.

6.6.2 The continue statement

[stmt.cont]
1 The continue statement shall occur only in an iteration-statement and causes control to pass to the loop-continuation portion of the smallest enclosing iteration-statement, that is, to the end of the loop. More precisely, in each of the statements

```
while (foo) {
    {
    // ..
    }
contin: ;
}
```

```
do {
```

do {
{
{
// ..
// ..
}
}
contin: ;
contin: ;
} while (foo);

```
} while (foo);
```

```
for (;;) {
```

for (;;) {
{
{
// ..
// ..
}
}
contin: ;
contin: ;
}

```
}
```

a continue not contained in an enclosed iteration statement is equivalent to goto contin.

6.6.3 The return statement

[stmt.return]
1 A function returns to its caller by the return statement.
2 A return statement without an expression can be used only in functions that do not return a value, that is, a function with the return type void, a constructor (12.1), or a destructor (12.4). A return statement with an expression of non-void type can be used only in functions returning a value; the value of the expression is returned to the caller of the function. The expression is implicitly converted to the return type of the function in which it appears. A return statement can involve the construction and copy of a temporary object (12.2). [Note: A copy operation associated with a return statement may be elided or considered as an rvalue for the purpose of overload resolution in selecting a constructor (12.8). - end note] Flowing off the end of a function is equivalent to a return with no value; this results in undefined behavior in a value-returning function.

3 A return statement with an expression of type " $c v$ void" can be used only in functions with a return type of $c v$ void; the expression is evaluated just before the function returns to its caller.

6.6.4 The goto statement

[stmt.goto]
1 The goto statement unconditionally transfers control to the statement labeled by the identifier. The identifier shall be a label (6.1) located in the current function.

6.7 Declaration statement

[stmt.dcl]
1 A declaration statement introduces one or more new identifiers into a block; it has the form
declaration-statement:
block-declaration
If an identifier introduced by a declaration was previously declared in an outer block, the outer declaration is hidden for the remainder of the block, after which it resumes its force.

2 Variables with automatic storage duration (3.7.3) are initialized each time their declaration-statement is executed. Variables with automatic storage duration declared in the block are destroyed on exit from the block (6.6).

3 It is possible to transfer into a block, but not in a way that bypasses declarations with initialization. A program that jumps ${ }^{81)}$ from a point where a local variable with automatic storage duration is not in scope to a point where it is in scope is ill-formed unless the variable has POD type (3.9) and is declared without an initializer (8.5).

[Example:

```
void f()
```

\{
// ...

[^56]```
 goto 1x;
 // ...
ly:
 X a = 1;
 // ...
lx:
 goto ly;
}
// ill-formed: jump into scope of a
// OK, jump implies destructor
// call for a followed by construction
// again immediately following label 1y
_ end example]
```

4 The zero-initialization (8.5) of all local objects with static storage duration (3.7.1) is performed before any other initialization takes place. A local object of POD type (3.9) with static storage duration initialized with constant-expressions is initialized before its block is first entered. An implementation is permitted to perform early initialization of other local objects with static storage duration under the same conditions that an implementation is permitted to statically initialize an object with static storage duration in namespace scope (3.6.2). Otherwise such an object is initialized the first time control passes through its declaration; such an object is considered initialized upon the completion of its initialization. If the initialization exits by throwing an exception, the initialization is not complete, so it will be tried again the next time control enters the declaration. If control re-enters the declaration (recursively) while the object is being initialized, the behavior is undefined. [Example:

```
int foo(int i)
{
 static int s = foo(2*i); // recursive call-undefined
 return i+1;
}
- end example]
```

5 The destructor for a local object with static storage duration will be executed if and only if the variable was constructed. [ Note: 3.6.3 describes the order in which local objects with static storage duration are destroyed. -end note ]

### 6.8 Ambiguity resolution

1 There is an ambiguity in the grammar involving expression-statements and declarations: An expression-statement with a function-style explicit type conversion (5.2.3) as its leftmost subexpression can be indistinguishable from a declaration where the first declarator starts with a (. In those cases the statement is a declaration. [ Note: To disambiguate, the whole statement might have to be examined to determine if it is an expression-statement or a declaration. This disambiguates many examples. [Example: assuming T is a simple-type-specifier (7.1.5),

| $\mathrm{T}(\mathrm{a})->\mathrm{m}=7 ;$ | // expression-statement |
| :--- | :--- |
| $\mathrm{T}(\mathrm{a})++;$ | // expression-statement |
| $\mathrm{T}(\mathrm{a}, 5) \ll \mathrm{c} ;$ | // expression-statement |
|  |  |
| $\mathrm{T}(* \mathrm{~d})(\mathrm{int}) ;$ | // declaration |
| $\mathrm{T}(\mathrm{e})[5] ;$ | // declaration |
| $\mathrm{T}(\mathrm{f})=\{1,2\} ;$ | // declaration |
| $\mathrm{T}(* \mathrm{~g})($ double $(3)) ;$ | // declaration |

Draft

In the last example above, g , which is a pointer to T , is initialized to double(3). This is of course ill-formed for semantic reasons, but that does not affect the syntactic analysis. - end example ]

2 The remaining cases are declarations. [Example:

```
 class T {
 // ...
public:
 T();
 T(int);
 T(int, int);
};
T(a); // declaration
T(*b)(); // declaration
T(c)=7; // declaration
T(d),e,f=3; // declaration
extern int h;
T(g)(h,2); // declaration
— end example] - end note]
```

3 The disambiguation is purely syntactic; that is, the meaning of the names occurring in such a statement, beyond whether they are type-names or not, is not generally used in or changed by the disambiguation. Class templates are instantiated as necessary to determine if a qualified name is a type-name. Disambiguation precedes parsing, and a statement disambiguated as a declaration may be an ill-formed declaration. If, during parsing, a name in a template parameter is bound differently than it would be bound during a trial parse, the program is ill-formed. No diagnostic is required. [Note: This can occur only when the name is declared earlier in the declaration. - end note ] [Example:

```
struct T1 {
 T1 operator()(int x) { return T1(x); }
 int operator=(int x) { return x; }
 T1(int) { }
};
struct T2 { T2(int){ } };
int a, (*(*b)(T2))(int), c, d;
void f() {
 // disambiguation requires this to be parsed
 // as a declaration
 T1(a) = 3,
 T2(4), // T2 will be declared as
 (*(*b) (T2 (c))) (int(d)); // a variable of type T1
 // but this will not allow
 // the last part of the
 // declaration to parse
 // properly since it depends
 // on T2 being a type-name
}
_ end example]
```


## Chapter 7 Declarations

## [dcl.dcl]

1 Declarations specify how names are to be interpreted. Declarations have the form

```
declaration-seq:
 declaration
 declaration-seq declaration
declaration:
 block-declaration
 function-definition
 template-declaration
 explicit-instantiation
 explicit-specialization
 linkage-specification
 namespace-definition
block-declaration:
 simple-declaration
 asm-definition
 namespace-alias-definition
 using-declaration
 using-directive
 static_assert-declaration
simple-declaration:
 decl-specifier-seq opt init-declarator-listopt ;
static_assert-declaration:
 static_assert (constant-expression , string-literal) ;
```

[ Note: asm-definitions are described in 7.4, and linkage-specifications are described in 7.5. Function-definitions are described in 8.4 and template-declarations are described in clause 14. Namespace-definitions are described in 7.3.1, usingdeclarations are described in 7.3.3 and using-directives are described in 7.3.4. - end note ] The simple-declaration

$$
\text { decl-specifier-seq }_{\text {opt }} \text { init-declarator-list }{ }_{\text {opt }} \text {; }
$$

is divided into two parts: decl-specifiers, the components of a decl-specifier-seq, are described in 7.1 and declarators, the components of an init-declarator-list, are described in clause 8.

2 A declaration occurs in a scope (3.3); the scope rules are summarized in 3.4. A declaration that declares a function or defines a class, namespace, template, or function also has one or more scopes nested within it. These nested scopes, in turn, can have declarations nested within them. Unless otherwise stated, utterances in clause 7 about components in, of, or contained by a declaration or subcomponent thereof refer only to those components of the declaration that are not nested within scopes nested within the declaration.

3 In a simple-declaration, the optional init-declarator-list can be omitted only when declaring a class (clause 9) or enumeration (7.2), that is, when the decl-specifier-seq contains either a class-specifier, an elaborated-type-specifier with a class-key (9.1), or an enum-specifier. In these cases and whenever a class-specifier or enum-specifier is present in the decl-specifier-seq, the identifiers in these specifiers are among the names being declared by the declaration (as classnames, enum-names, or enumerators, depending on the syntax). In such cases, and except for the declaration of an unnamed bit-field (9.6), the decl-specifier-seq shall introduce one or more names into the program, or shall redeclare a name introduced by a previous declaration. [ Example:

```
enum { }; // ill-formed
typedef class { }; // ill-formed
- end example]
```

4 In a static_assert-declaration the constant-expression shall be an integral constant expression (5.19). If the value of the expression when converted to bool is true, the declaration has no effect. Otherwise, the program is ill-formed, and the resulting diagnostic message (1.4) shall include the text of the string-literal, except that characters not in the basic source character set (2.2) are not required to appear in the diagnostic message. [Example:

```
static_assert(sizeof(long) >= 8, "64-bit code generation required for this library.");
- end example]
```

5 Each init-declarator in the init-declarator-list contains exactly one declarator-id, which is the name declared by that init-declarator and hence one of the names declared by the declaration. The type-specifiers (7.1.5) in the decl-specifierseq and the recursive declarator structure of the init-declarator describe a type (8.3), which is then associated with the name being declared by the init-declarator.

6 If the decl-specifier-seq contains the typedef specifier, the declaration is called a typedef declaration and the name of each init-declarator is declared to be a typedef-name, synonymous with its associated type (7.1.3). If the decl-specifierseq contains no typedef specifier, the declaration is called a function declaration if the type associated with the name is a function type (8.3.5) and an object declaration otherwise.

7 Syntactic components beyond those found in the general form of declaration are added to a function declaration to make a function-definition. An object declaration, however, is also a definition unless it contains the extern specifier and has no initializer (3.1). A definition causes the appropriate amount of storage to be reserved and any appropriate initialization (8.5) to be done.
8 Only in function declarations for constructors, destructors, and type conversions can the decl-specifier-seq be omitted. ${ }^{82)}$

### 7.1 Specifiers

[dcl.spec]
1 The specifiers that can be used in a declaration are

```
decl-specifier:
 storage-class-specifier
 type-specifier
 function-specifier
 friend
 typedef
```

[^57]2 The longest sequence of decl-specifiers that could possibly be a type name is taken as the decl-specifier-seq of a declaration. The sequence shall be self-consistent as described below. [ Example:

```
typedef char* Pc;
static Pc; // error: name missing
```

Here, the declaration static Pc is ill-formed because no name was specified for the static variable of type Pc. To get a variable called Pc, a type-specifier (other than const or volatile) has to be present to indicate that the typedef-name Pc is the name being (re)declared, rather than being part of the decl-specifier sequence. For another example,

```
void f(const Pc); //void f(char* const) (not const char*)
void g(const int Pc); // void g(const int)
- end example]
```

3 [ Note: since signed, unsigned, long, and short by default imply int, a type-name appearing after one of those specifiers is treated as the name being (re)declared. [Example:

```
void h(unsigned Pc); // void h(unsigned int)
void k(unsigned int Pc); // void k(unsigned int)
- end example] - end note]
```


### 7.1.1 Storage class specifiers

1 The storage class specifiers are

```
storage-class-specifier.
register
static
extern
mutable
```

At most one storage-class-specifier shall appear in a given decl-specifier-seq. If a storage-class-specifier appears in a decl-specifier-seq, there can be no typedef specifier in the same decl-specifier-seq and the init-declarator-list of the declaration shall not be empty (except for global anonymous unions, which shall be declared static (9.5)). The storage-class-specifier applies to the name declared by each init-declarator in the list and not to any names declared by other specifiers. A storage-class-specifier shall not be specified in an explicit specialization (14.7.3) or an explicit instantiation (14.7.2) directive.

2 The register specifier shall be applied only to names of objects declared in a block (6.3) or to function parameters (8.4). It specifies that the named object has automatic storage duration (3.7.3). An object declared without a storage-class-specifier at block scope or declared as a function parameter has automatic storage duration by default.

3 A register specifier is a hint to the implementation that the object so declared will be heavily used. [Note: the hint can be ignored and in most implementations it will be ignored if the address of the object is taken. -end note ]

4 The static specifier can be applied only to names of objects and functions and to anonymous unions (9.5). There can be no static function declarations within a block, nor any static function parameters. A static specifier used in the declaration of an object declares the object to have static storage duration (3.7.1). A static specifier can be used in
declarations of class members; 9.4 describes its effect. For the linkage of a name declared with a static specifier, see 3.5.

5 The extern specifier can be applied only to the names of objects and functions. The extern specifier cannot be used in the declaration of class members or function parameters. For the linkage of a name declared with an extern specifier, see 3.5. [Note: The extern keyword can also be used in explicit-instantiations and linkage-specifications, but it is not a storage-class-specifier in such contexts. - end note ]

6 A name declared in a namespace scope without a storage-class-specifier has external linkage unless it has internal linkage because of a previous declaration and provided it is not declared const. Objects declared const and not explicitly declared extern have internal linkage.

7 The linkages implied by successive declarations for a given entity shall agree. That is, within a given scope, each declaration declaring the same object name or the same overloading of a function name shall imply the same linkage. Each function in a given set of overloaded functions can have a different linkage, however. [ Example:

```
static char* f();
char* f()
 {/* ... */ }
char* g(); // g() has external linkage
static char* g()
 {/* ... */ }
void h();
inline void h(); // external linkage
inline void l();
void l(); // external linkage
inline void m();
extern void m();
static void n();
inline void n();
static int a; // a has internal linkage
int a;
static int b; // b has internal linkage
extern int b; // b still has internal linkage
int c; // c has external linkage
static int c; // error: inconsistent linkage
extern int d; // d has external linkage
static int d; // error: inconsistent linkage
- end example]
```

8 The name of a declared but undefined class can be used in an extern declaration. Such a declaration can only be used in ways that do not require a complete class type. [Example:

```
struct S;
extern S a;
extern S f();
extern void g(S);
void h()
{
}
```

    \(\mathrm{g}(\mathrm{a})\); \(/ /\) error: S is incomplete
    f() ; // error: S is incomplete
    - end example ] The mutable specifier can be applied only to names of class data members (9.2) and cannot be applied to names declared const or static, and cannot be applied to reference members. [Example:

```
class X {
 mutable const int* p; // OK
 mutable int* const q; // ill-formed
};
- end example]
```

9 The mutable specifier on a class data member nullifies a const specifier applied to the containing class object and permits modification of the mutable class member even though the rest of the object is const (7.1.5.1).

### 7.1.2 Function specifiers

[dcl.fct.spec]
1 Function-specifiers can be used only in function declarations.
function-specifier:
inline
virtual
explicit
2 A function declaration (8.3.5, 9.3, 11.4) with an inline specifier declares an inline function. The inline specifier indicates to the implementation that inline substitution of the function body at the point of call is to be preferred to the usual function call mechanism. An implementation is not required to perform this inline substitution at the point of call; however, even if this inline substitution is omitted, the other rules for inline functions defined by 7.1 .2 shall still be respected.
3 A function defined within a class definition is an inline function. The inline specifier shall not appear on a block scope function declaration. ${ }^{83)}$ If the inline specifier is used in a friend declaration, that declaration shall be a definition or the function shall have previously been declared inline.

4 An inline function shall be defined in every translation unit in which it is used and shall have exactly the same definition in every case (3.2). [ Note: a call to the inline function may be encountered before its definition appears in the translation unit. - end note ] If the definition of a function appears in a translation unit before its first declaration as inline, the program is ill-formed. If a function with external linkage is declared inline in one translation unit, it shall be declared

[^58]inline in all translation units in which it appears; no diagnostic is required. An inline function with external linkage shall have the same address in all translation units. A static local variable in an extern inline function always refers to the same object. A string literal in an extern inline function is the same object in different translation units.

5 The virtual specifier shall be used only in the initial declaration of a non-static class member function; see 10.3.
6 The explicit specifier shall be used only in the declaration of a constructor within its class definition; see 12.3.1.

### 7.1.3 The typedef specifier

[dcl.typedef]
1 Declarations containing the decl-specifier typedef declare identifiers that can be used later for naming fundamental (3.9.1) or compound (3.9.2) types. The typedef specifier shall not be used in a function-definition (8.4), and it shall not be combined in a decl-specifier-seq with any other kind of specifier except a type-specifier.
typedef-name:
identifier
A name declared with the typedef specifier becomes a typedef-name. Within the scope of its declaration, a typedefname is syntactically equivalent to a keyword and names the type associated with the identifier in the way described in clause 8. A typedef-name is thus a synonym for another type. A typedef-name does not introduce a new type the way a class declaration (9.1) or enum declaration does. [ Example: after

```
typedef int MILES, *KLICKSP;
```

the constructions

```
MILES distance;
extern KLICKSP metricp;
```

are all correct declarations; the type of distance is int that of metricp is "pointer to int." - end example ]
2 In a given non-class scope, a typedef specifier can be used to redefine the name of any type declared in that scope to refer to the type to which it already refers. [ Example:

```
typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;
_ end example]
```

3 In a given class scope, a typedef specifier can be used to redefine any class-name declared in that scope that is not also a typedef-name to refer to the type to which it already refers.

## [ Example:

```
struct S {
 typedef struct A {} A; // OK
 typedef struct B B; // OK
 typedef A A; // error
_ end example]
```

4 In a given scope, a typedef specifier shall not be used to redefine the name of any type declared in that scope to refer to a different type. [Example:

```
class complex { /* ... */ };
typedef int complex; // error: redefinition
- end example]
```

5 Similarly, in a given scope, a class or enumeration shall not be declared with the same name as a typedef-name that is declared in that scope and refers to a type other than the class or enumeration itself. [Example:

```
typedef int complex;
class complex { /* ... */ }; // error: redefinition
- end example]
```

6 [Note: A typedef-name that names a class type, or a cv-qualified version thereof, is also a class-name (9.1). If a typedefname is used to identify the subject of an elaborated-type-specifier (7.1.5.3), a class definition (clause 9), a constructor declaration (12.1), or a destructor declaration (12.4), the program is ill-formed. -end note ]

## [ Example:

```
struct S {
 S();
 ~
};
typedef struct S T;
S a = T(); // OK
struct T * p; // error
— end example]
```

7 If the typedef declaration defines an unnamed class (or enum), the first typedef-name declared by the declaration to be that class type (or enum type) is used to denote the class type (or enum type) for linkage purposes only (3.5). [Example:

```
typedef struct { } *ps, S; // S is the class name for linkage purposes
```

- end example ]

8 If a typedef TD names a type that is a reference to a type T, an attempt to create the type "Ivalue reference to $c v$ TD" creates the type "lvalue reference to T," while an attempt to create the type "rvalue reference to $c v$ TD" creates the type TD. [Example:

```
int i;
typedef int& LRI;
typedef int&& RRI;
LRI& r1 = i; // r1 has the type int&
const LRI& r2 = i; // r2 has the type int&
const LRI&& r3 = i; // r3 has the type int&
RRI& r4 = i; // r4 has the type int&
RRI&& r5 = i; // r5 has the type int&&
```


## - end example ]

### 7.1.4 The friend specifier

[dcl.friend]
The friend specifier is used to specify access to class members; see 11.4.

### 7.1.5 Type specifiers

[dcl.type]
1 The type-specifiers are
type-specifier:
simple-type-specifier
class-specifier
enum-specifier
elaborated-type-specifier
typename-specifier
cv-qualifier
2 As a general rule, at most one type-specifier is allowed in the complete decl-specifier-seq of a declaration. The only exceptions to this rule are the following:

- const or volatile can be combined with any other type-specifier. However, redundant cv-qualifiers are prohibited except when introduced through the use of typedefs (7.1.3) or template type arguments (14.3), in which case the redundant cv-qualifiers are ignored.
- signed or unsigned can be combined with char, long, short, or int.
- short or long can be combined with int.
- long can be combined with double.
- long can be combined with long.
- auto can be combined with any type specifier except itself.

3 At least one type-specifier that is not a cv-qualifier is required in a declaration unless it declares a constructor, destructor or conversion function. ${ }^{84)}$

4 [Note: class-specifiers and enum-specifiers are discussed in clause 9 and 7.2, respectively. The remaining type-specifiers are discussed in the rest of this section. - end note ]

### 7.1.5.1 The $c v$-qualifiers

[dcl.type.cv]
1 There are two cv-qualifiers, const and volatile. If a cv-qualifier appears in a decl-specifier-seq, the init-declaratorlist of the declaration shall not be empty. [Note: 3.9.3 describes how cv-qualifiers affect object and function types. - end note]

2 An object declared in namespace scope with a const-qualified type has internal linkage unless it is explicitly declared extern or unless it was previously declared to have external linkage. A variable of non-volatile const-qualified integral or enumeration type initialized by an integral constant expression can be used in integral constant expressions (5.19).

[^59][ Note: as described in 8.5 , the definition of an object or subobject of const-qualified type must specify an initializer or be subject to default-initialization. -end note]

3 A pointer or reference to a cv-qualified type need not actually point or refer to a cv-qualified object, but it is treated as if it does; a const-qualified access path cannot be used to modify an object even if the object referenced is a non-const object and can be modified through some other access path. [Note: cv-qualifiers are supported by the type system so that they cannot be subverted without casting (5.2.11). - end note ]
4 Except that any class member declared mutable (7.1.1) can be modified, any attempt to modify a const object during its lifetime (3.8) results in undefined behavior.
[ Example:

```
const int ci = 3; // cv-qualified (initialized as required)
ci = 4; // ill-formed: attempt to modify const
int i = 2; // not cv-qualified
const int* cip; // pointer to const int
cip = &i;
*cip = 4;
int* ip;
ip = const_cast<int*>(cip); // cast needed to convert const int* to int*
*ip = 4;
// defined: *ip points to i, a non-const object
const int* ciq = new const int (3); // initialized as required
int* iq = const_cast<int*>(ciq); // cast required
*iq = 4; // undefined: modifies a const object
```

5 For another example

```
class X {
 public:
 mutable int i;
 int j;
};
class Y {
 public:
 X x;
 Y();
};
const Y y;
y.x.i++; // well-formed: mutable member can be modified
y.x.j++; // ill-formed: const-qualified member modified
Y* p = const_cast<Y*> (&y); // cast away const-ness of y
p->x.i = 99; // well-formed: mutable member can be modified
p->x.j = 99; // undefined: modifies a const member
_ end example]
```

Draft

6 If an attempt is made to refer to an object defined with a volatile-qualified type through the use of an lvalue with a non-volatile-qualified type, the program behaviour is undefined.

7 [ Note: volatile is a hint to the implementation to avoid aggressive optimization involving the object because the value of the object might be changed by means undetectable by an implementation. See 1.9 for detailed semantics. In general, the semantics of volatile are intended to be the same in $\mathrm{C}++$ as they are in C . - end note ]

### 7.1.5.2 Simple type specifiers

[dcl.type.simple]
1 The simple type specifiers are

```
simple-type-specifier:
 :: opt nested-name-specifier opt type-name
 : :opt nested-name-specifier template simple-template-id
 char
 wchar_t
 bool
 short
 int
 long
 signed
 unsigned
 float
 double
 void
 auto
type-name:
 class-name
 enum-name
 typedef-name
```

2 The auto specifier is a placeholder for a type to be deduced (7.1.5.4). The other simple-type-specifiers specify either a previously-declared user-defined type or one of the fundamental types (3.9.1). Table 8 summarizes the valid combinations of simple-type-specifiers and the types they specify.

Table 8: simple-type-specifiers and the types they specify

| Specifier(s) | Type |
| :--- | :--- |
| type-name | the type named |
| char | "char" |
| unsigned char | "unsigned char" |
| signed char | "signed char" |
| bool | "bool" |
| unsigned | "unsigned int" |
| unsigned int | "unsigned int" |
| signed | "int" |
| signed int | "int" |
| int | "int" |
| unsigned short int | "unsigned short int" |
| unsigned short | "unsigned short int" |

Draft

| Specifier(s) | Type |
| :--- | :--- |
| type-name | the type named |
| unsigned long int | "unsigned long int" |
| unsigned long | "unsigned long int" |
| unsigned long long int | "unsigned long long int" |
| unsigned long long | "unsigned long long int" |
| signed long int | "long int" |
| signed long | "long int" |
| signed long long int | "long long int" |
| signed long long | "long long int" |
| long long int | "long long int" |
| long long | "long long int" |
| long int | "long int" |
| long | "long int" |
| signed short int | "short int" |
| signed short | "short int" |
| short int | "short int" |
| short | "short int" |
| wchar_t | "wchar_t" |
| float | "float" |
| double | "double" |
| long double | "long double" |
| void | "void" |
| auto | placeholder for a type to be deduced |

3 When multiple simple-type-specifiers are allowed, they can be freely intermixed with other decl-specifiers in any order. [ Note: It is implementation-defined whether objects of char type and certain bit-fields (9.6) are represented as signed or unsigned quantities. The signed specifier forces char objects and bit-fields to be signed; it is redundant in other contexts. - end note]

### 7.1.5.3 Elaborated type specifiers

[dcl.type.elab]

```
elaborated-type-specifier:
 class-key : : opt nested-name-specifier opt identifier
 class-key : :opt nested-name-specifier opt template opt simple-template-id
 enum ::opt nested-name-specifier opt identifier
```

1 If an elaborated-type-specifier is the sole constituent of a declaration, the declaration is ill-formed unless it is an explicit specialization (14.7.3), an explicit instantiation (14.7.2) or it has one of the following forms:

```
class-key identifier ;
friend class-key :: opt identifier;
friend class-key ::opt simple-template-id;
friend class-key : :opt nested-name-specifier identifier ;
friend class-key : : opt nested-name-specifier template opt simple-template-id ;
```

2 3.4.4 describes how name lookup proceeds for the identifier in an elaborated-type-specifier. If the identifier resolves to a class-name or enum-name, the elaborated-type-specifier introduces it into the declaration the same way a simple-
type-specifier introduces its type-name. If the identifier resolves to a typedef-name, the elaborated-type-specifier is ill-formed. [Note: this implies that, within a class template with a template type-parameter T , the declaration

```
friend class T;
```

is ill-formed. -end note ]
3 The class-key or enum keyword present in the elaborated-type-specifier shall agree in kind with the declaration to which the name in the elaborated-type-specifier refers. This rule also applies to the form of elaborated-type-specifier that declares a class-name or friend class since it can be construed as referring to the definition of the class. Thus, in any elaborated-type-specifier, the enum keyword shall be used to refer to an enumeration (7.2), the union class-key shall be used to refer to a union (clause 9), and either the class or struct class-key shall be used to refer to a class (clause 9) declared using the class or struct class-key.

### 7.1.5.4 auto specifier

[dcl.spec.auto]
1 The auto type-specifier has two meanings depending on the context of its use. In a decl-specifier-seq that contains at least one type-specifier (in addition to auto) that is not a cv-qualifier, the auto type-specifier specifies that the object named in the declaration has automatic storage duration. The decl-specifier-seq shall contain no storage-class-specifiers. This use of the auto specifier shall only be applied to names of objects declared in a block (6.3) or to function parameters (8.4).

2 Otherwise (auto appearing with no type specifiers other than cv-qualifiers), the auto type-specifier signifies that the type of an object being declared shall be deduced from its initializer. The name of the object being declared shall not appear in the initializer expression.

3 This use of auto is allowed when declaring objects in a block (6.3), in namespace scope (3.3.5), and in a for-init-statement (6.5.3). The decl-specifier-seq shall be followed by one or more init-declarators, each of which shall have a non-empty initializer of either of the following forms:
= assignment-expression
( assignment-expression )
[ Example:

```
auto x = 5; // OK: x has type int
const auto *v = &x, u = 6; // OK: v has type const int*, u has type const int
static auto y = 0.0; // OK: y has type double
static auto int z; // error: auto and static conflict
auto int r; // OK: r has type int
- end example]
```

4 The auto type-specifier can also be used in declaring an object in the condition of a selection statement (6.4) or an iteration statement (6.5), in the type-specifier-seq in a new-type-id (5.3.4), and in declaring a static data member with a constant-initializer that appears within the member-specification of a class definition (9.4.2).

5 A program that uses auto in a context not explicitly allowed in this section is ill-formed.
6 Once the type of a declarator-id has been determined according to 8.3, the type of the declared variable using the declarator-id is determined from the type of its initializer using the rules for template argument deduction. Let T be the type that has been determined for a variable identifier d. Obtain $P$ from $T$ by replacing the occurrences of auto with a new invented type template parameter $U$. Let A be the type of the initializer expression for d . The type deduced for the variable $d$ is then the deduced type determined using the rules of template argument deduction from a function
call (14.8.2.1), where $P$ is a function template parameter type and $A$ is the corresponding argument type. If the deduction fails, the declaration is ill-formed.

7 If the list of declarators contains more than one declarator, the type of each declared variable is determined as described above. If the type deduced for the template parameter $U$ is not the same in each deduction, the program is ill-formed.
[ Example:

```
const auto &i = expr;
```

The type of $i$ is the deduced type of the parameter $u$ in the call $f$ (expr) of the following invented function template:

```
template <class U> void f(const U& u);
- end example]
```


### 7.2 Enumeration declarations

[dcl.enum]
1 An enumeration is a distinct type (3.9.1) with named constants. Its name becomes an enum-name, within its scope.

```
enum-name:
 identifier
enum-specifier:
 enum identifier opt { enumerator-list opt }
 enum identifier opt { enumerator-list, }
enumerator-list:
 enumerator-definition
 enumerator-list, enumerator-definition
enumerator-definition:
 enumerator
 enumerator = constant-expression
enumerator:
 identifier
```

2 The identifiers in an enumerator-list are declared as constants, and can appear wherever constants are required. An enumerator-definition with = gives the associated enumerator the value indicated by the constant-expression. The constant-expression shall be of integral or enumeration type. If the first enumerator has no initializer, the value of the corresponding constant is zero. An enumerator-definition without an initializer gives the enumerator the value obtained by increasing the value of the previous enumerator by one.

## [ Example:

```
enum { a, b, c=0 };
enum {d, e, f=e+2 };
```

defines $\mathrm{a}, \mathrm{c}$, and d to be zero, b and e to be 1 , and f to be 3 . - end example ]
3 The point of declaration for an enumerator is immediately after its enumerator-definition. [Example:

```
const int x = 12;
{ enum { x = x }; }
```

4 Here, the enumerator x is initialized with the value of the constant x , namely 12 . - end example ]

5 Each enumeration defines a type that is different from all other types. Following the closing brace of an enum-specifier, each enumerator has the type of its enumeration. Prior to the closing brace, the type of each enumerator is the type of its initializing value. If an initializer is specified for an enumerator, the initializing value has the same type as the expression. If no initializer is specified for the first enumerator, the type is an unspecified integral type. Otherwise the type is the same as the type of the initializing value of the preceding enumerator unless the incremented value is not representable in that type, in which case the type is an unspecified integral type sufficient to contain the incremented value.

6 The underlying type of an enumeration is an integral type that can represent all the enumerator values defined in the enumeration. If no integral type can represent all the enumerator values, the enumeration is ill-formed. It is implementationdefined which integral type is used as the underlying type for an enumeration except that the underlying type shall not be larger than int unless the value of an enumerator cannot fit in an int or unsigned int. If the enumerator-list is empty, the underlying type is as if the enumeration had a single enumerator with value 0 . The value of sizeof() applied to an enumeration type, an object of enumeration type, or an enumerator, is the value of sizeof () applied to the underlying type.

7 For an enumeration where $e_{\min }$ is the smallest enumerator and $e_{\max }$ is the largest, the values of the enumeration are the values in the range $b_{\min }$ to $b_{\max }$, defined as follows: Let $K$ be 1 for a two's complement representation and 0 for a one's complement or sign-magnitude representation. $b_{\max }$ is the smallest value greater than or equal to $\max \left(\left|e_{\min }\right|-K,\left|e_{\max }\right|\right)$ and equal to $2^{M}-1$, where $M$ is a non-negative integer. $b_{\text {min }}$ is zero if $e_{\text {min }}$ is non-negative and $-\left(b_{\max }+K\right)$ otherwise. The size of the smallest bit-field large enough to hold all the values of the enumeration type is $\max (M, 1)$ if $b_{\min }$ is zero and $M+1$ otherwise. It is possible to define an enumeration that has values not defined by any of its enumerators.

8 Two enumeration types are layout-compatible if they have the same underlying type.
9 The value of an enumerator or an object of an enumeration type is converted to an integer by integral promotion (4.5). [Example:

```
enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...
```

makes color a type describing various colors, and then declares col as an object of that type, and cp as a pointer to an object of that type. The possible values of an object of type color are red, yellow, green, blue these values can be converted to the integral values $0,1,20$, and 21 . Since enumerations are distinct types, objects of type color can be assigned only values of type color.

```
color c = 1; // error: type mismatch,
 // no conversion from int to color
int i = yellow; // OK: yellow converted to integral value 1
 // integral promotion
- end example]
```

10 An expression of arithmetic or enumeration type can be converted to an enumeration type explicitly. The value is unchanged if it is in the range of enumeration values of the enumeration type; otherwise the resulting enumeration value is unspecified.

11 The enum-name and each enumerator declared by an enum-specifier is declared in the scope that immediately contains the enum-specifier. These names obey the scope rules defined for all names in (3.3) and (3.4). An enumerator declared in class scope can be referred to using the class member access operators ( $::$, (dot) and $->$ (arrow)), see 5.2.5. [Example:

```
class X {
public:
 enum direction { left='l', right='r' };
 int f(int i)
 { return i==left ? 0 : i==right ? 1 : 2; }
};
void g(X* p)
{
 direction d; // error: direction not in scope
 int i;
 i = p->f(left); // error: left not in scope
 i = p->f(X::right); // OK
 i = p->f(p->left); // OK
 // ..
}
- end example]
```


### 7.3 Namespaces

## [basic.namespace]

1 A namespace is an optionally-named declarative region. The name of a namespace can be used to access entities declared in that namespace; that is, the members of the namespace. Unlike other declarative regions, the definition of a namespace can be split over several parts of one or more translation units.

2 The outermost declarative region of a translation unit is a namespace; see 3.3.5.

### 7.3.1 Namespace definition

[namespace.def]
1 The grammar for a namespace-definition is

```
namespace-name:
 original-namespace-name
 namespace-alias
original-namespace-name:
 identifier
namespace-definition:
 named-namespace-definition
 unnamed-namespace-definition
named-namespace-definition:
 original-namespace-definition
 extension-namespace-definition
original-namespace-definition:
 namespace identifier { namespace-body}
extension-namespace-definition:
 namespace original-namespace-name { namespace-body}
unnamed-namespace-definition:
 namespace { namespace-body}
namespace-body:
 declaration-seq
```

2 The identifier in an original-namespace-definition shall not have been previously defined in the declarative region in which the original-namespace-definition appears. The identifier in an original-namespace-definition is the name of the namespace. Subsequently in that declarative region, it is treated as an original-namespace-name.

3 The original-namespace-name in an extension-namespace-definition shall have previously been defined in an original-namespace-definition in the same declarative region.

4 Every namespace-definition shall appear in the global scope or in a namespace scope (3.3.5).
5 Because a namespace-definition contains declarations in its namespace-body and a namespace-definition is itself a declaration, it follows that namespace-definitions can be nested. [Example:

```
namespace Outer {
 int i;
 namespace Inner {
 void f() { i++; } //Outer::i
 int i;
 void g() { i++; } // Inner::i
 }
}
```

- end example ]

6 The enclosing namespaces of a declaration are those namespaces in which the declaration lexically appears, except for a redeclaration of a namespace member outside its original namespace (e.g., a definition as specified in 7.3.1.2). Such a redeclaration has the same enclosing namespaces as the original declaration. [Example:

```
namespace Q {
 namespace V {
 void f(); // enclosing namespaces are the global namespace, Q, and Q::V
 class C { void m(); };
 }
 void V::f() { // enclosing namespaces are the global namespace, Q, and Q::V
```

```
 extern void h(); // ... so this declares Q::V::h
 }
 void V::C::m() { // enclosing namespaces are the global namespace, Q, and Q::V
 }
}
_ end example]
```


### 7.3.1.1 Unnamed namespaces

[namespace.unnamed]
1 An unnamed-namespace-definition behaves as if it were replaced by

```
namespace unique { /* empty body */ }
using namespace unique ;
namespace unique { namespace-body}
```

where all occurrences of uniquein a translation unit are replaced by the same identifier and this identifier differs from all other identifiers in the entire program. ${ }^{85)}$ [Example:

```
namespace { int i; } //unique::i
void f() { i++; } //unique::i++
namespace A {
 namespace {
 int i; // A::unique ::i
 int j; // A::unique ::j
 }
 void g() { i++; } // A::unique ::i++
}
using namespace A;
void h() {
 i++; // error: unique ::i or A:: unique ::i
 A::i++; // A::unique ::i
 j++; // A::unique ::j
}
—end example]
```

2 The use of the static keyword is deprecated when declaring objects in a namespace scope (see annex D); the unnamednamespace provides a superior alternative.

### 7.3.1.2 Namespace member definitions

[namespace.memdef]
1 Members (including explicit specializations of templates (14.7.3)) of a namespace can be defined within that namespace.
[ Example:

```
namespace X {
 void f() { /* ...*/ }
}
```

[^60]
## -end example ]

2 Members (including explicit specializations of templates (14.7.3)) of a named namespace can also be defined outside that namespace by explicit qualification (3.4.3.2) of the name being defined, provided that the entity being defined was already declared in the namespace and the definition appears after the point of declaration in a namespace that encloses the declaration's namespace. [Example:

```
namespace Q {
 namespace V {
 void f();
 }
 void V::f() { /* ...*/ } // OK
 void V ::g() {/*...*/ } // error: g() is not yet a member of V
 namespace V {
 void g();
 }
}
namespace R {
 void Q::V::g() {/*... */ } // error: R doesn't enclose Q
}
_ end example]
```

3 Every name first declared in a namespace is a member of that namespace. If a friend declaration in a non-local class first declares a class or function ${ }^{86)}$ the friend class or function is a member of the innermost enclosing namespace. The name of the friend is not found by simple name lookup until a matching declaration is provided in that namespace scope (either before or after the class definition granting friendship). If a friend function is called, its name may be found by the name lookup that considers functions from namespaces and classes associated with the types of the function arguments (3.4.2). If the name in a friend declaration is neither qualified nor a template-id and the declaration is a function or an elaborated-type-specifier, the lookup to determine whether the entity has been previously declared shall not consider any scopes outside the innermost enclosing namespace. [Note: the other forms of friend declarations cannot declare a new member of the innermost enclosing namespace and thus follow the usual lookup rules. - end note ] [Example:

```
// Assume f and g have not yet been defined.
void h(int);
template <class T> void f2(T);
namespace A {
 class X {
 friend void f(X); // A::f(X) is a friend
 class Y {
 friend void g(); // A::g is a friend
 friend void h(int); // A::h is a friend
 // ::h not considered
 friend void f2<>(int); //::f2<>(int) is a friend
 };
 };
 // A::f, A::g and A::h are not visible here
```

[^61]Draft

```
X x;
void g() { f(x); } // definition of A::g
void f(X) { /* ..**/} // definition of A::f
void h(int) {/*\ldots*/}} // definition of A::h
// A::f, A::g and A::% are visible here and known to be friends
 A::f(x);
 A::X:: f(x); // error: f is not a member of A::X
 A::X::Y::g(); // error: g is not a member of A::X::Y
```

\}
using A: :x;
void h()
\{
\}

- end example ]


### 7.3.2 Namespace alias

[namespace.alias]
1 A namespace-alias-definition declares an alternate name for a namespace according to the following grammar:

```
namespace-alias:
 identifier
namespace-alias-definition:
 namespace identifier = qualified-namespace-specifier ;
qualified-namespace-specifier:
 : :opt nested-name-specifier opt namespace-name
```

2 The identifier in a namespace-alias-definition is a synonym for the name of the namespace denoted by the qualified-namespace-specifier and becomes a namespace-alias. [Note: when looking up a namespace-name in a namespace-alias-definition, only namespace names are considered, see 3.4.6. - end note ]

3 In a declarative region, a namespace-alias-definition can be used to redefine a namespace-alias declared in that declarative region to refer only to the namespace to which it already refers. [Example: the following declarations are wellformed:

```
namespace Company_with_very_long_name { /* ... */ }
namespace CWVLN = Company_with_very_long_name;
namespace CWVLN = Company_with_very_long_name; // OK: duplicate
namespace CWVLN = CWVLN;
_ end example]
```

4 A namespace-name or namespace-alias shall not be declared as the name of any other entity in the same declarative region. A namespace-name defined at global scope shall not be declared as the name of any other entity in any global scope of the program. No diagnostic is required for a violation of this rule by declarations in different translation units.

### 7.3.3 The using declaration

[namespace.udecl]
1 A using-declaration introduces a name into the declarative region in which the using-declaration appears. That name is a synonym for the name of some entity declared elsewhere.
using-declaration:

```
using typename opt :: opt nested-name-specifier unqualified-id ;
using ::unqualified-id ;
```

The member name specified in a using-declaration is declared in the declarative region in which the using-declaration appears. [Note: only the specified name is so declared; specifying an enumeration name in a using-declaration does not declare its enumerators in the using-declaration's declarative region. - end note ]

2 Every using-declaration is a declaration and a member-declaration and so can be used in a class definition. [Example:

```
struct B {
 void f(char);
 void g(char);
 enum E { e };
 union { int x; };
};
struct D : B {
 using B::f;
 void f(int) { f('c'); } // calls B::f(char)
 void g(int) { g('c'); } // recursively calls D::g(int)
};
_ end example]
```

3 In a using-declaration used as a member-declaration, the nested-name-specifier shall name a base class of the class being defined. Such a using-declaration introduces the set of declarations found by member name lookup (10.2, 3.4.3.1). [ Example:

```
class C {
 int g();
};
class D2 : public B {
 using B::f; // OK: B is a base of D2
 using B::e; //OK: e is an enumerator of base B
 using B::x; // OK: x is a union member of base B
 using C::g; // error: C isn't a base of D2
};
- end example]
```

4 [Note: since constructors and destructors do not have names, a using-declaration cannot refer to a constructor or a destructor for a base class. Since specializations of member templates for conversion functions are not found by name lookup, they are not considered when a using-declaration specifies a conversion function (14.5.2). -end note ] If an assignment operator brought from a base class into a derived class scope has the signature of a copy-assignment operator for the derived class (12.8), the using-declaration does not by itself suppress the implicit declaration of the derived class copy-assignment operator; the copy-assignment operator from the base class is hidden or overridden by the implicitly-declared copy-assignment operator of the derived class, as described below.
5 A using-declaration shall not name a template-id. [Example:

```
class A {
public:
 template <class T> void f(T);
 template <class T> struct X { };
};
class B : public A {
public:
 using A::f<double>; // ill-formed
 using A::X<int>; // ill-formed
};
- end example]
```

6 A using-declaration shall not name a namespace.
7 A using-declaration for a class member shall be a member-declaration. [Example:

```
struct X {
 int i;
 static int s;
};
void f()
{
 using X::i; // error: X::i is a class member
 // and this is not a member declaration.
 using X::s; // error: X::s is a class member
 // and this is not a member declaration.
}
_ end example]
```

8 Members declared by a using-declaration can be referred to by explicit qualification just like other member names (3.4.3.2). In a using-declaration, a prefix : : refers to the global namespace. [Example:

```
void f();
namespace A {
 void g();
}
namespace X {
 using ::f; // global f
 using A::g; // A's g
}
void h()
{
 X::f(); // calls::f
 X::g(); // calls A::g
}
```


## - end example ]

9 A using-declaration is a declaration and can therefore be used repeatedly where (and only where) multiple declarations are allowed. [Example:

```
namespace A {
 int i;
}
namespace A1 {
 using A::i;
 using A::i; // OK: double declaration
}
void f()
{
 using A::i;
 using A::i; // error: double declaration
}
class B {
public:
 int i;
};
class X : public B {
 using B::i;
 using B::i; // error: double member declaration
};
- end example]
```

10 The entity declared by a using-declaration shall be known in the context using it according to its definition at the point of the using-declaration. Definitions added to the namespace after the using-declaration are not considered when a use of the name is made. [Example:

```
namespace A {
 void f(int);
}
using A::£; // f is a synonym for A::f;
 // that is, for A:: f(int).
namespace A {
 void f(char);
}
void foo()
{
 f('a'); // calls f(int),
} // even though f (char) exists.
```

```
void bar()
{
 using A::f; // f is a synonym for A::f;
 // that is, for A::f (int) and A::f (char).
 // calls f(char)
}
- end example]
```

11 [Note: partial specializations of class templates are found by looking up the primary class template and then considering all partial specializations of that template. If a using-declaration names a class template, partial specializations introduced after the using-declaration are effectively visible because the primary template is visible (14.5.4). -end note]

12 Since a using-declaration is a declaration, the restrictions on declarations of the same name in the same declarative region (3.3) also apply to using-declarations. [ Example:

```
namespace A {
 int x;
}
namespace B {
 int i;
 struct g { };
 struct x { };
 void f(int);
 void f(double);
 void g(char); // OK: hides struct g
}
void func()
{
 int i;
 using B::i; // error: i declared twice
 void f(char);
 using B::f; // OK: each f is a function
 f(3.5); // calls B::f(double)
 using B::g;
 g('a'); // calls B::g(char)
 struct g g1; // g1 has class type B::g
 using B::x;
 using A::x; // OK: hides struct B::x
 x = 99; // assigns to A:: x
 struct x x1; // x1 has class type B::x
}
- end example]
```

13 If a function declaration in namespace scope or block scope has the same name and the same parameter types as a function introduced by a using-declaration, and the declarations do not declare the same function, the program is illformed. [Note: two using-declarations may introduce functions with the same name and the same parameter types.

If, for a call to an unqualified function name, function overload resolution selects the functions introduced by such using-declarations, the function call is ill-formed.
[ Example:

```
namespace B {
 void f(int);
 void f(double);
}
namespace C {
 void f(int);
 void f(double);
 void f(char);
}
void h()
{
 using B::f; //B::f(int) and B::f(double)
 using C::f; // C::f(int), C::f(double), and C::f(char)
 f('h'); // calls C::f(char)
 f(1); // error: ambiguous: B::f(int) or C::f (int)?
 void f(int); // error:
 // f(int) conflicts with C:: }\textrm{f}\mathrm{ (int) and B: : f(int)
}
- end example] - end note]
```

14 When a using-declaration brings names from a base class into a derived class scope, member functions and member function templates in the derived class override and/or hide member functions and member function templates with the same name, parameter-type-list (8.3.5), and cv-qualification in a base class (rather than conflicting).

## [ Example:

```
struct B {
 virtual void f(int);
 virtual void f(char);
 void g(int);
 void h(int);
};
struct D : B {
 using B::f;
 void f(int); // OK:D::f(int) overrides B::f(int);
 using B::g;
 void g(char); // OK
 using B::h;
 void h(int); // OK: D::h(int) hides B::h(int)
};
```

```
void k(D* p)
{
 p->f(1); // calls D::f(int)
 p->f('a'); // calls B::f(char)
 p->g(1); // calls B::g(int)
 p->g('a'); // calls D::g(char)
}
- end example]
```

15 [ Note: two using-declarations may introduce functions with the same name and the same parameter types. If, for a call to an unqualified function name, function overload resolution selects the functions introduced by such using-declarations, the function call is ill-formed. - end note ]

16 For the purpose of overload resolution, the functions which are introduced by a using-declaration into a derived class will be treated as though they were members of the derived class. In particular, the implicit this parameter shall be treated as if it were a pointer to the derived class rather than to the base class. This has no effect on the type of the function, and in all other respects the function remains a member of the base class.

17 All instances of the name mentioned in a using-declaration shall be accessible. In particular, if a derived class uses a using-declaration to access a member of a base class, the member name shall be accessible. If the name is that of an overloaded member function, then all functions named shall be accessible. The base class members mentioned by a using-declaration shall be visible in the scope of at least one of the direct base classes of the class where the using-declaration is specified. [Note: because a using-declaration designates a base class member (and not a member subobject or a member function of a base class subobject), a using-declaration cannot be used to resolve inherited member ambiguities. For example,

```
struct A { int x(); };
struct B : A { };
struct C : A {
 using A::x;
 int x(int);
};
struct D : B, C {
 using C::x;
 int x(double);
};
int f(D* d) {
 return d->x(); // ambiguous: B::x or C::x
}
- end note]
```

The alias created by the using-declaration has the usual accessibility for a member-declaration. [Example:

```
class A {
private:
 void f(char);
public:
 void f(int);
```

```
protected:
 void g();
};
class B : public A {
 using A::f; // error: A::f(char) is inaccessible
public:
 using A::g; // B::g is a public synonym for A::g
};
- end example]
```

19 [ Note: use of access-declarations (11.3) is deprecated; member using-declarations provide a better alternative. -end note]

20 If a using-declaration uses the keyword typename and specifies a dependent name (14.6.2), the name introduced by the using-declaration is treated as a typedef-name (7.1.3).

### 7.3.4 Using directive

[namespace.udir]
using-directive:
using namespace : : opt nested-name-specifier ${ }_{o p t}$ namespace-name ;
1 A using-directive shall not appear in class scope, but may appear in namespace scope or in block scope. [Note: when looking up a namespace-name in a using-directive, only namespace names are considered, see 3.4.6. - end note ]

2 A using-directive specifies that the names in the nominated namespace can be used in the scope in which the usingdirective appears after the using-directive. During unqualified name lookup (3.4.1), the names appear as if they were declared in the nearest enclosing namespace which contains both the using-directive and the nominated namespace. [ Note: in this context, "contains" means "contains directly or indirectly". - end note ]

3 A using-directive does not add any members to the declarative region in which it appears. [ Example:

```
namespace A {
 int i;
 namespace B {
 namespace C {
 int i;
 }
 using namespace A::B::C;
 void f1() {
 i = 5; // OK, C::i visible in B and hides A::i
 }
 }
 namespace D {
 using namespace B;
 using namespace C;
 void f2() {
 i = 5; // ambiguous, B::C::i or A::i?
 }
 }
 void f3() {
```

```
 i = 5; // uses A::i
 }
}
void f4() {
 i = 5; // ill-formed; neither i is visible
}
- end example]
```

4 The using-directive is transitive: if a scope contains a using-directive that nominates a second namespace that itself contains using-directives, the effect is as if the using-directives from the second namespace also appeared in the first. [ Example:

```
namespace M {
 int i;
}
namespace N {
 int i;
 using namespace M;
}
void f()
{
 using namespace N;
 i = 7; // error: both M::i and N::i are visible
}
```

For another example,

```
namespace A {
 int i;
}
namespace B {
 int i;
 int j;
 namespace C {
 namespace D {
 using namespace A;
 int j;
 int k;
 int a = i; // B::i hides A::i
 }
 using namespace D;
 int k = 89; // no problem yet
 int l = k; // ambiguous: C::k or D::k
 int m = i; // B::i hides A::i
 int n = j; // D:: j hides B:: j
 }
}
```


## - end example ]

5 If a namespace is extended by an extension-namespace-definition after a using-directive for that namespace is given, the additional members of the extended namespace and the members of namespaces nominated by using-directives in the extension-namespace-definition can be used after the extension-namespace-definition.

6 If name lookup finds a declaration for a name in two different namespaces, and the declarations do not declare the same entity and do not declare functions, the use of the name is ill-formed. [Note: in particular, the name of an object, function or enumerator does not hide the name of a class or enumeration declared in a different namespace. For example,

```
namespace A {
 class X { };
 extern "C" int g();
 extern "C++" int h();
}
namespace B {
 void X(int);
 extern "C" int g();
 extern "C++" int h();
}
using namespace A;
using namespace B;
void f() {
 X(1); // error: name X found in two namespaces
 g(); // okay: name g refers to the same entity
 h(); // error: name h found in two namespaces
}
- end note]
```

7 During overload resolution, all functions from the transitive search are considered for argument matching. The set of declarations found by the transitive search is unordered. [Note: in particular, the order in which namespaces were considered and the relationships among the namespaces implied by the using-directives do not cause preference to be given to any of the declarations found by the search. -end note] An ambiguity exists if the best match finds two functions with the same signature, even if one is in a namespace reachable through using-directives in the namespace of the other. ${ }^{87)}$

```
[Example:
namespace D {
 int d1;
 void f(char);
}
using namespace D;
 int d1;
 // OK: no conflict with D: :d1
 namespace E {
```

[^62]```
    int e;
    void f(int);
}
namespace D {
// namespace extension
        int d2;
        using namespace E;
        void f(int);
}
void f()
{
    d1++; // error: ambiguous ::d1 or D::d1?
    ::d1++; // OK
    D::d1++; // OK
    d2++; // OK: D::d2
    e++;
    // OK: E::e
    f(1);
    f('a'); // OK:D::f(char)
}
_ end example ]
```


7.4 The asm declaration

[dcl.asm]
1 An asm declaration has the form
asm-definition:
asm (string-literal) ;
The asm declaration is conditionally-supported; its meaning is implementation-defined. [Note: Typically it is used to pass information through the implementation to an assembler. - end note]

7.5 Linkage specifications

[dcl.link]
1 All function types, function names with external linkage, and variable names with external linkage have a language linkage. [Note: Some of the properties associated with an entity with language linkage are specific to each implementation and are not described here. For example, a particular language linkage may be associated with a particular form of representing names of objects and functions with external linkage, or with a particular calling convention, etc. -end note] The default language linkage of all function types, function names, and variable names is C++ language linkage. Two function types with different language linkages are distinct types even if they are otherwise identical.

2 Linkage (3.5) between C++ and non-C++ code fragments can be achieved using a linkage-specification:
linkage-specification:
extern string-literal $\{$ declaration-seq opt $\}$
extern string-literal declaration
The string-literal indicates the required language linkage. This International Standard specifies the semantics for the string-literals "C" and "C++". Use of a string-literal other than "C" or "C++" is conditionally-supported, with implementation-defined semantics. [Note: Therefore, a linkage-specification with a string-literal that is unknown to the implementation requires a diagnostic. - end note][Note: It is recommended that the spelling of the string-literal be
taken from the document defining that language. For example, Ada (not ADA) and Fortran or FORTRAN, depending on the vintage. - end note]

3 Every implementation shall provide for linkage to functions written in the C programming language, " C ", and linkage to $\mathrm{C}++$ functions, "C++". [Example:

```
complex sqrt(complex); // C++ linkage by default
extern "C" {
    double sqrt(double); // C linkage
}
- end example ]
```

4 Linkage specifications nest. When linkage specifications nest, the innermost one determines the language linkage. A linkage specification does not establish a scope. A linkage-specification shall occur only in namespace scope (3.3). In a linkage-specification, the specified language linkage applies to the function types of all function declarators, function names with external linkage, and variable names with external linkage declared within the linkage-specification. [Example:

```
extern "C" void f1(void(*pf)(int));
    // the name f1 and its function type have C language
    // linkage; pf is a pointer to a C function
extern "C" typedef void FUNC();
FUNC f2; // the name f2 has C++ language linkage and the
    // function's type has C language linkage
extern "C" FUNC f3; // the name of function f3 and the function's type
    // have C language linkage
    // the name of the variable pf2 has C++ linkage and
    // the type of pf2 is pointer to C++ function that
    // takes one parameter of type pointer to C function
extern "C" {
    static void f4(); // the name of the function f4 has
    // internal linkage (not C language
    // linkage) and the function's type
    // has C language linkage.
}
extern "C" void f5() {
    extern void f4(); // OK: Name linkage (internal)
    // and function type linkage (C
    // language linkage) gotten from
    // previous declaration.
}
extern void f4(); // OK: Name linkage (internal)
    // and function type linkage (C
    // language linkage) gotten from
    // previous declaration.
}
void f6() {
```

```
    extern void f4(); // OK: Name linkage (internal)
    // and function type linkage (C
    // language linkage) gotten from
    // previous declaration.
```

\}

- end example] A C language linkage is ignored for the names of class members and the member function type of class member functions. [Example:

```
extern "C" typedef void FUNC_c();
class C {
    void mf1(FUNC_c*); // the name of the function mf1 and the member
        // function's type have C++ language linkage; the
        // parameter has type pointer to C function
        FUNC_c mf2; // the name of the function mf2 and the member
        // function's type have C++ language linkage
        static FUNC_c* q; // the name of the data member q has C++ language
        // linkage and the data member's type is pointer to
        // C function
};
extern "C" {
    class X {
        void mf(); // the name of the function mf and the member
        // function's type have C++ language linkage
        void mf2(void(*)()); // the name of the function mf2 has C++ language
        // linkage; the parameter has type pointer to
        // C function
    };
}
- end example ]
```

5 If two declarations of the same function or object specify different linkage-specifications (that is, the linkage-specifications of these declarations specify different string-literals), the program is ill-formed if the declarations appear in the same translation unit, and the one definition rule (3.2) applies if the declarations appear in different translation units. Except for functions with C++ linkage, a function declaration without a linkage specification shall not precede the first linkage specification for that function. A function can be declared without a linkage specification after an explicit linkage specification has been seen; the linkage explicitly specified in the earlier declaration is not affected by such a function declaration.

6 At most one function with a particular name can have C language linkage. Two declarations for a function with C language linkage with the same function name (ignoring the namespace names that qualify it) that appear in different namespace scopes refer to the same function. Two declarations for an object with C language linkage with the same name (ignoring the namespace names that qualify it) that appear in different namespace scopes refer to the same object. [Note: because of the one definition rule (3.2), only one definition for a function or object with C linkage may appear in the program; that is, such a function or object must not be defined in more than one namespace scope. For example,

```
namespace A {
    extern "C" int f();
```

```
    extern "C" int g() { return 1; }
    extern "C" int h();
}
namespace B {
    extern "C" int f(); // A::f and B::f refer
    // to the same function
    extern "C" int g() {return 1; } // ill-formed, the function g
                                    // with C language linkage
                                    // has two definitions
}
int A::f() { return 98; } //definition for the function f
// with C language linkage
// definition for the function h
// with C language linkage
// A:: h and :: h refer to the same function
- end note]
```

7 A declaration directly contained in a linkage-specification is treated as if it contains the extern specifier (7.1.1) for the purpose of determining the linkage of the declared name and whether it is a definition. Such a declaration shall not specify a storage class. [Example:

```
extern "C" double f();
static double f(); // error
extern "C" int i; // declaration
extern "C" {
    int i; // definition
}
extern "C" static void g(); // error
_ end example ]
```

8 [Note: because the language linkage is part of a function type, when a pointer to C function (for example) is dereferenced, the function to which it refers is considered a C function. - end note]

9 Linkage from C++ to objects defined in other languages and to objects defined in C++ from other languages is imple-mentation-defined and language-dependent. Only where the object layout strategies of two language implementations are similar enough can such linkage be achieved.

Chapter 8 Declarators

1 A declarator declares a single object, function, or type, within a declaration. The init-declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of which can have an initializer.

```
init-declarator-list:
    init-declarator
    init-declarator-list, init-declarator
init-declarator:
    declarator initializeropt
```

2 The two components of a declaration are the specifiers (decl-specifier-seq; 7.1) and the declarators (init-declarator-list). The specifiers indicate the type, storage class or other properties of the objects, functions or typedefs being declared. The declarators specify the names of these objects, functions or typedefs, and (optionally) modify the type of the specifiers with operators such as * (pointer to) and () (function returning). Initial values can also be specified in a declarator; initializers are discussed in 8.5 and 12.6.
3 Each init-declarator in a declaration is analyzed separately as if it was in a declaration by itself. ${ }^{88)}$
4 Declarators have the syntax
declarator:
direct-declarator
ptr-operator declarator
direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seq opt $^{\text {exception-specification }}{ }_{\text {opt }}$ direct-declarator [constant-expression ${ }_{\text {opt }}$]
(declarator)

[^63]```
ptr-operator:
 * cv-qualifier-seq
 &
 &&
 : :opt nested-name-specifier * cv-qualifier-seq
cv-qualifier-seq:
 cv-qualifier cv-qualifier-seqopt
cv-qualifier:
 const
 volatile
declarator-id:
 id-expression
 : : opt nested-name-specifier opt class-name
```

A class-name has special meaning in a declaration of the class of that name and when qualified by that name using the scope resolution operator : : (5.1, 12.1, 12.4).

### 8.1 Type names

[dcl.name]
1 To specify type conversions explicitly, and as an argument of sizeof, new, or typeid, the name of a type shall be specified. This can be done with a type-id, which is syntactically a declaration for an object or function of that type that omits the name of the object or function.

```
type-id:
 type-specifier-seq abstract-declarator opt
type-specifier-seq:
 type-specifier type-specifier-seq}\mp@subsup{|}{opt}{
abstract-declarator:
 ptr-operator abstract-declarator opt
 direct-abstract-declarator
direct-abstract-declarator:
 direct-abstract-declarator opt
 (parameter-declaration-clause) cv-qualifier-seq}\mp@subsup{q}{opt}{}\mathrm{ exception-specification
 direct-abstract-declarator opt [constant-expression opt]
 (abstract-declarator)
```

It is possible to identify uniquely the location in the abstract-declarator where the identifier would appear if the construction were a declarator in a declaration. The named type is then the same as the type of the hypothetical identifier. [ Example:

```
int // int i
int * // int *pi
int *[3] // int *p[3]
int (*)[3] // int (*p3i)[3]
int *() // int *f()
int (*)(double) // int (*pf)(double)
```

name respectively the types "int," "pointer to int," "array of 3 pointers to int," "pointer to array of 3 int," "function of (no parameters) returning pointer to int," and "pointer to a function of (double) returning int." - end example ]

2 A type can also be named (often more easily) by using a typedef (7.1.3).

### 8.2 Ambiguity resolution

[dcl.ambig.res]
1 The ambiguity arising from the similarity between a function-style cast and a declaration mentioned in 6.8 can also occur in the context of a declaration. In that context, the choice is between a function declaration with a redundant set of parentheses around a parameter name and an object declaration with a function-style cast as the initializer. Just as for the ambiguities mentioned in 6.8 , the resolution is to consider any construct that could possibly be a declaration a declaration. [Note: a declaration can be explicitly disambiguated by a nonfunction-style cast, by an = to indicate initialization or by removing the redundant parentheses around the parameter name. - end note ] [Example:

```
struct S {
 S(int);
};
void foo(double a)
{
 S w(int(a)); // function declaration
 S x(int()); // function declaration
 S y((int)a); // object declaration
 S z = int(a); // object declaration
}
- end example]
```

2 The ambiguity arising from the similarity between a function-style cast and a type-id can occur in different contexts. The ambiguity appears as a choice between a function-style cast expression and a declaration of a type. The resolution is that any construct that could possibly be a type-id in its syntactic context shall be considered a type-id.
[ Example:

```
#include <cstddef>
char *p;
void *operator new(std::size_t, int);
void foo() {
 const int x = 63;
 new (int(*p)) int; // new-placement expression
 new (int(*[x])); // new type-id
}
```

4 For another example,

```
template <class T>
struct S {
 T *p;
};
S<int()> x; //type-id
S<int(1)> y; // expression (ill-formed)
```

5 For another example,

```
void foo()
{
 sizeof(int(1)); // expression
 sizeof(int()); // type-id(ill-formed)
}
```

6 For another example,

```
void foo()
{
 (int(1)); // expression
 (int())1; // type-id(ill-formed)
}
- end example]
```

7 Another ambiguity arises in a parameter-declaration-clause of a function declaration, or in a type-id that is the operand of a sizeof or typeid operator, when a type-name is nested in parentheses. In this case, the choice is between the declaration of a parameter of type pointer to function and the declaration of a parameter with redundant parentheses around the declarator-id. The resolution is to consider the type-name as a simple-type-specifier rather than a declaratorid. [Example:

```
class C { };
void f(int(C)) { } // void f(int(*fp)(C c)) { }
 // not: void f(int C);
int g(C);
void foo() {
 f(1); // error: cannot convert 1 to function pointer
 f(g); // OK
}
```

For another example,

```
class C { };
```

void h(int *(C[10])); //void h(int *(*_fp) (C _parm[10]));
// not: void h(int *C[10]);

- end example ]


### 8.3 Meaning of declarators

[dcl.meaning]
1 A list of declarators appears after an optional (clause 7) decl-specifier-seq (7.1). Each declarator contains exactly one declarator-id; it names the identifier that is declared. An unqualified-id occurring in a declarator-id shall be a simple identifier except for the declaration of some special functions $(12.3,12.4,13.5)$ and for the declaration of template specializations or partial specializations (14.7). A declarator-id shall not be qualified except for the definition of a member function (9.3) or static data member (9.4) outside of its class, the definition or explicit instantiation of a function or variable member of a namespace outside of its namespace, or the definition of a previously declared explicit specialization outside of its namespace, or the declaration of a friend function that is a member of another class or namespace (11.4). When the declarator-id is qualified, the declaration shall refer to a previously declared member
of the class or namespace to which the qualifier refers, and the member shall not have been introduced by a usingdeclaration in the scope of the class or namespace nominated by the nested-name-specifier of the declarator-id. [Note: if the qualifier is the global : : scope resolution operator, the declarator-id refers to a name declared in the global namespace scope. - end note ]

2 An auto, static, extern, register, mutable, friend, inline, virtual, or typedef specifier applies directly to each declarator-id in an init-declarator-list; the type specified for each declarator-id depends on both the decl-specifierseq and its declarator.
3 Thus, a declaration of a particular identifier has the form

## T D

where T is a decl-specifier-seq and D is a declarator. Following is a recursive procedure for determining the type specified for the contained declarator-id by such a declaration.
4 First, the decl-specifier-seq determines a type. In a declaration
T D
the decl-specifier-seq T determines the type T . [Example: in the declaration
int unsigned i;
the type specifiers int unsigned determine the type "unsigned int" (7.1.5.2). -end example ]
5 In a declaration T D where D is an unadorned identifier the type of this identifier is "T."
6 In a declaration T D where D has the form
(D1)
the type of the contained declarator-id is the same as that of the contained declarator-id in the declaration
T D1
Parentheses do not alter the type of the embedded declarator-id, but they can alter the binding of complex declarators.

### 8.3.1 Pointers

1 In a declaration T D where D has the form

* cv-qualifier-seq ${ }_{\text {opt }}$ D1
and the type of the identifier in the declaration T D1 is "derived-declarator-type-list T," then the type of the identifier of D is "derived-declarator-type-list cv-qualifier-seq pointer to T." The $c v$-qualifiers apply to the pointer and not to the object pointed to.

2
[ Example: the declarations

```
const int ci = 10, *pc = &ci, *const cpc = pc, **ppc;
int i, *p, *const cp = &i;
```

declare ci, a constant integer; pc, a pointer to a constant integer; cpc, a constant pointer to a constant integer; ppc, a pointer to a pointer to a constant integer; $i$, an integer; $p$, a pointer to integer; and $c p$, a constant pointer to integer. The value of ci, cpc, and cp cannot be changed after initialization. The value of pc can be changed, and so can the object pointed to by cp. Examples of some correct operations are

```
i = ci;
*cp = ci;
pc++;
pc = cpc;
pc = p;
ppc = &pc;
```

Examples of ill-formed operations are

```
ci = 1; // error
ci++; // error
*pc = 2; // error
cp = &ci; // error
cpc++; // error
p = pc; // error
ppc = &p; // error
```

Each is unacceptable because it would either change the value of an object declared const or allow it to be changed through a cv-unqualified pointer later, for example:

```
*ppc = &ci;
*p = 5;
// OK, but would make p point to ci ...
// ... because of previous error
// clobber ci
- end example]
```

3 See also 5.17 and 8.5.
4 [Note: there are no pointers to references; see 8.3.2. Since the address of a bit-field (9.6) cannot be taken, a pointer can never point to a bit-field. -end note ]

### 8.3.2 References

1 In a declaration T D where D has either of the forms

```
& D1
&& D1
```

and the type of the identifier in the declaration T D1 is "derived-declarator-type-list T," then the type of the identifier of D is "derived-declarator-type-list reference to T ." Cv -qualified references are ill-formed except when the cv-qualifiers are introduced through the use of a typedef (7.1.3) or of a template type argument (14.3), in which case the cv-qualifiers are ignored. [Example:

```
typedef int& A;
```

const A aref = 3; // ill-formed; non-const reference initialized with rvalue

The type of aref is "reference to int", not "const reference to int". - end example] [Note: a reference can be thought of as a name of an object. -end note ] A declarator that specifies the type "reference to $c v$ void" is ill-formed.

2 A reference type that is declared using \& is called an lvalue reference, and a reference type that is declared using \&\& is called an rvalue reference. Lvalue references and rvalue references are distinct types. Except where explicitly noted, they are semantically equivalent and commonly referred to as references.
3
[ Example:

```
void f(double& a) { a += 3.14; }
// ...
double d = 0;
f(d);
```

declares a to be a reference parameter of $f$ so the call $f(d)$ will add 3.14 to $d$.

```
int v[20];
// ..
int& g(int i) { return v[i]; }
// ...
g(3) = 7;
```

declares the function $g()$ to return a reference to an integer so $g(3)=7$ will assign 7 to the fourth element of the array v. For another example,

```
struct link {
 link* next;
};
link* first;
void h(link*& p) // p is a reference to pointer
{
 p->next = first;
 first = p;
 p = 0;
}
void k()
{
 link* q = new link;
 h(q);
}
```

declares p to be a reference to a pointer to link so $\mathrm{h}(\mathrm{q})$ will leave q with the value zero. See also 8.5.3. -end example]
4 It is unspecified whether or not a reference requires storage (3.7).
5 There shall be no references to references, no arrays of references, and no pointers to references. The declaration of a reference shall contain an initializer (8.5.3) except when the declaration contains an explicit extern specifier (7.1.1), is a class member (9.2) declaration within a class definition, or is the declaration of a parameter or a return type (8.3.5);
see 3.1. A reference shall be initialized to refer to a valid object or function. [Note: in particular, a null reference cannot exist in a well-defined program, because the only way to create such a reference would be to bind it to the "object" obtained by dereferencing a null pointer, which causes undefined behavior. As described in 9.6, a reference cannot be bound directly to a bit-field. -end note ]

### 8.3.3 Pointers to members

1 In a declaration T D where D has the form
: : opt nested-name-specifier $*$ cv-qualifier-seq ${ }_{\text {opt }}$ D1
and the nested-name-specifier names a class, and the type of the identifier in the declaration T D1 is "derived-declarator-type-list T," then the type of the identifier of D is "derived-declarator-type-list cv-qualifier-seq pointer to member of class nested-name-specifier of type T."
[ Example:

```
class X {
public:
 void f(int);
 int a;
};
class Y;
int X::* pmi = &X::a;
void (X::* pmf)(int) = &X::f;
double X::* pmd;
char Y::* pmc;
```

declares pmi, pmf, pmd and pmc to be a pointer to a member of $X$ of type int, a pointer to a member of $X$ of type void (int), a pointer to a member of $X$ of type double and a pointer to a member of $Y$ of type char respectively. The declaration of pmd is well-formed even though $X$ has no members of type double. Similarly, the declaration of pmc is well-formed even though $Y$ is an incomplete type. pmi and pmf can be used like this:

```
x obj;
// ...
obj.*pmi = 7; // assign 7 to an integer
 // member of obj
(obj.*pmf) (7); // call a function member of obj
 // with the argument 7
```


## - end example]

3 A pointer to member shall not point to a static member of a class (9.4), a member with reference type, or "cv void." [Note: see also 5.3 and 5.5. The type "pointer to member" is distinct from the type "pointer", that is, a pointer to member is declared only by the pointer to member declarator syntax, and never by the pointer declarator syntax. There is no "reference-to-member" type in $\mathrm{C}++$. - end note ]

### 8.3.4 Arrays

[dcl.array]
1 In a declaration T D where D has the form
D1 [ constant-expression ${ }_{\text {opt }}$ ]
and the type of the identifier in the declaration T D1 is "derived-declarator-type-list T," then the type of the identifier of $D$ is an array type; if the type of the identifier of $D$ contains the auto type deduction type-specifier, the program is ill-formed. T is called the array element type; this type shall not be a reference type, the (possibly cv-qualified) type void, a function type or an abstract class type. If the constant-expression (5.19) is present, it shall be an integral constant expression and its value shall be greater than zero. The constant expression specifies the bound of (number of elements in) the array. If the value of the constant expression is $N$, the array has $N$ elements numbered 0 to $N-1$, and the type of the identifier of D is "derived-declarator-type-list array of N T." An object of array type contains a contiguously allocated non-empty set of $N$ subobjects of type $T$. If the constant expression is omitted, the type of the identifier of $D$ is "derived-declarator-type-list array of unknown bound of T," an incomplete object type. The type "derived-declarator-type-list array of N T" is a different type from the type "derived-declarator-type-list array of unknown bound of T," see 3.9. Any type of the form " $c v$-qualifier-seq array of $N \mathrm{~T}$ " is adjusted to "array of $\mathrm{N} c v$-qualifier-seq T ," and similarly for "array of unknown bound of T." [Example:

```
typedef int A[5], AA[2][3];
typedef const A CA; // type is "array of 5 const int"
typedef const AA CAA; // type is "array of 2 array of 3 const int"
```

—end example ] [Note: an "array of $\mathrm{N} c v$-qualifier-seq T " has cv-qualified type; see 3.9.3. -end note ]
2 An array can be constructed from one of the fundamental types (except void), from a pointer, from a pointer to member, from a class, from an enumeration type, or from another array.

3 When several "array of" specifications are adjacent, a multidimensional array is created; the constant expressions that specify the bounds of the arrays can be omitted only for the first member of the sequence. [Note: this elision is useful for function parameters of array types, and when the array is external and the definition, which allocates storage, is given elsewhere. -end note ] The first constant-expression can also be omitted when the declarator is followed by an initializer (8.5). In this case the bound is calculated from the number of initial elements (say, $N$ ) supplied (8.5.1), and the type of the identifier of $D$ is "array of NT."

```
float fa[17], *afp[17];
```

declares an array of float numbers and an array of pointers to float numbers. For another example,

```
static int x3d[3][5][7];
```

declares a static three-dimensional array of integers, with rank $3 \times 5 \times 7$. In complete detail, x3d is an array of three items; each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any of the expressions x3d, x3d[i], x3d[i][j], x3d[i][j][k] can reasonably appear in an expression. - end example ]

5 [ Note: conversions affecting lvalues of array type are described in 4.2. Objects of array types cannot be modified, see 3.10. - end note]

6 Except where it has been declared for a class (13.5.5), the subscript operator [] is interpreted in such a way that E1 [E2] is identical to $*((\mathrm{E} 1)+(\mathrm{E} 2))$. Because of the conversion rules that apply to + , if E1 is an array and E2 an integer, then E1 [E2] refers to the E2-th member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative operation.
7 A consistent rule is followed for multidimensional arrays. If E is an $n$-dimensional array of rank $i \times j \times \ldots \times k$, then E appearing in an expression is converted to a pointer to an $(n-1)$-dimensional array with rank $j \times \ldots \times k$. If the $*$
operator, either explicitly or implicitly as a result of subscripting, is applied to this pointer, the result is the pointed-to ( $n-1$ )-dimensional array, which itself is immediately converted into a pointer.
[ Example: consider

```
int x[3] [5];
```

Here $x$ is a $3 \times 5$ array of integers. When $x$ appears in an expression, it is converted to a pointer to (the first of three) five-membered arrays of integers. In the expression $x$ [i] which is equivalent to $*(x+i)$, $x$ is first converted to a pointer as described; then $x+i$ is converted to the type of $x$, which involves multiplying $i$ by the length of the object to which the pointer points, namely five integer objects. The results are added and indirection applied to yield an array (of five integers), which in turn is converted to a pointer to the first of the integers. If there is another subscript the same argument applies again; this time the result is an integer. - end example ]

9 [Note: it follows from all this that arrays in C++ are stored row-wise (last subscript varies fastest) and that the first subscript in the declaration helps determine the amount of storage consumed by an array but plays no other part in subscript calculations. - end note ]

### 8.3.5 Functions

[dcl.fct]
1 In a declaration T D where D has the form
D1 ( parameter-declaration-clause) cv-qualifier-seq opt $^{\text {exception-specification }}$ opt ${ }^{\text {and }}$ the type of the contained declarator-id in the declaration T D1 is "derived-declarator-type-list T," the type of the declaratorid in D is "derived-declarator-type-list function of (parameter-declaration-clause ) cv-qualifier-seq ${ }_{\text {opt }}$ returning T"; a type of this form is a function type ${ }^{89)}$.
parameter-declaration-clause:
parameter-declaration-list $t_{\text {opt }}$...opt
parameter-declaration-list , ...
parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration
parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator $=$ assignment-expression
decl-specifier-seq abstract-declarator opt
decl-specifier-seq abstract-declarator opt $=$ assignment-expression
2 The parameter-declaration-clause determines the arguments that can be specified, and their processing, when the function is called. [Note: the parameter-declaration-clause is used to convert the arguments specified on the function call; see 5.2.2. - end note] If the parameter-declaration-clause is empty, the function takes no arguments. The parameter list (void) is equivalent to the empty parameter list. Except for this special case, void shall not be a parameter type (though types derived from void, such as void*, can). If the parameter-declaration-clause terminates with an ellipsis, the number of arguments shall be equal to or greater than the number of parameters that do not have a default argument. Where syntactically correct, ", ..." is synonymous with "...". [ Example: the declaration

```
int printf(const char*, ...);
```

declares a function that can be called with varying numbers and types of arguments.

[^64]```
printf("hello world");
printf("a=%d b=%d", a, b);
```

However, the first argument must be of a type that can be converted to a const char* - end example] [Note: the standard header <cstdarg> contains a mechanism for accessing arguments passed using the ellipsis (see 5.2.2 and 18.8). - end note $]$

3 A single name can be used for several different functions in a single scope; this is function overloading (clause 13). All declarations for a function shall agree exactly in both the return type and the parameter-type-list. The type of a function is determined using the following rules. The type of each parameter is determined from its own decl-specifier-seq and declarator. After determining the type of each parameter, any parameter of type "array of T" or "function returning T" is adjusted to be "pointer to T" or "pointer to function returning T," respectively. After producing the list of parameter types, several transformations take place upon these types to determine the function type. Any cv-qualifier modifying a parameter type is deleted. [Example: the type void (*) (const int) becomes void(*) (int) - end example] Such cv-qualifiers affect only the definition of the parameter within the body of the function; they do not affect the function type. If a storage-class-specifier modifies a parameter type, the specifier is deleted. [Example: register char* becomes char* - end example] Such storage-class-specifiers affect only the definition of the parameter within the body of the function; they do not affect the function type. The resulting list of transformed parameter types and the presence or absence of the ellipsis is the function's parameter-type-list.
4 A cv-qualifier-seq shall only be part of the function type for a non-static member function, the function type to which a pointer to member refers, or the top-level function type of a function typedef declaration. The effect of a cv-qualifierseq in a function declarator is not the same as adding cv-qualification on top of the function type. In the latter case, the cv-qualifiers are ignored. [Example:

```
typedef void F();
struct S {
    const F f; // OK: equivalent to: void f();
};
```

—end example] The return type, the parameter-type-list and the $c v$-qualifier-seq, but not the default arguments (8.3.6) or the exception specification (15.4), are part of the function type. [Note: function types are checked during the assignments and initializations of pointer-to-functions, reference-to-functions, and pointer-to-member-functions. -end note]
5 [Example: the declaration

```
int fseek(FILE*, long, int);
```

declares a function taking three arguments of the specified types, and returning int (7.1.5). - end example]
6 If the type of a parameter includes a type of the form "pointer to array of unknown bound of T" or "reference to array of unknown bound of T," the program is ill-formed. ${ }^{90)}$ Functions shall not have a return type of type array or function, although they may have a return type of type pointer or reference to such things. There shall be no arrays of functions, although there can be arrays of pointers to functions. Types shall not be defined in return or parameter types. The type of a parameter or the return type for a function definition shall not be an incomplete class type (possibly cv-qualified)

[^65]unless the function definition is nested within the member-specification for that class (including definitions in nested classes defined within the class).

7 A typedef of function type may be used to declare a function but shall not be used to define a function (8.4). [Example:

```
typedef void F();
F fv; // OK: equivalent to void fv();
F fv { } // ill-formed
void fv() { } // OK: definition of fv
```

-end example] A typedef of a function type whose declarator includes a cv-qualifier-seq shall be used only to declare the function type for a non-static member function, to declare the function type to which a pointer to member refers, or to declare the top-level function type of another function typedef declaration. [Example:

```
typedef int FIC(int) const;
FIC f;
// ill-formed: does not declare a member function
struct S {
    FIC f; // OK
};
FIC S::*pm = &S::f; // OK
- end example ]
```

8 An identifier can optionally be provided as a parameter name; if present in a function definition (8.4), it names a parameter (sometimes called "formal argument"). [Note: in particular, parameter names are also optional in function definitions and names used for a parameter in different declarations and the definition of a function need not be the same. If a parameter name is present in a function declaration that is not a definition, it cannot be used outside of the parameter-declaration-clause since it goes out of scope at the end of the function declarator (3.3). -end note]

9 [Example: the declaration

```
int i,
    *pi,
    f(),
    *fpi(int),
    (*pif)(const char*, const char*),
    (*fpif(int))(int);
```

declares an integer i, a pointer pi to an integer, a function f taking no arguments and returning an integer, a function f pi taking an integer argument and returning a pointer to an integer, a pointer pif to a function which takes two pointers to constant characters and returns an integer, a function fpif taking an integer argument and returning a pointer to a function that takes an integer argument and returns an integer. It is especially useful to compare fpi and pif. The binding of $* \mathrm{fpi}$ (int) is *(fpi (int)), so the declaration suggests, and the same construction in an expression requires, the calling of a function fpi, and then using indirection through the (pointer) result to yield an integer. In the declarator (*pif) (const char*, const char*), the extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function, which is then called. - end example] [Note: typedefs are sometimes convenient when the return type of a function is complex. For example, the function fpif above could have been declared

```
typedef int IFUNC(int);
IFUNC* fpif(int);
```


- end note]

8.3.6 Default arguments

[dcl.fct.default]
1 If an expression is specified in a parameter declaration this expression is used as a default argument. Default arguments will be used in calls where trailing arguments are missing.
2 [Example: the declaration

```
void point(int = 3, int = 4);
```

declares a function that can be called with zero, one, or two arguments of type int. It can be called in any of these ways:

```
point(1,2); point(1); point();
```

The last two calls are equivalent to point $(1,4)$ and point $(3,4)$, respectively. -end example]
3 A default argument expression shall be specified only in the parameter-declaration-clause of a function declaration or in a template-parameter (14.1). If it is specified in a parameter-declaration-clause, it shall not occur within a declarator or abstract-declarator of a parameter-declaration. ${ }^{91}$)

4 For non-template functions, default arguments can be added in later declarations of a function in the same scope. Declarations in different scopes have completely distinct sets of default arguments. That is, declarations in inner scopes do not acquire default arguments from declarations in outer scopes, and vice versa. In a given function declaration, all parameters subsequent to a parameter with a default argument shall have default arguments supplied in this or previous declarations. A default argument shall not be redefined by a later declaration (not even to the same value). [Example:

```
void g(int = 0, ...); // OK, ellipsis is not a parameter so it can follow
    // a parameter with a default argument
void f(int, int);
void f(int, int = 7);
void h()
{
    f(3); // OK, calls f(3, 7)
    void f(int = 1, int); // error: does not use default
    // from surrounding scope
}
void m()
{
    void f(int, int); // has no defaults
    f(4); // error: wrong number of arguments
    void f(int, int = 5); // OK
    f(4); // OK, calls f(4, 5);
    void f(int, int = 5); // error: cannot redefine, even to
    // same value
}
void n()
{
```

[^66]```
 f(6); // OK, calls f(6, 7)
```

\}
-end example] For a given inline function defined in different translation units, the accumulated sets of default arguments at the end of the translation units shall be the same; see 3.2. If a friend declaration specifies a default argument expression, that declaration must be a definition and shall be the only declaration of the function or function template in the translation unit.

5 A default argument expression is implicitly converted (clause 4) to the parameter type. The default argument expression has the same semantic constraints as the initializer expression in a declaration of a variable of the parameter type, using the copy-initialization semantics (8.5). The names in the expression are bound, and the semantic constraints are checked, at the point where the default argument expression appears. Name lookup and checking of semantic constraints for default arguments in function templates and in member functions of class templates are performed as described in 14.7.1. [ Example: in the following code, g will be called with the value $f(2)$ :

```
int a = 1;
int f(int);
int g(int x = f(a)); // default argument: f(::a)
void h() {
 a = 2;
 {
 int a = 3;
 g(); // g(f(::a))
 }
}
```

- end example ] [Note: in member function declarations, names in default argument expressions are looked up as described in 3.4.1. Access checking applies to names in default argument expressions as described in clause 11. -end note]

6 Except for member functions of class templates, the default arguments in a member function definition that appears outside of the class definition are added to the set of default arguments provided by the member function declaration in the class definition. Default arguments for a member function of a class template shall be specified on the initial declaration of the member function within the class template. [Example:

```
class C {
 void f(int i = 3);
 void g(int i, int j = 99);
};
void C::f(int i = 3) // error: default argument already
{ } // specified in class scope
void C::g(int i = 88, int j) // in this translation unit,
{ } // C::g can be called with no argument
- end example]
```

7 Local variables shall not be used in default argument expressions. [Example:

```
void f()
{
 int i;
 extern void g(int x = i); //error
 // ...
}
- end example]
```

8 The keyword this shall not be used in a default argument of a member function. [Example:

```
class A {
 void f(A* p = this) { } // error
};
- end example]
```

9 Default arguments are evaluated each time the function is called. The order of evaluation of function arguments is unspecified. Consequently, parameters of a function shall not be used in default argument expressions, even if they are not evaluated. Parameters of a function declared before a default argument expression are in scope and can hide namespace and class member names. [Example:

```
int a;
int f(int a, int b = a); // error: parameter a
 // used as default argument
typedef int I;
int g(float I, int b = I(2)); // error: parameter I found
int h(int a, int b = sizeof(a)); // error, parameter a used
 // in default argument
```

-end example ] Similarly, a non-static member shall not be used in a default argument expression, even if it is not evaluated, unless it appears as the id-expression of a class member access expression (5.2.5) or unless it is used to form a pointer to member (5.3.1). [Example: the declaration of $\mathrm{X}:: \mathrm{mem} 1$ () in the following example is ill-formed because no object is supplied for the non-static member $X:$ : a used as an initializer.

```
int b;
class X {
 int a;
 int mem1(int i = a); // error: non-static member a
 // used as default argument
 int mem2(int i = b); // OK; use X::b
 static int b;
};
```

The declaration of $\mathrm{X}:: \mathrm{mem2()}$ is meaningful, however, since no object is needed to access the static member $\mathrm{X}:: \mathrm{b}$. Classes, objects, and members are described in clause 9. - end example ] A default argument is not part of the type of a function. [Example:

```
int f(int = 0);
void h()
```

```
{
 int j = f(1);
 int k = f(); // OK, means f(0)
}
int (*p1)(int) = &f;
int (*p2)() = &f; // error: type mismatch
```

—end example ] When a declaration of a function is introduced by way of a using-declaration (7.3.3), any default argument information associated with the declaration is made known as well. If the function is redeclared thereafter in the namespace with additional default arguments, the additional arguments are also known at any point following the redeclaration where the using-declaration is in scope.

10 A virtual function call (10.3) uses the default arguments in the declaration of the virtual function determined by the static type of the pointer or reference denoting the object. An overriding function in a derived class does not acquire default arguments from the function it overrides. [Example:

```
struct A {
 virtual void f(int a = 7);
};
struct B : public A {
 void f(int a);
};
void m()
{
 B* pb = new B;
 A* pa = pb;
 pa->f(); // OK, calls pa->B::f(7)
 pb->f(); // error: wrong number of arguments for B::f()
}
- end example]
```


### 8.4 Function definitions

[dcl.fct.def]
1 Function definitions have the form
function-definition:
decl-specifier-seq opt $_{\text {declarator }}$ ctor-initializer $r_{\text {opt }}$ function-body
decl-specifier-seq opt declarator function-try-block
function-body:
compound-statement
2 The declarator in a function-definition shall have the form
D1 (parameter-declaration-clause) cv-qualifier-seq opt $^{\text {exception-specification }}{ }_{o p t}$
as described in 8.3.5. A function shall be defined only in namespace or class scope.
3 [ Example: a simple example of a complete function definition is

```
int max(int a, int b, int c)
{
```

```
 int m = (a > b) ? a : b;
 return (m > c) ? m : c;
}
```

Here int is the decl-specifier-seq; $\max$ (int a, int b, int c ) is the declarator; $\{/ * \ldots \quad * /\}$ is the function-body. - end example ]

4 A ctor-initializer is used only in a constructor; see 12.1 and 12.6.
5 A cv-qualifier-seq can be part of a non-static member function declaration, non-static member function definition, or pointer to member function only; see 9.3.2. It is part of the function type.

6 [Note: unused parameters need not be named. For example,

```
void print(int a, int)
{
 std::printf("a = %d\n",a);
}
- end note]
```


### 8.5 Initializers

[dcl.init]
1 A declarator can specify an initial value for the identifier being declared. The identifier designates an object or reference being initialized. The process of initialization described in the remainder of 8.5 applies also to initializations specified by other syntactic contexts, such as the initialization of function parameters with argument expressions (5.2.2) or the initialization of return values (6.6.3).

```
initializer:
 = initializer-clause
 (expression-list)
initializer-clause:
 assignment-expression
 { initializer-list,opt }
 { }
initializer-list:
 initializer-clause
 initializer-list, initializer-clause
```

2 Automatic, register, static, and external variables of namespace scope can be initialized by arbitrary expressions involving literals and previously declared variables and functions. [Example:

```
int f(int);
int a = 2;
int b = f(a);
int c(b);
_ end example]
```

3 [Note: default argument expressions are more restricted; see 8.3.6.
4 The order of initialization of static objects is described in 3.6 and 6.7. -end note ]

Draft

5 To zero-initialize an object of type T means:

- if T is a scalar type (3.9), the object is set to the value 0 (zero), taken as an integral constant expression, converted to $\mathrm{T} ;{ }^{92)}$
- if T is a non-union class type, each non-static data member and each base-class subobject is zero-initialized;
— if T is a union type, the object's first named data member ${ }^{93)}$ is zero-initialized;
- if T is an array type, each element is zero-initialized;
- if T is a reference type, no initialization is performed.

To default-initialize an object of type T means:

- if T is a non-POD class type (clause 9), the default constructor for T is called (and the initialization is ill-formed if $T$ has no accessible default constructor);
- if T is an array type, each element is default-initialized;
- otherwise, the object is zero-initialized.

To value-initialize an object of type T means:
— if T is a class type (clause 9) with a user-declared constructor (12.1), then the default constructor for T is called (and the initialization is ill-formed if T has no accessible default constructor);

- if T is a non-union class type without a user-declared constructor, then every non-static data member and baseclass component of T is value-initialized; ${ }^{94)}$
— if T is an array type, then each element is value-initialized;
- otherwise, the object is zero-initialized

6 A program that calls for default-initialization or value-initialization of an entity of reference type is ill-formed. If T is a cv -qualified type, the cv-unqualified version of T is used for these definitions of zero-initialization, default-initialization, and value-initialization.

7 Every object of static storage duration shall be zero-initialized at program startup before any other initialization takes place. [Note: in some cases, additional initialization is done later. - end note]
8 An object whose initializer is an empty set of parentheses, i.e., (), shall be value-initialized.
[ Note: since () is not permitted by the syntax for initializer,
X a();
is not the declaration of an object of class X , but the declaration of a function taking no argument and returning an X . The form () is permitted in certain other initialization contexts (5.3.4, 5.2.3, 12.6.2). - end note ]
9 If no initializer is specified for an object, and the object is of (possibly cv-qualified) non-POD class type (or array thereof), the object shall be default-initialized; if the object is of const-qualified type, the underlying class type shall have a user-declared default constructor. Otherwise, if no initializer is specified for a non-static object, the object and

[^67]its subobjects, if any, have an indeterminate initial value ${ }^{95)}$; if the object or any of its subobjects are of const-qualified type, the program is ill-formed.

10 An initializer for a static member is in the scope of the member's class. [Example:

```
int a;
struct X {
 static int a;
 static int b;
};
int X::a = 1;
int X::b = a; // X::b = X::a
—end example]
```

11 The form of initialization (using parentheses or $=$ ) is generally insignificant, but does matter when the entity being initialized has a class type; see below. A parenthesized initializer can be a list of expressions only when the entity being initialized has a class type.

12 The initialization that occurs in argument passing, function return, throwing an exception (15.1), handling an exception (15.3), and brace-enclosed initializer lists (8.5.1) is called copy-initialization and is equivalent to the form

```
T x = a;
```

13 The initialization that occurs in new expressions (5.3.4), static_cast expressions (5.2.9), functional notation type conversions (5.2.3), and base and member initializers (12.6.2) is called direct-initialization and is equivalent to the form T $\mathrm{x}(\mathrm{a})$;

14 If T is a scalar type, then a declaration of the form
$T \mathrm{x}=\{\mathrm{a}\} ;$
is equivalent to
T $\mathrm{x}=\mathrm{a}$;

15 The semantics of initializers are as follows. The destination type is the type of the object or reference being initialized and the source type is the type of the initializer expression. The source type is not defined when the initializer is brace-enclosed or when it is a parenthesized list of expressions.

- If the destination type is a reference type, see 8.5.3.
- If the destination type is an array of characters or an array of wchar_t, and the initializer is a string literal, see 8.5.2.
- Otherwise, if the destination type is an array, see 8.5.1.
- If the destination type is a (possibly cv-qualified) class type:

[^68]— If the class is an aggregate (8.5.1), and the initializer is a brace-enclosed list, see 8.5.1.

- If the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualified version of the source type is the same class as, or a derived class of, the class of the destination, constructors are considered. The applicable constructors are enumerated (13.3.1.3), and the best one is chosen through overload resolution (13.3). The constructor so selected is called to initialize the object, with the initializer expression(s) as its argument(s). If no constructor applies, or the overload resolution is ambiguous, the initialization is ill-formed.
- Otherwise (i.e., for the remaining copy-initialization cases), user-defined conversion sequences that can convert from the source type to the destination type or (when a conversion function is used) to a derived class thereof are enumerated as described in 13.3.1.4, and the best one is chosen through overload resolution (13.3). If the conversion cannot be done or is ambiguous, the initialization is ill-formed. The function selected is called with the initializer expression as its argument; if the function is a constructor, the call initializes a temporary of the cv-unqualified version of the destination type. The temporary is an rvalue. The result of the call (which is the temporary for the constructor case) is then used to direct-initialize, according to the rules above, the object that is the destination of the copy-initialization. In certain cases, an implementation is permitted to eliminate the copying inherent in this direct-initialization by constructing the intermediate result directly into the object being initialized; see 12.2, 12.8.
- Otherwise, if the source type is a (possibly cv-qualified) class type, conversion functions are considered. The applicable conversion functions are enumerated (13.3.1.5), and the best one is chosen through overload resolution (13.3). The user-defined conversion so selected is called to convert the initializer expression into the object being initialized. If the conversion cannot be done or is ambiguous, the initialization is ill-formed.
- Otherwise, the initial value of the object being initialized is the (possibly converted) value of the initializer expression. Standard conversions (clause 4) will be used, if necessary, to convert the initializer expression to the cv-unqualified version of the destination type; no user-defined conversions are considered. If the conversion cannot be done, the initialization is ill-formed. [Note: an expression of type "cvl T" can initialize an object of type " $c v 2$ T" independently of the cv-qualifiers $c v 1$ and $c v 2$.

```
int a;
const int b = a;
int c = b;
_ end note]
```


### 8.5.1 Aggregates

1 An aggregate is an array or a class (clause 9) with no user-declared constructors (12.1), no private or protected non-static data members (clause 11), no base classes (clause 10), and no virtual functions (10.3).

2 When an aggregate is initialized the initializer can contain an initializer-clause consisting of a brace-enclosed, commaseparated list of initializer-clauses for the members of the aggregate, written in increasing subscript or member order. If the aggregate contains subaggregates, this rule applies recursively to the members of the subaggregate. [Example:

```
struct A {
 int x;
 struct B {
```

```
 int i;
 int j;
 } b;
} a={1,{2, 3 } };
```

initializes a.x with 1, a.b.i with 2 , a.b.j with 3 . -end example ]
3 An aggregate that is a class can also be initialized with a single expression not enclosed in braces, as described in 8.5.
4 An array of unknown size initialized with a brace-enclosed initializer-list containing n initializers, where n shall be greater than zero, is defined as having $n$ elements (8.3.4). [ Example:

```
int x[] = { 1, 3, 5 };
```

declares and initializes x as a one-dimensional array that has three elements since no size was specified and there are three initializers. - end example ] An empty initializer list \{\} shall not be used as the initializer for an array of unknown bound. ${ }^{96)}$

5 Static data members are not considered members of the class for purposes of aggregate initialization. [Example:

```
struct A {
 int i;
 static int s;
 int j;
} a = { 1, 2 };
```

Here, the second initializer 2 initializes $\mathrm{a} \cdot \mathrm{j}$ and not the static data member $\mathrm{A}:: \mathrm{s}$ —end example]
6 An initializer-list is ill-formed if the number of initializers exceeds the number of members or elements to initialize. [ Example:

```
char cv[4] = { 'a', 's', 'd', 'f', 0 };; // error
```

is ill-formed. - end example ]
7 If there are fewer initializers in the list than there are members in the aggregate, then each member not explicitly initialized shall be value-initialized (8.5). [ Example:

```
struct S { int a; char* b; int c; };
S ss = { 1, "asdf" };
```

initializes ss.a with 1 , ss.b with "asdf", and ss.c with the value of an expression of the form int(), that is, 0 . - end example ]

8 An initializer for an aggregate member that is an empty class shall have the form of an empty initializer-list $\}$. [ Example:

```
struct S { };
struct A {
 S s;
 int i;
} a = {{ } , 3 };
```

[^69]Draft
-end example ] An empty initializer-list can be used to initialize any aggregate. If the aggregate is not an empty class, then each member of the aggregate shall be initialized with a value of the form T () (5.2.3), where T represents the type of the uninitialized member.

9 If an incomplete or empty initializer-list leaves a member of reference type uninitialized, the program is ill-formed.
10 When initializing a multi-dimensional array, the initializers initialize the elements with the last (rightmost) index of the array varying the fastest (8.3.4). [ Example:

```
int x[2][2] = { 3, 1, 4, 2 };
```

initializes $\mathrm{x}[0][0]$ to 3 , $\mathrm{x}[0][1]$ to 1 , $\mathrm{x}[1][0]$ to 4 , and $\mathrm{x}[1]$ [1] to 2 . On the other hand,

```
float y[4][3] = {
 { 1 }, { 2 }, { 3 }, { 4 }
};
```

initializes the first column of y (regarded as a two-dimensional array) and leaves the rest zero. - end example]
11 Braces can be elided in an initializer-list as follows. If the initializer-list begins with a left brace, then the succeeding comma-separated list of initializers initializes the members of a subaggregate; it is erroneous for there to be more initializers than members. If, however, the initializer-list for a subaggregate does not begin with a left brace, then only enough initializers from the list are taken to initialize the members of the subaggregate; any remaining initializers are left to initialize the next member of the aggregate of which the current subaggregate is a member. [Example:

```
float y[4][3] = {
 { 1, 3, 5 },
 { 2, 4, 6 },
 { 3, 5, 7 },
};
```

is a completely-braced initialization: 1,3 , and 5 initialize the first row of the array y [0], namely y [0] [0], y [0] [1], and y [0] [2]. Likewise the next two lines initialize y [1] and y[2]. The initializer ends early and therefore y [3]s elements are initialized as if explicitly initialized with an expression of the form float(), that is, are initialized with 0.0. In the following example, braces in the initializer-list are elided; however the initializer-list has the same effect as the completely-braced initializer-list of the above example,

```
float y[4][3] = {
 1, 3, 5, 2, 4, 6, 3, 5, 7
};
```

The initializer for $y$ begins with a left brace, but the one for $y[0]$ does not, therefore three elements from the list are used. Likewise the next three are taken successively for y [1] and y [2]. - end example ]

12 All implicit type conversions (clause 4) are considered when initializing the aggregate member with an initializer from an initializer-list. If the initializer can initialize a member, the member is initialized. Otherwise, if the member is itself a non-empty subaggregate, brace elision is assumed and the initializer is considered for the initialization of the first member of the subaggregate.

## [Example:

```
struct A {
 int i;
 operator int();
};
struct B {
 A a1, a2;
 int z;
};
A a;
B b = {4,a, a };
```

Braces are elided around the initializer for b.a1.i. b.a1.i is initialized with 4, b.a2 is initialized with a, b.z is initialized with whatever a.operator int() returns. - end example]
13 [Note: An aggregate array or an aggregate class may contain members of a class type with a user-declared constructor (12.1). Initialization of these aggregate objects is described in 12.6.1. - end note ]

14 When an aggregate with static storage duration is initialized with a brace-enclosed initializer-list, if all the member initializer expressions are constant expressions, and the aggregate is a POD type, the initialization shall be done during the static phase of initialization (3.6.2); otherwise, it is unspecified whether the initialization of members with constant expressions takes place during the static phase or during the dynamic phase of initialization.
15 When a union is initialized with a brace-enclosed initializer, the braces shall only contain an initializer for the first member of the union. [Example:

```
union u { int a; char* b; };
u a = { 1 };
u b = a;
u c = 1; // error
u d = { 0, "asdf" }; // error
u e = { "asdf" }; // error
_ end example]
```

16 [ Note: as described above, the braces around the initializer for a union member can be omitted if the union is a member of another aggregate. - end note ]

### 8.5.2 Character arrays

[dcl.init.string]
1 A char array (whether plain char, signed char, or unsigned char) can be initialized by a string-literal (optionally enclosed in braces); a wchar_t array can be initialized by a wide string-literal (optionally enclosed in braces); successive characters of the string-literal initialize the members of the array. [Example:

```
char msg[] = "Syntax error on line %s\n";
```

shows a character array whose members are initialized with a string-literal. Note that because ' $\backslash \mathrm{n}$ ' is a single character and because a trailing ' $\backslash 0$ ' is appended, $\operatorname{sizeof}(\mathrm{msg})$ is 25 . - end example ]

2 There shall not be more initializers than there are array elements. [Example:

```
char cv[4] = "asdf"; // error
```

is ill-formed since there is no space for the implied trailing ' $\backslash 0$ '. - end example ]

### 8.5.3 References

[dcl.init.ref]
1 A variable declared to be a T\& or T\&\&, that is, "reference to type T" (8.3.2), shall be initialized by an object, or function, of type T or by an object that can be converted into a T. [Example:

```
int g(int);
void f()
{
 int i;
 int& r = i; // r refers to i
 r = 1; // the value of i becomes 1
 int* p = &r; // p points to i
 int& rr = r; // rr refers to what r refers to, that is, to i
 int (&rg)(int) = g; // rg refers to the function g
 rg(i); // calls function g
 int a[3];
 int (&ra)[3] = a; // ra refers to the array a
 ra[1] = i; // modifies a[1]
}
- end example]
```

2 A reference cannot be changed to refer to another object after initialization. Note that initialization of a reference is treated very differently from assignment to it. Argument passing (5.2.2) and function value return (6.6.3) are initializations.

3 The initializer can be omitted for a reference only in a parameter declaration (8.3.5), in the declaration of a function return type, in the declaration of a class member within its class definition (9.2), and where the extern specifier is explicitly used. [Example:

```
int& r1; // error: initializer missing
extern int& r2; // OK
```

- end example ]

4 Given types " $c v 1 \mathrm{~T} 1 "$ and " $c v 2 \mathrm{~T} 2$," " $c v 1 \mathrm{~T} 1 "$ is reference-related to " $c v 2 \mathrm{~T} 2$ " if T 1 is the same type as T 2 , or T 1 is a base class of T 2 . " $c v 1 \mathrm{~T} 1$ " is reference-compatible with " $c v 2 \mathrm{~T} 2$ " if T 1 is reference-related to T 2 and $c v 1$ is the same cv -qualification as, or greater cv -qualification than, $c v 2$. For purposes of overload resolution, cases for which $c v 1$ is greater cv-qualification than $c v 2$ are identified as reference-compatible with added qualification (see 13.3.3.2). In all cases where the reference-related or reference-compatible relationship of two types is used to establish the validity of a reference binding, and T1 is a base class of T2, a program that necessitates such a binding is ill-formed if T1 is an inaccessible (clause 11) or ambiguous (10.2) base class of T 2 .

5 A reference to type " $c v 1$ T1" is initialized by an expression of type " $c v 2 \mathrm{~T} 2$ " as follows:

- If the initializer expression
— is an lvalue (but is not a bit-field), and " $c v 1 \mathrm{~T} 1$ " is reference-compatible with " $c v 2 \mathrm{~T} 2$," or
- has a class type (i.e., T 2 is a class type) and can be implicitly converted to an lvalue of type " $c v 3 \mathrm{~T} 3$," where " $c v 1 \mathrm{~T} 1$ " is reference-compatible with " $c v 3 \mathrm{T3}$ " 97 ) (this conversion is selected by enumerating the applicable conversion functions (13.3.1.6) and choosing the best one through overload resolution (13.3)),
then the reference is bound directly to the initializer expression lvalue in the first case, and the reference is bound to the lvalue result of the conversion in the second case. In these cases the reference is said to bind directly to the initializer expression. [Note: the usual lvalue-to-rvalue (4.1), array-to-pointer (4.2), and function-to-pointer (4.3) standard conversions are not needed, and therefore are suppressed, when such direct bindings to lvalues are done.
- end note ]
[Example:

```
double d = 2.0;
double& rd = d; // rd refers to d
const double& rcd = d; // rcd refers to d
struct A { };
struct B : public A { } b;
A& ra = b; // ra refers to A subobject in b
const A& rca = b; // rca refers to A subobject in b
- end example]
```

- Otherwise, the reference shall be an lvalue reference to a non-volatile const type (i.e., cvl shall be const), or shall be an rvalue reference. [Example:

```
double& rd2 = 2.0; // error: not an lvalue and reference not const
int i = 2;
double& rd3 = i; // error: type mismatch and reference not const
double&& rd4 = i; // OK: reference bound to temporary double
- end example]
```

- If the initializer expression is an rvalue, with T2 a class type, and "cv1 T1" is reference-compatible with "cv2 T 2 ," the reference is bound to the object represented by the rvalue (see 3.10 ) or to a sub-object within that object.
[Example:

```
struct A { };
struct B : public A { } b;
extern B f();
const A& rca = f(); // Bound to the A subobject of the B rvalue.
A&& rcb = f(); // Same as above
 - end example]
```

- If the initializer expression is an rvalue, with T 2 an array type, and " $c v 1 \mathrm{~T} 1$ " is reference-compatible with "cv2 T2," the reference is bound to the object represented by the rvalue (see 3.10).

[^70]- Otherwise, a temporary of type " $\mathrm{cv1} \mathrm{~T} 1$ " is created and initialized from the initializer expression using the rules for a non-reference copy initialization (8.5). The reference is then bound to the temporary. If T1 is reference-related to $\mathrm{T} 2, \mathrm{cvl}$ must be the same cv -qualification as, or greater cv -qualification than, $c v 2$; otherwise, the program is ill-formed. [Example:

```
const double& rcd2 = 2; // rcd2 refers to temporary with value 2.0
double&& rcd3 = 2; // rcd3 refers to temporary with value 2.0
const volatile int cvi = 1;
const int& r = cvi; // error: type qualifiers dropped
- end example]
```

6 [Note: 12.2 describes the lifetime of temporaries bound to references. -end note]

## Chapter 9 Classes

## [class]

1 A class is a type. Its name becomes a class-name (9.1) within its scope.

```
class-name:
 identifier
 simple-template-id
```

Class-specifiers and elaborated-type-specifiers (7.1.5.3) are used to make class-names. An object of a class consists of a (possibly empty) sequence of members and base class objects.

```
class-specifier:
 class-head { member-specification opt }
class-head:
 class-key identifier opt base-clause opt
 class-key nested-name-specifier identifier base-clause opt
 class-key nested-name-specifier opt simple-template-id base-clause opt
class-key:
 class
 struct
 union
```

A class-specifier where the class-head omits the optional identifier defines an unnamed class.
2 A class-name is inserted into the scope in which it is declared immediately after the class-name is seen. The classname is also inserted into the scope of the class itself; this is known as the injected-class-name. For purposes of access checking, the injected-class-name is treated as if it were a public member name. A class-specifier is commonly referred to as a class definition. A class is considered defined after the closing brace of its class-specifier has been seen even though its member functions are in general not yet defined.

3 Complete objects and member subobjects of class type shall have nonzero size. ${ }^{98)}$ [ Note: class objects can be assigned, passed as arguments to functions, and returned by functions (except objects of classes for which copying has been restricted; see 12.8). Other plausible operators, such as equality comparison, can be defined by the user; see 13.5. - end note]

4 A structure is a class defined with the class-key struct; its members and base classes (clause 10) are public by default (clause 11). A union is a class defined with the class-key union; its members are public by default and it holds only one data member at a time (9.5). [Note: aggregates of class type are described in 8.5.1. - end note] A POD-struct is an aggregate class that has no non-static data members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-declared copy assignment operator and no user-declared destructor. Similarly, a POD-union

[^71]is an aggregate union that has no non-static data members of type non-POD-struct, non-POD-union (or array of such types) or reference, and has no user-declared copy assignment operator and no user-declared destructor. A POD class is a class that is either a POD-struct or a POD-union.

5 If a class-head contains a nested-name-specifier, the class-specifier shall refer to a class that was previously declared directly in the class or namespace to which the nested-name-specifier refers (i.e., neither inherited nor introduced by a using-declaration), and the class-specifier shall appear in a namespace enclosing the previous declaration.

### 9.1 Class names

[class.name]
A class definition introduces a new type. [Example:

```
struct X { int a; };
struct Y { int a; };
X a1;
Y a2;
int a3;
```

declares three variables of three different types. This implies that

```
a1 = a2;
// error: Y assigned to X
a1 = a3; // error: int assigned to X
```

are type mismatches, and that

```
int f(X);
int f(Y);
```

declare an overloaded (clause 13) function $f()$ and not simply a single function $f()$ twice. For the same reason,

```
struct S { int a; };
```

struct S \{ int a; \}; // error, double definition
is ill-formed because it defines S twice. - end example ]
2 A class declaration introduces the class name into the scope where it is declared and hides any class, object, function, or other declaration of that name in an enclosing scope (3.3). If a class name is declared in a scope where an object, function, or enumerator of the same name is also declared, then when both declarations are in scope, the class can be referred to only using an elaborated-type-specifier (3.4.4). [ Example:

```
struct stat {
 // ..
};
stat gstat; // use plain stat to
 // define variable
int stat(struct stat*); // redeclare stat as function
void f()
{
 struct stat* ps; // struct prefix needed
```

Draft

```
 // to name struct stat
 // ...
 stat(ps); // call stat()
 // ...
}
```

- end example ] A declaration consisting solely of class-key identifier; is either a redeclaration of the name in the current scope or a forward declaration of the identifier as a class name. It introduces the class name into the current scope. [Example:

```
struct s { int a; };
void g()
{
 struct s; // hide global struct s
 // with a local declaration
 // refer to local struct s
 struct s; // redeclaration, has no effect
}
```

- end example ] [Note: Such declarations allow definition of classes that refer to each other. [Example:

```
class Vector;
class Matrix {
 // ...
 friend Vector operator*(Matrix&, Vector&);
};
class Vector {
 // ..
 friend Vector operator*(Matrix&, Vector&);
};
```

Declaration of friends is described in 11.4, operator functions in 13.5. - end example ] - end note ]
3 [ Note: An elaborated-type-specifier (7.1.5.3) can also be used as a type-specifier as part of a declaration. It differs from a class declaration in that if a class of the elaborated name is in scope the elaborated name will refer to it. - end note ] [ Example:

```
struct s { int a; };
void g(int s)
{
 struct s* p = new struct s; // global s
 p->a = s; // local s
}
- end example]
```

4 [Note: The declaration of a class name takes effect immediately after the identifier is seen in the class definition or elaborated-type-specifier. For example,

```
class A * A;
```

first specifies A to be the name of a class and then redefines it as the name of a pointer to an object of that class. This means that the elaborated form class A must be used to refer to the class. Such artistry with names can be confusing and is best avoided. -end note ]

5 A typedef-name (7.1.3) that names a class type, or a cv-qualified version thereof, is also a class-name. If a typedef-name that names a cv-qualified class type is used where a class-name is required, the cv-qualifiers are ignored. A typedef-name shall not be used as the identifier in a class-head.

### 9.2 Class members

[class.mem]

```
member-specification:
 member-declaration member-specification opt
 access-specifier : member-specification opt
member-declaration:
 decl-specifier-seq}\mp@subsup{q}{\mathrm{ opt }}{}\mathrm{ member-declarator-list topt ;
 function-definition; opt
 : :opt nested-name-specifier template }\mp@subsup{}{\mathrm{ opt }}{}\mathrm{ unqualified-id;
 using-declaration
 static_assert-declaration
 template-declaration
member-declarator-list:
 member-declarator
 member-declarator-list, member-declarator
member-declarator:
 declarator pure-specifier opt
 declarator constant-initializer opt
 identifier ropt : constant-expression
pure-specifier:
 = 0
constant-initializer:
 = constant-expression
```

1 The member-specification in a class definition declares the full set of members of the class; no member can be added elsewhere. Members of a class are data members, member functions (9.3), nested types, and enumerators. Data members and member functions are static or non-static; see 9.4. Nested types are classes (9.1, 9.7) and enumerations (7.2) defined in the class, and arbitrary types declared as members by use of a typedef declaration (7.1.3). The enumerators of an enumeration (7.2) defined in the class are members of the class. Except when used to declare friends (11.4) or to introduce the name of a member of a base class into a derived class (7.3.3,11.3), member-declarations declare members of the class, and each such member-declaration shall declare at least one member name of the class. A member shall not be declared twice in the member-specification, except that a nested class or member class template can be declared and then later defined.

2 A class is considered a completely-defined object type (3.9) (or complete type) at the closing \} of the class-specifier. Within the class member-specification, the class is regarded as complete within function bodies, default arguments,
exception-specifications, and constructor ctor-initializers (including such things in nested classes). Otherwise it is regarded as incomplete within its own class member-specification.

3 [Note: a single name can denote several function members provided their types are sufficiently different (clause 13). - end note]

4 A member-declarator can contain a constant-initializer only if it declares a static member (9.4) of const integral or const enumeration type, see 9.4.2.

5 A member can be initialized using a constructor; see 12.1. [Note: see clause 12 for a description of constructors and other special member functions. - end note ]

6 A member shall not be declared to have automatic storage duration (auto, register) or with the extern storage-class-specifier.
7 The decl-specifier-seq is omitted in constructor, destructor, and conversion function declarations only. The member-declarator-list can be omitted only after a class-specifier or an enum-specifier or in a friend declaration (11.4). A pure-specifier shall be used only in the declaration of a virtual function (10.3).

8 Non-static (9.4) data members shall not have incomplete types. In particular, a class C shall not contain a non-static member of class C, but it can contain a pointer or reference to an object of class $C$.

9 Each occurrence in an expression of the name of a non-static data member or non-static member function of a class shall be expressed as a class member access (5.2.5), except when it appears in the formation of a pointer to member (5.3.1), when it appears in the body of a non-static member function of its class or of a class derived from its class (9.3.1), or when it appears in a mem-initializer for a constructor for its class or for a class derived from its class (12.6.2).

10 [ Note: the type of a non-static member function is an ordinary function type, and the type of a non-static data member is an ordinary object type. There are no special member function types or data member types. - end note ]
[ Example: A simple example of a class definition is

```
struct tnode {
 char tword[20];
 int count;
 tnode *left;
 tnode *right;
};
```

which contains an array of twenty characters, an integer, and two pointers to similar structures. Once this definition has been given, the declaration

```
tnode s, *sp;
```

 member of the structure to which sp points; s. left refers to the left subtree pointer of the structure s; and s.right>tword [0] refers to the initial character of the tword member of the right subtree of s . - end example ]

12 Nonstatic data members of a (non-union) class declared without an intervening access-specifier are allocated so that later members have higher addresses within a class object. The order of allocation of non-static data members separated by an access-specifier is unspecified (11.1). Implementation alignment requirements might cause two adjacent members not to be allocated immediately after each other; so might requirements for space for managing virtual functions (10.3) and virtual base classes (10.1).

13 If T is the name of a class, then each of the following shall have a name different from T :

- every static data member of class $T$;
- every member function of class T [Note: this restriction does not apply to constructors, which do not have names (12.1) -end note] ;
- every member of class $T$ that is itself a type;
- every enumerator of every member of class $T$ that is an enumerated type; and
- every member of every anonymous union that is a member of class T .

14 In addition, if class $T$ has a user-declared constructor (12.1), every non-static data member of class $T$ shall have a name different from T .

15 Two POD-struct (clause 9) types are layout-compatible if they have the same number of non-static data members, and corresponding non-static data members (in order) have layout-compatible types (3.9).

16 Two POD-union (clause 9) types are layout-compatible if they have the same number of non-static data members, and corresponding non-static data members (in any order) have layout-compatible types (3.9).
17 If a POD-union contains two or more POD-structs that share a common initial sequence, and if the POD-union object currently contains one of these POD-structs, it is permitted to inspect the common initial part of any of them. Two PODstructs share a common initial sequence if corresponding members have layout-compatible types (and, for bit-fields, the same widths) for a sequence of one or more initial members.

18 A pointer to a POD-struct object, suitably converted using a reinterpret_cast, points to its initial member (or if that member is a bit-field, then to the unit in which it resides) and vice versa. [Note: There might therefore be unnamed padding within a POD-struct object, but not at its beginning, as necessary to achieve appropriate alignment. -end note]

### 9.3 Member functions

[class.mfct]
1 Functions declared in the definition of a class, excluding those declared with a friend specifier (11.4), are called member functions of that class. A member function may be declared static in which case it is a static member function of its class (9.4); otherwise it is a non-static member function of its class (9.3.1, 9.3.2).

2 A member function may be defined (8.4) in its class definition, in which case it is an inline member function (7.1.2), or it may be defined outside of its class definition if it has already been declared but not defined in its class definition. A member function definition that appears outside of the class definition shall appear in a namespace scope enclosing the class definition. Except for member function definitions that appear outside of a class definition, and except for explicit specializations of member functions of class templates and member function templates (14.7) appearing outside of the class definition, a member function shall not be redeclared.

3 An inline member function (whether static or non-static) may also be defined outside of its class definition provided either its declaration in the class definition or its definition outside of the class definition declares the function as inline. [ Note: member functions of a class in namespace scope have external linkage. Member functions of a local class (9.8) have no linkage. See 3.5. -end note ]
4 There shall be at most one definition of a non-inline member function in a program; no diagnostic is required. There may be more than one inline member function definition in a program. See 3.2 and 7.1.2.

5 If the definition of a member function is lexically outside its class definition, the member function name shall be qualified by its class name using the : : operator. [Note: a name used in a member function definition (that is, in the parameter-declaration-clause including the default arguments (8.3.6), or in the member function body, or, for a constructor function (12.1), in a mem-initializer expression (12.6.2)) is looked up as described in 3.4. - end note ] [ Example:

```
struct X {
 typedef int T;
 static T count;
 void f(T);
};
void X::f(T t = count) { }
```

The member function $f$ of class $X$ is defined in global scope; the notation $X:: f$ specifies that the function $f$ is a member of class $X$ and in the scope of class $X$. In the function definition, the parameter type $T$ refers to the typedef member $T$ declared in class X and the default argument count refers to the static data member count declared in class X . -end example]

6 A static local variable in a member function always refers to the same object, whether or not the member function is inline.

7 Member functions may be mentioned in friend declarations after their class has been defined.
8 Member functions of a local class shall be defined inline in their class definition, if they are defined at all.
9 [Note: a member function can be declared (but not defined) using a typedef for a function type. The resulting member function has exactly the same type as it would have if the function declarator were provided explicitly, see 8.3.5. For example,

```
typedef void fv(void);
typedef void fvc(void) const;
struct S {
 fv memfunc1; // equivalent to: void memfunc1(void);
 void memfunc2();
 fvc memfunc3; // equivalent to: void memfunc3(void) const;
};
```

3 When an id-expression (5.1) that is not part of a class member access syntax (5.2.5) and not used to form a pointer to member (5.3.1) is used in the body of a non-static member function of class $X$ or used in the mem-initializer for a constructor of class X , if name lookup (3.4.1) resolves the name in the id-expression to a non-static non-type member of some class C, the id-expression is transformed into a class member access expression (5.2.5) using (*this) (9.3.2) as the postfix-expression to the left of the . operator. [Note: if C is not X or a base class of X , the class member access expression is ill-formed. -end note ] Similarly during name lookup, when an unqualified-id (5.1) used in the definition of a member function for class X resolves to a static member, an enumerator or a nested type of class X or of a base class of X , the unqualified-id is transformed into a qualified-id (5.1) in which the nested-name-specifier names the class of the member function. [Example:

```
struct tnode {
 char tword[20];
 int count;
 tnode *left;
 tnode *right;
 void set(char*, tnode* l, tnode* r);
};
void tnode::set(char* w, tnode* l, tnode* r)
{
 count = strlen(w)+1;
 if (sizeof(tword)<=count)
 perror("tnode string too long");
 strcpy(tword,w);
 left = l;
 right = r;
}
void f(tnode n1, tnode n2)
{
 n1.set("abc",&n2,0);
 n2.set("def",0,0);
}
```

In the body of the member function tnode : : set, the member names tword, count, left, and right refer to members of the object for which the function is called. Thus, in the call n 1 . set ( $" \mathrm{abc} \mathrm{c}$, \& $\mathrm{n} 2,0$ ), tword refers to n1. tword, and in the call n2.set ("def" 0,0 ), it refers to $n 2$.tword. The functions strlen, perror, and strcpy are not members of the class tnode and should be declared elsewhere. ${ }^{99)}$ - end example]

4 A non-static member function may be declared const, volatile, or const volatile. These cv-qualifiers affect the type of the this pointer (9.3.2). They also affect the function type (8.3.5) of the member function; a member function declared const is a const member function, a member function declared volatile is a volatile member function and a member function declared const volatile is a const volatile member function. [ Example:

```
struct X {
 void g() const;
 void h() const volatile;
};
```

[^72]$\mathrm{X}:: \mathrm{g}$ is a const member function and $\mathrm{X}:: \mathrm{h}$ is a const volatile member function. -end example ]
5 A non-static member function may be declared virtual (10.3) or pure virtual (10.4).

### 9.3.2 The this pointer

[class.this]
1 In the body of a non-static (9.3) member function, the keyword this is a non-lvalue expression whose value is the address of the object for which the function is called. The type of this in a member function of a class $X$ is $X *$. If the member function is declared const, the type of this is const $X *$, if the member function is declared volatile, the type of this is volatile $X *$, and if the member function is declared const volatile, the type of this is const volatile X*.

2 In a const member function, the object for which the function is called is accessed through a const access path; therefore, a const member function shall not modify the object and its non-static data members. [Example:

```
struct s {
 int a;
 int f() const;
 int g() { return a++; }
 int h() const { return a++; } // error
};
int s::f() const { return a; }
```

The a++ in the body of $\mathrm{s}:: \mathrm{h}$ is ill-formed because it tries to modify (a part of) the object for which $\mathrm{s}:: \mathrm{h}()$ is called. This is not allowed in a const member function because this is a pointer to const; that is, *this has const type. - end example ]

3 Similarly, volatile semantics (7.1.5.1) apply in volatile member functions when accessing the object and its nonstatic data members.

4 A cv-qualified member function can be called on an object-expression (5.2.5) only if the object-expression is as cvqualified or less-cv-qualified than the member function. [Example:

```
void k(s& x, const s& y)
{
 x.f();
 x.g();
 y.f();
 y.g(); // error
}
```

The call $\mathrm{y} \cdot \mathrm{g}()$ is ill-formed because y is const and $\mathrm{s}:: \mathrm{g}()$ is a non-const member function, that is, $\mathrm{s}:: \mathrm{g}()$ is less-qualified than the object-expression y. - end example]

5 Constructors (12.1) and destructors (12.4) shall not be declared const, volatile or const volatile. [Note: However, these functions can be invoked to create and destroy objects with cv-qualified types, see (12.1) and (12.4). -end
note]

### 9.4 Static members

[class.static]
1 A data or function member of a class may be declared static in a class definition, in which case it is a static member of the class.

2 A static member $s$ of class X may be referred to using the qualified-id expression $\mathrm{X}:: \mathrm{s}$; it is not necessary to use the class member access syntax (5.2.5) to refer to a static member. A static member may be referred to using the class member access syntax, in which case the object-expression is evaluated. [Example:

```
class process {
public:
 static void reschedule();
};
process& g();
void f()
{
 process::reschedule(); // OK: no object necessary
 g().reschedule(); // g() is called
}
- end example]
```

3 A static member may be referred to directly in the scope of its class or in the scope of a class derived (clause 10) from its class; in this case, the static member is referred to as if a qualified-id expression was used, with the nested-namespecifier of the qualified-id naming the class scope from which the static member is referenced. [Example:

```
int g();
struct X {
 static int g();
};
struct Y : X {
 static int i;
};
int Y::i=g(); // equivalent to Y::g();
- end example]
```

4 If an unqualified-id (5.1) is used in the definition of a static member following the member's declarator-id, and name lookup (3.4.1) finds that the unqualified-id refers to a static member, enumerator, or nested type of the member's class (or of a base class of the member's class), the unqualified-id is transformed into a qualified-id expression in which the nested-name-specifier names the class scope from which the member is referenced. The definition of a static member shall not use directly the names of the non-static members of its class or of a base class of its class (including as operands of the sizeof operator). The definition of a static member may only refer to these members to form pointer to members (5.3.1) or with the class member access syntax (5.2.5).

5 Static members obey the usual class member access rules (clause 11). When used in the declaration of a class member, the static specifier shall only be used in the member declarations that appear within the member-specification of the
class definition. [Note: it cannot be specified in member declarations that appear in namespace scope. -end note]

### 9.4.1 Static member functions

[class.static.mfet]
1 [Note: the rules described in 9.3 apply to static member functions. - end note]
2 [Note: a static member function does not have a this pointer (9.3.2). -end note] A static member function shall not be virtual. There shall not be a static and a non-static member function with the same name and the same parameter types (13.1). A static member function shall not be declared const, volatile, or const volatile.

### 9.4.2 Static data members

[class.static.data]
1 A static data member is not part of the subobjects of a class. There is only one copy of a static data member shared by all the objects of the class.
The declaration of a static data member in its class definition is not a definition and may be of an incomplete type other than cv-qualified void. The definition for a static data member shall appear in a namespace scope enclosing the member's class definition. In the definition at namespace scope, the name of the static data member shall be qualified by its class name using the : : operator. The initializer expression in the definition of a static data member is in the scope of its class (3.3.6). [ Example:

```
class process {
 static process* run_chain;
 static process* running;
};
process* process::running = get_main();
process* process::run_chain = running;
```

The static data member run_chain of class process is defined in global scope; the notation process: :run_chain specifies that the member run_chain is a member of class process and in the scope of class process. In the static data member definition, the initializer expression refers to the static data member running of class process. -end example]
[Note: once the static data member has been defined, it exists even if no objects of its class have been created. [ Example: in the example above, run_chain and running exist even if no objects of class process are created by the program. - end example ] - end note]
2 If a static data member is of const integral or const enumeration type, its declaration in the class definition may specify a constant-initializer whose constant-expression shall be an integral constant expression (5.19). In that case, the member may appear in integral constant expressions. The member shall still be defined in a namespace scope if it is used in the program and the namespace scope definition shall not contain an initializer.

3 There shall be exactly one definition of a static data member that is used in a program; no diagnostic is required; see 3.2. Unnamed classes and classes contained directly or indirectly within unnamed classes shall not contain static data members.

4 Static data members of a class in namespace scope have external linkage (3.5). A local class shall not have static data members.

5 Static data members are initialized and destroyed exactly like non-local objects (3.6.2, 3.6.3).

6 A static data member shall not be mutable (7.1.1).

### 9.5 Unions

[class.union]
1 In a union, at most one of the data members can be active at any time, that is, the value of at most one of the data members can be stored in a union at any time. [Note: one special guarantee is made in order to simplify the use of unions: If a POD-union contains several POD-structs that share a common initial sequence (9.2), and if an object of this POD-union type contains one of the POD-structs, it is permitted to inspect the common initial sequence of any of POD-struct members; see 9.2. - end note ] The size of a union is sufficient to contain the largest of its data members. Each data member is allocated as if it were the sole member of a struct. A union can have member functions (including constructors and destructors), but not virtual (10.3) functions. A union shall not have base classes. A union shall not be used as a base class. An object of a class with a non-trivial default constructor (12.1), a non-trivial copy constructor (12.8), a non-trivial destructor (12.4), or a non-trivial copy assignment operator (13.5.3, 12.8) cannot be a member of a union, nor can an array of such objects. If a union contains a static data member, or a member of reference type, the program is ill-formed.

2 A union of the form
union \{ member-specification \};
is called an anonymous union; it defines an unnamed object of unnamed type. The member-specification of an anonymous union shall only define non-static data members. [Note: nested types and functions cannot be declared within an anonymous union. - end note ] The names of the members of an anonymous union shall be distinct from the names of any other entity in the scope in which the anonymous union is declared. For the purpose of name lookup, after the anonymous union definition, the members of the anonymous union are considered to have been defined in the scope in which the anonymous union is declared. [Example:

```
void f()
{
 union { int a; char* p; };
 a = 1;
 // ...
 p = "Jennifer";
 // ...
}
```

3 Here a and p are used like ordinary (nonmember) variables, but since they are union members they have the same address. - end example ]

Anonymous unions declared in a named namespace or in the global namespace shall be declared static. Anonymous unions declared at block scope shall be declared with any storage class allowed for a block-scope variable, or with no storage class. A storage class is not allowed in a declaration of an anonymous union in a class scope. An anonymous union shall not have private or protected members (clause 11). An anonymous union shall not have function members.

4 A union for which objects or pointers are declared is not an anonymous union. [Example:

```
union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // OK
```

The assignment to plain aa is ill-formed since the member name is not visible outside the union, and even if it were visible, it is not associated with any particular object. - end example] [Note: Initialization of unions with no userdeclared constructors is described in (8.5.1). - end note ]

### 9.6 Bit-fields

[class.bit]
1 A member-declarator of the form
identifier $_{\text {opt }}$ : constant-expression
specifies a bit-field; its length is set off from the bit-field name by a colon. The bit-field attribute is not part of the type of the class member. The constant-expression shall be an integral constant-expression with a value greater than or equal to zero. The constant-expression may be larger than the number of bits in the object representation (3.9) of the bit-field's type; in such cases the extra bits are used as padding bits and do not participate in the value representation (3.9) of the bit-field. Allocation of bit-fields within a class object is implementation-defined. Alignment of bit-fields is implementation-defined. Bit-fields are packed into some addressable allocation unit. [Note: bit-fields straddle allocation units on some machines and not on others. Bit-fields are assigned right-to-left on some machines, left-to-right on others. - end note]

2 A declaration for a bit-field that omits the identifier declares an unnamed bit-field. Unnamed bit-fields are not members and cannot be initialized. [Note: an unnamed bit-field is useful for padding to conform to externally-imposed layouts. - end note] As a special case, an unnamed bit-field with a width of zero specifies alignment of the next bit-field at an allocation unit boundary. Only when declaring an unnamed bit-field may the constant-expression be a value equal to zero.

3 A bit-field shall not be a static member. A bit-field shall have integral or enumeration type (3.9.1). It is implementationdefined whether a plain (neither explicitly signed nor unsigned) char, short, int or long bit-field is signed or unsigned. A bool value can successfully be stored in a bit-field of any nonzero size. The address-of operator \& shall not be applied to a bit-field, so there are no pointers to bit-fields. A non-const reference shall not be bound to a bit-field (8.5.3). [Note: if the initializer for a reference of type const T\& is an lvalue that refers to a bit-field, the reference is bound to a temporary initialized to hold the value of the bit-field; the reference is not bound to the bit-field directly. See 8.5.3. - end note]

4 If the value true or false is stored into a bit-field of type bool of any size (including a one bit bit-field), the original bool value and the value of the bit-field shall compare equal. If the value of an enumerator is stored into a bit-field of the same enumeration type and the number of bits in the bit-field is large enough to hold all the values of that enumeration type (7.2

```
- end example]
```


### 9.7 Nested class declarations

1 A class can be declared within another class. A class declared within another is called a nested class. The name of a nested class is local to its enclosing class. The nested class is in the scope of its enclosing class. [Note: In accordance with 9.2, except by using explicit pointers, references, and object names, declarations in a nested class shall not use nonstatic data members or non-static member functions from the enclosing class. This restriction applies in all constructs including the operands of the sizeof operator. -end note]
[ Example:

```
int x;
int y;
class enclose {
public:
 int x;
 static int s;
 class inner {
 void f(int i)
 {
 int a = sizeof(x); // error: direct use of enclose::x even in sizeof
 x = i; // error: assign to enclose::x
 s = i; // OK: assign to enclose::s
 ::x = i; // OK: assign to global x
 y = i; // OK: assign to global y
 }
 void g(enclose* p, int i)
 {
 p->x = i; // OK: assign to enclose::x
 }
 };
};
inner* p = 0; // error: inner not in scope
- end example]
```

2 Member functions and static data members of a nested class can be defined in a namespace scope enclosing the definition of their class. [Example:

```
class enclose {
public:
 class inner {
 static int x;
 void f(int i);
```

```
 };
 };
 int enclose::inner::x = 1;
 void enclose::inner::f(int i) { /* ... */ }
_ end example]
```

3 If class $X$ is defined in a namespace scope, a nested class $Y$ may be declared in class $X$ and later defined in the definition of class X or be later defined in a namespace scope enclosing the definition of class X . [Example:

```
class E {
 class I1; // forward declaration of nested class
 class I2;
 class I1 {}; // definition of nested class
};
class E::I2 {}; // definition of nested class
- end example]
```

4 Like a member function, a friend function (11.4) defined within a nested class is in the lexical scope of that class; it obeys the same rules for name binding as a static member function of that class (9.4), but it has no special access rights to members of an enclosing class.

### 9.8 Local class declarations

[class.local]
1 A class can be declared within a function definition; such a class is called a local class. The name of a local class is local to its enclosing scope. The local class is in the scope of the enclosing scope, and has the same access to names outside the function as does the enclosing function. Declarations in a local class can use only type names, static variables, extern variables and functions, and enumerators from the enclosing scope. [Example:

```
int x;
void f()
{
 static int s ;
 int x;
 extern int g();
 struct local {
 int g() { return x; } // error: x is auto
 int h() { return s; } //OK
 int k() { return ::x; } // OK
 int l() { return g(); } // OK
 };
 // ..
}
local* p = 0; // error: local not in scope
_ end example]
```

2 An enclosing function has no special access to members of the local class; it obeys the usual access rules (clause 11). Member functions of a local class shall be defined within their class definition, if they are defined at all.

3 If class X is a local class a nested class Y may be declared in class X and later defined in the definition of class X or be later defined in the same scope as the definition of class $X$. A class nested within a local class is a local class.

4 A local class shall not have static data members.

### 9.9 Nested type names

[class.nested.type]
1 Type names obey exactly the same scope rules as other names. In particular, type names defined within a class definition cannot be used outside their class without qualification. [ Example:

```
class X {
public:
 typedef int I;
 class Y { /* ... */ };
 I a;
};
I b; // error
Y c; // error
X::Y d; // OK
X::I e; //OK
- end example]
```


## Chapter 10 Derived classes

## [class.derived]

1 A list of base classes can be specified in a class definition using the notation:

```
base-clause:
 : base-specifier-list
base-specifier-list:
 base-specifier
 base-specifier-list, base-specifier
base-specifier:
 : :opt nested-name-specifier opt class-name
 virtual access-specifier opt }::\mp@subsup{:}{\mathrm{ opt }}{\mathrm{ nested-name-specifier opt class-name}
 access-specifier virtual opt :: :opt nested-name-specifier ropt class-name
access-specifier:
 private
 protected
 public
```

2 The class-name in a base-specifier shall not be an incompletely defined class (clause 9); this class is called a direct base class for the class being defined. During the lookup for a base class name, non-type names are ignored (3.3.7). If the name found is not a class-name, the program is ill-formed. A class B is a base class of a class D if it is a direct base class of $D$ or a direct base class of one of D's base classes. A class is an indirect base class of another if it is a base class but not a direct base class. A class is said to be (directly or indirectly) derived from its (direct or indirect) base classes. [Note: See clause 11 for the meaning of access-specifier. - end note] Unless redeclared in the derived class, members of a base class are also considered to be members of the derived class. The base class members are said to be inherited by the derived class. Inherited members can be referred to in expressions in the same manner as other members of the derived class, unless their names are hidden or ambiguous (10.2). [ Note: the scope resolution operator : : (5.1) can be used to refer to a direct or indirect base member explicitly. This allows access to a name that has been redeclared in the derived class. A derived class can itself serve as a base class subject to access control; see 11.2. A pointer to a derived class can be implicitly converted to a pointer to an accessible unambiguous base class (4.10). An lvalue of a derived class type can be bound to a reference to an accessible unambiguous base class (8.5.3). -end note ]
3 The base-specifier-list specifies the type of the base class subobjects contained in an object of the derived class type. [ Example:

```
class Base {
public:
 int a, b, c;
};
```

```
class Derived : public Base {
public:
 int b;
};
class Derived2 : public Derived {
public:
 int c;
};
```

Here, an object of class Derived2 will have a subobject of class Derived which in turn will have a subobject of class Base. - end example]

4 The order in which the base class subobjects are allocated in the most derived object (1.8) is unspecified. [Note: a derived class and its base class subobjects can be represented by a directed acyclic graph (DAG) where an arrow means "directly derived from." A DAG of subobjects is often referred to as a "subobject lattice."


5 The arrows need not have a physical representation in memory. - end note ]
6 [Note: initialization of objects representing base classes can be specified in constructors; see 12.6.2. - end note]
7 [ Note: A base class subobject might have a layout (3.7) different from the layout of a most derived object of the same type. A base class subobject might have a polymorphic behavior (12.7) different from the polymorphic behavior of a most derived object of the same type. A base class subobject may be of zero size (clause 9); however, two subobjects that have the same class type and that belong to the same most derived object must not be allocated at the same address (5.10). - end note ]

### 10.1 Multiple base classes

[class.mi]
1 A class can be derived from any number of base classes. [Note: the use of more than one direct base class is often called multiple inheritance. -end note ] [ Example:

```
class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class D : public A, public B, public C { /*... */ };
- end example]
```

2 [Note: the order of derivation is not significant except as specified by the semantics of initialization by constructor (12.6.2), cleanup (12.4), and storage layout $(9.2,11.1)$. -end note ]

3 A class shall not be specified as a direct base class of a derived class more than once. [Note: a class can be an indirect base class more than once and can be a direct and an indirect base class. There are limited things that can be done with such a class. The non-static data members and member functions of the direct base class cannot be referred to in the scope of the derived class. However, the static members, enumerations and types can be unambiguously referred to. - end note ] [ Example:

```
class X { /* ... */ };
class Y : public X, public X { /*... */ }; // ill-formed
class L { public: int next; /* ... */ };
class A : public L { /*... */ };
class B : public L {/*... */ };
class C : public A, public B { void f();/*... */ }; // well-formed
class D : public A, public L { void f(); /* ...*/ }; // well-formed
- end example]
```

4 A base class specifier that does not contain the keyword virtual, specifies a non-virtual base class. A base class specifier that contains the keyword virtual, specifies a virtual base class. For each distinct occurrence of a non-virtual base class in the class lattice of the most derived class, the most derived object (1.8) shall contain a corresponding distinct base class subobject of that type. For each distinct base class that is specified virtual, the most derived object shall contain a single base class subobject of that type. [Example: for an object of class type C, each distinct occurrence of a (non-virtual) base class $L$ in the class lattice of $C$ corresponds one-to-one with a distinct $L$ subobject within the object of type C. Given the class C defined above, an object of class $C$ will have two subobjects of class $L$ as shown below.


5 In such lattices, explicit qualification can be used to specify which subobject is meant. The body of function C: :f could refer to the member next of each $L$ subobject:

```
void C::f() { A::next = B::next; } // well-formed
```

Without the A: : or B: : qualifiers, the definition of C: :f above would be ill-formed because of ambiguity (10.2).
6 For another example,

```
class V { /* ... */ };
class A : virtual public V { /*...*/ };
class B : virtual public V { /*...*/ };
class C : public A, public B { /* ...*/ };
```

for an object $c$ of class type $C$, a single subobject of type $V$ is shared by every base subobject of $c$ that has a virtual base class of type V. Given the class C defined above, an object of class $C$ will have one subobject of class $V$, as shown below.


7 A class can have both virtual and non-virtual base classes of a given type.

```
class B { /* ... */ };
class X : virtual public B { /*... */ };
class Y : virtual public B { /* ... */ };
class Z : public B { /*... */ };
class AA : public X, public Y, public Z { /*...*/ };
```

For an object of class AA, all virtual occurrences of base class B in the class lattice of AA correspond to a single B subobject within the object of type AA, and every other occurrence of a (non-virtual) base class B in the class lattice of AA corresponds one-to-one with a distinct B subobject within the object of type AA. Given the class AA defined above, class AA has two subobjects of class B: Z's B and the virtual B shared by $X$ and $Y$, as shown below.


- end example ]


### 10.2 Member name lookup

[class.member.lookup]
1 Member name lookup determines the meaning of a name (id-expression) in a class scope (3.3.6). Name lookup can result in an ambiguity, in which case the program is ill-formed. For an id-expression, name lookup begins in the class scope of this; for a qualified-id, name lookup begins in the scope of the nested-name-specifier. Name lookup takes place before access control (3.4, clause 11).

2 The following steps define the result of name lookup for a member name $f$ in a class scope C.
3 The lookup set for f in C , called $S(f, C)$, consists of two component sets: the declaration set, a set of members named $f$; and the subobject set, a set of subobjects where declarations of these members (possibly including using-declarations) were found. In the declaration set, using-declarations are replaced by the members they designate, and type declarations (including injected-class-names) are replaced by the types they designate. $S(f, C)$ is calculated as follows:

4 If C contains a declaration of the name $f$, the declaration set contains every declaration of $f$ declared in $C$ that satisfies the requirements of the language construct in which the lookup occurs. [Note: Looking up a name in an elaborated-typespecifier (3.4.4) or base-specifier (clause 10), for instance, ignores all non-type declarations, while looking up a name in
a nested-name-specifier (3.4.3) ignores function, object, and enumerator declarations. As another example, looking up a name in a using-declaration (7.3.3) includes the declaration of a class or enumeration that would ordinarily be hidden by another declaration of that name in the same scope. - end note ] If the resulting declaration set is not empty, the subobject set contains $C$ itself, and calculation is complete.

5 Otherwise (i.e., C does not contain a declaration of f or the resulting declaration set is empty), $S(f, C)$ is initially empty. If $C$ has base classes, calculate the lookup set for f in each direct base class subobject $B_{i}$, and merge each such lookup set $S\left(f, B_{i}\right)$ in turn into $S(f, C)$.
6 The following steps define the result of merging lookup set $S\left(f, B_{i}\right)$ into the intermediate $S(f, C)$ :

- If each of the subobject members of $S\left(f, B_{i}\right)$ is a base class subobject of at least one of the subobject members of $S(f, C)$, or if $S\left(f, B_{i}\right)$ is empty, $S(f, C)$ is unchanged and the merge is complete. Conversely, if each of the subobject members of $S(f, C)$ is a base class subobject of at least one of the subobject members of $S\left(f, B_{i}\right)$, or if $S(f, C)$ is empty, the new $S(f, C)$ is a copy of $S\left(f, B_{i}\right)$.
- Otherwise, if the declaration sets of $S\left(f, B_{i}\right)$ and $S(f, C)$ differ, the merge is ambiguous: the new $S(f, C)$ is a lookup set with an invalid declaration set and the union of the subobject sets. In subsequent merges, an invalid declaration set is considered different from any other.
- Otherwise, the new $S(f, C)$ is a lookup set with the shared set of declarations and the union of the subobject sets.

7 The result of name lookup for f in C is the declaration set of $S(f, C)$. If it is an invalid set, the program is ill-formed. [ Example:

```
struct A { int x; }; // S(x,A)={{A::x},{A }}
struct B { float x; }; // S(x,B)={{B::x },{B }}
struct C: public A, public B { }; // S(x,C)={ invalid,{ A in C, B in C } }
struct D: public virtual C { }; // S(x,D)=S(x,C)
struct E: public virtual C { char x; }; // S(x,E)={{E::x }, { E }}
struct F: public D, public E { }; // S(x,F)=S(x,E)
int main() {
 F f;
 f.x = 0; // OK, lookup finds E::x
}
```

$S(x, F)$ is unambiguous because the A and B base subobjects of D are also base subobjects of E , so $S(x, D)$ is discarded in the first merge step. - end example ]
8 If the name of an overloaded function is unambiguously found, overloading resolution (13.3) also takes place before access control. Ambiguities can often be resolved by qualifying a name with its class name. [Example:

```
class A {
public:
 int f();
};
class B {
public:
 int f();
};
```

```
class C : public A, public B {
 int f() { return A::f() + B::f(); }
};
```

- end example ]

9 [Note: A static member, a nested type or an enumerator defined in a base class T can unambiguously be found even if an object has more than one base class subobject of type T . Two base class subobjects share the non-static member subobjects of their common virtual base classes. - end note ][ Example:

```
class V { public: int v; };
class A {
public:
 int a;
 static int s;
 enum { e };
};
class B : public A, public virtual V {};
class C : public A, public virtual V {};
class D : public B, public C { };
void f(D* pd)
{
 pd->v++; // OK: only one v (virtual)
 pd->s++; // OK: only one s (static)
 int i = pd->e; // OK: only one e (enumerator)
 pd->a++; // error, ambiguous: two as in D
}
_ end example]
```

10 [Note: When virtual base classes are used, a hidden declaration can be reached along a path through the subobject lattice that does not pass through the hiding declaration. This is not an ambiguity. The identical use with non-virtual base classes is an ambiguity; in that case there is no unique instance of the name that hides all the others. -end note ][ Example:

```
class V { public: int f(); int x; };
class W { public: int g(); int y; };
class B : public virtual V, public W
{
public:
 int f(); int x;
 int g(); int y;
};
class C : public virtual V, public W { };
class D : public B, public C { void glorp(); };
_ end example]
```



11 [Note: The names declared in V and the left-hand instance of W are hidden by those in B , but the names declared in the right-hand instance of W are not hidden at all. - end note ]

```
void D::glorp()
{
 x++; // OK: B::x hides V::x
 f(); // OK: B::f() hides V::f()
 y++; // error: B::y and C's W::y
 g(); // error: B::g() and C's W::g()
}
```

- end example ]

12 An explicit or implicit conversion from a pointer to or an lvalue of a derived class to a pointer or reference to one of its base classes shall unambiguously refer to a unique object representing the base class. [Example:

```
class V { };
class A { };
class B : public A, public virtual V { };
class C : public A, public virtual V { };
class D : public B, public C { };
void g()
{
 D d;
 B* pb = &d;
 A* pa = &d; // error, ambiguous: C's A or B's A?
 V* pv = &d; // OK: only one V subobject
}
- end example]
```

13 [Note: Even if the result of name lookup is unambiguous, use of a name found in multiple subobjects might still be ambiguous (4.11, 5.2.5, 11.2). - end note $][$ Example:

```
struct B1 {
 void f();
 static void f(int);
 int i;
};
struct B2 {
 void f(double);
```

```
};
struct I1: B1 { };
struct I2: B1 { };
struct D: I1, I2, B2 {
 using B1::f;
 using B2::f;
 void g() {
 f(); // Ambiguous conversion of this
 f(0); // Unambiguous (static)
 f(0.0); // Unambiguous (only one B2)
 int B1::* mpB1 = &D::i; // Unambiguous
 int D::* mpD = &D::i; // Ambiguous conversion
 }
};
_ end example]
```


### 10.3 Virtual functions

[class.virtual]
1 Virtual functions support dynamic binding and object-oriented programming. A class that declares or inherits a virtual function is called a polymorphic class.

2 If a virtual member function vf is declared in a class Base and in a class Derived, derived directly or indirectly from Base, a member function vf with the same name, parameter-type-list (8.3.5), and cv-qualification as Base: :vf is declared, then Derived::vf is also virtual (whether or not it is so declared) and it overrides ${ }^{100}$ ) Base::vf. For convenience we say that any virtual function overrides itself. Then in any well-formed class, for each virtual function declared in that class or any of its direct or indirect base classes there is a unique final overrider that overrides that function and every other overrider of that function. The rules for member lookup (10.2) are used to determine the final overrider for a virtual function in the scope of a derived class but ignoring names introduced by using-declarations. [Example:

```
struct A {
 virtual void f();
};
struct B : virtual A {
 virtual void f();
};
struct C : B , virtual A {
 using A::f;
};
void foo() {
 C c;
 c.f(); // calls B::f, the final overrider
 c.C::f(); // calls A::f because of the using-declaration
```

[^73]\}

## - end example ]

3 [ Note: a virtual member function does not have to be visible to be overridden, for example,

```
struct B {
 virtual void f();
};
struct D : B {
 void f(int);
};
struct D2 : D {
 void f();
};
```

the function $f$ (int) in class D hides the virtual function $f()$ in its base class $B ; D: f(i n t)$ is not a virtual function. However, $f()$ declared in class D2 has the same name and the same parameter list as $B:: f()$, and therefore is a virtual function that overrides the function $B:: f()$ even though $B:: f()$ is not visible in class D2. -end note ]

4 Even though destructors are not inherited, a destructor in a derived class overrides a base class destructor declared virtual; see 12.4 and 12.5.

5 The return type of an overriding function shall be either identical to the return type of the overridden function or covariant with the classes of the functions. If a function $D:: f$ overrides a function $B:: f$, the return types of the functions are covariant if they satisfy the following criteria:

- both are pointers to classes or references to classes ${ }^{101)}$
— the class in the return type of $B:: f$ is the same class as the class in the return type of $D:: f$, or is an unambiguous and accessible direct or indirect base class of the class in the return type of $D:: f$
- both pointers or references have the same cv-qualification and the class type in the return type of $D:: f$ has the same cv-qualification as or less cv-qualification than the class type in the return type of $\mathrm{B}:: \mathrm{f}$.

6 If the return type of $D:: f$ differs from the return type of $B:: f$, the class type in the return type of $D:: f$ shall be complete at the point of declaration of $D:: f$ or shall be the class type $D$. When the overriding function is called as the final overrider of the overridden function, its result is converted to the type returned by the (statically chosen) overridden function (5.2.2). [ Example:

```
class B {};
class D : private B { friend class Derived; };
struct Base {
 virtual void vf1();
 virtual void vf2();
 virtual void vf3();
 virtual B* vf4();
 virtual B* vf5();
 void f();
};
```

[^74]```
struct No_good : public Base {
    D* vf4(); // error: B (base class of D) inaccessible
};
class A;
struct Derived : public Base {
    void vf1(); // virtual and overrides Base::vf1()
    void vf2(int); // not virtual, hides Base::vf2()
    char vf3(); // error: invalid difference in return type only
    D* vf4(); // OK: returns pointer to derived class
    A* vf5(); // error: returns pointer to incomplete class
    void f();
};
void g()
{
    Derived d;
    Base* bp = &d; // standard conversion:
        // Derived* to Base*
    bp->vf1();
    bp->vf2();
    bp->f();
    B* p = bp->vf4(); // calls Derived::pf() and converts the
        // result to B*
    Derived* dp = &d;
    D* q = dp->vf4(); // calls Derived::pf() and does not
        // convert the result to B*
        // ill-formed: argument mismatch
}
// calls Derived::vf1()
// calls Base::vf2()
// calls Base::f() (not virtual)
_ end example ]
```

7 [Note: the interpretation of the call of a virtual function depends on the type of the object for which it is called (the dynamic type), whereas the interpretation of a call of a non-virtual member function depends only on the type of the pointer or reference denoting that object (the static type) (5.2.2). - end note]

8 [Note: the virtual specifier implies membership, so a virtual function cannot be a nonmember (7.1.2) function. Nor can a virtual function be a static member, since a virtual function call relies on a specific object for determining which function to invoke. A virtual function declared in one class can be declared a friend in another class. - end note]

9 A virtual function declared in a class shall be defined, or declared pure (10.4) in that class, or both; but no diagnostic is required (3.2).

10 [Example: here are some uses of virtual functions with multiple base classes:

```
        struct A {
            virtual void f();
        };
struct B1 : A { // note non-virtual derivation
    void f();
};
```

```
struct B2 : A {
    void f();
};
struct D : B1, B2 { //D has two separate A subobjects
};
void foo()
{
    D d;
// A* ap = &d;// would be ill-formed: ambiguous
    B1* b1p = &d;
    A* ap = b1p;
    D* dp = &d;
    ap->f(); // calls D::B1::f
    dp->f(); // ill-formed: ambiguous
}
```

In class D above there are two occurrences of class A and hence two occurrences of the virtual member function $A:: f$. The final overrider of $B 1:: A:: f$ is $B 1:: f$ and the final overrider of $B 2:: A:: f$ is $B 2:: f$.

11 The following example shows a function that does not have a unique final overrider:

```
struct A {
    virtual void f();
};
struct VB1 : virtual A { // note virtual derivation
    void f();
};
struct VB2 : virtual A {
    void f();
};
struct Error : VB1, VB2 { // ill-formed
};
struct Okay : VB1, VB2 {
    void f();
};
```

Both VB1::f and VB2::f override A::f but there is no overrider of both of them in class Error. This example is therefore ill-formed. Class Okay is well formed, however, because Okay : :f is a final overrider.

12 The following example uses the well-formed classes from above.

```
struct VB1a : virtual A { // does not declare f
};
```

```
struct Da : VB1a, VB2 {
};
void foe()
{
    VB1a* vb1ap = new Da;
    vb1ap->f(); // calls VB2::f
}
_ end example ]
```

13 Explicit qualification with the scope operator (5.1) suppresses the virtual call mechanism. [Example:

```
class B { public: virtual void f(); };
class D : public B { public: void f(); };
void D::f() {/* ... */ B::f(); }
```

Here, the function call in $D:: f$ really does call $B:: f$ and not $D:: f$. end example]

10.4 Abstract classes

[class.abstract]
1 The abstract class mechanism supports the notion of a general concept, such as a shape, of which only more concrete variants, such as circle and square, can actually be used. An abstract class can also be used to define an interface for which derived classes provide a variety of implementations.
2 An abstract class is a class that can be used only as a base class of some other class; no objects of an abstract class can be created except as subobjects of a class derived from it. A class is abstract if it has at least one pure virtual function. [Note: such a function might be inherited: see below. -end note] A virtual function is specified pure by using a pure-specifier (9.2) in the function declaration in the class definition. A pure virtual function need be defined only if called with, or as if with (12.4), the qualified-id syntax (5.1). [Example:

```
class point { /* ... */ };
class shape { // abstract class
    point center;
    // ...
public:
    point where() { return center; }
    void move(point p) { center=p; draw(); }
    virtual void rotate(int) = 0; // pure virtual
    virtual void draw() = 0; // pure virtual
    // ...
};
```

—end example] [Note: a function declaration cannot provide both a pure-specifier and a definition -end note] [Example:

```
struct C {
    virtual void f() = 0 { }; // ill-formed
};
```

```
- end example ]
```

3 An abstract class shall not be used as a parameter type, as a function return type, or as the type of an explicit conversion. Pointers and references to an abstract class can be declared. [Example:

```
shape x; // error: object of abstract class
shape* p; // OK
shape f(); // error
void g(shape); // error
shape& h(shape&); // OK
- end example ]
```

4 A class is abstract if it contains or inherits at least one pure virtual function for which the final overrider is pure virtual. [Example:

```
class ab_circle : public shape {
    int radius;
public:
    void rotate(int) {}
    // ab_circle::draw() is a pure virtual
};
```

Since shape: : $\operatorname{draw}()$ is a pure virtual function ab_circle: : $\operatorname{draw}()$ is a pure virtual by default. The alternative declaration,

```
class circle : public shape {
    int radius;
public:
    void rotate(int) {}
    void draw(); // a definition is required somewhere
};
```

would make class circle nonabstract and a definition of circle: : draw() must be provided. -end example]
5 [Note: an abstract class can be derived from a class that is not abstract, and a pure virtual function may override a virtual function which is not pure. -end note]

6 Member functions can be called from a constructor (or destructor) of an abstract class; the effect of making a virtual call (10.3) to a pure virtual function directly or indirectly for the object being created (or destroyed) from such a constructor (or destructor) is undefined.

Chapter 11 Member access control

[class.access]

1 A member of a class can be

- private; that is, its name can be used only by members and friends of the class in which it is declared.
- protected; that is, its name can be used only by members and friends of the class in which it is declared, by classes derived from that class, and by their friends (see 11.5).
- public; that is, its name can be used anywhere without access restriction.

2 A member of a class can also access all the names to which the class has access. A local class of a member function may access the same names that the member function itself may access. ${ }^{102)}$

3 Members of a class defined with the keyword class are private by default. Members of a class defined with the keywords struct or union are public by default. [Example:

```
class X {
    int a; // X::a is private by default
};
struct S {
    int a; // S::a is public by default
};
- end example]
```

4 Access control is applied uniformly to all names, whether the names are referred to from declarations or expressions. [Note: access control applies to names nominated by friend declarations (11.4) and using-declarations (7.3.3). -end note] In the case of overloaded function names, access control is applied to the function selected by overload resolution. [Note: because access control applies to names, if access control is applied to a typedef name, only the accessibility of the typedef name itself is considered. The accessibility of the entity referred to by the typedef is not considered. For example,

```
class A
{
    class B { };
public:
    typedef B BB;
};
```

[^75]```
void f()
{
 A::BB x; // OK, typedef name A: :BB is public
 A::B y; // access error, A::B is private
}
- end note]
```

5 It should be noted that it is access to members and base classes that is controlled, not their visibility. Names of members are still visible, and implicit conversions to base classes are still considered, when those members and base classes are inaccessible. The interpretation of a given construct is established without regard to access control. If the interpretation established makes use of inaccessible member names or base classes, the construct is ill-formed.

6 All access controls in clause 11 affect the ability to access a class member name from a particular scope. For purposes of access control, the base-specifiers of a class and the definitions of class members that appear outside of the class definition are considered to be within the scope of that class. In particular, access controls apply as usual to member names accessed as part of a function return type, even though it is not possible to determine the access privileges of that use without first parsing the rest of the function declarator. Similarly, access control for implicit calls to the constructors, the conversion functions, or the destructor called to create and destroy a static data member is performed as if these calls appeared in the scope of the member's class. [ Example:

```
class A {
 typedef int I; // private member
 I f();
 friend I g(I);
 static I x;
protected:
 struct B {};
};
A::I A::f() { return 0; }
A::I g(A::I p = A::x);
A::I g(A::I p) { return 0; }
A::I A::x = 0;
struct D: A::B, A {};
```

7 Here, all the uses of $A:: I$ are well-formed because $A:: f$ and $A:: x$ are members of class $A$ and $g$ is a friend of class $A$. This implies, for example, that access checking on the first use of $A:: I$ must be deferred until it is determined that this use of A::I is as the return type of a member of class A. Similarly, the use of A::B as a base-specifier is well-formed because D is derived from A, so checking of base-specifiers must be deferred until the entire base-specifier-list has been seen. - end example]

8 The names in a default argument expression (8.3.6) are bound at the point of declaration, and access is checked at that point rather than at any points of use of the default argument expression. Access checking for default arguments in function templates and in member functions of class templates is performed as described in 14.7.1.

9 The names in a default template-argument (14.1) have their access checked in the context in which they appear rather than at any points of use of the default template-argument. [ Example:

```
class B ;
template <class T> class C {
protected:
 typedef T TT;
};
template <class U, class V = typename U::TT>
class D : public U ;
D <C >* d; // access error, C::TT is protected
- end example]
```


### 11.1 Access specifiers

[class.access.spec]
1 Member declarations can be labeled by an access-specifier (clause 10):
access-specifier : member-specification ${ }_{\text {opt }}$
An access-specifier specifies the access rules for members following it until the end of the class or until another accessspecifier is encountered. [Example:

```
class X {
 int a; // X::a is private by default: class used
public:
 int b; // X::b is public
 int c; // X::c is public
};
_ end example]
```

2 Any number of access specifiers is allowed and no particular order is required. [Example:

```
struct S {
 int a; // ::a is public by default: struct used
protected:
 int b; // S::b is protected
private:
 int c; // S::c is private
public:
 int d; // S::d is public
};
- end example]
```

3 The order of allocation of data members with separate access-specifier labels is unspecified (9.2).
4 When a member is redeclared within its class definition, the access specified at its redeclaration shall be the same as at its initial declaration. [Example:

```
struct S {
 class A;
```

```
private:
 class A { }; // error: cannot change access
};
_ end example]
```

5 [Note: In a derived class, the lookup of a base class name will find the injected-class-name instead of the name of the base class in the scope in which it was declared. The injected-class-name might be less accessible than the name of the base class in the scope in which it was declared. -end note]

## [ Example:

```
class A { };
class B : private A { };
class C : public B {
 A *p; // error: injected-class-name A is inaccessible
 ::A *q; // OK
};
- end example]
```


### 11.2 Accessibility of base classes and base class members

[class.access.base]
1 If a class is declared to be a base class (clause 10) for another class using the public access specifier, the public members of the base class are accessible as public members of the derived class and protected members of the base class are accessible as protected members of the derived class. If a class is declared to be a base class for another class using the protected access specifier, the public and protected members of the base class are accessible as protected members of the derived class. If a class is declared to be a base class for another class using the private access specifier, the public and protected members of the base class are accessible as private members of the derived class ${ }^{103)}$.

2 In the absence of an access-specifier for a base class, public is assumed when the derived class is declared struct and private is assumed when the class is declared class. [Example:

```
class B { /* ... */ };
class D1 : private B { /* ... */ };
class D2 : public B { /*... */ };
class D3 : B { /* ... */ }; // B private by default
struct D4 : public B { /* ... */ };
struct D5 : private B { /*... */ };
struct D6 : B { /* ... */ }; // B public by default
class D7 : protected B { /* ... */ };
struct D8 : protected B { /* ... */ };
```

Here B is a public base of D2, D4, and D6, a private base of D1, D3, and D5, and a protected base of D7 and D8. -end example]

3 [ Note: A member of a private base class might be inaccessible as an inherited member name, but accessible directly. Because of the rules on pointer conversions (4.10) and explicit casts (5.4), a conversion from a pointer to a derived class

[^76]to a pointer to an inaccessible base class might be ill-formed if an implicit conversion is used, but well-formed if an explicit cast is used. For example,

```
class B {
public:
 int mi; // non-static member
 static int si; // static member
};
class D : private B {
};
class DD : public D {
 void f();
};
void DD::f() {
 mi = 3; // error: mi is private in D
 si = 3; // error: si is private in D
 ::B b;
 b.mi = 3; // OK(b.mi is different from this->mi)
 b.si = 3; //OK(b.si is different from this->si)
 ::B::si = 3; // OK
 ::B* bp1 = this; // error: B is a private base class
 ::B* bp2 = (::B*)this; // OK with cast
 bp2->mi = 3; // OK: access through a pointer to B.
}
_end note]
```

4 A base class B of N is accessible at $R$, if

- an invented public member of $B$ would be a public member of $N$, or
- $R$ occurs in a member or friend of class $N$, and an invented public member of B would be a private or protected member of N , or
- $R$ occurs in a member or friend of a class P derived from N , and an invented public member of B would be a private or protected member of P , or
- there exists a class S such that B is a base class of S accessible at $R$ and S is a base class of N accessible at $R$.


## [ Example:

```
class B {
public:
 int m;
};
class S: private B {
 friend class N;
};
class N: private S {
```

```
 void f() {
 B* p = this; // OK because class S satisfies the fourth condition
 // above: B is a base class of N accessible in f() because
 // B is an accessible base class of S and S is an accessible
 // base class of N.
 }
};
- end example]
```

5 If a base class is accessible, one can implicitly convert a pointer to a derived class to a pointer to that base class (4.10, 4.11). [Note: it follows that members and friends of a class X can implicitly convert an $\mathrm{X} *$ to a pointer to a private or protected immediate base class of X . - end note] The access to a member is affected by the class in which the member is named. This naming class is the class in which the member name was looked up and found. [Note: this class can be explicit, e.g., when a qualified-id is used, or implicit, e.g., when a class member access operator (5.2.5) is used (including cases where an implicit "this->" is added). If both a class member access operator and a qualified-id are used to name the member (as in $\mathrm{p}->\mathrm{T}:: \mathrm{m}$ ), the class naming the member is the class named by the nested-name-specifier of the qualified-id (that is, T). - end note ] A member m is accessible at the point $R$ when named in class N if

- $m$ as a member of $N$ is public, or
— m as a member of $N$ is private, and $R$ occurs in a member or friend of class N , or
— m as a member of N is protected, and $R$ occurs in a member or friend of class N , or in a member or friend of a class $P$ derived from $N$, where $m$ as a member of $P$ is public, private, or protected, or
- there exists a base class B of N that is accessible at $R$, and m is accessible at $R$ when named in class B. [Example:

```
class B;
class A {
private:
 int i;
 friend void f(B*);
};
class B : public A { };
void f(B* p) {
 p->i = 1; // OK: B* can be implicitly cast to A*,
 // and f has access to i in }\textrm{A
}
- end example]
```

6 If a class member access operator, including an implicit "this->," is used to access a non-static data member or nonstatic member function, the reference is ill-formed if the left operand (considered as a pointer in the "." operator case) cannot be implicitly converted to a pointer to the naming class of the right operand. [Note: this requirement is in addition to the requirement that the member be accessible as named. - end note ]

### 11.3 Access declarations

[class.access.dcl]
1 The access of a member of a base class can be changed in the derived class by mentioning its qualified-id in the derived class definition. Such mention is called an access declaration. The effect of an access declaration qualified-id ; is
defined to be equivalent to the declaration using qualified-id ; . ${ }^{104)}$

```
[Example:
class A {
public:
 int z;
 int z1;
};
```

class B : public A \{
int a;
public:
int b, c;
int bf();
protected:
int x ;
int $y$;
\};
class D : private B \{
int d;
public:
$\mathrm{B}:: \mathrm{c}$; $/ /$ adjust access to $\mathrm{B}:: \mathrm{c}$
$\mathrm{B}:: \mathrm{z}$; // adjust access to $\mathrm{A}:: \mathrm{z}$
$\mathrm{A}:: \mathrm{z} 1 ; \quad / /$ adjust access to $\mathrm{A}:: \mathrm{z} 1$
int e;
int df();
protected:
$\mathrm{B}:: \mathrm{x} ; \quad / /$ adjust access to $\mathrm{B}:: \mathrm{x}$
int $g$;
\};
class X : public D \{
int xf() ;
\};
int ef (D\&);
int ff(X\&);

The external function ef can use only the names $c, z, z 1$, e, and df. Being a member of $D$, the function $d f$ can use the names $b, c, z, z 1, b f, x, y, d, e, d f$, and $g$, but not $a$. Being a member of $B$, the function $b f$ can use the members $a, b, c, z, z 1, b f, x$, and $y$. The function $x f$ can use the public and protected names from $D$, that is, $c, z, z 1$, e, and df (public), and x , and g (protected). Thus the external function $f f$ has access only to $\mathrm{c}, \mathrm{z}, \mathrm{z} 1$, e, and df . If D were a protected or private base class of $\mathrm{X}, \mathrm{xf}$ would have the same privileges as before, but ff would have no access at all.

[^77]```
- end example ]
```


11.4 Friends

1 A friend of a class is a function or class that is given permission to use the private and protected member names from the class. A class specifies its friends, if any, by way of friend declarations. Such declarations give special access rights to the friends, but they do not make the nominated friends members of the befriending class. [Example: the following example illustrates the differences between members and friends:

```
class X {
        int a;
        friend void friend_set(X*, int);
public:
        void member_set(int);
};
void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }
void f()
{
    X obj;
    friend_set(&obj,10);
    obj.member_set(10);
}
_ end example ]
```

2 Declaring a class to be a friend implies that the names of private and protected members from the class granting friendship can be accessed in the base-specifiers and member declarations of the befriended class. [Example:

```
class A {
        class B { };
        friend class X;
};
struct X : A::B { // OK: A::B accessible to friend
        A::B mx; // OK: A::B accessible to member of friend
        class Y {
            A::B my; // OK: A::B accessible to nested member of friend
        };
};
```

- end example] A class shall not be defined in a friend declaration. [Example:
class X \{
enum \{ $a=100$ \};
friend class Y;
\};
class Y \{
int $\mathrm{v}[\mathrm{X}: \mathrm{a} \mathrm{a} ; \quad / / O K, \mathrm{Y}$ is a friend of X

```
};
class Z {
    int v[X::a]; // error: X::a is private
};
- end example ]
```

3 A friend declaration that does not declare a function shall have one of the following forms:
friend elaborated-type-specifier ;
friend simple-type-specifier ;
friend typename-specifier ;
[Note: a friend declaration may be the declaration in a template-declaration (clause 14, 14.5.3). - end note] If the type specifier in a friend declaration designates a (possibly cv-qualified) class type, that class is declared as a friend; otherwise, the friend declaration is ignored. [Example:

```
class C;
typedef C Ct;
class X1 {
        friend C; // OK: class C is a friend
};
class X2 {
        friend Ct; // OK: class C is a friend
        friend D; // error: no type-name D in scope
        friend class D; // OK: elaborated-type-specifier declares new class
};
template <typename T> class R {
        friend T;
};
R<C> rc; // class C is a friend of R<C>
R<int> Ri; // OK: "friend int;" is ignored
_ end example ]
```

4 A function first declared in a friend declaration has external linkage (3.5). Otherwise, the function retains its previous linkage (7.1.1).

5 When a friend declaration refers to an overloaded name or operator, only the function specified by the parameter types becomes a friend. A member function of a class X can be a friend of a class Y. [Example:

```
class Y {
    friend char* X::foo(int);
    friend X::X(char); // constructors can be friends
    friend X::~X(); // destructors can be friends
    // ...
};
```

```
- end example ]
```

6 A function can be defined in a friend declaration of a class if and only if the class is a non-local class (9.8), the function name is unqualified, and the function has namespace scope. [Example:

```
class M {
    friend void f() { } // definition of global f, a friend of M,
                // not the definition of a member function
};
- end example]
```

7 Such a function is implicitly inline. A friend function defined in a class is in the (lexical) scope of the class in which it is defined. A friend function defined outside the class is not (3.4.1).

8 No storage-class-specifier shall appear in the decl-specifier-seq of a friend declaration.
9 A name nominated by a friend declaration shall be accessible in the scope of the class containing the friend declaration. The meaning of the friend declaration is the same whether the friend declaration appears in the private, protected or public (9.2) portion of the class member-specification.

10 Friendship is neither inherited nor transitive. [Example:

```
class A {
    friend class B;
    int a;
};
class B {
    friend class C;
};
class C {
    void f(A* p)
    {
            p->a++; // error: C is not a friend of A
                            // despite being a friend of a friend
    }
};
class D : public B {
    void f(A* p)
    {
            p->a++; // error: D is not a friend of A
                            // despite being derived from a friend
    }
};
- end example ]
```

11 If a friend declaration appears in a local class (9.8) and the name specified is an unqualified name, a prior declaration is looked up without considering scopes that are outside the innermost enclosing non-class scope. For a friend function
declaration, if there is no prior declaration, the program is ill-formed. For a friend class declaration, if there is no prior declaration, the class that is specified belongs to the innermost enclosing non-class scope, but if it is subsequently referenced, its name is not found by name lookup until a matching declaration is provided in the innermost enclosing nonclass scope. [Example:

```
class X;
void a();
void f() {
    class Y;
    extern void b();
    class A {
        friend class X; // OK, but X is a local class, not ::X
        friend class Y; // OK
        friend class Z; // OK, introduces local class Z
        friend void a(); // error,::a is not considered
        friend void b(); // OK
        friend void c(); // error
    };
    X *px; // OK, but ::X is found
    Z *pz; // error, no Z is found
}
- end example ]
```


11.5 Protected member access

[class.protected]
1 An additional access check beyond those described earlier in clause 11 is applied when a non-static data member or nonstatic member function is a protected member of its naming class $(11.2)^{105)}$ As described earlier, access to a protected member is granted because the reference occurs in a friend or member of some class C. If the access is to form a pointer to member (5.3.1), the nested-name-specifier shall name C or a class derived from C . All other accesses involve a (possibly implicit) object expression (5.2.5). In this case, the class of the object expression shall be C or a class derived from C. [Example:

```
class B {
protected:
    int i;
    static int j;
};
class D1 : public B {
};
class D2 : public B {
    friend void fr(B*,D1*,D2*);
    void mem(B*,D1*);
};
void fr(B* pb, D1* p1, D2* p2)
{
```

[^78]```
 pb->i = 1; // ill-formed
 p1->i = 2; // ill-formed
 p2->i = 3; // OK (access through a D2)
p2->B::i = 4; // OK (access through a D2, even though
 // naming class is B)
 int B::* pmi_B = &B::i; // ill-formed
 int B::* pmi_B2 = &D2::i; // OK (type of &D2::i is int B::*)
 B::j = 5; // OK (because refers to static member)
 D2::j =6; // OK (because refers to static member)
}
void D2::mem(B* pb, D1* p1)
{
 pb->i = 1; // ill-formed
 p1->i = 2; // ill-formed
 i = 3; // OK (access through this)
 B::i = 4; // OK (access through this, qualification ignored)
 int B::* pmi_B = &B::i; // ill-formed
 int B::* pmi_B2 = &D2::i; // OK
 j = 5; // OK (because j refers to static member)
 B::j = 6; // OK (because B::j refers to static member)
}
void g(B* pb, D1* p1, D2* p2)
{
 pb->i = 1; // ill-formed
 p1->i = 2; // ill-formed
 p2->i = 3; // ill-formed
}
—end example]
```


### 11.6 Access to virtual functions

[class.access.virt]
1 The access rules (clause 11) for a virtual function are determined by its declaration and are not affected by the rules for a function that later overrides it. [ Example:

```
class B {
public:
 virtual int f();
};
class D : public B {
private:
 int f();
};
void f()
{
 D d;
 B* pb = &d;
```

```
 D* pd = &d;
 pb->f(); // OK: B::f() is public,
 //D::f() is invoked
 // error: D::f() is private
}
- end example]
```

2 Access is checked at the call point using the type of the expression used to denote the object for which the member function is called ( $B *$ in the example above). The access of the member function in the class in which it was defined ( $D$ in the example above) is in general not known.

### 11.7 Multiple access

[class.paths]
1 If a name can be reached by several paths through a multiple inheritance graph, the access is that of the path that gives most access. [Example:

```
class W { public: void f(); };
class A : private virtual W { };
class B : public virtual W { };
class C : public A, public B {
 void f() { W::f(); } // OK
};
```

2 Since $\mathrm{W}:: \mathrm{f}()$ is available to $\mathrm{C}:: \mathrm{f}()$ along the public path through $B$, access is allowed. - end example ]

### 11.8 Nested classes

[class.access.nest]
1 A nested class is a member and as such has the same access rights as any other member. The members of an enclosing class have no special access to members of a nested class; the usual access rules (clause 11) shall be obeyed. [Example:

```
class E {
 int x;
 class B { };
 class I {
 B b; // OK: E::I can access E::B
 int y;
 void f(E* p, int i)
 {
 p->x = i; // OK: E::I can access E: :x
 }
 };
 int g(I* p)
 {
 return p->y; // error: I::y is private
 }
};
```

- end example ]


## Chapter 12 Special member functions

## [special]

1 The default constructor (12.1), copy constructor and copy assignment operator (12.8), and destructor (12.4) are special member functions. The implementation will implicitly declare these member functions for a class type when the program does not explicitly declare them, except as noted in 12.1 . The implementation will implicitly define them if they are used, as specified in 12.1, 12.4 and 12.8. Programs shall not define implicitly-declared special member functions. Programs may explicitly refer to implicitly declared special member functions. [Example: a program may explicitly call, take the address of or form a pointer to member to an implicitly declared special member function.

```
struct A { }; // implicitly-declared A::operator=
struct B : A {
 B& operator=(const B &);
};
B& B::operator=(const B& s) {
 this->A::operator=(s); // well-formed
 return *this;
}
- end example]
```

2 [Note: the special member functions affect the way objects of class type are created, copied, and destroyed, and how values can be converted to values of other types. Often such special member functions are called implicitly. -end note]

3 Special member functions obey the usual access rules (clause 11). [Example: declaring a constructor protected ensures that only derived classes and friends can create objects using it. - end example ]

### 12.1 Constructors

1 Constructors do not have names. A special declarator syntax using an optional sequence of function-specifiers (7.1.2) followed by the constructor's class name followed by a parameter list is used to declare or define the constructor. In such a declaration, optional parentheses around the constructor class name are ignored. [Example:

```
class C {
public:
 C(); // declares the constructor
};
C::C() { } // defines the constructor
- end example]
```

2 A constructor is used to initialize objects of its class type. Because constructors do not have names, they are never found during name lookup; however an explicit type conversion using the functional notation (5.2.3) will cause a constructor to be called to initialize an object. [Note: for initialization of objects of class type see 12.6. -end note]

3 A typedef-name shall not be used as the class-name in the declarator-id for a constructor declaration.
4 A constructor shall not be virtual (10.3) or static (9.4). A constructor can be invoked for a const, volatile or const volatile object. A constructor shall not be declared const, volatile, or const volatile (9.3.2). const and volatile semantics (7.1.5.1) are not applied on an object under construction. They come into effect when the constructor for the most derived object (1.8) ends.

5 A default constructor for a class $X$ is a constructor of class $X$ that can be called without an argument. If there is no userdeclared constructor for class $X$, a default constructor is implicitly declared. An implicitly-declared default constructor is an inline public member of its class. A default constructor is trivial if it is implicitly-declared and if:

- its class has no virtual functions (10.3) and no virtual base classes (10.1), and
- all the direct base classes of its class have trivial default constructors, and
- for all the non-static data members of its class that are of class type (or array thereof), each such class has a trivial default constructor.

6 Otherwise, the default constructor is non-trivial.
7 An implicitly-declared default constructor for a class is implicitly defined when it is used (3.2) to create an object of its class type (1.8). The implicitly-defined default constructor performs the set of initializations of the class that would be performed by a user-written default constructor for that class with an empty mem-initializer-list (12.6.2) and an empty function body. If that user-written default constructor would be ill-formed, the program is ill-formed. Before the implicitly-declared default constructor for a class is implicitly defined, all the implicitly-declared default constructors for its base classes and its non-static data members shall have been implicitly defined. [ Note: an implicitly-declared default constructor has an exception-specification (15.4). -end note ]

8 Default constructors are called implicitly to create class objects of static or automatic storage duration (3.7.1, 3.7.3) defined without an initializer (8.5), are called to create class objects of dynamic storage duration (3.7.4) created by a new-expression in which the new-initializer is omitted (5.3.4), or are called when the explicit type conversion syntax (5.2.3) is used. A program is ill-formed if the default constructor for an object is implicitly used and the constructor is not accessible (clause 11).

9 [ Note: 12.6.2 describes the order in which constructors for base classes and non-static data members are called and describes how arguments can be specified for the calls to these constructors. - end note]

10 A copy constructor (12.8) is used to copy objects of class type.
11 A union member shall not be of a class type (or array thereof) that has a non-trivial constructor.
12 No return type (not even void) shall be specified for a constructor. A return statement in the body of a constructor shall not specify a return value. The address of a constructor shall not be taken.

13 A functional notation type conversion (5.2.3) can be used to create new objects of its type. [ Note: The syntax looks like an explicit call of the constructor. - end note ] [Example:

```
complex zz = complex(1,2.3);
cprint(complex(7.8,1.2));
```


## - end example ]

14 An object created in this way is unnamed. [Note: 12.2 describes the lifetime of temporary objects. - end note ] [ Note: explicit constructor calls do not yield lvalues, see 3.10. - end note ]

15 [Note: some language constructs have special semantics when used during construction; see 12.6.2 and 12.7. -end note]

16 During the construction of a const object, if the value of the object or any of its subobjects is accessed through an lvalue that is not obtained, directly or indirectly, from the constructor's this pointer, the value of the object or subobject thus obtained is unspecified. [Example:

```
struct C;
void no_opt(C*);
struct C {
 int c;
 C() : c(0) { no_opt(this); }
};
const C cobj;
void no_opt(C* cptr) {
 int i = cobj.c * 100; // value of cobj.c is unspecified
 cptr->c = 1;
 cout << cobj.c * 100 // value of cobj.c is unspecified
 << '\n';
}
- end example]
```


### 12.2 Temporary objects

1 Temporaries of class type are created in various contexts: binding an rvalue to a reference (8.5.3), returning an rvalue (6.6.3), a conversion that creates an rvalue (4.1, 5.2.9, 5.2.11, 5.4), throwing an exception (15.1), entering a handler (15.3), and in some initializations (8.5). [Note: the lifetime of exception objects is described in 15.1. -end note] Even when the creation of the temporary object is avoided (12.8), all the semantic restrictions must be respected as if the temporary object had been created. [Example: even if the copy constructor is not called, all the semantic restrictions, such as accessibility (clause 11), shall be satisfied. - end example]
[ Example:

```
class X {
 // ...
public:
 // ...
 X(int);
 X(const X&);
 ~}\mp@subsup{}{}{X}()
};
```

```
X f(X);
void g()
{
 X a(1);
 X b = f(X(2));
 a = f(a);
}
```

2 Here, an implementation might use a temporary in which to construct $X(2)$ before passing it to $f()$ using X's copyconstructor; alternatively, $X(2)$ might be constructed in the space used to hold the argument. Also, a temporary might be used to hold the result of $f(X(2))$ before copying it to $b$ using X's copy-constructor; alternatively, $f()$ 's result might be constructed in $b$. On the other hand, the expression $a=f(a)$ requires a temporary for the result of $f(a)$, which is then assigned to a. - end example ]

3 When an implementation introduces a temporary object of a class that has a non-trivial constructor (12.1, 12.8), it shall ensure that a constructor is called for the temporary object. Similarly, the destructor shall be called for a temporary with a non-trivial destructor (12.4). Temporary objects are destroyed as the last step in evaluating the full-expression (1.9) that (lexically) contains the point where they were created. This is true even if that evaluation ends in throwing an exception.

4 There are two contexts in which temporaries are destroyed at a different point than the end of the full-expression. The first context is when a default constructor is called to initialize an element of an array. If the constructor has one or more default arguments, any temporaries created in the default argument expressions are destroyed immediately after return from the constructor.

5 The second context is when a reference is bound to a temporary. The temporary to which the reference is bound or the temporary that is the complete object of a subobject to which the reference is bound persists for the lifetime of the reference except as specified below. A temporary bound to a reference member in a constructor's ctor-initializer (12.6.2) persists until the constructor exits. A temporary bound to a reference parameter in a function call (5.2.2) persists until the completion of the full expression containing the call. A temporary bound to the returned value in a function return statement (6.6.3) persists until the function exits. In all these cases, the temporaries created during the evaluation of the expression initializing the reference, except the temporary to which the reference is bound, are destroyed at the end of the full-expression in which they are created and in the reverse order of the completion of their construction. If the lifetime of two or more temporaries to which references are bound ends at the same point, these temporaries are destroyed at that point in the reverse order of the completion of their construction. In addition, the destruction of temporaries bound to references shall take into account the ordering of destruction of objects with static or automatic storage duration (3.7.1, 3.7.3); that is, if obj1 is an object with the same storage duration as the temporary and created before the temporary is created the temporary shall be destroyed before obj1 is destroyed; if obj2 is an object with the same storage duration as the temporary and created after the temporary is created the temporary shall be destroyed after obj2 is destroyed. [ Example:

```
class C {
 // ..
public:
 C();
 C(int);
 friend C operator+(const C&, const C&);
 ~
```

```
};
C obj1;
const C& cr = C(16)+C(23);
C obj2;
```

the expression $C(16)+C(23)$ creates three temporaries. A first temporary $T 1$ to hold the result of the expression $C(16)$, a second temporary T 2 to hold the result of the expression C (23), and a third temporary T 3 to hold the result of the addition of these two expressions. The temporary T3 is then bound to the reference cr. It is unspecified whether T1 or T 2 is created first. On an implementation where T 1 is created before T 2 , it is guaranteed that T 2 is destroyed before T 1. The temporaries T1 and T2 are bound to the reference parameters of operator+; these temporaries are destroyed at the end of the full expression containing the call to operator+. The temporary T3 bound to the reference cr is destroyed at the end of cr's lifetime, that is, at the end of the program. In addition, the order in which T3 is destroyed takes into account the destruction order of other objects with static storage duration. That is, because obj1 is constructed before T 3 , and T3 is constructed before obj2, it is guaranteed that obj2 is destroyed before T 3 , and that T3 is destroyed before obj1. -end example]

### 12.3 Conversions

[class.conv]
1 Type conversions of class objects can be specified by constructors and by conversion functions. These conversions are called user-defined conversions and are used for implicit type conversions (clause 4), for initialization (8.5), and for explicit type conversions (5.4, 5.2.9).

2 User-defined conversions are applied only where they are unambiguous (10.2, 12.3.2). Conversions obey the access control rules (clause 11). Access control is applied after ambiguity resolution (3.4).

3 [Note: See 13.3 for a discussion of the use of conversions in function calls as well as examples below. - end note]
4 At most one user-defined conversion (constructor or conversion function) is implicitly applied to a single value.

```
[Example:
 class X {
 // ...
 public:
 operator int();
 };
 class Y {
 // ...
 public:
 operator X();
 };
 Y a;
 int b = a; // error
 // a.operator X().operator int() not tried
 int c = X(a); // OK: a.operator X().operator int()
—end example]
```

5 User-defined conversions are used implicitly only if they are unambiguous. A conversion function in a derived class does not hide a conversion function in a base class unless the two functions convert to the same type. Function overload resolution (13.3.3) selects the best conversion function to perform the conversion. [Example:

```
class X {
public:
 // ...
 operator int();
};
class Y : public X {
public:
 // ..
 operator char();
};
void f(Y& a)
{
 if (a) { // ill-formed:
 // X::operator int() or Y::operator char() // ...
 }
}
- end example]
```


### 12.3.1 Conversion by constructor

[class.conv.ctor]
1 A constructor declared without the function-specifier explicit that can be called with a single parameter specifies a conversion from the type of its first parameter to the type of its class. Such a constructor is called a converting constructor. [Example:

```
class X {
 // ...
public:
 X(int);
 X(const char*, int =0);
};
void f(X arg)
{
 X a = 1; // a = X(1)
 X b = "Jessie"; // b = X("Jessie",0)
 a = 2; // a = X (2)
 f(3); // f(X(3))
}
- end example]
```

2 An explicit constructor constructs objects just like non-explicit constructors, but does so only where the direct-initialization syntax (8.5) or where casts (5.2.9, 5.4) are explicitly used. A default constructor may be an explicit constructor; such a constructor will be used to perform default-initialization or value-initialization (8.5). [Example:

```
class Z {
public:
 explicit Z();
 explicit Z(int);
 // ...
};
Z a; // OK: default-initialization performed
Z a1 = 1; // error: no implicit conversion
Z a3 = Z(1); // OK: direct initialization syntax used
Z a2(1); // OK: direct initialization syntax used
Z* p = new Z(1); // OK: direct initialization syntax used
Z a4 = (Z)1; // OK: explicit cast used
Z a5 = static_cast<Z>(1); // OK: explicit cast used
- end example]
```

3 A non-explicit copy-constructor (12.8) is a converting constructor. An implicitly-declared copy constructor is not an explicit constructor; it may be called for implicit type conversions.

### 12.3.2 Conversion functions

[class.conv.fct]
1 A member function of a class $X$ with a name of the form

```
conversion-function-id:
 operator conversion-type-id
conversion-type-id:
 type-specifier-seq conversion-declarator }\mp@subsup{}{\mathrm{ opt }}{
conversion-declarator:
 ptr-operator conversion-declarator opt
```

specifies a conversion from X to the type specified by the conversion-type-id. Such member functions are called conversion functions. Classes, enumerations, and typedef-names shall not be declared in the type-specifier-seq. Neither parameter types nor return type can be specified. The type of a conversion function (8.3.5) is "function taking no parameter returning conversion-type-id." A conversion function is never used to convert a (possibly cv-qualified) object to the (possibly cv-qualified) same object type (or a reference to it), to a (possibly cv-qualified) base class of that type (or a reference to it), or to (possibly cv-qualified) void. ${ }^{106)}$

## [ Example:

```
class X {
 // ...
public:
 operator int();
};
void f(X a)
{
 int i = int(a);
```

[^79]```
    i = (int)a;
    i = a;
}
```

In all three cases the value assigned will be converted by X : : operator int (). - end example]
2 User-defined conversions are not restricted to use in assignments and initializations. [Example:

```
void g(X a, X b)
{
    int i = (a) ? 1+a : 0;
    int j = (a&&b) ? a+b : i;
    if (a) { // ...
    }
}
- end example ]
```

3 The conversion-type-id shall not represent a function type nor an array type. The conversion-type-id in a conversion-function-id is the longest possible sequence of conversion-declarators. [Note: this prevents ambiguities between the declarator operator * and its expression counterparts. [Example:

```
&ac.operator int*i; // syntax error:
    // parsed as: &(ac.operator int *)i
    // not as: &(ac.operator int)*i
```

The $*$ is the pointer declarator and not the multiplication operator. - end example] -end note]
4 Conversion functions are inherited.
5 Conversion functions can be virtual.
6 Conversion functions cannot be declared static.

12.4 Destructors

[class.dtor]
1 A special declarator syntax using an optional function-specifier (7.1.2) followed by ${ }^{\sim}$ followed by the destructor's class name followed by an empty parameter list is used to declare the destructor in a class definition. In such a declaration, the ${ }^{\sim}$ followed by the destructor's class name can be enclosed in optional parentheses; such parentheses are ignored. A typedef-name shall not be used as the class-name following the \sim in the declarator for a destructor declaration.

2 A destructor is used to destroy objects of its class type. A destructor takes no parameters, and no return type can be specified for it (not even void). The address of a destructor shall not be taken. A destructor shall not be static. A destructor can be invoked for a const, volatile or const volatile object. A destructor shall not be declared const, volatile or const volatile (9.3.2). const and volatile semantics (7.1.5.1) are not applied on an object under destruction. They stop being in effect when the destructor for the most derived object (1.8) starts.

3 If a class has no user-declared destructor, a destructor is declared implicitly. An implicitly-declared destructor is an inline public member of its class. A destructor is trivial if it is implicitly-declared and if:

- all of the direct base classes of its class have trivial destructors and
- for all of the non-static data members of its class that are of class type (or array thereof), each such class has a trivial destructor.

4 Otherwise, the destructor is non-trivial.
5 An implicitly-declared destructor is implicitly defined when it is used to destroy an object of its class type (3.7). A program is ill-formed if the class for which a destructor is implicitly defined has:

- a non-static data member of class type (or array thereof) with an inaccessible destructor, or
- a base class with an inaccessible destructor.

Before the implicitly-declared destructor for a class is implicitly defined, all the implicitly-declared destructors for its base classes and its non-static data members shall have been implicitly defined. [Note: an implicitly-declared destructor has an exception-specification (15.4). - end note]

6 After executing the body of the destructor and destroying any automatic objects allocated within the body, a destructor for class X calls the destructors for X's direct members, the destructors for X's direct base classes and, if X is the type of the most derived class (12.6.2), its destructor calls the destructors for X's virtual base classes. All destructors are called as if they were referenced with a qualified name, that is, ignoring any possible virtual overriding destructors in more derived classes. Bases and members are destroyed in the reverse order of the completion of their constructor (see 12.6.2). A return statement (6.6.3) in a destructor might not directly return to the caller; before transferring control to the caller, the destructors for the members and bases are called. Destructors for elements of an array are called in reverse order of their construction (see 12.6).

7 A destructor can be declared virtual (10.3) or pure virtual (10.4); if any objects of that class or any derived class are created in the program, the destructor shall be defined. If a class has a base class with a virtual destructor, its destructor (whether user- or implicitly- declared) is virtual.

8 [Note: some language constructs have special semantics when used during destruction; see 12.7. - end note]
9 A union member shall not be of a class type (or array thereof) that has a non-trivial destructor.
10 Destructors are invoked implicitly (1) for a constructed object with static storage duration (3.7.1) at program termination (3.6.3), (2) for a constructed object with automatic storage duration (3.7.3) when the block in which the object is created exits (6.7), (3) for a constructed temporary object when the lifetime of the temporary object ends (12.2), (4) for a constructed object allocated by a new-expression (5.3.4), through use of a delete-expression (5.3.5), (5) in several situations due to the handling of exceptions (15.3). A program is ill-formed if an object of class type or array thereof is declared and the destructor for the class is not accessible at the point of the declaration. Destructors can also be invoked explicitly.

11 At the point of definition of a virtual destructor (including an implicit definition (12.8)), the non-array deallocation function is looked up in the scope of the destructor's class (10.2), and, if no declaration is found, the function is looked up in the global scope. If the result of this lookup is ambiguous or inaccessible, or if the lookup selects a placement deallocation function, the program is ill-formed. [Note: this assures that a deallocation function corresponding to the dynamic type of an object is available for the delete-expression (12.5). - end note]
12 In an explicit destructor call, the destructor name appears as a ~ followed by a type-name that names the destructor's class type. The invocation of a destructor is subject to the usual rules for member functions (9.3), that is, if the object is not of the destructor's class type and not of a class derived from the destructor's class type, the program has undefined behavior (except that invoking delete on a null pointer has no effect). [Example:

```
struct B {
    virtual ~B() { }
};
struct D : B {
    ~D() { }
};
D D_object;
typedef B B_alias;
B* B_ptr = &D_object;
void f() {
    D_object.B:: ~B(); // calls B's destructor
    B_ptr-> ~B(); // calls D's destructor
    B_ptr-> ~B_alias(); // calls D's destructor
    B_ptr->B_alias:: ~ B (); // calls B's destructor
    B_ptr->B_alias: : ~B_alias(); // calls B's destructor
}
```

- end example] [Note: an explicit destructor call must always be written using a member access operator (5.2.5) or a qualified-id (5.1); in particular, the unary-expression $\sim \mathrm{X}()$ in a member function is not an explicit destructor call (5.3.1). - end note]

13 [Note: explicit calls of destructors are rarely needed. One use of such calls is for objects placed at specific addresses using a new-expression with the placement option. Such use of explicit placement and destruction of objects can be necessary to cope with dedicated hardware resources and for writing memory management facilities. For example,

```
void* operator new(std::size_t, void* p) { return p; }
struct X {
    // ..
    X(int);
    ~ X();
};
void f(X* p);
void g() // rare, specialized use:
{
    char* buf = new char[sizeof(X)];
    X* p = new(buf) X(222); // use buf [] and initialize
    f(p);
    p->X::~X(); // cleanup
}
- end note]
```

14 Once a destructor is invoked for an object, the object no longer exists; the behavior is undefined if the destructor is invoked for an object whose lifetime has ended (3.8). [Example: if the destructor for an automatic object is explicitly invoked, and the block is subsequently left in a manner that would ordinarily invoke implicit destruction of the object, the behavior is undefined. -end example]

15 [Note: the notation for explicit call of a destructor can be used for any scalar type name (5.2.4). Allowing this makes it possible to write code without having to know if a destructor exists for a given type. For example,

```
typedef int I;
I* p;
// ..
p->I::~I();
- end note]
```


12.5 Free store

[class.free]
1 Any allocation function for a class T is a static member (even if not explicitly declared static).
2 [Example:

```
class Arena;
struct B {
        void* operator new(std::size_t, Arena*);
    };
    struct D1 : B {
    };
    Arena* ap;
    void foo(int i)
    {
        new (ap) D1; // calls B::operator new(std::size_t, Arena*)
        new D1[i]; // calls ::operator new[] (std::size_t)
        new D1; // ill-formed: ::operator new(std::size_t) hidden
}
- end example]
```

3 When an object is deleted with a delete-expression (5.3.5), a deallocation function (operator delete() for nonarray objects or operator delete[] () for arrays) is (implicitly) called to reclaim the storage occupied by the object (3.7.4.2).

4 If a delete-expression begins with a unary : : operator, the deallocation function's name is looked up in global scope. Otherwise, if the delete-expression is used to deallocate a class object whose static type has a virtual destructor, the deallocation function is the one selected at the point of definition of the dynamic type's virtual destructor (12.4). ${ }^{107 \text {) }}$ Otherwise, if the delete-expression is used to deallocate an object of class T or array thereof, the static and dynamic types of the object shall be identical and the deallocation function's name is looked up in the scope of T. If this lookup fails to find the name, the name is looked up in the global scope. If the result of the lookup is ambiguous or inaccessible, or if the lookup selects a placement deallocation function, the program is ill-formed.

5 When a delete-expression is executed, the selected deallocation function shall be called with the address of the block of storage to be reclaimed as its first argument and (if the two-parameter style is used) the size of the block as its second

[^80]argument. ${ }^{108)}$
Any deallocation function for a class X is a static member (even if not explicitly declared static). [Example:

```
class X {
    // ...
    void operator delete(void*);
    void operator delete[](void*, std::size_t);
};
class Y {
    // ...
    void operator delete(void*, std::size_t);
    void operator delete[](void*);
};
- end example ]
```

7 Since member allocation and deallocation functions are static they cannot be virtual. [Note: however, when the castexpression of a delete-expression refers to an object of class type, because the deallocation function actually called is looked up in the scope of the class that is the dynamic type of the object, if the destructor is virtual, the effect is the same. For example,

```
struct B {
    virtual ~B();
    void operator delete(void*, std::size_t);
};
struct D : B {
    void operator delete(void*);
};
void f()
{
    B* bp = new D;
    delete bp; // 1: uses D::operator delete(void*)
}
```

Here, storage for the non-array object of class D is deallocated by $D:$ operator delete(), due to the virtual destructor. - end note] [Note: virtual destructors have no effect on the deallocation function actually called when the cast-expression of a delete-expression refers to an array of objects of class type. For example,

```
struct B {
    virtual ~B();
    void operator delete[](void*, std::size_t);
};
struct D : B {
    void operator delete[](void*, std::size_t);
```

[^81]```
};
void f(int i)
{
 D* dp = new D[i];
 delete [] dp; // uses D::operator delete[](void*, std::size_t)
 B* bp = new D[i];
 delete[] bp; // undefined behavior
}
- end note]
```

8 Access to the deallocation function is checked statically. Hence, even though a different one might actually be executed, the statically visible deallocation function is required to be accessible. [Example: for the call on line $/ / 1$ above, if B: :operator delete() had been private, the delete expression would have been ill-formed. - end example]

### 12.6 Initialization

[class.init]
1 When no initializer is specified for an object of (possibly cv-qualified) class type (or array thereof), or the initializer has the form (), the object is initialized as specified in 8.5.
2 An object of class type (or array thereof) can be explicitly initialized; see 12.6.1 and 12.6.2.
3 When an array of class objects is initialized (either explicitly or implicitly), the constructor shall be called for each element of the array, following the subscript order; see 8.3.4. [ Note: destructors for the array elements are called in reverse order of their construction. - end note ]

### 12.6.1 Explicit initialization

[class.expl.init]
1 An object of class type can be initialized with a parenthesized expression-list, where the expression-list is construed as an argument list for a constructor that is called to initialize the object. Alternatively, a single assignment-expression can be specified as an initializer using the $=$ form of initialization. Either direct-initialization semantics or copy-initialization semantics apply; see 8.5. [ Example:

```
class complex {
 // ...
public:
 complex();
 complex(double);
 complex(double,double);
 // ...
};
complex sqrt(complex,complex);
 complex a(1); // initialize by a call of
 // complex(double)
 // initialize by a copy of a
 // construct complex (1,2)
 // using complex(double,double)
 // copy it into c
 complex d = sqrt(b,c); // call sqrt(complex,complex)
```

Draft

```
 // and copy the result into d
complex e; // initialize by a call of
 // complex()
 // construct complex(3) using
 // complex(double)
 // copy it into f
complex g = { 1, 2 }; // error: constructor is required
```

—end example ] [ Note: overloading of the assignment operator (13.5.3) has no effect on initialization. -end note ]
2 When an aggregate (whether class or array) contains members of class type and is initialized by a brace-enclosed initializer-list (8.5.1), each such member is copy-initialized (see 8.5) by the corresponding assignment-expression. If there are fewer initializers in the initializer-list than members of the aggregate, each member not explicitly initialized shall be value-initialized (8.5). [Note: 8.5.1 describes how assignment-expressions in an initializer-list are paired with the aggregate members they initialize. -end note ] [Example:

```
complex v[6] = { 1, complex(1,2), complex(), 2 };
```

Here, complex: :complex (double) is called for the initialization of $v[0]$ and
mem-initializer-id:
: : opt nested-name-specifier ${ }_{\text {opt }}$ class-name identifier
2 Names in a mem-initializer-id are looked up in the scope of the constructor's class and, if not found in that scope, are looked up in the scope containing the constructor's definition. [Note: if the constructor's class contains a member with the same name as a direct or virtual base class of the class, a mem-initializer-id naming the member or base class and composed of a single identifier refers to the class member. A mem-initializer-id for the hidden base class may be specified using a qualified name. - end note ] Unless the mem-initializer-id names the constructor's class, a non-static data member of the constructor's class or a direct or virtual base of that class, the mem-initializer is ill-formed. A mem-initializer-list can initialize a base class using any name that denotes that base class type. [Example:

```
struct A { A(); };
 typedef A global_A;
 struct B { };
 struct C: public A, public B { C(); };
 C::C(): global_A() { } // mem-initializer for base A
- end example]
```

A mem-initializer-list can delegate to another constructor of the constructor's class using any name that denotes the constructor's class itself. If a mem-initializer-id designates the constructor's class, it shall be the only mem-initializer; the constructor is a delegating constructor, and the constructor selected by the mem-initializer is the target constructor. The principal constructor is the first constructor invoked in the construction of an object (that is, not a target constructor for that object's construction). The target constructor is selected by overload resolution. Once the target constructor returns, the body of the delegating constructor is executed. If a constructor delegates to itself directly or indirectly, the program is ill-formed; no diagnostic is required. [Example:

```
struct C {
 C(int) { } // 1: non-delegating constructor
 C(): C(42) { } // 2: delegates to 1
 C(char c) : C(42.0) { } // 3: ill-formed due to recursion with 4
 C(double d) : C('a') { } // 4: ill-formed due to recursion with 3
};
```

—end example ] If a mem-initializer-id is ambiguous because it designates both a direct non-virtual base class and an inherited virtual base class, the mem-initializer is ill-formed. [Example:

```
struct A { A(); };
struct B: public virtual A { };
struct C: public A, public B { C(); };
C::C(): A() { } // ill-formed: which A?
```

—end example ] A ctor-initializer may initialize the member of an anonymous union that is a member of the constructor's class. If a ctor-initializer specifies more than one mem-initializer for the same member, for the same base class or for multiple members of the same union (including members of anonymous unions), the ctor-initializer is ill-formed.
3 The expression-list in a mem-initializer is used to initialize the base class or non-static data member subobject denoted by the mem-initializer-id. The semantics of a mem-initializer are as follows:

- if the expression-list of the mem-initializer is omitted, the base class or member subobject is value-initialized (see 8.5);

Draft

- otherwise, the subobject indicated by mem-initializer-id is direct-initialized using expression-list as the initializer (see 8.5).


## [ Example:

```
struct B1 { B1(int); /* ... */ };
struct B2 { B2(int); /* ... */ };
struct D : B1, B2 {
 D(int);
 B1 b;
 const int c;
 };
D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4)
{ /* ... */ }
D d(10);
```

—end example ] There is a sequence point (1.9) after the initialization of each base and member. The expression-list of a mem-initializer is evaluated as part of the initialization of the corresponding base or member.

4 If a given non-static data member or base class is not named by a mem-initializer-id (including the case where there is no mem-initializer-list because the constructor has no ctor-initializer), then

- If the entity is a non-static data member of (possibly cv-qualified) class type (or array thereof) or a base class, and the entity class is a non-POD class, the entity is default-initialized (8.5). If the entity is a non-static data member of a const-qualified type, the entity class shall have a user-declared default constructor.
- Otherwise, the entity is not initialized. If the entity is of const-qualified type or reference type, or of a (possibly cv-qualified) POD class type (or array thereof) containing (directly or indirectly) a member of a const-qualified type, the program is ill-formed.

After the call to a constructor for class X has completed, if a member of X is neither specified in the constructor's mem-initializers, nor default-initialized, nor value-initialized, nor given a value during execution of the body of the constructor, the member has indeterminate value.

5 Initialization shall proceed in the following order:

- First, and only for the constructor of the most derived class as described below, virtual base classes shall be initialized in the order they appear on a depth-first left-to-right traversal of the directed acyclic graph of base classes, where "left-to-right" is the order of appearance of the base class names in the derived class base-specifierlist.
- Then, direct base classes shall be initialized in declaration order as they appear in the base-specifier-list (regardless of the order of the mem-initializers).
- Then, non-static data members shall be initialized in the order they were declared in the class definition (again regardless of the order of the mem-initializers).
- Finally, the body of the constructor is executed.
[Note: the declaration order is mandated to ensure that base and member subobjects are destroyed in the reverse order of initialization. - end note ]

6 All subobjects representing virtual base classes are initialized by the constructor of the most derived class (1.8). If the constructor of the most derived class does not specify a mem-initializer for a virtual base class V, then V's default constructor is called to initialize the virtual base class subobject. If $V$ does not have an accessible default constructor, the initialization is ill-formed. A mem-initializer naming a virtual base class shall be ignored during execution of the constructor of any class that is not the most derived class. [ Example:

```
class V {
public:
 V();
 V(int);
 // ...
};
class A : public virtual V {
public:
 A();
 A(int);
 // ...
};
class B : public virtual V {
public:
 B();
 B(int);
 // ...
};
class C : public A, public B, private virtual V {
public:
 C();
 C(int);
 // ...
};
A::A(int i) : V(i) { /* ... */ }
B::B(int i) { /* *
```


### 12.7 Construction and destruction

1 For an object of non-POD class type (clause 9), before the constructor begins execution and after the destructor finishes execution, referring to any non-static member or base class of the object results in undefined behavior. [Example:

```
struct X { int i; };
struct Y : X { };
struct A { int a; };
struct B : public A { int j; Y y; };
extern B bobj;
B* pb = &bobj; // OK
int* p1 = &bobj.a; // undefined, refers to base class member
int* p2 = &bobj.y.i; // undefined, refers to member's member
A* pa = &bobj; // undefined, upcast to a base class type
B bobj; // definition of bobj
extern X xobj;
int* p3 = &xobj.i; //OK, X is a POD class
X xobj;
```

2 For another example,

```
struct W { int j; };
struct X : public virtual W { };
struct Y {
 int *p;
 X x;
 Y() : p(&x.j) // undefined, x is not yet constructed
 { }
};
- end example]
```

3 To explicitly or implicitly convert a pointer (an lvalue) referring to an object of class X to a pointer (reference) to a direct or indirect base class $B$ of $X$, the construction of $X$ and the construction of all of its direct or indirect bases that directly or indirectly derive from B shall have started and the destruction of these classes shall not have completed, otherwise the conversion results in undefined behavior. To form a pointer to (or access the value of) a direct non-static member of an object obj, the construction of obj shall have started and its destruction shall not have completed, otherwise the computation of the pointer value (or accessing the member value) results in undefined behavior. [Example:

```
struct A { };
struct B : virtual A { };
struct C : B { };
struct D : virtual A { D(A*); };
struct X { X(A*); };
struct E : C, D, X {
 E() : D (this), // undefined: upcast from E* to A*
 // might use path E* }->\textrm{D}*->\textrm{A}
```

```
// but D is not constructed
// D((C*)this), // defined:
// E* }->\textrm{C}*\mathrm{ defined because E() has started
// and C* }->\textrm{A}*\mathrm{ defined because
// C fully constructed
 X(this) // defined: upon construction of X,
 // C/B/D/A sublattice is fully constructed
 { }
 };
- end example]
```

4 Member functions, including virtual functions (10.3), can be called during construction or destruction (12.6.2). When a virtual function is called directly or indirectly from a constructor (including from the mem-initializer for a data member) or from a destructor, and the object to which the call applies is the object under construction or destruction, the function called is the one defined in the constructor or destructor's own class or in one of its bases, but not a function overriding it in a class derived from the constructor or destructor's class, or overriding it in one of the other base classes of the most derived object (1.8). If the virtual function call uses an explicit class member access (5.2.5) and the object-expression refers to the object under construction or destruction but its type is neither the constructor or destructor's own class or one of its bases, the result of the call is undefined. [Example:

```
class V {
public:
 virtual void f();
 virtual void g();
};
class A : public virtual V {
public:
 virtual void f();
};
class B : public virtual V {
public:
 virtual void g();
 B(V*, A*);
};
class D : public A, B {
public:
 virtual void f();
 virtual void g();
 D() : B((A*)this, this) { }
};
B::B(V* v, A* a) {
 f(); // calls V::f,not A::f
 g(); // calls B::g, not D::g
```



```
 a->f(); // undefined behavior, a's type not a base of B
```

\}

- end example ]

5 The typeid operator (5.2.8) can be used during construction or destruction (12.6.2). When typeid is used in a constructor (including from the mem-initializer for a data member) or in a destructor, or used in a function called (directly or indirectly) from a constructor or destructor, if the operand of typeid refers to the object under construction or destruction, typeid yields the std: :type_info object representing the constructor or destructor's class. If the operand of typeid refers to the object under construction or destruction and the static type of the operand is neither the constructor or destructor's class nor one of its bases, the result of typeid is undefined.

6 Dynamic_casts (5.2.7) can be used during construction or destruction (12.6.2). When a dynamic_cast is used in a constructor (including from the mem-initializer for a data member) or in a destructor, or used in a function called (directly or indirectly) from a constructor or destructor, if the operand of the dynamic_cast refers to the object under construction or destruction, this object is considered to be a most derived object that has the type of the constructor or destructor's class. If the operand of the dynamic_cast refers to the object under construction or destruction and the static type of the operand is not a pointer to or object of the constructor or destructor's own class or one of its bases, the dynamic_cast results in undefined behavior.

## [ Example:

```
class V {
public:
 virtual void f();
};
class A : public virtual V { };
class B : public virtual V {
public:
 B(V*, A*);
};
class D : public A, B {
public:
 D() : B((A*)this, this) { }
};
B::B(V* v, A* a) {
 typeid(*this); // type_info for B
 typeid(*v); // well-defined: *v has type V, a base of B
 // yields type_info for B
 typeid(*a); // undefined behavior: type A not a base of B
 dynamic_cast<B*>(v); // well-defined: v of type V*, V base of B
 // results in B*
 dynamic_cast<B*> (a); // undefined behavior,
 // a has type A*, A not a base of B
}
```


## - end example ]

### 12.8 Copying class objects

[class.copy]
1 A class object can be copied in two ways, by initialization (12.1, 8.5), including for function argument passing (5.2.2) and for function value return (6.6.3), and by assignment (5.17). Conceptually, these two operations are implemented by a copy constructor (12.1) and copy assignment operator (13.5.3).

2 A non-template constructor for class $X$ is a copy constructor if its first parameter is of type $X \&$, const $X \&$, volatile $X \&$ or const volatile $X \&$, and either there are no other parameters or else all other parameters have default arguments (8.3.6). ${ }^{109)}$ [Example: X: : X (const X\&) and $\mathrm{X}: \mathrm{X}(\mathrm{X} \&$, int=1) are copy constructors.

```
class X {
 // ...
public:
 X(int);
 X(const X&, int = 1);
};
X a(1); // calls X(int);
X b(a, 0); // calls X(const X&, int);
X c = b; // calls X(const X&, int);
```

-end example ] [Note: all forms of copy constructor may be declared for a class. [Example:

```
class X {
 // ..
public:
 X(const X&);
 X(X&); // OK
};
```

—end example ] -end note ] [Note: if a class X only has a copy constructor with a parameter of type $\mathrm{X} \&$, an initializer of type const X or volatile X cannot initialize an object of type (possibly cv-qualified) X. [Example:

```
struct X {
 X(); // default constructor
 X(X&); // copy constructor with a nonconst parameter
};
const X cx;
X x = cx; // error - X:: X(X&) cannot copy cx into x
- end example] - end note]
```

3 A declaration of a constructor for a class X is ill-formed if its first parameter is of type (optionally cv-qualified) X and either there are no other parameters or else all other parameters have default arguments. A member function template is never instantiated to perform the copy of a class object to an object of its class type. [Example:

[^82]```
struct S {
    template<typename T> S(T);
};
S f();
void g() {
        S a( f()); // does not instantiate member template
}
- end example ]
```

4 If the class definition does not explicitly declare a copy constructor, one is declared implicitly. Thus, for the class definition

```
struct X {
    X(const X&, int);
};
```

a copy constructor is implicitly-declared. If the user-declared constructor is later defined as

```
X::X(const X& x, int i =0) { /* .. */ }
```

then any use of X's copy constructor is ill-formed because of the ambiguity; no diagnostic is required.
5 The implicitly-declared copy constructor for a class X will have the form

```
    X::X(const X&)
```

if

- each direct or virtual base class B of X has a copy constructor whose first parameter is of type const B\& or const volatile B\&, and
- for all the non-static data members of X that are of a class type M (or array thereof), each such class type has a copy constructor whose first parameter is of type const $M \&$ or const volatile M\&. ${ }^{110)}$

Otherwise, the implicitly declared copy constructor will have the form

$$
\mathrm{x}:: \mathrm{X}(\mathrm{X} \&)
$$

An implicitly-declared copy constructor is an inline public member of its class.
6 A copy constructor for class X is trivial if it is implicitly declared and if

- class X has no virtual functions (10.3) and no virtual base classes (10.1), and
- each direct base class of X has a trivial copy constructor, and
- for all the non-static data members of X that are of class type (or array thereof), each such class type has a trivial copy constructor;

[^83]otherwise the copy constructor is non-trivial.
7 An implicitly-declared copy constructor is implicitly defined if it is used to initialize an object of its class type from a copy of an object of its class type or of a class type derived from its class type ${ }^{111)}$. [Note: the copy constructor is implicitly defined even if the implementation elided its use (12.2). - end note] A program is ill-formed if the class for which a copy constructor is implicitly defined has:

- a non-static data member of class type (or array thereof) with an inaccessible or ambiguous copy constructor, or
- a base class with an inaccessible or ambiguous copy constructor.

Before the implicitly-declared copy constructor for a class is implicitly defined, all implicitly-declared copy constructors for its direct and virtual base classes and its non-static data members shall have been implicitly defined. [Note: an implicitly-declared copy constructor has an exception-specification (15.4). - end note]

8 The implicitly-defined copy constructor for class X performs a memberwise copy of its subobjects. The order of copying is the same as the order of initialization of bases and members in a user-defined constructor (see 12.6.2). Each subobject is copied in the manner appropriate to its type:

- if the subobject is of class type, the copy constructor for the class is used;
- if the subobject is an array, each element is copied, in the manner appropriate to the element type;
- if the subobject is of scalar type, the built-in assignment operator is used.

Virtual base class subobjects shall be copied only once by the implicitly-defined copy constructor (see 12.6.2).
9 A user-declared copy assignment operator X : :operator= is a non-static non-template member function of class X with exactly one parameter of type $\mathrm{X}, \mathrm{X} \&$, const $\mathrm{X} \&$, volatile $\mathrm{X} \&$ or const volatile $\mathrm{X} \& .{ }^{112)}$ [Note: an overloaded assignment operator must be declared to have only one parameter; see 13.5.3. - end note] [Note: more than one form of copy assignment operator may be declared for a class. - end note] [Note: if a class X only has a copy assignment operator with a parameter of type $\mathrm{X} \&$, an expression of type const X cannot be assigned to an object of type X . [Example:

```
struct X {
        X();
        X& operator=(X&);
};
const X cx;
X x;
void f() {
    x = cx; // error:
    // X::operator=(X&) cannot assign cx into x
}
```

- end example] —end note]

10 If the class definition does not explicitly declare a copy assignment operator, one is declared implicitly. The implicitlydeclared copy assignment operator for a class X will have the form

[^84]```
 X& X::operator=(const X&)
```

if

- each direct base class B of $X$ has a copy assignment operator whose parameter is of type const $B \&$, const volatile B\& or B, and
- for all the non-static data members of $X$ that are of a class type $M$ (or array thereof), each such class type has a copy assignment operator whose parameter is of type const M\&, const volatile M\& or M. ${ }^{113}$ )

Otherwise, the implicitly declared copy assignment operator will have the form

```
X& X::operator=(X&)
```

The implicitly-declared copy assignment operator for class $X$ has the return type $X \&$; it returns the object for which the assignment operator is invoked, that is, the object assigned to. An implicitly-declared copy assignment operator is an inline public member of its class. Because a copy assignment operator is implicitly declared for a class if not declared by the user, a base class copy assignment operator is always hidden by the copy assignment operator of a derived class (13.5.3). A using-declaration (7.3.3) that brings in from a base class an assignment operator with a parameter type that could be that of a copy-assignment operator for the derived class is not considered an explicit declaration of a copy-assignment operator and does not suppress the implicit declaration of the derived class copy-assignment operator; the operator introduced by the using-declaration is hidden by the implicitly-declared copy-assignment operator in the derived class.

11 A copy assignment operator for class X is trivial if it is implicitly declared and if

- class X has no virtual functions (10.3) and no virtual base classes (10.1), and
- each direct base class of X has a trivial copy assignment operator, and
- for all the non-static data members of $X$ that are of class type (or array thereof), each such class type has a trivial copy assignment operator;
otherwise the copy assignment operator is non-trivial.
12 An implicitly-declared copy assignment operator is implicitly defined when an object of its class type is assigned a value of its class type or a value of a class type derived from its class type. A program is ill-formed if the class for which a copy assignment operator is implicitly defined has:
- a non-static data member of const type, or
- a non-static data member of reference type, or
- a non-static data member of class type (or array thereof) with an inaccessible copy assignment operator, or
- a base class with an inaccessible copy assignment operator.

Before the implicitly-declared copy assignment operator for a class is implicitly defined, all implicitly-declared copy assignment operators for its direct base classes and its non-static data members shall have been implicitly defined. [Note: an implicitly-declared copy assignment operator has an exception-specification (15.4). - end note ]

[^85]13 The implicitly-defined copy assignment operator for class $X$ performs memberwise assignment of its subobjects. The direct base classes of X are assigned first, in the order of their declaration in the base-specifier-list, and then the immediate non-static data members of X are assigned, in the order in which they were declared in the class definition. Each subobject is assigned in the manner appropriate to its type:

- if the subobject is of class type, the copy assignment operator for the class is used (as if by explicit qualification; that is, ignoring any possible virtual overriding functions in more derived classes);
- if the subobject is an array, each element is assigned, in the manner appropriate to the element type;
- if the subobject is of scalar type, the built-in assignment operator is used.

It is unspecified whether subobjects representing virtual base classes are assigned more than once by the implicitlydefined copy assignment operator. [ Example:

```
struct V { };
struct A : virtual V { };
struct B : virtual V { };
struct C : B, A { };
```

it is unspecified whether the virtual base class subobject V is assigned twice by the implicitly-defined copy assignment operator for C. -end example ]

14 A program is ill-formed if the copy constructor or the copy assignment operator for an object is implicitly used and the special member function is not accessible (clause 11). [ Note: Copying one object into another using the copy constructor or the copy assignment operator does not change the layout or size of either object. - end note ]

15 When certain criteria are met, an implementation is allowed to omit the copy construction of a class object, even if the copy constructor and/or destructor for the object have side effects. In such cases, the implementation treats the source and target of the omitted copy operation as simply two different ways of referring to the same object, and the destruction of that object occurs at the later of the times when the two objects would have been destroyed without the optimization. ${ }^{114}$ ) This elision of copy operations is permitted in the following circumstances (which may be combined to eliminate multiple copies):

- in a return statement in a function with a class return type, when the expression is the name of a non-volatile automatic object with the same cv-unqualified type as the function return type, the copy operation can be omitted by constructing the automatic object directly into the function's return value
- in a throw-expression, when the operand is the name of a non-volatile automatic object, the copy operation from the operand to the exception object (15.1) can be omitted by constructing the automatic object directly into the exception object
- when a temporary class object that has not been bound to a reference (12.2) would be copied to a class object with the same cv-unqualified type, the copy operation can be omitted by constructing the temporary object directly into the target of the omitted copy
- when the exception-declaration of an exception handler (clause 15) declares an object of the same type (except for cv-qualification) as the exception object (15.1), the copy operation can be omitted by treating the exception-declaration

[^86]as an alias for the exception object if the meaning of the program will be unchanged except for the execution of constructors and destructors for the object declared by the exception-declaration.

## [ Example:

```
class Thing {
public:
 Thing();
 ~Thing();
 Thing(const Thing&);
};
Thing f() {
 Thing t;
 return t;
}
Thing t2 = f();
```

Here the criteria for elision can be combined to eliminate two calls to the copy constructor of class Thing: the copying of the local automatic object $t$ into the temporary object for the return value of function $f()$ and the copying of that temporary object into object $t 2$. Effectively, the construction of the local object $t$ can be viewed as directly initializing the global object t 2 , and that object's destruction will occur at program exit. - end example ]

16 When the criteria for elision of a copy operation are met and the object to be copied is designated by an lvalue, overload resolution to select the constructor for the copy is first performed as if the object were designated by an rvalue. If overload resolution fails, or if the type of the first parameter of the selected constructor is not an rvalue reference to the object's type (possibly cv-qualified), overload resolution is performed again, considering the object as an lvalue. [Note: This two-stage overload resolution must be performed regardless of whether copy elision will occur. It determines the constructor to be called if elision is not performed, and the selected constructor must be accessible even if the call is elided. - end note ]

## [Example:

```
class Thing {
public:
 Thing();
 ~Thing();
 Thing(Thing&&);
private:
 Thing(const Thing&);
};
Thing f(bool b) {
 Thing t;
 if (b)
 throw t; // OK: Thing(Thing&&) used (or elided) to throw t
 return t; // OK: Thing(Thing&&) used (or elided) to return t
Thing t2 = f(false); // OK: Thing(Thing&&) used (or elided) to construct of t2
```


## Chapter 13 Overloading

1 When two or more different declarations are specified for a single name in the same scope, that name is said to be overloaded. By extension, two declarations in the same scope that declare the same name but with different types are called overloaded declarations. Only function declarations can be overloaded; object and type declarations cannot be overloaded.

2 When an overloaded function name is used in a call, which overloaded function declaration is being referenced is determined by comparing the types of the arguments at the point of use with the types of the parameters in the overloaded declarations that are visible at the point of use. This function selection process is called overload resolution and is defined in 13.3. [Example:

```
double abs(double);
int abs(int);
abs(1); // call abs(int);
abs(1.0); // call abs(double);
-end example]
```


### 13.1 Overloadable declarations

[over.load]
1 Not all function declarations can be overloaded. Those that cannot be overloaded are specified here. A program is illformed if it contains two such non-overloadable declarations in the same scope. [ Note: this restriction applies to explicit declarations in a scope, and between such declarations and declarations made through a using-declaration (7.3.3). It does not apply to sets of functions fabricated as a result of name lookup (e.g., because of using-directives) or overload resolution (e.g., for operator functions). -end note]

2 Certain function declarations cannot be overloaded:

- Function declarations that differ only in the return type cannot be overloaded.
- Member function declarations with the same name and the same parameter-type-list cannot be overloaded if any of them is a static member function declaration (9.4). Likewise, member function template declarations with the same name, the same parameter-type-list, and the same template parameter lists cannot be overloaded if any of them is a static member function template declaration. The types of the implicit object parameters constructed for the member functions for the purpose of overload resolution (13.3.1) are not considered when comparing parameter-type-lists for enforcement of this rule. In contrast, if there is no static member function declaration among a set of member function declarations with the same name and the same parameter-type-list, then these member function declarations can be overloaded if they differ in the type of their implicit object parameter. [ Example: the following illustrates this distinction:

```
class X {
 static void f();
 void f(); // ill-formed
 void f() const; // ill-formed
 void f() const volatile; // ill-formed
 void g();
 void g() const; // OK: no static g
 void g() const volatile; // OK: no static g
};
- end example]
```

3 [Note: as specified in 8.3.5, function declarations that have equivalent parameter declarations declare the same function and therefore cannot be overloaded:

- Parameter declarations that differ only in the use of equivalent typedef "types" are equivalent. A typedef is not a separate type, but only a synonym for another type (7.1.3). [ Example:

```
typedef int Int;
void f(int i);
void f(Int i); // OK: redeclaration of f(int)
void f(int i) { /* ... */ }
void f(Int i) {/* ... */} // error: redefinition of f(int)
- end example]
```

Enumerations, on the other hand, are distinct types and can be used to distinguish overloaded function declarations. [Example:

```
enum E { a };
void f(int i) { /* ... */ }
void f(E i) {/* .. */}
- end example]
```

- Parameter declarations that differ only in a pointer $*$ versus an array [] are equivalent. That is, the array declaration is adjusted to become a pointer declaration (8.3.5). Only the second and subsequent array dimensions are significant in parameter types (8.3.4). [ Example:

```
int f(char*);
int f(char[]); // same as f(char*);
int f(char[7]); // same as f (char*);
int f(char[9]); // same as f (char*);
int g(char(*)[10]);
int g(char [5][10]); // same as g(char(*) [10]);
int g(char[7][10]); // same as g(char(*)[10]);
int g(char(*)[20]); // different from g(char(*)[10]);
- end example]
```

- Parameter declarations that differ only in that one is a function type and the other is a pointer to the same function type are equivalent. That is, the function type is adjusted to become a pointer to function type (8.3.5). [ Example:

```
void h(int());
void h(int (*)()); // redeclaration of h(int())
void h(int x()) { } // definition of h(int())
void h(int (*x)()) { } // ill-formed: redefinition of h(int())
- end example]
```

- Parameter declarations that differ only in the presence or absence of const and/or volatile are equivalent. That is, the const and volatile type-specifiers for each parameter type are ignored when determining which function is being declared, defined, or called. [Example:

```
typedef const int cInt;
int f (int);
int f (const int); // redeclaration of f(int)
int f (int) { ... } // definition of f(int)
int f (cInt) { ... } // error: redefinition of f(int)
- end example]
```

Only the const and volatile type-specifiers at the outermost level of the parameter type specification are ignored in this fashion; const and volatile type-specifiers buried within a parameter type specification are significant and can be used to distinguish overloaded function declarations. ${ }^{115)}$ In particular, for any type T , "pointer to T," "pointer to const T," and "pointer to volatile T" are considered distinct parameter types, as are "reference to T," "reference to const T," and "reference to volatile T."

- Two parameter declarations that differ only in their default arguments are equivalent. [Example: consider the following:

```
void f (int i, int j);
void f (int i, int j = 99); // OK: redeclaration of f(int, int)
void f (int i = 88, int j); // OK: redeclaration of f(int, int)
void f (); // OK: overloaded declaration of f
void prog ()
{
 f (1, 2); // OK: call f(int, int)
 f (1); // OK: call f(int, int)
 f (); // Error: f(int, int) or f()?
}
- end example] - end note]
```

[^87]
### 13.2 Declaration matching

1 Two function declarations of the same name refer to the same function if they are in the same scope and have equivalent parameter declarations (13.1). A function member of a derived class is not in the same scope as a function member of the same name in a base class. [Example:

```
class B {
public:
 int f(int);
};
class D : public B {
public:
 int f(char*);
};
```

Here D: :f (char*) hides B: :f(int) rather than overloading it.

```
void h(D* pd)
{
 pd->f(1); // error:
 // D::f(char*) hides B::f(int)
 pd->B::f(1); // OK
 pd->f("Ben"); // OK, calls D::f
}
- end example]
```

2 A locally declared function is not in the same scope as a function in a containing scope. [Example:

```
int f(char*);
void g()
{
 extern f(int);
 f("asdf"); // error: f(int) hides f(char*)
 // so there is no f(char*) in this scope
}
void caller ()
{
 extern void callee(int, int);
 {
 extern void callee(int);// hides callee(int, int)
 callee(88, 99); // error: only callee(int) in scope
 }
}
- end example]
```

3 Different versions of an overloaded member function can be given different access rules. [Example:

```
class buffer {
private:
 char* p;
 int size;
protected:
 buffer(int s, char* store) { size = s; p = store; }
 // ...
public:
 buffer(int s) { p = new char[size = s]; }
 // ...
};
- end example]
```


### 13.3 Overload resolution

[over.match]
1 Overload resolution is a mechanism for selecting the best function to call given a list of expressions that are to be the arguments of the call and a set of candidate functions that can be called based on the context of the call. The selection criteria for the best function are the number of arguments, how well the arguments match the parameter-type-list of the candidate function, how well (for non-static member functions) the object matches the implied object parameter, and certain other properties of the candidate function. [Note: the function selected by overload resolution is not guaranteed to be appropriate for the context. Other restrictions, such as the accessibility of the function, can make its use in the calling context ill-formed. -end note]
2 Overload resolution selects the function to call in seven distinct contexts within the language:

- invocation of a function named in the function call syntax (13.3.1.1.1);
- invocation of a function call operator, a pointer-to-function conversion function, a reference-to-pointer-to-function conversion function, or a reference-to-function conversion function on a class object named in the function call syntax (13.3.1.1.2);
- invocation of the operator referenced in an expression (13.3.1.2);
— invocation of a constructor for direct-initialization (8.5) of a class object (13.3.1.3);
— invocation of a user-defined conversion for copy-initialization (8.5) of a class object (13.3.1.4);
- invocation of a conversion function for initialization of an object of a nonclass type from an expression of class type (13.3.1.5); and
- invocation of a conversion function for conversion to an lvalue to which a reference (8.5.3) will be directly bound (13.3.1.6).

Each of these contexts defines the set of candidate functions and the list of arguments in its own unique way. But, once the candidate functions and argument lists have been identified, the selection of the best function is the same in all cases:

- First, a subset of the candidate functions (those that have the proper number of arguments and meet certain other conditions) is selected to form a set of viable functions (13.3.2).
- Then the best viable function is selected based on the implicit conversion sequences (13.3.3.1) needed to match each argument to the corresponding parameter of each viable function.

3 If a best viable function exists and is unique, overload resolution succeeds and produces it as the result. Otherwise overload resolution fails and the invocation is ill-formed. When overload resolution succeeds, and the best viable function is not accessible (clause 11) in the context in which it is used, the program is ill-formed.

### 13.3.1 Candidate functions and argument lists

[over.match.funcs]
1 The subclauses of 13.3 .1 describe the set of candidate functions and the argument list submitted to overload resolution in each of the seven contexts in which overload resolution is used. The source transformations and constructions defined in these subclauses are only for the purpose of describing the overload resolution process. An implementation is not required to use such transformations and constructions.

2 The set of candidate functions can contain both member and non-member functions to be resolved against the same argument list. So that argument and parameter lists are comparable within this heterogeneous set, a member function is considered to have an extra parameter, called the implicit object parameter, which represents the object for which the member function has been called. For the purposes of overload resolution, both static and non-static member functions have an implicit object parameter, but constructors do not.

3 Similarly, when appropriate, the context can construct an argument list that contains an implied object argument to denote the object to be operated on. Since arguments and parameters are associated by position within their respective lists, the convention is that the implicit object parameter, if present, is always the first parameter and the implied object argument, if present, is always the first argument.

4 For non-static member functions, the type of the implicit object parameter is "reference to $c v \mathrm{X}$ " where X is the class of which the function is a member and $c v$ is the cv-qualification on the member function declaration. [Example: for a const member function of class X , the extra parameter is assumed to have type "reference to const X ". -end example ] For conversion functions, the function is considered to be a member of the class of the implicit object argument for the purpose of defining the type of the implicit object parameter. For non-conversion functions introduced by a usingdeclaration into a derived class, the function is considered to be a member of the derived class for the purpose of defining the type of the implicit object parameter. For static member functions, the implicit object parameter is considered to match any object (since if the function is selected, the object is discarded). [Note: no actual type is established for the implicit object parameter of a static member function, and no attempt will be made to determine a conversion sequence for that parameter (13.3.3). - end note ]

5 During overload resolution, the implied object argument is indistinguishable from other arguments. The implicit object parameter, however, retains its identity since conversions on the corresponding argument shall obey these additional rules:

- no temporary object can be introduced to hold the argument for the implicit object parameter; and
- no user-defined conversions can be applied to achieve a type match with it; and
- even if the implicit object parameter is not const-qualified, an rvalue temporary can be bound to the parameter as long as in all other respects the temporary can be converted to the type of the implicit object parameter. [Note: The fact that such a temporary is an rvalue does not affect the ranking of implicit conversion sequences (13.3.3.2). - end note]

6 Because only one user-defined conversion is allowed in an implicit conversion sequence, special rules apply when selecting the best user-defined conversion (13.3.3, 13.3.3.1). [Example:

```
class T {
public:
 T();
 // ...
};
class C : T {
public:
 C(int);
 // ...
};
T a = 1; // ill-formed: T(C(1)) not tried
- end example]
```

7 In each case where a candidate is a function template, candidate function template specializations are generated using template argument deduction (14.8.3, 14.8.2). Those candidates are then handled as candidate functions in the usual way. ${ }^{116)}$ A given name can refer to one or more function templates and also to a set of overloaded non-template functions. In such a case, the candidate functions generated from each function template are combined with the set of non-template candidate functions.

### 13.3.1.1 Function call syntax

[over.match.call]
1 Recall from 5.2.2, that a function call is a postfix-expression, possibly nested arbitrarily deep in parentheses, followed by an optional expression-list enclosed in parentheses: ( . . (opt postfix-expression) ... ) opt (expression-listopt $)$ Overload resolution is required if the postfix-expression is the name of a function, a function template (14.5.5), an object of class type, or a set of pointers-to-function.

2 13.3.1.1.1 describes how overload resolution is used in the first two of the above cases to determine the function to call. 13.3.1.1.2 describes how overload resolution is used in the third of the above cases to determine the function to call.

3 The fourth case arises from a postfix-expression of the form \&F, where F names a set of overloaded functions. In the context of a function call, \&F is treated the same as the name F by itself. Thus, (\&F) ( expression-list opt $^{\text {) }}$ ) is simply ( F ) ( expression-list $_{\text {opt }}$ ), which is discussed in 13.3.1.1.1. If the function selected by overload resolution according to 13.3 .1 .1 .1 is a non-static member function, the program is ill-formed. ${ }^{117)}$ (The resolution of \&F in other contexts is described in 13.4.)

### 13.3.1.1.1 Call to named function

[over.call.func]
1 Of interest in 13.3.1.1.1 are only those function calls in which the postfix-expression ultimately contains a name that denotes one or more functions that might be called. Such a postfix-expression, perhaps nested arbitrarily deep in parentheses, has one of the following forms:

[^88]```
postfix-expression:
    postfix-expression . id-expression
    postfix-expression -> id-expression
    primary-expression
```

These represent two syntactic subcategories of function calls: qualified function calls and unqualified function calls.
2 In qualified function calls, the name to be resolved is an id-expression and is preceded by an \rightarrow or . operator. Since the construct $A->B$ is generally equivalent to $(* A) . B$, the rest of clause 13 assumes, without loss of generality, that all member function calls have been normalized to the form that uses an object and the . operator. Furthermore, clause 13 assumes that the postfix-expression that is the left operand of the . operator has type " $c v \mathrm{~T}$ " where T denotes a class ${ }^{118)}$. Under this assumption, the id-expression in the call is looked up as a member function of T following the rules for looking up names in classes (10.2). The function declarations found by that lookup constitute the set of candidate functions. The argument list is the expression-list in the call augmented by the addition of the left operand of the . operator in the normalized member function call as the implied object argument (13.3.1).
3 In unqualified function calls, the name is not qualified by an \rightarrow or . operator and has the more general form of a primary-expression. The name is looked up in the context of the function call following the normal rules for name lookup in function calls (3.4). The function declarations found by that lookup constitute the set of candidate functions. Because of the rules for name lookup, the set of candidate functions consists (1) entirely of non-member functions or (2) entirely of member functions of some class T. In case (1), the argument list is the same as the expression-list in the call. In case (2), the argument list is the expression-list in the call augmented by the addition of an implied object argument as in a qualified function call. If the keyword this (9.3.2) is in scope and refers to class T , or a derived class of T , then the implied object argument is (*this). If the keyword this is not in scope or refers to another class, then a contrived object of type T becomes the implied object argument ${ }^{119}$. If the argument list is augmented by a contrived object and overload resolution selects one of the non-static member functions of T , the call is ill-formed.

13.3.1.1.2 Call to object of class type

[over.call.object]

1 If the primary-expression E in the function call syntax evaluates to a class object of type " $c v \mathrm{~T}$ ", then the set of candidate functions includes at least the function call operators of T. The function call operators of T are obtained by ordinary lookup of the name operator () in the context of (E). operator ().

2 In addition, for each conversion function declared in T of the form
operator conversion-type-id () cv-qualifier ;
where $c v$-qualifier is the same cv-qualification as, or a greater cv -qualification than, $c v$, and where conversion-typeid denotes the type "pointer to function of ($\mathrm{P} 1, \ldots, \mathrm{Pn}$) returning R ", or the type "reference to pointer to function of ($\mathrm{P} 1, \ldots, \mathrm{Pn}$) returning R ", or the type "reference to function of ($\mathrm{P} 1, \ldots, \mathrm{Pn}$) returning R ", a surrogate call function with the unique name call-function and having the form

R call-function (conversion-type-id F, P1 a1, ... ,Pn an) \{ return F (a1,... ,an); \}
is also considered as a candidate function. Similarly, surrogate call functions are added to the set of candidate functions for each conversion function declared in a base class of T provided the function is not hidden within T by another

[^89]intervening declaration ${ }^{120)}$.
3 If such a surrogate call function is selected by overload resolution, the corresponding conversion function will be called to convert E to the appropriate function pointer or reference, and the function will then be invoked with the arguments of the call. If the conversion function cannot be called (e.g., because of an ambiguity), the program is ill-formed.

4 The argument list submitted to overload resolution consists of the argument expressions present in the function call syntax preceded by the implied object argument (E). [Note: when comparing the call against the function call operators, the implied object argument is compared against the implicit object parameter of the function call operator. When comparing the call against a surrogate call function, the implied object argument is compared against the first parameter of the surrogate call function. The conversion function from which the surrogate call function was derived will be used in the conversion sequence for that parameter since it converts the implied object argument to the appropriate function pointer or reference required by that first parameter. - end note] [Example:

```
int f1(int);
int f2(float);
typedef int (*fp1)(int);
typedef int (*fp2)(float);
struct A {
    operator fp1() { return f1; }
    operator fp2() { return f2; }
} a;
int i = a(1); // calls f1 via pointer returned from
        // conversion function
_ end example ]
```


13.3.1.2 Operators in expressions

[over.match.oper]
1 If no operand of an operator in an expression has a type that is a class or an enumeration, the operator is assumed to be a built-in operator and interpreted according to clause 5. [Note: because .,.*, and : : cannot be overloaded, these operators are always built-in operators interpreted according to clause 5. ?: cannot be overloaded, but the rules in this subclause are used to determine the conversions to be applied to the second and third operands when they have class or enumeration type (5.16). - end note] [Example:

```
class String {
public:
    String (const String&);
    String (char*);
    operator char* ();
};
String operator + (const String&, const String&);
void f(void)
{
    char* p= "one" + "two"; // ill-formed because neither
                            // operand has user-defined type
```

[^90]```
 int I = 1 + 1; // Always evaluates to 2 even if
 // user-defined types exist which
 // would perform the operation.
 }
_ end example]
```

2 If either operand has a type that is a class or an enumeration, a user-defined operator function might be declared that implements this operator or a user-defined conversion can be necessary to convert the operand to a type that is appropriate for a built-in operator. In this case, overload resolution is used to determine which operator function or built-in operator is to be invoked to implement the operator. Therefore, the operator notation is first transformed to the equivalent functioncall notation as summarized in Table 9 (where @ denotes one of the operators covered in the specified subclause).

Table 9: relationship between operator and function call notation

| Subclause | Expression | As member function | As non-member function |
| :--- | :--- | :--- | :--- |
| 13.5 .1 | @a | (a). operator@ () | operator@ (a) |
| 13.5 .2 | a@b | (a).operator@ (b) | operator@ (a, b) |
| 13.5 .3 | $\mathrm{a}=\mathrm{b}$ | (a).operator= (b) |  |
| 13.5 .5 | $\mathrm{a}[\mathrm{b}]$ | (a).operator[] (b) |  |
| 13.5 .6 | $\mathrm{a}>$ | (a).operator-> () |  |
| 13.5 .7 | $\mathrm{a@}$ | (a).operator@ (0) | operator@ (a, 0) |

3 For a unary operator @ with an operand of a type whose cv-unqualified version is T 1 , and for a binary operator @ with a left operand of a type whose cv-unqualified version is T1 and a right operand of a type whose cv-unqualified version is T2, three sets of candidate functions, designated member candidates, non-member candidates and built-in candidates, are constructed as follows:

- If T1 is a complete class type, the set of member candidates is the result of the qualified lookup of T1: : operator@ (13.3.1.1.1); otherwise, the set of member candidates is empty.
- The set of non-member candidates is the result of the unqualified lookup of operator@ in the context of the expression according to the usual rules for name lookup in unqualified function calls (3.4.2) except that all member functions are ignored. However, if no operand has a class type, only those non-member functions in the lookup set that have a first parameter of type T1 or "reference to (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there is a right operand) a second parameter of type T2 or "reference to (possibly cv-qualified) T2", when T 2 is an enumeration type, are candidate functions.
- For the operator , , the unary operator \&, or the operator $->$, the built-in candidates set is empty. For all other operators, the built-in candidates include all of the candidate operator functions defined in 13.6 that, compared to the given operator,
- have the same operator name, and
- accept the same number of operands, and
- accept operand types to which the given operand or operands can be converted according to 13.3.3.1, and
- do not have the same parameter-type-list as any non-template non-member candidate.

4 For the built-in assignment operators, conversions of the left operand are restricted as follows:

- no temporaries are introduced to hold the left operand, and
- no user-defined conversions are applied to the left operand to achieve a type match with the left-most parameter of a built-in candidate.

5 For all other operators, no such restrictions apply.
6 The set of candidate functions for overload resolution is the union of the member candidates, the non-member candidates, and the built-in candidates. The argument list contains all of the operands of the operator. The best function from the set of candidate functions is selected according to 13.3 .2 and 13.3.3. ${ }^{121)}$ [Example:

```
struct A {
 operator int();
};
A operator+(const A&, const A&);
void m() {
 A a, b;
 a + b; // operator+(a,b) chosen over int (a) + int(b)
}
- end example]
```

7 If a built-in candidate is selected by overload resolution, the operands are converted to the types of the corresponding parameters of the selected operation function. Then the operator is treated as the corresponding built-in operator and interpreted according to clause 5.

8 The second operand of operator $\rightarrow>$ is ignored in selecting an operator $->$ function, and is not an argument when the operator $->$ function is called. When operator $->$ returns, the operator $\rightarrow>$ is applied to the value returned, with the original second operand. ${ }^{122)}$
9 If the operator is the operator , , the unary operator \&, or the operator $->$, and there are no viable functions, then the operator is assumed to be the built-in operator and interpreted according to clause 5 .

10 [Note: the lookup rules for operators in expressions are different than the lookup rules for operator function names in a function call, as shown in the following example:

```
struct A { };
void operator + (A, A);
struct B {
 void operator + (B);
 void f ();
};
A a;
void B::f() {
 operator+ (a, a); // ERROR - global operator hidden by member
 a + a; // OK - calls global operator+
```

[^91]\}

- end note]


### 13.3.1.3 Initialization by constructor

[over.match.ctor]
1 When objects of class type are direct-initialized (8.5), or copy-initialized from an expression of the same or a derived class type (8.5), overload resolution selects the constructor. For direct-initialization, the candidate functions are all the constructors of the class of the object being initialized. For copy-initialization, the candidate functions are all the converting constructors (12.3.1) of that class. The argument list is the expression-list within the parentheses of the initializer.

### 13.3.1.4 Copy-initialization of class by user-defined conversion

[over.match.copy]
1 Under the conditions specified in 8.5, as part of a copy-initialization of an object of class type, a user-defined conversion can be invoked to convert an initializer expression to the type of the object being initialized. Overload resolution is used to select the user-defined conversion to be invoked. Assuming that "cvl T" is the type of the object being initialized, with T a class type, the candidate functions are selected as follows:

- The converting constructors (12.3.1) of T are candidate functions.
- When the type of the initializer expression is a class type " $c v S$ ", the conversion functions of $S$ and its base classes are considered. Those that are not hidden within $S$ and yield a type whose cv-unqualified version is the same type as T or is a derived class thereof are candidate functions. Conversion functions that return "reference to X " return lvalues or rvalues, depending on the type of reference, of type X and are therefore considered to yield X for this process of selecting candidate functions.

2 In both cases, the argument list has one argument, which is the initializer expression. [Note: this argument will be compared against the first parameter of the constructors and against the implicit object parameter of the conversion functions. -end note]

### 13.3.1.5 Initialization by conversion function

[over.match.conv]
1 Under the conditions specified in 8.5, as part of an initialization of an object of nonclass type, a conversion function can be invoked to convert an initializer expression of class type to the type of the object being initialized. Overload resolution is used to select the conversion function to be invoked. Assuming that "cvl T" is the type of the object being initialized, and " $c v S$ " is the type of the initializer expression, with $S$ a class type, the candidate functions are selected as follows:

- The conversion functions of $S$ and its base classes are considered. Those that are not hidden within $S$ and yield type $T$ or a type that can be converted to type $T$ via a standard conversion sequence (13.3.3.1.1) are candidate functions. Conversion functions that return a cv-qualified type are considered to yield the cv-unqualified version of that type for this process of selecting candidate functions. Conversion functions that return "reference to $c v 2$ X " return lvalues or rvalues, depending on the type of reference, of type $c v 2 \mathrm{X}$ " and are therefore considered to yield X for this process of selecting candidate functions.

2 The argument list has one argument, which is the initializer expression. [Note: this argument will be compared against the implicit object parameter of the conversion functions. - end note ]

### 13.3.1.6 Initialization by conversion function for direct reference binding

[over.match.ref]
1 Under the conditions specified in 8.5.3, a reference can be bound directly to an lvalue that is the result of applying a conversion function to an initializer expression. Overload resolution is used to select the conversion function to be invoked. Assuming that " $c v l \mathrm{~T}$ " is the underlying type of the reference being initialized, and " $c v \mathrm{~S}$ " is the type of the initializer expression, with $S$ a class type, the candidate functions are selected as follows:

- The conversion functions of S and its base classes are considered. Those that are not hidden within S and yield type "Ivalue reference to $c v 2 \mathrm{~T} 2$ ", where " $c v 1 \mathrm{~T}$ " is reference-compatible (8.5.3) with " $c v 2 \mathrm{~T} 2$ ", are candidate functions.

2 The argument list has one argument, which is the initializer expression. [Note: this argument will be compared against the implicit object parameter of the conversion functions. - end note ]

### 13.3.2 Viable functions

[over.match.viable]
1 From the set of candidate functions constructed for a given context (13.3.1), a set of viable functions is chosen, from which the best function will be selected by comparing argument conversion sequences for the best fit (13.3.3). The selection of viable functions considers relationships between arguments and function parameters other than the ranking of conversion sequences.

2 First, to be a viable function, a candidate function shall have enough parameters to agree in number with the arguments in the list.

- If there are $m$ arguments in the list, all candidate functions having exactly $m$ parameters are viable.
- A candidate function having fewer than $m$ parameters is viable only if it has an ellipsis in its parameter list (8.3.5). For the purposes of overload resolution, any argument for which there is no corresponding parameter is considered to "match the ellipsis" (13.3.3.1.3).
- A candidate function having more than $m$ parameters is viable only if the $(m+1)$-st parameter has a default argument (8.3.6). ${ }^{123)}$ For the purposes of overload resolution, the parameter list is truncated on the right, so that there are exactly $m$ parameters.
3 Second, for F to be a viable function, there shall exist for each argument an implicit conversion sequence (13.3.3.1) that converts that argument to the corresponding parameter of $F$. If the parameter has reference type, the implicit conversion sequence includes the operation of binding the reference, and the fact that a reference to non-const cannot be bound to an rvalue can affect the viability of the function (see 13.3.3.1.4).


### 13.3.3 Best Viable Function

[over.match.best]
1 Define $\operatorname{ICSi}(\mathrm{F})$ as follows:

- if F is a static member function, $\operatorname{ICS} 1(\mathrm{~F})$ is defined such that $\operatorname{ICS} 1(\mathrm{~F})$ is neither better nor worse than $\operatorname{ICS} 1(\mathrm{G})$ for any function $G$, and, symmetrically, $\operatorname{ICS} 1(\mathrm{G})$ is neither better nor worse than $\operatorname{ICS} l(\mathrm{~F})^{124)}$; otherwise,

[^92]- let $\operatorname{ICSi}(\mathrm{F})$ denote the implicit conversion sequence that converts the $i$-th argument in the list to the type of the $i$-th parameter of viable function F. 13.3.3.1 defines the implicit conversion sequences and 13.3.3.2 defines what it means for one implicit conversion sequence to be a better conversion sequence or worse conversion sequence than another.

Given these definitions, a viable function F 1 is defined to be a better function than another viable function F 2 if for all arguments $i, \operatorname{ICSi}(\mathrm{~F} 1)$ is not a worse conversion sequence than $\operatorname{ICSi}(\mathrm{F} 2)$, and then

- for some argument $j, \operatorname{ICSj}(\mathrm{~F} 1)$ is a better conversion sequence than $\operatorname{ICSj}(\mathrm{F} 2)$, or, if not that,
- F1 is a non-template function and F2 is a function template specialization, or, if not that,
- F1 and F2 are function template specializations, and the function template for F1 is more specialized than the template for F2 according to the partial ordering rules described in 14.5.5.2, or, if not that,
- the context is an initialization by user-defined conversion (see 8.5, 13.3.1.5, and 13.3.1.6) and the standard conversion sequence from the return type of F1 to the destination type (i.e., the type of the entity being initialized) is a better conversion sequence than the standard conversion sequence from the return type of F 2 to the destination type. [ Example:

```
struct A {
 A();
 operator int();
 operator double();
} a;
int i = a; // a.operator int() followed by no conversion
 // is better than a.operator double() followed by
 // a conversion to int
float x = a; // ambiguous: both possibilities require conversions,
 // and neither is better than the other
- end example]
```

If there is exactly one viable function that is a better function than all other viable functions, then it is the one selected by overload resolution; otherwise the call is ill-formed ${ }^{125)}$.

## [ Example:

```
void Fcn(const int*, short);
void Fcn(int*, int);
int i;
short s = 0;
void f() {
 Fcn(&i, s); // is ambiguous because
 // &i }->\mathrm{ int* is better than &i }->\mathrm{ const int*
 // but s }->\mathrm{ short is also better than }\textrm{s}->\mathrm{ int
```

[^93]```
    Fcn(&i, 1L); // calls Fcn(int*, int), because
    // &i }->\mathrm{ int* is better than &i }->\mathrm{ const int*
    // and 1L }->\mathrm{ short and 1L }->\mathrm{ int are indistinguishable
    Fcn(&i,'c'); // calls Fcn(int*, int), because
    // &i }->\mathrm{ int* is better than &i }->\mathrm{ const int*
    // and c }->\mathrm{ int is better than }\textrm{c}->\mathrm{ short
}
- end example ]
```

If the best viable function resolves to a function for which multiple declarations were found, and if at least two of these declarations - or the declarations they refer to in the case of using-declarations - specify a default argument that made the function viable, the program is ill-formed. [Example:

```
namespace A {
    extern "C" void f(int = 5);
}
namespace B {
    extern "C" void f(int = 5);
}
using A::f;
using B::f;
void use() {
    f(3); // OK, default argument was not used for viability
    f(); // Error: found default argument twice
}
- end example ]
```


13.3.3.1 Implicit conversion sequences

[over.best.ics]
1 An implicit conversion sequence is a sequence of conversions used to convert an argument in a function call to the type of the corresponding parameter of the function being called. The sequence of conversions is an implicit conversion as defined in clause 4 , which means it is governed by the rules for initialization of an object or reference by a single expression (8.5, 8.5.3).

2 Implicit conversion sequences are concerned only with the type, cv-qualification, and lvalue-ness of the argument and how these are converted to match the corresponding properties of the parameter. Other properties, such as the lifetime, storage class, alignment, or accessibility of the argument and whether or not the argument is a bit-field are ignored. So, although an implicit conversion sequence can be defined for a given argument-parameter pair, the conversion from the argument to the parameter might still be ill-formed in the final analysis.

3 A well-formed implicit conversion sequence is one of the following forms:

- a standard conversion sequence (13.3.3.1.1),
- a user-defined conversion sequence (13.3.3.1.2), or
- an ellipsis conversion sequence (13.3.3.1.3).

4 However, when considering the argument of a user-defined conversion function that is a candidate by 13.3.1.3 when invoked for the copying of the temporary in the second step of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases, only standard conversion sequences and ellipsis conversion sequences are allowed.

5 For the case where the parameter type is a reference, see 13.3.3.1.4.
6 When the parameter type is not a reference, the implicit conversion sequence models a copy-initialization of the parameter from the argument expression. The implicit conversion sequence is the one required to convert the argument expression to an rvalue of the type of the parameter. [Note: when the parameter has a class type, this is a conceptual conversion defined for the purposes of clause 13; the actual initialization is defined in terms of constructors and is not a conversion. - end note] Any difference in top-level cv-qualification is subsumed by the initialization itself and does not constitute a conversion. [Example: a parameter of type A can be initialized from an argument of type const A. The implicit conversion sequence for that case is the identity sequence; it contains no "conversion" from const A to A. - end example] When the parameter has a class type and the argument expression has the same type, the implicit conversion sequence is an identity conversion. When the parameter has a class type and the argument expression has a derived class type, the implicit conversion sequence is a derived-to-base Conversion from the derived class to the base class. [Note: there is no such standard conversion; this derived-to-base Conversion exists only in the description of implicit conversion sequences. - end note] A derived-to-base Conversion has Conversion rank (13.3.3.1.1).

7 In all contexts, when converting to the implicit object parameter or when converting to the left operand of an assignment operation only standard conversion sequences that create no temporary object for the result are allowed.

8 If no conversions are required to match an argument to a parameter type, the implicit conversion sequence is the standard conversion sequence consisting of the identity conversion (13.3.3.1.1).

9 If no sequence of conversions can be found to convert an argument to a parameter type or the conversion is otherwise ill-formed, an implicit conversion sequence cannot be formed.

10 If several different sequences of conversions exist that each convert the argument to the parameter type, the implicit conversion sequence associated with the parameter is defined to be the unique conversion sequence designated the ambiguous conversion sequence. For the purpose of ranking implicit conversion sequences as described in 13.3.3.2, the ambiguous conversion sequence is treated as a user-defined sequence that is indistinguishable from any other userdefined conversion sequence ${ }^{126)}$. If a function that uses the ambiguous conversion sequence is selected as the best viable

[^94]function, the call will be ill-formed because the conversion of one of the arguments in the call is ambiguous.
11 The three forms of implicit conversion sequences mentioned above are defined in the following subclauses.

13.3.3.1.1 Standard conversion sequences

[over.ics.scs]

1 Table 10 summarizes the conversions defined in clause 4 and partitions them into four disjoint categories: Lvalue Transformation, Qualification Adjustment, Promotion, and Conversion. [Note: these categories are orthogonal with respect to lvalue-ness, cv-qualification, and data representation: the Lvalue Transformations do not change the cvqualification or data representation of the type; the Qualification Adjustments do not change the lvalue-ness or data representation of the type; and the Promotions and Conversions do not change the lvalue-ness or cv-qualification of the type. -end note]

2 [Note: As described in clause 4, a standard conversion sequence is either the Identity conversion by itself (that is, no conversion) or consists of one to three conversions from the other four categories. At most one conversion from each category is allowed in a single standard conversion sequence. If there are two or more conversions in the sequence, the conversions are applied in the canonical order: Lvalue Transformation, Promotion or Conversion, Qualification Adjustment. - end note]

3 Each conversion in Table 10 also has an associated rank (Exact Match, Promotion, or Conversion). These are used to rank standard conversion sequences (13.3.3.2). The rank of a conversion sequence is determined by considering the rank of each conversion in the sequence and the rank of any reference binding (13.3.3.1.4). If any of those has Conversion rank, the sequence has Conversion rank; otherwise, if any of those has Promotion rank, the sequence has Promotion rank; otherwise, the sequence has Exact Match rank.

Table 10: conversions

Conversion	Category	Rank	Subclause
No conversions required	Identity	Exact Match	
Lvalue-to-rvalue conversion	Lvalue Transformation		4.1
Array-to-pointer conversion			4.2
Function-to-pointer conversion			4.3
Qualification conversions	Qualification Adjustment		4.4
Integral promotions	Promotion	Promotion	4.5
Floating point promotion			4.6
Integral conversions	Conversion	Conversion	4.7
Floating point conversions			4.8
Floating-integral conversions			4.9
Pointer conversions			4.10
Pointer to member conversions			4.11
Boolean conversions			4.12

If it were not for this rule, $f(A)$ would be eliminated as a viable function for the call $f(b)$ causing overload resolution to select $f(C)$ as the function to call even though it is not clearly the best choice. On the other hand, if an $f(B)$ were to be declared then $f(b)$ would resolve to that $f(B)$ because the exact match with $f(B)$ is better than any of the sequences required to match $f(A)$.

13.3.3.1.2 User-defined conversion sequences

[over.ics.user]

1 A user-defined conversion sequence consists of an initial standard conversion sequence followed by a user-defined conversion (12.3) followed by a second standard conversion sequence. If the user-defined conversion is specified by a constructor (12.3.1), the initial standard conversion sequence converts the source type to the type required by the argument of the constructor. If the user-defined conversion is specified by a conversion function (12.3.2), the initial standard conversion sequence converts the source type to the implicit object parameter of the conversion function.

2 The second standard conversion sequence converts the result of the user-defined conversion to the target type for the sequence. Since an implicit conversion sequence is an initialization, the special rules for initialization by user-defined conversion apply when selecting the best user-defined conversion for a user-defined conversion sequence (see 13.3.3 and 13.3.3.1).

3 If the user-defined conversion is specified by a template conversion function, the second standard conversion sequence must have exact match rank.

4 A conversion of an expression of class type to the same class type is given Exact Match rank, and a conversion of an expression of class type to a base class of that type is given Conversion rank, in spite of the fact that a copy constructor (i.e., a user-defined conversion function) is called for those cases.

13.3.3.1.3 Ellipsis conversion sequences

[over.ics.ellipsis]
1 An ellipsis conversion sequence occurs when an argument in a function call is matched with the ellipsis parameter specification of the function called.

13.3.3.1.4 Reference binding

[over.ics.ref]
1 When a parameter of reference type binds directly (8.5.3) to an argument expression, the implicit conversion sequence is the identity conversion, unless the argument expression has a type that is a derived class of the parameter type, in which case the implicit conversion sequence is a derived-to-base Conversion (13.3.3.1). [Example:

```
struct A {};
struct B : public A {} b;
int f(A&);
int f(B&);
int i = f(b); // calls f(B&), an exact match, rather than
// f(A&), a conversion
```

- end example] If the parameter binds directly to the result of applying a conversion function to the argument expression, the implicit conversion sequence is a user-defined conversion sequence (13.3.3.1.2), with the second standard conversion sequence either an identity conversion or, if the conversion function returns an entity of a type that is a derived class of the parameter type, a derived-to-base Conversion.

2 When a parameter of reference type is not bound directly to an argument expression, the conversion sequence is the one required to convert the argument expression to the underlying type of the reference according to 13.3.3.1. Conceptually, this conversion sequence corresponds to copy-initializing a temporary of the underlying type with the argument expression. Any difference in top-level cv-qualification is subsumed by the initialization itself and does not constitute a conversion.

3 A standard conversion sequence cannot be formed if it requires binding an lvalue reference to non-const to an rvalue (except when binding an implicit object parameter; see the special rules for that case in 13.3.1). [Note: this means, for
example, that a candidate function cannot be a viable function if it has a non-const lvalue reference parameter (other than the implicit object parameter) and the corresponding argument is a temporary or would require one to be created to initialize the lvalue reference (see 8.5.3). -end note]

4 Other restrictions on binding a reference to a particular argument that are not based on the types of the reference and the argument do not affect the formation of a standard conversion sequence, however. [Example: a function with an "lvalue reference to int" parameter can be a viable candidate even if the corresponding argument is an int bit-field. The formation of implicit conversion sequences treats the int bit-field as an int lvalue and finds an exact match with the parameter. If the function is selected by overload resolution, the call will nonetheless be ill-formed because of the prohibition on binding a non-const lvalue reference to a bit-field (8.5.3). - end example]

5 The binding of a reference to an expression that is reference-compatible with added qualification influences the rank of a standard conversion; see 13.3.3.2 and 8.5.3.

13.3.3.2 Ranking implicit conversion sequences

[over.ics.rank]
1 13.3.3.2 defines a partial ordering of implicit conversion sequences based on the relationships better conversion sequence and better conversion. If an implicit conversion sequence S 1 is defined by these rules to be a better conversion sequence than S 2 , then it is also the case that S 2 is a worse conversion sequence than S 1 . If conversion sequence S 1 is neither better than nor worse than conversion sequence $\mathrm{S} 2, \mathrm{~S} 1$ and S 2 are said to be indistinguishable conversion sequences.

2 When comparing the basic forms of implicit conversion sequences (as defined in 13.3.3.1)

- a standard conversion sequence (13.3.3.1.1) is a better conversion sequence than a user-defined conversion sequence or an ellipsis conversion sequence, and
- a user-defined conversion sequence (13.3.3.1.2) is a better conversion sequence than an ellipsis conversion sequence (13.3.3.1.3).

3 Two implicit conversion sequences of the same form are indistinguishable conversion sequences unless one of the following rules applies:

- Standard conversion sequence S 1 is a better conversion sequence than standard conversion sequence S 2 if
- S 1 is a proper subsequence of S 2 (comparing the conversion sequences in the canonical form defined by 13.3.3.1.1, excluding any Lvalue Transformation; the identity conversion sequence is considered to be a subsequence of any non-identity conversion sequence) or, if not that,
- the rank of S1 is better than the rank of S2, or S1 and S2 have the same rank and are distinguishable by the rules in the paragraph below, or, if not that,
- S1 and S2 differ only in their qualification conversion and yield similar types T 1 and T 2 (4.4), respectively, and the cv-qualification signature of type T 1 is a proper subset of the cv-qualification signature of type T 2 , and $S 1$ is not the deprecated string literal array-to-pointer conversion (4.2). [Example:

```
int f(const int *);
int f(int *);
int i;
int j = f(&i); // calls f(int*)
- end example ] or, if not that,
```

- S1 and S2 are reference bindings (8.5.3) and neither refers to an implicit object parameter, and either S1 binds an lvalue reference to an lvalue and S 2 binds an rvalue reference or S 1 binds an rvalue reference to an rvalue and S 2 binds an lvalue reference.
[Example:

```
int i;
int f();
int g(const int&);
int g(const int&&);
int j = g(i); // calls g(const int&)
int k=g(f()) // calls g(const int&&)
struct A { A& operator<<(int); };
A& operator<<(A&&, char);
A() << 1; // calls A::operator<<(int)
A() << 'C'; // calls operator<<(A&&, char)
A a;
a << 1; // calls A::operator<<(int)
a << 'c'; // calls operator<< (A&&, char)
```

- end example] or, if not that,
- S1 and S2 are reference bindings (8.5.3), and the types to which the references refer are the same type except for top-level cv-qualifiers, and the type to which the reference initialized by S 2 refers is more cv-qualified than the type to which the reference initialized by S 1 refers. [Example:

```
int f(const int &);
int f(int &);
int g(const int &);
int g(int);
int i;
int j = f(i); // calls f(int &)
int k = g(i); // ambiguous
class X {
public:
    void f() const;
        void f();
};
void g(const X& a, X b)
{
            a.f(); // calls X::f() const
            b.f(); // calls X::f()
}
- end example ]
```

- User-defined conversion sequence U1 is a better conversion sequence than another user-defined conversion sequence $U 2$ if they contain the same user-defined conversion function or constructor and if the second standard
conversion sequence of U 1 is better than the second standard conversion sequence of U 2 . [Example:

```
struct A {
    operator short();
} a;
int f(int);
int f(float);
int i = f(a); // calls f(int), because short }->\mathrm{ int is
// better than short }->\mathrm{ float.
- end example ]
```

4 Standard conversion sequences are ordered by their ranks: an Exact Match is a better conversion than a Promotion, which is a better conversion than a Conversion. Two conversion sequences with the same rank are indistinguishable unless one of the following rules applies:

- A conversion that is not a conversion of a pointer, or pointer to member, to bool is better than another conversion that is such a conversion.
- If class B is derived directly or indirectly from class A, conversion of $B *$ to $A *$ is better than conversion of $B *$ to void*, and conversion of $A *$ to void* is better than conversion of $B *$ to void*.
- If class B is derived directly or indirectly from class A and class C is derived directly or indirectly from B,
- conversion of $\mathrm{C} *$ to $\mathrm{B} *$ is better than conversion of $\mathrm{C} *$ to $\mathrm{A} *$, [Example:

```
struct A {};
struct B : public A {};
struct C : public B {};
C *pc;
int f(A *);
int f(B *);
int i = f(pc); // calls f(B*)
- end example ]
```

- binding of an expression of type C to a reference of type $B \&$ is better than binding an expression of type C to a reference of type A\&,
- conversion of $\mathrm{A}:: *$ to $\mathrm{B}:: *$ is better than conversion of $\mathrm{A}:: *$ to $\mathrm{C}:: *$,
- conversion of C to B is better than conversion of C to A,
- conversion of $\mathrm{B} *$ to $\mathrm{A} *$ is better than conversion of $\mathrm{C} *$ to $\mathrm{A} *$,
- binding of an expression of type B to a reference of type $A \&$ is better than binding an expression of type C to a reference of type $A \&$,
— conversion of $\mathrm{B}:: *$ to $\mathrm{C}:: *$ is better than conversion of $\mathrm{A}:: *$ to $\mathrm{C}:: *$, and
- conversion of B to A is better than conversion of C to A.
[Note: compared conversion sequences will have different source types only in the context of comparing the second standard conversion sequence of an initialization by user-defined conversion (see 13.3.3); in all other contexts, the source types will be the same and the target types will be different. - end note]

13.4 Address of overloaded function

[over.over]
1 A use of an overloaded function name without arguments is resolved in certain contexts to a function, a pointer to function or a pointer to member function for a specific function from the overload set. A function template name is considered to name a set of overloaded functions in such contexts. The function selected is the one whose type matches the target type required in the context. The target can be

- an object or reference being initialized (8.5, 8.5.3),
— the left side of an assignment (5.17),
- a parameter of a function (5.2.2),
- a parameter of a user-defined operator (13.5),
- the return value of a function, operator function, or conversion (6.6.3),
— an explicit type conversion (5.2.3, 5.2.9, 5.4), or
- a non-type template-parameter (14.3.2).

The overloaded function name can be preceded by the \& operator. An overloaded function name shall not be used without arguments in contexts other than those listed. [Note: any redundant set of parentheses surrounding the overloaded function name is ignored (5.1). - end note]

2 If the name is a function template, template argument deduction is done (14.8.2.2), and if the argument deduction succeeds, the resulting template argument list is used to generate a single function template specialization, which is added to the set of overloaded functions considered. [Note: As described in 14.8.1, if deduction fails and the function template name is followed by an explicit template argument list, the template-id is then examined to see whether it identifies a single function template specialization. If it does, the template-id is considered to be an lvalue for that function template specialization. The target type is not used in that determination. - end note]

3 Non-member functions and static member functions match targets of type "pointer-to-function" or "reference-to-function." Nonstatic member functions match targets of type "pointer-to-member-function;" the function type of the pointer to member is used to select the member function from the set of overloaded member functions. If a non-static member function is selected, the reference to the overloaded function name is required to have the form of a pointer to member as described in 5.3.1.

4 If more than one function is selected, any function template specializations in the set are eliminated if the set also contains a non-template function, and any given function template specialization F1 is eliminated if the set contains a second function template specialization whose function template is more specialized than the function template of F1 according to the partial ordering rules of 14.5.5.2. After such eliminations, if any, there shall remain exactly one selected function.

5 [Example:

```
int f(double);
int f(int);
int (*pfd) (double) = &f; // selects f(double)
int (*pfi)(int) = &f; // selects f(int)
int (*pfe)(...) = &f; // error: type mismatch
int (&rfi)(int) = f; // selects f(int)
int (&rfd)(double) = f; // selects f(double)
```

```
void g() {
    (int (*)(int))&f; // cast expression as selector
}
```

The initialization of pfe is ill-formed because no $f()$ with type $\operatorname{int}(\ldots)$ has been declared, and not because of any ambiguity. For another example,

```
struct X {
    int f(int);
    static int f(long);
};
int (X::*p1)(int) = &X::f; // OK
int (*p2)(int) = &X::f; // error: mismatch
int (*p3)(long) = &X::f; // OK
int (X::*p4)(long) = &X::f; // error: mismatch
int (X::*p5)(int) = &(X::f); // error: wrong syntax for
    // pointer to member
int (*p6)(long) = &(X::f); // OK
_ end example ]
```

6 [Note: if $f()$ and $g()$ are both overloaded functions, the cross product of possibilities must be considered to resolve $\mathrm{f}(\& \mathrm{~g})$, or the equivalent expression $\mathrm{f}(\mathrm{g})$. - end note]

7 [Note: there are no standard conversions (clause 4) of one pointer-to-function type into another. In particular, even if B is a public base of D, we have

```
D* f();
B* (*p1)() = &f; // error
void g(D*);
void (*p2)(B*) = &g; // error
- end note]
```


13.5 Overloaded operators

1 A function declaration having one of the following operator-function-ids as its name declares an operator function. A function template declaration having one of the following operator-function-ids as its name declares an operator function template. A specialization of an operator function template is also an operator function. An operator function is said to implement the operator named in its operator-function-id.
operator-function-id:
operator operator

Draft

```
operator: one of
\begin{tabular}{lllllllll} 
new & delete & new [] & delete [] & & & & \\
+ & - & \(*\) & \(/\) & \(\%\) & - & \(\&\) & \(\mid\) & \(\sim\) \\
\(!\) & \(=\) & \(<\) & \(>\) & \(+=\) & \(-=\) & \(*=\) & \(/=\) & \(\%=\) \\
\(\sim=\) & \(\&=\) & \(\mid=\) & \(\ll\) & \(\gg\) & \(\gg=\) & \(\ll=\) & \(==\) & \(!=\) \\
\(<=\) & \(>=\) & \(\& \&\) & \(|\mid\) & ++ & -- &, & \(->*\) & \(->\)
\end{tabular}
() []
```

[Note: the last two operators are function call (5.2.2) and subscripting (5.2.1). The operators new [], delete [], (), and [] are formed from more than one token. - end note]

2 Both the unary and binary forms of
can be overloaded.
3 The following operators cannot be overloaded:
nor can the preprocessing symbols \# and \#\# (clause 16).
4 Operator functions are usually not called directly; instead they are invoked to evaluate the operators they implement (13.5.1-13.5.7). They can be explicitly called, however, using the operator-function-id as the name of the function in the function call syntax (5.2.2). [Example:

```
complex z = a.operator+(b); // complex z = a+b;
void* p = operator new(sizeof(int)*n);
_ end example ]
```

5 The allocation and deallocation functions, operator new, operator new [], operator delete and operator delete [], are described completely in 3.7.4. The attributes and restrictions found in the rest of this subclause do not apply to them unless explicitly stated in 3.7.4.

6 An operator function shall either be a non-static member function or be a non-member function and have at least one parameter whose type is a class, a reference to a class, an enumeration, or a reference to an enumeration. It is not possible to change the precedence, grouping, or number of operands of operators. The meaning of the operators =, (unary) \&, and , (comma), predefined for each type, can be changed for specific class and enumeration types by defining operator functions that implement these operators. Operator functions are inherited in the same manner as other base class functions.

7 The identities among certain predefined operators applied to basic types (for example, $++\mathrm{a} \equiv \mathrm{a}+=1$) need not hold for operator functions. Some predefined operators, such as $+=$, require an operand to be an lvalue when applied to basic types; this is not required by operator functions.

8 An operator function cannot have default arguments (8.3.6), except where explicitly stated below. Operator functions cannot have more or fewer parameters than the number required for the corresponding operator, as described in the rest of this subclause.

9 Operators not mentioned explicitly in subclauses 13.5 .3 through 13.5 .7 act as ordinary unary and binary operators obeying the rules of 13.5 .1 or 13.5.2.

13.5.1 Unary operators

[over.unary]
1 A prefix unary operator shall be implemented by a non-static member function (9.3) with no parameters or a non-member function with one parameter. Thus, for any prefix unary operator @, @x can be interpreted as either x.operator@() or operator@(x). If both forms of the operator function have been declared, the rules in 13.3.1.2 determine which, if any, interpretation is used. See 13.5 .7 for an explanation of the postfix unary operators ++ and --.

2 The unary and binary forms of the same operator are considered to have the same name. [Note: consequently, a unary operator can hide a binary operator from an enclosing scope, and vice versa. - end note]

13.5.2 Binary operators

[over.binary]
1 A binary operator shall be implemented either by a non-static member function (9.3) with one parameter or by a nonmember function with two parameters. Thus, for any binary operator $@, x @ y$ can be interpreted as either x . operator$@(y)$ or operator@ (x, y). If both forms of the operator function have been declared, the rules in 13.3.1.2 determine which, if any, interpretation is used.

13.5.3 Assignment

[over.ass]
1 An assignment operator shall be implemented by a non-static member function with exactly one parameter. Because a copy assignment operator operator= is implicitly declared for a class if not declared by the user (12.8), a base class assignment operator is always hidden by the copy assignment operator of the derived class.

2 Any assignment operator, even the copy assignment operator, can be virtual. [Note: for a derived class D with a base class B for which a virtual copy assignment has been declared, the copy assignment operator in D does not override B's virtual copy assignment operator. [Example:

```
struct B {
    virtual int operator= (int);
    virtual B& operator= (const B&);
};
struct D : B {
    virtual int operator= (int);
    virtual D& operator= (const B&);
};
D dobj1;
D dobj2;
B* bptr = &dobj1;
void f() {
    bptr->operator=(99); // calls D::operator=(int)
    *bptr = 99; // ditto
    bptr->operator=(dobj2); // calls D::operator=(const B&)
    *bptr = dobj2; // ditto
    dobj1 = dobj2; // calls implicitly-declared
                                // D::operator=(const D&)
}
```

```
—end example ] —end note ]
```


13.5.4 Function call

1 operator() shall be a non-static member function with an arbitrary number of parameters. It can have default arguments. It implements the function call syntax
postfix-expression (expression-list ${ }_{\text {opt }}$)
where the postfix-expression evaluates to a class object and the possibly empty expression-list matches the parameter list of an operator () member function of the class. Thus, a call $\mathrm{x}(\arg 1, \ldots)$ is interpreted as x. operator () (arg1, ...) for a class object x of type T if $\mathrm{T}:$:operator () (T1, T2, T3) exists and if the operator is selected as the best match function by the overload resolution mechanism (13.3.3).

13.5.5 Subscripting

[over.sub]
1 operator [] shall be a non-static member function with exactly one parameter. It implements the subscripting syntax
postfix-expression [expression]
Thus, a subscripting expression $\mathrm{x}[\mathrm{y}]$ is interpreted as x .operator [] (y) for a class object x of type T if $\mathrm{T}:$:operator [] (T1) exists and if the operator is selected as the best match function by the overload resolution mechanism (13.3.3).

13.5.6 Class member access

1 operator-> shall be a non-static member function taking no parameters. It implements the class member access syntax that uses $->$.
postfix-expression \rightarrow template ${ }_{\text {opt }}$ id-expression
postfix-expression \rightarrow pseudo-destructor-name
An expression $x->m$ is interpreted as (x . operator $->()$) $->m$ for a class object x of type T if $\mathrm{T}:$: operator $->$ () exists and if the operator is selected as the best match function by the overload resolution mechanism (13.3).

13.5.7 Increment and decrement
 [over.inc]

1 The user-defined function called operator++ implements the prefix and postfix ++ operator. If this function is a member function with no parameters, or a non-member function with one parameter of class or enumeration type, it defines the prefix increment operator ++ for objects of that type. If the function is a member function with one parameter (which shall be of type int) or a non-member function with two parameters (the second of which shall be of type int), it defines the postfix increment operator ++ for objects of that type. When the postfix increment is called as a result of using the ++ operator, the int argument will have value zero. ${ }^{127)}$ [Example:

```
class X {
public:
    X& operator++(); // prefix ++a
    X operator++(int); // postfix a++
};
class Y { };
Y& operator++(Y&); // prefix ++b
```

[^95]```
Y operator++(Y&, int); // postfix b++
void f(X a, Y b) {
 ++a; // a.operator++();
 a++; // a.operator++(0);
 ++b; // operator++(b);
 b++; // operator++(b, 0);
 a.operator++(); // explicit call: like ++a;
 a.operator++(0); // explicit call: like a++;
 operator++(b); // explicit call: like ++b;
 operator++(b, 0); // explicit call: like b++;
}
- end example]
```

2 The prefix and postfix decrement operators -- are handled analogously.

### 13.6 Built-in operators

[over.built]
1 The candidate operator functions that represent the built-in operators defined in clause 5 are specified in this subclause. These candidate functions participate in the operator overload resolution process as described in 13.3.1.2 and are used for no other purpose. [Note: because built-in operators take only operands with non-class type, and operator overload resolution occurs only when an operand expression originally has class or enumeration type, operator overload resolution can resolve to a built-in operator only when an operand has a class type that has a user-defined conversion to a non-class type appropriate for the operator, or when an operand has an enumeration type that can be converted to a type appropriate for the operator. Also note that some of the candidate operator functions given in this subclause are more permissive than the built-in operators themselves. As described in 13.3.1.2, after a built-in operator is selected by overload resolution the expression is subject to the requirements for the built-in operator given in clause 5 , and therefore to any additional semantic constraints given there. If there is a user-written candidate with the same name and parameter types as a built-in candidate operator function, the built-in operator function is hidden and is not included in the set of candidate functions. - end note]

2 In this subclause, the term promoted integral type is used to refer to those integral types which are preserved by integral promotion (including e.g. int and long but excluding e.g. char). Similarly, the term promoted arithmetic type refers to floating types plus promoted integral types. [Note: in all cases where a promoted integral type or promoted arithmetic type is required, an operand of enumeration type will be acceptable by way of the integral promotions. - end note ]

3 For every pair ( $T, V Q$ ), where $T$ is an arithmetic type, and $V Q$ is either volatile or empty, there exist candidate operator functions of the form

```
VQ T& operator++(VQ T&);
T operator++(VQ T&, int);
```

4 For every pair ( $T, V Q$ ), where $T$ is an arithmetic type other than bool, and $V Q$ is either volatile or empty, there exist candidate operator functions of the form

```
VQ T& operator--(VQ T&);
T operator--(VQ T&, int);
```

5 For every pair ( $T, V Q$ ), where $T$ is a cv-qualified or cv-unqualified object type, and $V Q$ is either volatile or empty, there exist candidate operator functions of the form

```
T*VQ& operator++(T*VQ&);
T*VQ& operator--(T*VQ&);
T* operator++(T*VQ&, int);
T* operator--(T*VQ&, int);
```

6 For every cv-qualified or cv-unqualified object type $T$, there exist candidate operator functions of the form

```
T& operator*(T*);
```

7 For every function type $T$, there exist candidate operator functions of the form
T\& operator*( $T *$ );

8 For every type $T$, there exist candidate operator functions of the form

```
T* operator+(T*);
```

9 For every promoted arithmetic type $T$, there exist candidate operator functions of the form

```
T operator+(T);
T operator-(T);
```

10 For every promoted integral type $T$, there exist candidate operator functions of the form

```
T operator~(T);
```

11 For every quintuple ( $C 1, C 2, T, C V 1, C V 2$ ), where $C 2$ is a class type, $C 1$ is the same type as $C 2$ or is a derived class of $\mathrm{C} 2, T$ is an object type or a function type, and $C V 1$ and $C V 2$ are $c v$-qualifier-seqs, there exist candidate operator functions of the form

```
CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
```

where $C V 12$ is the union of $C V 1$ and $C V 2$.
12 For every pair of promoted arithmetic types $L$ and $R$, there exist candidate operator functions of the form

| $L R$ | operator*(L, $R$ ); |
| :---: | :---: |
| $L R$ | operator/( $L, R$ ) ; |
| $L R$ | operator+(L, R ) ; |
| $L R$ | operator-( $L, R$ ); |
| bool | operator< ( $L, R$ ); |
| bool | operator>( $L, R$ ); |
| bool | operator<=(L, R); |
| bool | operator>=( $L, R$ ); |
| bool | operator $=(L, R)$; |
| bool | operator! $=(L, R)$; |

where $L R$ is the result of the usual arithmetic conversions between types $L$ and $R$.
13 For every cv-qualified or cv-unqualified object type $T$ there exist candidate operator functions of the form

```
T* operator+(T*, std::ptrdiff_t);
T& operator[](T*, std::ptrdiff_t);
T* operator-(T*, std::ptrdiff_t);
T* operator+(std::ptrdiff_t, T*);
T& operator[](std::ptrdiff_t, T*);
```

14 For every $T$, where $T$ is a pointer to object type, there exist candidate operator functions of the form

```
std::ptrdiff_t operator-(T, T);
```

15 For every pointer or enumeration type $T$, there exist candidate operator functions of the form

```
bool operator<(T, T);
bool operator>(T, T);
bool operator<=(T,T);
bool operator>=(T, T);
bool operator==(T, T);
bool operator!=(T, T);
```

16 For every pointer to member type $T$, there exist candidate operator functions of the form

```
bool operator==(T, T);
bool operator!=(T, T);
```

17 For every pair of promoted integral types $L$ and $R$, there exist candidate operator functions of the form

| $L R$ | operator\% $(L, R) ;$ |
| :--- | :--- |
| $L R$ | operator\& $(L, R) ;$ |
| $L R$ | operator ${ }^{\wedge}(L, R) ;$ |
| $L R$ | operatorl $(L, R) ;$ |
| $L$ | operator \ll $(L, R) ;$ |
| $L$ | operator>> $(L, R) ;$ |

where $L R$ is the result of the usual arithmetic conversions between types $L$ and $R$.
18 For every triple $(L, V Q, R)$, where $L$ is an arithmetic type, $V Q$ is either volatile or empty, and $R$ is a promoted arithmetic type, there exist candidate operator functions of the form

```
VQ L& operator=(VQ L&, R);
VQ L& operator*=(VQ L&, R);
VQ L& operator/=(VQ L&, R);
VQ L& operator+=(VQ L&, R);
VQ L& operator-=(VQ L&, R);
```

19 For every pair $(T, V Q)$, where $T$ is any type and $V Q$ is either volatile or empty, there exist candidate operator functions of the form

```
T*VQ& operator=(T*VQ&,T*);
```

20 For every pair $(T, V Q)$, where $T$ is an enumeration or pointer to member type and $V Q$ is either volatile or empty, there exist candidate operator functions of the form

```
VQ T& operator=(VQ T&, T);
```

21 For every pair $(T, V Q)$, where $T$ is a cv-qualified or cv-unqualified object type and $V Q$ is either volatile or empty, there exist candidate operator functions of the form

```
T*VQ& operator+=(T*VQ&, std::ptrdiff_t);
T*VQ& operator-=(T*VQ&, std::ptrdiff_t);
```

22 For every triple $(L, V Q, R)$, where $L$ is an integral type, $V Q$ is either volatile or empty, and $R$ is a promoted integral type, there exist candidate operator functions of the form

```
VQ L& operator%=(VQ L&, R);
VQ L& operator<<=(VQ L&, R);
VQ L& operator>>=(VQ L&, R);
VQ L& operator&=(VQ L&, R);
VQ L& operator^=(VQ L&, R);
VQ L& operator|=(VQ L&, R);
```

There also exist candidate operator functions of the form

```
bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);
```

For every pair of promoted arithmetic types $L$ and $R$, there exist candidate operator functions of the form

```
LR operator?(bool, L, R);
```

where $L R$ is the result of the usual arithmetic conversions between types $L$ and $R$. [Note: as with all these descriptions of candidate functions, this declaration serves only to describe the built-in operator for purposes of overload resolution. The operator "?" cannot be overloaded. - end note ]
operator?(bool, T, T);

## Chapter 14 Templates

## [temp]

1 A template defines a family of classes or functions.
template-declaration:
export $_{\text {opt }}$ template <template-parameter-list> declaration
template-parameter-list:
template-parameter
template-parameter-list, template-parameter
[Note: The > token following the template-parameter-list of a template-declaration may be the product of replacing a >> token by two consecutive $>$ tokens (14.2). - end note ]

The declaration in a template-declaration shall

- declare or define a function or a class, or
- define a member function, a member class or a static data member of a class template or of a class nested within a class template, or
- define a member template of a class or class template.

A template-declaration is a declaration. A template-declaration is also a definition if its declaration defines a function, a class, or a static data member.

2 A template-declaration can appear only as a namespace scope or class scope declaration. In a function template declaration, the last component of the declarator-id shall be a template-name or operator-function-id (i.e., not a template-id). [Note: in a class template declaration, if the class name is a simple-template-id, the declaration declares a class template partial specialization (14.5.4). - end note ]

3 In a template-declaration, explicit specialization, or explicit instantiation the init-declarator-list in the declaration shall contain at most one declarator. When such a declaration is used to declare a class template, no declarator is permitted.

4 A template name has linkage (3.5). A non-member function template can have internal linkage; any other template name shall have external linkage. Entities generated from a template with internal linkage are distinct from all entities generated in other translation units. A template, a template explicit specialization (14.7.3), and a class template partial specialization shall not have C linkage. Use of a linkage specification other than C or $\mathrm{C}++$ with any of these constructs is conditionally-supported, with implementation-defined semantics. Template definitions shall obey the one definition rule (3.2). [ Note: default arguments for function templates and for member functions of class templates are considered definitions for the purpose of template instantiation (14.5) and must also obey the one definition rule. - end note ]

5 A class template shall not have the same name as any other template, class, function, object, enumeration, enumerator, namespace, or type in the same scope (3.3), except as specified in (14.5.4). Except that a function template can be
overloaded either by (non-template) functions with the same name or by other function templates with the same name (14.8.3), a template name declared in namespace scope or in class scope shall be unique in that scope.

6 A template-declaration may be preceded by the export keyword. Such a template is said to be exported. Declaring exported a class template is equivalent to declaring exported all of its non-inline member functions, static data members, member classes, member class templates, and non-inline member function templates.

7 If a template is exported in one translation unit, it shall be exported in all translation units in which it appears; no diagnostic is required. A declaration of an exported template shall appear with the export keyword before any point of instantiation (14.6.4.1) of that template in that translation unit. In addition, the first declaration of an exported template containing the export keyword must not follow the definition of that template. The export keyword shall not be used in a friend declaration.

8 Templates defined in an unnamed namespace, inline functions, and inline function templates shall not be exported. An exported non-class template shall be defined only once in a program; no diagnostic is required. An exported non-class template need only be declared (and not necessarily defined) in a translation unit in which it is instantiated.

9 A non-exported non-class template must be defined in every translation unit in which it is implicitly instantiated (14.7.1), unless the corresponding specialization is explicitly instantiated (14.7.2) in some translation unit; no diagnostic is required.

10 [Note: an implementation may require that a translation unit containing the definition of an exported template be compiled before any translation unit containing an instantiation of that template. -end note]

### 14.1 Template parameters

[temp.param]
1 The syntax for template-parameters is:

```
template-parameter:
 type-parameter
 parameter-declaration
type-parameter:
 class identifier opt
 class identifier opt = type-id
 typename identifier
 typename identifier opt = type-id
 template <template-parameter-list> class identifieropt
 template < template-parameter-list> class identifier opt =id-expression
```

[Note: The $>$ token following the template-parameter-list of a type-parameter may be the product of replacing a >> token by two consecutive > tokens (14.2). - end note ]

2 There is no semantic difference between class and typename in a template-parameter. typename followed by an unqualified-id names a template type parameter. typename followed by a qualified-id denotes the type in a non-type ${ }^{128)}$ parameter-declaration. A storage class shall not be specified in a template-parameter declaration. [Note: a template parameter may be a class template. For example,

```
template<class T> class myarray { /*... */ };
```

[^96]```
template<class K, class V, template<class T> class C = myarray>
class Map {
    C<K> key;
    C<V> value;
    // ...
};
- end note]
```

3 A type-parameter defines its identifier to be a typedef-name (if declared with class or typename) or template-name (if declared with template) in the scope of the template declaration. [Note: because of the name lookup rules, a templateparameter that could be interpreted as either a non-type template-parameter or a type-parameter (because its identifier is the name of an already existing class) is taken as a type-parameter. For example,

```
class T { /* ... */ };
int i;
template<class T, T i> void f(T t)
{
    T t1 = i; // template-parameters T and i
    ::T t2 = ::i; // global namespace members T and i
}
```

Here, the template f has a type-parameter called T , rather than an unned non-type template-parameter of class T . - end note]

4 A non-type template-parameter shall have one of the following (optionally $c v$-qualified) types:

- integral or enumeration type,
- pointer to object or pointer to function,
- reference to object or reference to function,
- pointer to member.

5 [Note: other types are disallowed either explicitly below or implicitly by the rules governing the form of templatearguments (14.3). -end note] The top-level cv-qualifiers on the template-parameter are ignored when determining its type.

6 A non-type non-reference template-parameter is not an lvalue. It shall not be assigned to or in any other way have its value changed. A non-type non-reference template-parameter cannot have its address taken. When a non-type non-reference template-parameter is used as an initializer for a reference, a temporary is always used. [Example:

```
template<const X& x, int i> void f()
{
    i++; // error: change of template-parameter value
    &x; // OK
    &i; // error: address of non-reference template-parameter
    int& ri = i; // error: non-const reference bound to temporary
    const int& cri = i; // OK: const reference bound to temporary
```

```
}
- end example ]
```

7 A non-type template-parameter shall not be declared to have floating point, class, or void type. [Example:

```
template<double d> class X; // error
template<double* pd> class Y; // OK
template<double& rd> class Z; // OK
- end example ]
```

8 A non-type template-parameter of type "array of T" or "function returning T" is adjusted to be of type "pointer to T" or "pointer to function returning T", respectively. [Example:

```
template<int *a> struct R {/*...*/ };
template<int b[5]> struct S {/*...*/ };
int p;
R<&p> w; // OK
S<&p> x; // OK due to parameter adjustment
int v[5];
R<v> y; // OK due to implicit argument conversion
S<v> z; // OK due to both adjustment and conversion
- end example ]
```

9 A default template-argument is a template-argument (14.3) specified after $=$ in a template-parameter. A default tem-plate-argument may be specified for any kind of template-parameter (type, non-type, template). A default template-argument may be specified in a template declaration. A default template-argument shall not be specified in the template-parameter-lists of the definition of a member of a class template that appears outside of the member's class. A default template-argument shall not be specified in a friend class template declaration. If a friend function template declaration specifies a default template-argument, that declaration shall be a definition and shall be the only declaration of the function template in the translation unit.

10 The set of default template-arguments available for use with a template declaration or definition is obtained by merging the default arguments from the definition (if in scope) and all declarations in scope in the same way default function arguments are (8.3.6). [Example:

```
template<class T1, class T2 = int> class A;
template<class T1 = int, class T2> class A;
```

is equivalent to

```
template<class T1 = int, class T2 = int> class A;
- end example ]
```

11 If a template-parameter of a class template has a default template-argument, all subsequent template-parameters shall have a default template-argument supplied. [Note: This is not a requirement for function templates because template arguments might be deduced (14.8.2). [Example:

```
template<class T1 = int, class T2> class B; // error
```

- end example] -end note]

12 A template-parameter shall not be given default arguments by two different declarations in the same scope. [Example:

```
template<class T = int> class X;
template<class T = int> class X { /*... */ }; // error
- end example ]
```

13 The scope of a template-parameter extends from its point of declaration until the end of its template. In particular, a template-parameter can be used in the declaration of subsequent template-parameters and their default arguments. [Example:

```
template<class T, T* p, class U = T> class X { /* ...*/ };
template<class T> void f(T* p = new T);
_ end example ]
```

14 A template-parameter shall not be used in its own default argument.
15 When parsing a default template-argument for a non-type template-parameter, the first non-nested > is taken as the end of the template-parameter-list rather than a greater-than operator. [Example:

```
template<int i = 3 > 4 > // syntax error
    class X { /* ... */ };
template<int i = (3 > 4) > // OK
    class Y { /* ... */ };
- end example ]
```

16 A template-parameter of a template template-parameter is permitted to have a default template-argument. When such default arguments are specified, they apply to the template template-parameter in the scope of the template templateparameter. [Example:

```
template <class T = float> struct B {};
template <template <class TT = float> class T> struct A {
    inline void f();
    inline void g();
};
template <template <class TT> class T> void A<T>::f() {
    T<> t; // error - TT has no default template argument
}
template <template <class TT = char> class T> void A<T>::g() {
        T<> t; // OK-T<char>
_ end example ]
```


14.2 Names of template specializations

[temp.names]
1 A template specialization (14.7) can be referred to by a template-id:

```
simple-template-id:
    template-name < template-argument-list opt >
template-id:
    simple-template-id
    operator-function-id < template-argument-list opt >
template-name:
    identifier
template-argument-list:
    template-argument
    template-argument-list , template-argument
template-argument:
    assignment-expression
    type-id
    id-expression
```

[Note: the name lookup rules (3.4) are used to associate the use of a name with a template declaration; that is, to identify a name as a template-name. -end note]

2 For a template-name to be explicitly qualified by the template arguments, the name must be known to refer to a template.
3 After name lookup (3.4) finds that a name is a template-name, or that an operator-function-id refers to a set of overloaded functions any member of which is a function template, if this is followed by a < , the < is always taken as the delimiter of a template-argument-list and never as the less-than operator. When parsing a template-argument-list, the first nonnested $>^{129)}$ is taken as the ending delimiter rather than a greater-than operator. Similarly, the first non-nested \gg is treated as two consecutive but distinct $>$ tokens, the first of which is taken as the end of the template-argument-list and completes the template-id. [Note: The second $>$ token produced by this replacement rule may terminate an enclosing template-id construct or it may be part of a different construct (e.g. a cast). - end note] [Example:

```
template<int i> class X { /*... */ };
X< 1>2 > x1; // syntax error
X<(1>2)> // OK
template<class T> class Y { /*... */ };
Y<X<1>> x3; // OK, same as Y<X<1> > x3;
Y<X<6>>1>> x4; // syntax error
Y<X<(6>>1)>> < <5; // OK
- end example ]
```

4 When the name of a member template specialization appears after . or $->$ in a postfix-expression, or after a nested-namespecifier in a qualified-id, and the postfix-expression or qualified-id explicitly depends on a template-parameter (14.6.2) but does not refer to a member of the current instantiation (14.6.2.1), the member template name must be prefixed by the keyword template. Otherwise the name is assumed to name a non-template. [Example:

```
class X {
```

public:

[^97]```
 template<std::size_t> X* alloc();
 template<std::size_t> static X* adjust();
};
template<class T> void f(T* p)
{
 T* p1 = p->alloc<200>();
 // ill-formed: < means less than
 T* p2 = p->template alloc<200>();
 // OK: < starts template argument list
 T::adjust<100>();
 // ill-formed: < means less than
 T::template adjust<100>();
 // OK: < starts template argument list
}
- end example]
```

5 If a name prefixed by the keyword template is not the name of a template, the program is ill-formed. [Note: the keyword template may not be applied to non-template members of class templates. -end note] [Note: as is the case with the typename prefix, the template prefix is allowed in cases where it is not strictly necessary; i.e., when the nested-name-specifier or the expression on the left of the $->$ or . is not dependent on a template-parameter, or the use does not appear in the scope of a template. - end note ]
6 A simple-template-id that names a class template specialization is a class-name (clause 9).

### 14.3 Template arguments

[temp.arg]
1 There are three forms of template-argument, corresponding to the three forms of template-parameter: type, non-type and template. The type and form of each template-argument specified in a template-id shall match the type and form specified for the corresponding parameter declared by the template in its template-parameter-list. [Example:

```
template<class T> class Array {
 T* v;
 int sz;
public:
 explicit Array(int);
 T& operator[](int);
 T& elem(int i) { return v[i]; }
 // ...
};
Array<int> v1(20);
typedef std::complex<double> dcomplex; // std::complex is a standard
 // library template
Array<dcomplex> v2(30);
Array<dcomplex> v3(40);
void bar() {
```

```
 v1[3] = 7;
 v2[3] = v3.elem(4) = dcomplex(7,8);
}
_ end example]
```

2 In a template-argument, an ambiguity between a type-id and an expression is resolved to a type-id, regardless of the form of the corresponding template-parameter. ${ }^{130)}$ [ Example:

```
template<class T> void f();
template<int I> void f();
void g()
{
 f<int()>(); // int() is a type-id: call the first f()
}
_ end example]
```

3 The name of a template-argument shall be accessible at the point where it is used as a template-argument. [Note: if the name of the template-argument is accessible at the point where it is used as a template-argument, there is no further access restriction in the resulting instantiation where the corresponding template-parameter name is used. -end note ] [ Example:

```
template<class T> class X {
 static T t;
};
class Y {
private:
 struct S { /* ... */ };
 X<S> x; // OK: S is accessible
 // X<Y : : S> has a static member of type Y : :S
 // OK: even though Y::S is private
};
X<Y::S> y; // error: S not accessible
```

—end example ] For a template-argument that is a class type or a class template, the template definition has no special access rights to the members of the template-argument. [Example:

```
template <template <class TT> class T> class A {
 typename T<int>::S s;
};
template <class U> class B {
private:
 struct S { /* ... */ };
```

[^98]```
};
A<B> b;
    // ill-formed: A has no access to B: :S
- end example ]
```

4 When default template-arguments are used, a template-argument list can be empty. In that case the empty <> brackets shall still be used as the template-argument-list. [Example:

```
template<class T = char> class String;
String<>* p; // OK:String<char>
String* q; // syntax error
- end example ]
```

5 An explicit destructor call (12.4) for an object that has a type that is a class template specialization may explicitly specify the template-arguments. [Example:

```
template<class T> struct A {
    ~A();
};
void f(A<int>* p, A<int>* q) {
    p->A<int>::~A(); // OK: destructor call
    q->A<int>::~A<int>(); // OK: destructor call
}
- end example ]
```

6 If the use of a template-argument gives rise to an ill-formed construct in the instantiation of a template specialization, the program is ill-formed.

7 When the template in a template-id is an overloaded function template, both non-template functions in the overload set and function templates in the overload set for which the template-arguments do not match the template-parameters are ignored. If none of the function templates have matching template-parameters, the program is ill-formed.

14.3.1 Template type arguments

[temp.arg.type]
1 A template-argument for a template-parameter which is a type shall be a type-id.
2 A type without linkage (3.5) shall not be used as a template-argument for a template type-parameter.
[Example:

```
template <class T> class X { /* ... */ };
void f()
{
    struct S { /* ... */ };
    X<S> x3; // error: local type used as template-argument
    X<S*> x4; // error: pointer to local type used as template-argument
}
```

- end example] [Note: a template type argument may be an incomplete type (3.9). -end note]

3 If a declaration acquires a function type through a type dependent on a template-parameter and this causes a declaration that does not use the syntactic form of a function declarator to have function type, the program is ill-formed. [Example:

```
template<class T> struct A {
    static T t;
};
typedef int function();
A<function> a; // ill-formed: would declare A<function>::t
// as a static member function
_ end example ]
```

4 If a template-argument for a template-parameter T names a type that is a reference to a type A , an attempt to create the type "lvalue reference to $c v$ T" creates the type "lvalue reference to A," while an attempt to create the type type "rvalue reference to $c v$ T" creates the type T [Example:

```
template <class T> class X {
            void f(const T&);
            void g(T&&);
    /* ... */
};
X<int&> x1; // X<int&>::f has the parameter type int&
// }\textrm{X}<\mathrm{ int&>: :g has the parameter type int&
X<const int&&> x2; // X<const int&&>::f has the parameter type const int&
// X<const int&&>::g has the parameter type const int&&
- end example ]
```


14.3.2 Template non-type arguments

[temp.arg.nontype]
1 A template-argument for a non-type, non-template template-parameter shall be one of:

- an integral constant-expression of integral or enumeration type; or
- the name of a non-type template-parameter; or
- the address of an object or function with external linkage, including function templates and function template-ids but excluding non-static class members, expressed as \& id-expression where the \& is optional if the name refers to a function or array, or if the corresponding template-parameter is a reference; or
- a constant expression that evaluates to a null pointer value (4.10); or
- a constant expression that evaluates to a null member pointer value (4.11); or
- a pointer to member expressed as described in 5.3.1.

2 [Note: A string literal (2.13.4) does not satisfy the requirements of any of these categories and thus is not an acceptable template-argument. [Example:

```
template<class T, char* p> class X {
    // ..
    X();
```

Draft

```
        X(const char* q) { /* ... */ }
};
X<int,"Studebaker"> x1; // error: string literal as template-argument
char p[] = "Vivisectionist";
X<int,p> x2; // OK
- end example ] - end note ]
```

3 [Note: Addresses of array elements and names or addresses of non-static class members are not acceptable templatearguments. [Example:

```
template<int* p> class X { };
int a[10];
struct S { int m; static int s; } s;
X<&a[2]> x3; // error: address of array element
X<&s.m> x4; // error: address of non-static member
X<&s.s> x5; // error: &S::s must be used
X<&S::s> x6; // OK: address of static member
- end example ] - end note ]
```

4 [Note: Temporaries, unnamed lvalues, and named lvalues that do not have external linkage are not acceptable templatearguments when the corresponding template-parameter has reference type. [Example:

```
template<const int& CRI> struct B { /* ... */ };
B<1> b2; // error: temporary would be required for template argument
int c = 1;
B<c> b1; // OK
- end example ] - end note ]
```

5 The following conversions are performed on each expression used as a non-type template-argument. If a non-type template-argument cannot be converted to the type of the corresponding template-parameter then the program is illformed.

- for a non-type template-parameter of integral or enumeration type, integral promotions (4.5) and integral conversions (4.7) are applied.
- for a non-type template-parameter of type pointer to object, qualification conversions (4.4) and the array-topointer conversion (4.2) are applied. [Note: In particular, neither the null pointer conversion (4.10) nor the derived-to-base conversion (4.10) are applied. Although 0 is a valid template-argument for a non-type templateparameter of integral type, it is not a valid template-argument for a non-type template-parameter of pointer type. However, (int*) 0 is a valid template-argument for a non-type template-parameter of type "pointer to int." end note]
- For a non-type template-parameter of type reference to object, no conversions apply. The type referred to by the reference may be more cv-qualified than the (otherwise identical) type of the template-argument. The templateparameter is bound directly to the template-argument, which must be an lvalue.
- For a non-type template-parameter of type pointer to function, only the function-to-pointer conversion (4.3) is applied. If the template-argument represents a set of overloaded functions (or a pointer to such), the matching function is selected from the set (13.4).
- For a non-type template-parameter of type reference to function, no conversions apply. If the template-argument represents a set of overloaded functions, the matching function is selected from the set (13.4).
- For a non-type template-parameter of type pointer to member function, no conversions apply. If the templateargument represents a set of overloaded member functions, the matching member function is selected from the set (13.4).
- For a non-type template-parameter of type pointer to data member, qualification conversions (4.4) are applied.
[Example:

```
template<const int* pci> struct X { /* ...*/ };
int ai[10];
X<ai> xi; // array to pointer and qualification conversions
struct Y { /* ... */ };
template<const Y& b> struct Z { /*...*/ };
Y y;
Z<y> z; // no conversion, but note extra cv-qualification
template<int (&pa)[5]> struct W { /* ...*/ };
int b[5];
W<b> W; // no conversion
void f(char);
void f(int);
template<void (*pf)(int)> struct A { /* ...*/ };
A<&f> a; // selects f(int)
_ end example ]
```


14.3.3 Template template arguments

[temp.arg.template]
1 A template-argument for a template template-parameter shall be the name of a class template, expressed as id-expression. Only primary class templates are considered when matching the template template argument with the corresponding parameter; partial specializations are not considered even if their parameter lists match that of the template template parameter.
2 Any partial specializations (14.5.4) associated with the primary class template are considered when a specialization based on the template template-parameter is instantiated. If a specialization is not visible at the point of instantiation, and it would have been selected had it been visible, the program is ill-formed; no diagnostic is required. [Example:

Draft

```
template<class T> class A { // primary template
    int x;
};
template<class T> class A<T*> { // partial specialization
    long x;
};
template<template<class U> class V> class C {
    V<int> y;
    V<int*> z;
};
C<A> C; // V<int> within }\textrm{C}<\textrm{A}> uses the primary template
    // so c.y.x has type int
    // V<int*> within C<A> uses the partial specialization,
    // so c.z.x has type long
```

- end example]

14.4 Type equivalence

[temp.type]
Two template-ids refer to the same class or function if

- their template-names refer to the same template, and
- their corresponding type template-arguments are the same type, and
- their corresponding non-type template-arguments of integral or enumeration type have identical values, and
- their corresponding non-type template-arguments of pointer type refer to the same external object or function or are both the null pointer value, and
- their corresponding non-type template-arguments of pointer-to-member type refer to the same class member or are both the null member pointer value, and
- their corresponding non-type template-arguments of reference type refer to the same external object or function, and
- their corresponding template template-arguments refer to the same template.
[Example:

```
template<class E, int size> class buffer { /*... */ };
buffer<char,2*512> x;
buffer<char,1024> y;
```

declares x and y to be of the same type, and

```
template<class T, void(*err_fct)()> class list { /* ...*/ };
list<int,&error_handler1> x1;
list<int,&error_handler2> x2;
list<int,&error_handler2> x3;
list<char,&error_handler2> x4;
```

declares x 2 and x 3 to be of the same type. Their type differs from the types of x 1 and x 4 . - end example]

14.5 Template declarations

1 A template-id, that is, the template-name followed by a template-argument-list shall not be specified in the declaration of a primary template declaration. [Example:

```
template<class T1, class T2, int I> class A<T1, T2, I> { }; // error
template<class T1, int I> void sort<T1, I>(T1 data[I]); // error
```

—end example] [Note: however, this syntax is allowed in class template partial specializations (14.5.4). -end note]
2 For purposes of name lookup and instantiation, default arguments of function templates and default arguments of member functions of class templates are considered definitions; each default argument is a separate definition which is unrelated to the function template definition or to any other default arguments.

14.5.1 Class templates

[temp.class]
1 A class template defines the layout and operations for an unbounded set of related types. [Example: a single class template List might provide a common definition for list of int, list of float, and list of pointers to Shapes. - end example]
[Example: An array class template might be declared like this:

```
template<class T> class Array {
    T* v;
    int sz;
public:
    explicit Array(int);
    T& operator[](int);
    T& elem(int i) { return v[i]; }
    // ...
};
```

2 The prefix template <class T > specifies that a template is being declared and that a type-name T will be used in the declaration. In other words, Array is a parameterized type with T as its parameter. - end example]

3 When a member function, a member class, a static data member or a member template of a class template is defined outside of the class template definition, the member definition is defined as a template definition in which the templateparameters are those of the class template. The names of the template parameters used in the definition of the member may be different from the template parameter names used in the class template definition. The template argument list following the class template name in the member definition shall name the parameters in the same order as the one used in the template parameter list of the member. [Example:

```
template<class T1, class T2> struct A {
    void f1();
    void f2();
};
template<class T2, class T1> void A<T2,T1>::f1() { } // OK
template<class T2, class T1> void A<T1,T2>::f2() { } // error
_ end example ]
```

4 In a redeclaration, partial specialization, explicit specialization or explicit instantiation of a class template, the class-key shall agree in kind with the original class template declaration (7.1.5.3).

14.5.1.1 Member functions of class templates

[temp.mem.func]
1 A member function of a class template may be defined outside of the class template definition in which it is declared. [Example:

```
template<class T> class Array {
    T* v;
    int sz;
public:
    explicit Array(int);
    T& operator[](int);
    T& elem(int i) { return v[i]; }
    // ...
};
```

declares three function templates. The subscript function might be defined like this:

```
template<class T> T& Array<T>::operator[](int i)
{
    if (i<0 || sz<=i) error("Array: range error");
    return v[i];
}
_ end example ]
```

2 The template-arguments for a member function of a class template are determined by the template-arguments of the type of the object for which the member function is called. [Example: the template-argument for Array<T> : : operator [] () will be determined by the Array to which the subscripting operation is applied.

```
Array<int> v1(20);
Array<dcomplex> v2(30);
v1[3] = 7; // Array<int>::operator[]()
v2[3] = dcomplex(7,8); // Array<dcomplex>::operator[] ()
_ end example ]
```


14.5.1.2 Member classes of class templates

[temp.mem.class]
1 A class member of a class template may be defined outside the class template definition in which it is declared. [Note: the class member must be defined before its first use that requires an instantiation (14.7.1). For example,

```
template<class T> struct A {
    class B;
};
A<int>::B* b1; // OK: requires A to be defined but not A::B
template<class T> class A<T>::B { };
A<int>::B b2; // OK: requires A::B to be defined
```

- end note]

14.5.1.3 Static data members of class templates

[temp.static]
1 A definition for a static data member may be provided in a namespace scope enclosing the definition of the static member's class template. [Example:

```
template<class T> class X {
    static T s;
};
template<class T> T X<T>::s = 0;
_ end example ]
```


14.5.2 Member templates

[temp.mem]
1 A template can be declared within a class or class template; such a template is called a member template. A member template can be defined within or outside its class definition or class template definition. A member template of a class template that is defined outside of its class template definition shall be specified with the template-parameters of the class template followed by the template-parameters of the member template. [Example:

```
template<class T> class string {
public:
    template<class T2> int compare(const T2&);
    template<class T2> string(const string<T2>& s) {/*...*/}
    // ...
};
template<class T> template<class T2> int string<T>::compare(const T2& s)
{
    // ...
}
- end example ]
```

2 A local class shall not have member templates. Access control rules (clause 11) apply to member template names. A destructor shall not be a member template. A normal (non-template) member function with a given name and type and a member function template of the same name, which could be used to generate a specialization of the same type, can both be declared in a class. When both exist, a use of that name and type refers to the non-template member unless an explicit template argument list is supplied. [Example:

```
template <class T> struct A {
    void f(int);
    template <class T2> void f(T2);
};
template <> void A<int>::f(int) { } // non-template member
template <> template <> void A<int>::f<>(int) { } // template member
int main()
{
    A<char> ac;
```

```
        ac.f(1); // non-template
        ac.f('c'); // template
        ac.f<>(1); // template
    }
- end example ]
```

3 A member function template shall not be virtual. [Example:

```
template <class T> struct AA {
    template <class C> virtual void g(C); // error
    virtual void f(); // OK
};
- end example ]
```

4 A specialization of a member function template does not override a virtual function from a base class. [Example:

```
class B {
    virtual void f(int);
};
class D : public B {
    template <class T> void f(T); // does not override B::f(int)
    void f(int i) { f<>(i); } // overriding function that calls
            // the template instantiation
};
- end example]
```

5 A specialization of a template conversion function is referenced in the same way as a non-template conversion function that converts to the same type. [Example:

```
struct A {
    template <class T> operator T*();
};
template <class T> A::operator T*(){ return 0; }
template <> A::operator char*(){ return 0; } // specialization
template A::operator void*(); // explicit instantiation
int main()
{
    A a;
    int* ip;
    ip = a.operator int*(); // explicit call to template operator
    // A::operator int*()
}
```

- end example] [Note: because the explicit template argument list follows the function template name, and because conversion member function templates and constructor member function templates are called without using a function name, there is no way to provide an explicit template argument list for these function templates. - end note]

Draft

6 A specialization of a template conversion function is not found by name lookup. Instead, any template conversion functions visible in the context of the use are considered. For each such operator, if argument deduction succeeds (14.8.2.3), the resulting specialization is used as if found by name lookup.

7 A using-declaration in a derived class cannot refer to a specialization of a template conversion function in a base class.
8 Overload resolution (13.3.3.2) and partial ordering (14.5.5.2) are used to select the best conversion function among multiple template conversion functions and/or non-template conversion functions.

14.5.3 Friends

[temp.friend]
1 A friend of a class or class template can be a function template or class template, a specialization of a function template or class template, or an ordinary (non-template) function or class. For a friend function declaration that is not a template declaration:

- if the name of the friend is a qualified or unqualified template-id, the friend declaration refers to a specialization of a function template, otherwise
- if the name of the friend is a qualified-id and a matching non-template function is found in the specified class or namespace, the friend declaration refers to that function, otherwise,
- if the name of the friend is a qualified-id and a matching specialization of a function template is found in the specified class or namespace, the friend declaration refers to that function template specialization, otherwise,
- the name shall be an unqualified-id that declares (or redeclares) an ordinary (non-template) function.

[Example:

```
template<class T> class task;
template<class T> task<T>* preempt(task<T>*);
template<class T> class task {
    // ..
    friend void next_time();
    friend void process(task<T>*);
    friend task<T>* preempt<T>(task<T>*);
    template<class C> friend int func(C);
    friend class task<int>;
    template<class P> friend class frd;
    // ...
};
```

Here, each specialization of the task class template has the function next_time as a friend; because process does not have explicit template-arguments, each specialization of the task class template has an appropriately typed function process as a friend, and this friend is not a function template specialization; because the friend preempt has an explicit template-argument $\langle\mathrm{T}\rangle$, each specialization of the task class template has the appropriate specialization of the function template preempt as a friend; and each specialization of the task class template has all specializations of the function template func as friends. Similarly, each specialization of the task class template has the class template specialization task<int> as a friend, and has all specializations of the class template frd as friends. - end example]

2 A friend template may be declared within a class or class template. A friend function template may be defined within a class or class template, but a friend class template may not be defined in a class or class template. In these cases, all specializations of the friend class or friend function template are friends of the class or class template granting friendship. [Example:

```
class A {
    template<class T> friend class B; // OK
    template<class T> friend void f(T){ /*... */} // OK
};
- end example ]
```

3 A template friend declaration specifies that all specializations of that template, whether they are implicitly instantiated (14.7.1), partially specialized (14.5.4) or explicitly specialized (14.7.3), are friends of the class containing the template friend declaration. [Example:

```
class X {
    template<class T> friend struct A;
    class Y { };
};
template<class T> struct A { X::Y ab; }; // OK
template<class T> struct A<T*> { X::Y ab; }; // OK
_ end example ]
```

4 When a function is defined in a friend function declaration in a class template, the function is instantiated when the function is used. The same restrictions on multiple declarations and definitions that apply to non-template function declarations and definitions also apply to these implicit definitions.

5 A member of a class template may be declared to be a friend of a non-template class. In this case, the corresponding member of every specialization of the class template is a friend of the class granting friendship. [Example:

```
template<class T> struct A {
    struct B { };
    void f();
};
class C {
    template<class T> friend struct A<T>: :B;
    template<class T> friend void A<T>::f();
};
- end example ]
```

6 [Note: a friend declaration may first declare a member of an enclosing namespace scope (14.6.5). -end note]
7 A friend template shall not be declared in a local class.
8 Friend declarations shall not declare partial specializations. [Example:

```
template<class T> class A { };
class X {
```

```
    template<class T> friend class A<T*>; // error
};
_ end example ]
```

9 When a friend declaration refers to a specialization of a function template, the function parameter declarations shall not include default arguments, nor shall the inline specifier be used in such a declaration.

14.5.4 Class template partial specializations

[temp.class.spec]
1 A primary class template declaration is one in which the class template name is an identifier. A template declaration in which the class template name is a simple-template-id is a partial specialization of the class template named in the simple-template-id. A partial specialization of a class template provides an alternative definition of the template that is used instead of the primary definition when the arguments in a specialization match those given in the partial specialization (14.5.4.1). The primary template shall be declared before any specializations of that template. A partial specialization shall be declared before the first use of a class template specialization that would make use of the partial specialization as the result of an implicit or explicit instantiation in every translation unit in which such a use occurs; no diagnostic is required.

2 When a partial specialization is used within the instantiation of an exported template, and the unspecialized template name is non-dependent in the exported template, a declaration of the partial specialization must be declared before the definition of the exported template, in the translation unit containing that definition. A similar restriction applies to explicit specialization; see 14.7.

3 Each class template partial specialization is a distinct template and definitions shall be provided for the members of a template partial specialization (14.5.4.3).

4 [Example:

The first declaration declares the primary (unspecialized) class template. The second and subsequent declarations declare partial specializations of the primary template. - end example]

5 The template parameters are specified in the angle bracket enclosed list that immediately follows the keyword template. For partial specializations, the template argument list is explicitly written immediately following the class template name. For primary templates, this list is implicitly described by the template parameter list. Specifically, the order of the template arguments is the sequence in which they appear in the template parameter list. [Example: the template argument list for the primary template in the example above is <T1, $\mathrm{T} 2, \mathrm{I}\rangle$. - end example] [Note: the template argument list shall not be specified in the primary template declaration. For example,

```
template<class T1, class T2, int I> class A<T1, T2, I> { }; // error
_ end note ]
```

6 A class template partial specialization may be declared or redeclared in any namespace scope in which its definition may be defined (14.5.1 and 14.5.2). [Example:

```
template<class T> struct A {
    struct C {
        template<class T2> struct B { };
        };
};
// partial specialization of A<T>: : C: : B<T2>
template<class T> template<class T2>
    struct A<T>::C::B<T2*> { };
A<short>::C::B<int*> absip; // uses partial specialization
_ end example ]
```

7 Partial specialization declarations themselves are not found by name lookup. Rather, when the primary template name is used, any previously declared partial specializations of the primary template are also considered. One consequence is that a using-declaration which refers to a class template does not restrict the set of partial specializations which may be found through the using-declaration. [Example:

```
namespace N {
    template<class T1, class T2> class A { }; // primary template
}
using N::A; // refers to the primary template
namespace N {
    template<class T> class A<T, T*> { }; // partial specialization
}
A<int,int*> a; // uses the partial specialization, which is found through
                // the using declaration which refers to the primary template
- end example ]
```

8 A non-type argument is non-specialized if it is the name of a non-type parameter. All other non-type arguments are specialized.

9 Within the argument list of a class template partial specialization, the following restrictions apply:

- A partially specialized non-type argument expression shall not involve a template parameter of the partial specialization except when the argument expression is a simple identifier. [Example:

```
template <int I, int J> struct A {};
template <int I> struct A<I+5, I*2> {}; // error
template <int I, int J> struct B {};
template <int I> struct B<I, I> {}; // OK
_ end example ]
```

- The type of a template parameter corresponding to a specialized non-type argument shall not be dependent on a parameter of the specialization. [Example:

Draft

```
template <class T, T t> struct C {};
template <class T> struct C<T, 1>; // error
template< int X, int (*array_ptr)[X] > class A {};
int array[5];
template< int X > class A<X,&array> { }; // error
_ end example ]
```

- The argument list of the specialization shall not be identical to the implicit argument list of the primary template.

The template parameter list of a specialization shall not contain default template argument values. ${ }^{131)}$

14.5.4.1 Matching of class template partial specializations

[temp.class.spec.match]
1 When a class template is used in a context that requires an instantiation of the class, it is necessary to determine whether the instantiation is to be generated using the primary template or one of the partial specializations. This is done by matching the template arguments of the class template specialization with the template argument lists of the partial specializations.

- If exactly one matching specialization is found, the instantiation is generated from that specialization.
- If more than one matching specialization is found, the partial order rules (14.5.4.2) are used to determine whether one of the specializations is more specialized than the others. If none of the specializations is more specialized than all of the other matching specializations, then the use of the class template is ambiguous and the program is ill-formed.
- If no matches are found, the instantiation is generated from the primary template.

2 A partial specialization matches a given actual template argument list if the template arguments of the partial specialization can be deduced from the actual template argument list (14.8.2). [Example:

```
A<int, int, 1> a1; // uses #1
A<int, int*, 1> a2; // uses #2, T is int, I is 1
A<int, char*, 5> a3; // uses #4, T is char
A<int, char*, 1> a4; // uses #5, T1 is int, T2 is char, I is 1
A<int*, int*, 2> a5; // ambiguous: matches #3 and #5
- end example ]
```

3 A non-type template argument can also be deduced from the value of an actual template argument of a non-type parameter of the primary template. [Example: the declaration of a2 above. - end example]

4 In a type name that refers to a class template specialization, (e.g., A<int, int, $1>$) the argument list must match the template parameter list of the primary template. The template arguments of a specialization are deduced from the arguments of the primary template.

[^99]
14.5.4.2 Partial ordering of class template specializations

[temp.class.order]
1 For two class template partial specializations, the first is at least as specialized as the second if, given the following rewrite to two function templates, the first function template is at least as specialized as the second according to the ordering rules for function templates (14.5.5.2):

- the first function template has the same template parameters as the first partial specialization and has a single function parameter whose type is a class template specialization with the template arguments of the first partial specialization, and
- the second function template has the same template parameters as the second partial specialization and has a single function parameter whose type is a class template specialization with the template arguments of the second partial specialization.

[Example:

```
template<int I, int J, class T> class X { };
template<int I, int J> class X<I, J, int> { }; // #1
template<int I> class X<I, I, int> { }; // #2
template<int I, int J> void f(X<I, J, int>); // #A
template<int I> void f(X<I, I, int>); // #B
```

The partial specialization \#2 is more specialized than the partial specialization \#1 because the function template \#B is more specialized than the function template \#A according to the ordering rules for function templates. - end example]

14.5.4.3 Members of class template specializations

[temp.class.spec.mfunc]
1 The template parameter list of a member of a class template partial specialization shall match the template parameter list of the class template partial specialization. The template argument list of a member of a class template partial specialization shall match the template argument list of the class template partial specialization. A class template specialization is a distinct template. The members of the class template partial specialization are unrelated to the members of the primary template. Class template partial specialization members that are used in a way that requires a definition shall be defined; the definitions of members of the primary template are never used as definitions for members of a class template partial specialization. An explicit specialization of a member of a class template partial specialization is declared in the same way as an explicit specialization of the primary template. [Example:

```
// primary template
template<class T, int I> struct A {
    void f();
};
template<class T, int I> void A<T,I>::f() { }
// class template partial specialization
template<class T> struct A<T,2> {
    void f();
    void g();
    void h();
};
```

Draft

```
// member of class template partial specialization
template<class T> void A<T,2>::g() { }
// explicit specialization
template<> void A<char,2>::h() { }
int main()
{
    A<char,0> a0;
    A<char,2> a2;
    a0.f(); // OK, uses definition of primary template's member
    a2.g(); // OK, uses definition of
            // partial specialization's member
    a2.h(); // OK, uses definition of
            // explicit specialization's member
    a2.f(); // ill-formed, no definition of f for A<T,2>
        // the primary template is not used here
}
- end example ]
```

2 If a member template of a class template is partially specialized, the member template partial specializations are member templates of the enclosing class template; if the enclosing class template is instantiated (14.7.1, 14.7.2), a declaration for every member template partial specialization is also instantiated as part of creating the members of the class template specialization. If the primary member template is explicitly specialized for a given (implicit) specialization of the enclosing class template, the partial specializations of the member template are ignored for this specialization of the enclosing class template. If a partial specialization of the member template is explicitly specialized for a given (implicit) specialization of the enclosing class template, the primary member template and its other partial specializations are still considered for this specialization of the enclosing class template. [Example:

```
template<class T> struct A {
    template<class T2> struct B {}; // #1
    template<class T2> struct B<T2*> {}; // #2
};
template<> template<class T2> struct A<short>::B {}; // #3
A<char>::B<int*> abcip; // uses #2
A<short>::B<int*> absip; // uses #3
A<char>::B<int> abci; // uses #1
- end example ]
```


14.5.5 Function templates

[temp.fct]
1 A function template defines an unbounded set of related functions. [Example: a family of sort functions might be declared like this:

```
template<class T> class Array { };
template<class T> void sort(Array<T>&);
```

Draft

- end example]

2 A function template can be overloaded with other function templates and with normal (non-template) functions. A normal function is not related to a function template (i.e., it is never considered to be a specialization), even if it has the same name and type as a potentially generated function template specialization. ${ }^{132)}$

14.5.5.1 Function template overloading

[temp.over.link]
1 It is possible to overload function templates so that two different function template specializations have the same type. [Example:

```
// filel.c
template<class T>
            void f(T*);
void g(int* p) {
    f(p); // call
                //f<int>(int*)
}
- end example ]
```

```
// file2.c
template<class T>
    void f(T);
void h(int* p) {
    f(p); // call
        //f<int*>(int*)
}
```

2 Such specializations are distinct functions and do not violate the one definition rule (3.2).
3 The signature of a function template specialization consists of the signature of the function template and of the actual template arguments (whether explicitly specified or deduced).

4 The signature of a function template consists of its function signature, its return type and its template parameter list. The names of the template parameters are significant only for establishing the relationship between the template parameters and the rest of the signature. [Note: two distinct function templates may have identical function return types and function parameter lists, even if overload resolution alone cannot distinguish them.

```
template<class T> void f();
template<int I> void f(); // OK: overloads the first template
    // distinguishable with an explicit template argument list
- end note]
```

5 When an expression that references a template parameter is used in the function parameter list or the return type in the declaration of a function template, the expression that references the template parameter is part of the signature of the function template. This is necessary to permit a declaration of a function template in one translation unit to be linked with another declaration of the function template in another translation unit and, conversely, to ensure that function templates that are intended to be distinct are not linked with one another. [Example:

```
template <int I, int J> A<I+J> f(A<I>, A<J>); // #1
template <int K, int L> A<K+L> f(A<K>, A<L>); // same as #1
template <int I, int J> A<I-J> f(A<I>, A<J>); // different from #1
```

[^100]-end example] [Note: Most expressions that use template parameters use non-type template parameters, but it is possible for an expression to reference a type parameter. For example, a template type parameter can be used in the sizeof operator. -end note]

6 Two expressions involving template parameters are considered equivalent if two function definitions containing the expressions would satisfy the one definition rule (3.2), except that the tokens used to name the template parameters may differ as long as a token used to name a template parameter in one expression is replaced by another token that names the same template parameter in the other expression. [Example:

```
template <int I, int J> void f(A<I+J>); // #1
template <int K, int L> void f(A<K+L>); // same as #1
```

- end example] Two expressions involving template parameters that are not equivalent are functionally equivalent if, for any given set of template arguments, the evaluation of the expression results in the same value.

7 Two function templates are equivalent if they are declared in the same scope, have the same name, have identical template parameter lists, and have return types and parameter lists that are equivalent using the rules described above to compare expressions involving template parameters. Two function templates are functionally equivalent if they are equivalent except that one or more expressions that involve template parameters in the return types and parameter lists are functionally equivalent using the rules described above to compare expressions involving template parameters. If a program contains declarations of function templates that are functionally equivalent but not equivalent, the program is ill-formed; no diagnostic is required.

8 [Note: This rule guarantees that equivalent declarations will be linked with one another, while not requiring implementations to use heroic efforts to guarantee that functionally equivalent declarations will be treated as distinct. For example, the last two declarations are functionally equivalent and would cause a program to be ill-formed:

```
// Guaranteed to be the same
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+10>);
// Guaranteed to be different
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+11>);
// Ill-formed, no diagnostic required
template <int I> void f(A<I>, A<I+10>);
template <int I> void f(A<I>, A<I+1+2+3+4>);
_ end note ]
```


14.5.5.2 Partial ordering of function templates

1 If a function template is overloaded, the use of a function template specialization might be ambiguous because template argument deduction (14.8.2) may associate the function template specialization with more than one function template declaration. Partial ordering of overloaded function template declarations is used in the following contexts to select the function template to which a function template specialization refers:
— during overload resolution for a call to a function template specialization (13.3.3);

- when the address of a function template specialization is taken;
- when a placement operator delete that is a function template specialization is selected to match a placement operator new (3.7.4.2, 5.3.4);
- when a friend function declaration (14.5.3), an explicit instantiation (14.7.2) or an explicit specialization (14.7.3) refers to a function template specialization.

2 Partial ordering selects which of two function templates is more specialized than the other by transforming each template in turn (see next paragraph) and performing template argument deduction using the function parameter types, or in the case of a conversion function the return type. The deduction process determines whether one of the templates is more specialized than the other. If so, the more specialized template is the one chosen by the partial ordering process.

3 To produce the transformed template, for each type, non-type, or template template parameter synthesize a unique type, value, or class template respectively and substitute it for each occurrence of that parameter in the function type of the template.

4 Using the transformed function template's function parameter list, or in the case of a conversion function its transformed return type, perform type deduction against the function parameter list (or return type) of the other function. The mechanism for performing these deductions is given in 14.8.2.4.

[Example:

```
template<class T> struct A { A(); };
template<class T> void f(T);
template<class T> void f(T*);
template<class T> void f(const T*);
template<class T> void g(T);
template<class T> void g(T&);
template<class T> void h(const T&);
template<class T> void h(A<T>&);
void m() {
    const int *p;
    f(p); // f(const T*) is more specialized than f(T) or f(T*)
    float x;
    g(x); // Ambiguous: g(T) or g(T&)
    A<int> z;
    h(z); // overload resolution selects h(A<T>&)
    const A<int> z2;
        h(z2); // h(const T&) is called because }\textrm{h}(\textrm{A}<\textrm{T}>&) is not callabl
}
- end example ]
```

5 The presence of unused ellipsis and default arguments has no effect on the partial ordering of function templates. [Example:

```
template<class T> void f(T); // #1
template<class T> void f(T*, int=1); // #2
template<class T> void g(T); //#3
```

Draft

```
template<class T> void g(T*, ...); // #4
int main() {
    int* ip;
    f(ip); // calls #2
    g(ip); // calls #4
}
—end example]
```


14.6 Name resolution

1 Three kinds of names can be used within a template definition:

- The name of the template itself, and names declared within the template itself.
- Names dependent on a template-parameter (14.6.2).
- Names from scopes which are visible within the template definition.

2 A name used in a template declaration or definition and that is dependent on a template-parameter is assumed not to name a type unless the applicable name lookup finds a type name or the name is qualified by the keyword typename. [Example:

```
// no B declared here
class X;
template<class T> class Y {
        class Z; // forward declaration of member class
        void f() {
            X* a1; // declare pointer to X
            T* a2; // declare pointer to T
            Y* a3; // declare pointer to Y<T>
            Z* a4; // declare pointer to Z
            typedef typename T::A TA;
            TA* a5; // declare pointer to T's A
            typename T::A* a6; // declare pointer to T's A
            T::A* a7; // T::A is not a type name:
                    // multiply T::A by a7; ill-formed,
                // no visible declaration of a7
            B* a8; // B is not a type name:
                    // multiply B by a8; ill-formed,
                // no visible declarations of B and a8
        }
};
- end example ]
```

3 When a qualified-id is intended to refer to a type that is not a member of the current instantiation (14.6.2.1) and its nested-name-specifier depends on a template-parameter (14.6.2), it shall be prefixed by the keyword typename, forming a typename-specifier. If the qualified-id in a typename-specifier does not denote a type, the program is ill-formed.
typename-specifier:
typename : : opt nested-name-specifier identifier

4 If a specialization of a template is instantiated for a set of template-arguments such that the qualified-id prefixed by typename does not denote a type, the specialization is ill-formed. The usual qualified name lookup (3.4.3) is used to find the qualified-id even in the presence of typename. [Example:

```
struct A {
    struct X { };
    int X;
};
struct B {
            struct X { };
};
template<class T> void f(T t) {
    typename T::X x;
}
void foo() {
    A a;
    B b;
    f(b); // OK: T::X refers to B : :X
    f(a); // error: T::X refers to the data member A::X not the struct A::X
}
- end example ]
```

5 A qualified name used as the name in a mem-initializer-id, a base-specifier, or an elaborated-type-specifier is implicitly assumed to name a type, without the use of the typename keyword. [Note: the typename keyword is not permitted by the syntax of these constructs. - end note]

6 Within the definition of a class template or within the definition of a member of a class template, the keyword typename is not required when referring to the unqualified name of a previously declared member of the class template that declares a type. [Example:

```
template<class T> struct A {
    typedef int B;
    B b; // OK, no typename required
};
_ end example ]
```

7 Knowing which names are type names allows the syntax of every template definition to be checked. No diagnostic shall be issued for a template definition for which a valid specialization can be generated. If no valid specialization can be generated for a template definition, and that template is not instantiated, the template definition is ill-formed, no diagnostic required. If a type used in a non-dependent name is incomplete at the point at which a template is defined but is complete at the point at which an instantiation is done, and if the completeness of that type affects whether or not
the program is well-formed or affects the semantics of the program, the program is ill-formed; no diagnostic is required. [Note: if a template is instantiated, errors will be diagnosed according to the other rules in this Standard. Exactly when these errors are diagnosed is a quality of implementation issue. - end note] [Example:

```
int j;
template<class T> class X {
    // ...
    void f(T t, int i, char* p)
    {
            t = i; // diagnosed if X::f is instantiated
                // and the assignment to t is an error
            p = i; // may be diagnosed even if X::f is
                // not instantiated
            p = j; // may be diagnosed even if X: : f is
                // not instantiated
    }
    void g(T t) {
            +; // may be diagnosed even if X: :g is
                // not instantiated
    }
};
- end example]
```

8 When looking for the declaration of a name used in a template definition, the usual lookup rules (3.4.1, 3.4.2) are used for non-dependent names. The lookup of names dependent on the template parameters is postponed until the actual template argument is known (14.6.2). [Example:

```
#include <iostream>
using namespace std;
template<class T> class Set {
    T* p;
    int cnt;
public:
    Set();
    Set<T>(const Set<T>&);
    void printall()
    {
        for (int i = 0; i<cnt; i++)
            cout << p[i] << '\n';
    }
    // ...
};
```

in the example, i is the local variable i declared in printall, cnt is the member cnt declared in Set, and cout is the standard output stream declared in iostream. However, not every declaration can be found this way; the resolution of some names must be postponed until the actual template-arguments are known. For example, even though the name operator<< is known within the definition of printall() and a declaration of it can be found in <iostream>, the
actual declaration of operator<< needed to print p [i] cannot be known until it is known what type T is (14.6.2). - end example]

9 If a name does not depend on a template-parameter (as defined in 14.6.2), a declaration (or set of declarations) for that name shall be in scope at the point where the name appears in the template definition; the name is bound to the declaration (or declarations) found at that point and this binding is not affected by declarations that are visible at the point of instantiation. [Example:

```
void f(char);
template<class T> void g(T t)
{
    f(1); // f(char)
    f(T(1)); // dependent
    f(t); // dependent
    dd++; // not dependent
    // error: declaration for dd not found
}
enum E { e };
void f(E);
double dd;
void h()
{
    g(e); // will cause one call of f(char) followed
    // by two calls of f(E)
    g('a'); // will cause three calls of f(char)
}
- end example ]
```

10 [Note: for purposes of name lookup, default arguments of function templates and default arguments of member functions of class templates are considered definitions (14.5). - end note]

14.6.1 Locally declared names

[temp.local]
1 Like normal (non-template) classes, class templates have an injected-class-name (clause 9). The injected-class-name can be used with or without a template-argument-list. When it is used without a template-argument-list, it is equivalent to the injected-class-name followed by the template-parameters of the class template enclosed in <>. When it is used with a template-argument-list, it refers to the specified class template specialization, which could be the current specialization or another specialization.

2 Within the scope of a class template specialization or partial specialization, when the injected-class-name is not followed by a <, it is equivalent to the injected-class-name followed by the template-arguments of the class template specialization or partial specialization enclosed in <>. [Example:

```
template<class T> class Y;
template<> class Y<int> {
    Y* p; // meaning Y<int>
```

Draft
\};

- end example]

3 The injected-class-name of a class template or class template specialization can be used either with or without a template-argument-list wherever it is in scope. [Example:

```
template <class T> struct Base {
    Base* p;
};
template <class T> struct Derived: public Base<T> {
    typename Derived::Base* p; // meaning Derived::Base<T>
};
- end example ]
```

4 A lookup that finds an injected-class-name (10.2) can result in an ambiguity in certain cases (for example, if it is found in more than one base class). If all of the injected-class-names that are found refer to specializations of the same class template, and if the name is followed by a template-argument-list, the reference refers to the class template itself and not a specialization thereof, and is not ambiguous. [Example:

```
template <class T> struct Base { };
template <class T> struct Derived: Base<int>, Base<char> {
    typename Derived::Base b; // error: ambiguous
    typename Derived::Base<double> d; // OK
};
_ end example ]
```

5 When the normal name of the template (i.e., the name from the enclosing scope, not the injected-class-name) is used without a template-argument-list, it refers to the class template itself and not a specialization of the template. [Example:

```
template <class T> class X {
    X* p;
    // meaning X<T>
    X<T>* p2;
    X<int>* p3;
    ::X* p4; // error: missing template argument list
        // : : X does not refer to the injected-class-name
};
- end example ]
```

6 The scope of a template-parameter extends from its point of declaration until the end of its template. A templateparameter hides any entity with the same name in the enclosing scope. [Note: this implies that a template-parameter can be used in the declaration of subsequent template-parameters and their default arguments but cannot be used in preceding template-parameters or their default arguments. For example,

```
template<class T, T* p, class U = T> class X { /*...*/ };
template<class T> void f(T* p = new T);
```

This also implies that a template-parameter can be used in the specification of base classes. For example,

```
template<class T> class X : public Array<T> {/*...*/ };
template<class T> class Y : public T {/*...*/ };
```

The use of a template-parameter as a base class implies that a class used as a template-argument must be defined and not just declared when the class template is instantiated. -end note]
7 A template-parameter shall not be redeclared within its scope (including nested scopes). A template-parameter shall not have the same name as the template name. [Example:

```
template<class T, int i> class Y {
    int T; // error: template-parameter redeclared
    void f() {
            char T; // error: template-parameter redeclared
        }
};
template<class X> class X; // error: template-parameter redeclared
- end example ]
```

8 In the definition of a member of a class template that appears outside of the class template definition, the name of a member of this template hides the name of a template-parameter. [Example:

```
template<class T> struct A {
    struct B { /* ... */ };
    void f();
};
template<class B> void A<B>::f() {
    B b; // A's B, not the template parameter
}
_ end example ]
```

9 In the definition of a member of a class template that appears outside of the namespace containing the class template definition, the name of a template-parameter hides the name of a member of this namespace. [Example:

```
namespace N {
    class C { };
    template<class T> class B {
        void f(T);
    };
}
template<class C> void N::B<C>::f(C) {
    C b; // C is the template parameter, not N::C
}
_ end example ]
```

10 In the definition of a class template or in the definition of a member of such a template that appears outside of the template definition, for each base class which does not depend on a template-parameter (14.6.2), if the name of the base
class or the name of a member of the base class is the same as the name of a template-parameter, the base class name or member name hides the template-parameter name (3.3.7). [Example:

```
struct A {
    struct B { /* ... */ };
    int a;
    int Y;
};
template<class B, class a> struct X : A {
    B b; // A's B
    a b; // error: A's a isn't a type name
};
- end example ]
```


14.6.2 Dependent names

1 Inside a template, some constructs have semantics which may differ from one instantiation to another. Such a construct depends on the template parameters. In particular, types and expressions may depend on the type and/or value of template parameters (as determined by the template arguments) and this determines the context for name lookup for certain names. Expressions may be type-dependent (on the type of a template parameter) or value-dependent (on the value of a non-type template parameter). In an expression of the form:

```
postfix-expression ( expression-list opt )
```

where the postfix-expression is an unqualified-id but not a template-id, the unqualified-id denotes a dependent name if and only if any of the expressions in the expression-list is a type-dependent expression (14.6.2.2). If an operand of an operator is a type-dependent expression, the operator also denotes a dependent name. Such names are unbound and are looked up at the point of the template instantiation (14.6.4.1) in both the context of the template definition and the context of the point of instantiation.

```
[ Example:
template<class T> struct X : B<T> {
    typename T::A* pa;
    void f(B<T>* pb) {
            static int i = B<T>::i;
            pb->j++;
        }
};
```

the base class name $\mathrm{B}\langle\mathrm{T}\rangle$, the type name $\mathrm{T}:: \mathrm{A}$, the names $\mathrm{B}\langle\mathrm{T}\rangle:: \mathrm{i}$ and $\mathrm{pb}->\mathrm{j}$ explicitly depend on the templateparameter. - end example]

3 In the definition of a class template or a member of a class template, if a base class of the class template depends on a template-parameter, the base class scope is not examined during unqualified name lookup either at the point of definition of the class template or member or during an instantiation of the class template or member. [Example:

```
typedef double A;
template<class T> class B {
    typedef int A;
```

```
};
template<class T> struct X : B<T> {
    A a; // a has type double
};
```

The type name A in the definition of $X<T>$ binds to the typedef name defined in the global namespace scope, not to the typedef name defined in the base class $\mathrm{B}<\mathrm{T}>$. - end example] [Example:

```
struct A {
    struct B { /* ... */ };
    int a;
    int Y;
};
int a;
template<class T> struct Y : T {
    struct B {/* ... */ };
    B b; // The B defined in Y
    void f(int i) { a = i; } //::a
    Y* p; // Y<T>
};
Y<A> ya;
```

The members $\mathrm{A}:: \mathrm{B}, \mathrm{A}:: \mathrm{a}$, and $\mathrm{A}:: \mathrm{Y}$ of the template argument A do not affect the binding of names in $\mathrm{Y}<\mathrm{A}>$. - end example]

14.6.2.1 Dependent types

[temp.dep.type]
1 In the definition of a class template, a nested class of a class template, a member of a class template, or a member of a nested class of a class template, a name refers to the current instantiation if it is

- the injected-class-name (9) of the class template or nested class,
- in the definition of a primary class template, the name of the class template followed by the template argument list of the primary template (as described below) enclosed in <>,
- in the definition of a nested class of a class template, the name of the nested class referenced as a member of the current instantiation, or
- in the definition of a partial specialization, the name of the class template followed by the template argument list of the partial specialization enclosed in <>.

2 The template argument list of a primary template is a template argument list in which the nth template argument has the value of the nth template parameter of the class template.
3 A template argument that is equivalent to a template parameter (i.e., has the same constant value or the same type as the template parameter) can be used in place of that template parameter in a reference to the current instantiation. In the case of a non-type template argument, the argument must have been given the value of the template parameter and not an expression in which the template parameter appears as a subexpression. [Example:

```
template <class T> class A {
    A* p1; // A is the current instantiation
    A<T>* p2; // A<T> is the current instantiation
    A<T*> p3; // A<T*> is not the current instantiation
    ::A<T>* p4; // ::A<T> is the current instantiation
    class B {
                B* p1; // B is the current instantiation
        A<T> ::B* p2; // A<T>: :B is the current instantiation
        typename A<T*>::B* p3; // A<T*>::B is not the
            // current instantiation
        };
};
template <class T> class A<T*> {
    A<T*>* p1; // A<T*> is the current instantiation
    A<T>* p2; // A<T> is not the current instantiation
};
template <class T1, class T2, int I> struct B {
    B<T1, T2, I>* b1; // refers to the current instantiation
    B<T2, T1, I>* b2; // not the current instantiation
    typedef T1 my_T1;
    static const int my_I = I;
    static const int my_I2 = I+0;
    static const int my_I3 = my_I;
    B<my_T1, T2, my_I>* b3; // refers to the current instantiation
    B<my_T1, T2, my_I2>* b4; // not the current instantiation
    B<my_T1, T2, my_I3>* b5; // refers to the current instantiation
};
```

- end example]

4 A name is a member of the current instantiation if it is

- An unqualified name that, when looked up, refers to a member of a class template. [Note: this can only occur when looking up a name in a scope enclosed by the definition of a class template. -end note]
- A qualified-id in which the nested-name-specifier refers to the current instantiation.
- [Example:

```
template <class T> class A {
    static const int i = 5;
    int n1[i]; // i refers to a member of the current instantiation
    int n2[A::i]; // A::i refers to a member of the current instantiation
    int n3[A<T>::i] ; // A<T> ::i refers to a member of the current instantiation
    int f();
};
template <class T> int A<T>::f()
{
```

Draft

- end example]

5 A name is a member of an unknown specialization if the name is a qualified-id in which the nested-name-specifier names a dependent type that is not the current instantiation.

6 A type is dependent if it is

- a template parameter,
- a member of an unknown specialization,
- a nested class that is a member of the current instantiation,
- a cv-qualified type where the cv-unqualified type is dependent,
- a compound type constructed from any dependent type,
- an array type constructed from any dependent type or whose size is specified by a constant expression that is value-dependent, or
- a simple-template-id in which either the template name is a template parameter or any of the template arguments is a dependent type or an expression that is type-dependent or value-dependent.

7 [Note: because typedefs do not introduce new types, but instead simply refer to other types, a name that refers to a typedef that is a member of the current instantiation is dependent only if the type referred to is dependent. - end note]

14.6.2.2 Type-dependent expressions

[temp.dep.expr]
1 Except as described below, an expression is type-dependent if any subexpression is type-dependent.
2 this is type-dependent if the class type of the enclosing member function is dependent (14.6.2.1).
3 An id-expression is type-dependent if it contains:

- an identifier that was declared with a dependent type,
- a template-id that is dependent,

```
simple-type-specifier ( expression-list opt )
: :opt new new-placement opt new-type-id new-initializer ropt
::opt new new-placement opt (type-id ) new-initializer 
dynamic_cast < type-id> ( expression)
static_cast < type-id> ( expression)
const_cast < type-id> ( expression)
reinterpret_cast <type-id> (expression)
( type-id ) cast-expression
```

4 Expressions of the following forms are never type-dependent (because the type of the expression cannot be dependent):

```
literal
postfix-expression . pseudo-destructor-name
postfix-expression -> pseudo-destructor-name
sizeof unary-expression
sizeof (type-id)
typeid (expression)
typeid (type-id)
::opt delete cast-expression
::opt delete [ ] cast-expression
throw assignment-expression
```

[Note: For the standard library macro offsetof, see 18.1. - end note]
5 A class member access expression (5.2.5) is type-dependent if the type of the referenced member is dependent. [Note: in an expression of the form $x \cdot y$ or $x p->y$ the type of the expression is usually the type of the member y of the class of x (or the class pointed to by xp). However, if x or xp refers to a dependent type that is not the current instantiation, the type of y is always dependent. If x or $x p$ refers to a non-dependent type or refers to the current instantiation, the type of y is the type of the class member access expression. - end note]

14.6.2.3 Value-dependent expressions

[temp.dep.constexpr]
1 Except as described below, a constant expression is value-dependent if any subexpression is value-dependent.
2 An identifier is value-dependent if it is:

- a name declared with a dependent type,
- the name of a non-type template parameter,
- a constant with integral or enumeration type and is initialized with an expression that is value-dependent.

Expressions of the following form are value-dependent if the unary-expression is type-dependent or the type-id is dependent (even if sizeof unary-expression and sizeof (type-id) are not type-dependent):

```
sizeof unary-expression
```

sizeof (type-id)
[Note: For the standard library macro offsetof, see 18.1. - end note]
3 Expressions of the following form are value-dependent if either the type-id or simple-type-specifier is dependent or the expression or cast-expression is value-dependent:

```
simple-type-specifier ( expression-list opt )
static_cast < type-id> ( expression)
const_cast < type-id> ( expression)
reinterpret_cast <type-id> ( expression)
( type-id ) cast-expression
```


14.6.2.4 Dependent template arguments

[temp.dep.temp]
1 A type template-argument is dependent if the type it specifies is dependent.
2 An integral non-type template-argument is dependent if the constant expression it specifies is value-dependent.
3 A non-integral non-type template-argument is dependent if its type is dependent or it has either of the following forms
qualified-id
\& qualified-id
and contains a nested-name-specifier which specifies a class-name that names a dependent type.
4 A template template-argument is dependent if it names a template-parameter or is a qualified-id with a nested-namespecifier which contains a class-name that names a dependent type.

14.6.3 Non-dependent names

[temp.nondep]
1 Non-dependent names used in a template definition are found using the usual name lookup and bound at the point they are used. [Example:

```
void g(double);
void h();
template<class T> class Z {
public:
    void f() {
        g(1); // calls g(double)
        h++; // ill-formed: cannot increment function;
            // this could be diagnosed either here or
            // at the point of instantiation
        }
};
void g(int); // not in scope at the point of the template
            // definition, not considered for the call g(1)
- end example ]
```


14.6.4 Dependent name resolution

[temp.dep.res]
In resolving dependent names, names from the following sources are considered:

- Declarations that are visible at the point of definition of the template.
- Declarations from namespaces associated with the types of the function arguments both from the instantiation context (14.6.4.1) and from the definition context.

Draft

14.6.4.1 Point of instantiation

1 For a function template specialization, a member function template specialization, or a specialization for a member function or static data member of a class template, if the specialization is implicitly instantiated because it is referenced from within another template specialization and the context from which it is referenced depends on a template parameter, the point of instantiation of the specialization is the point of instantiation of the enclosing specialization. Otherwise, the point of instantiation for such a specialization immediately follows the namespace scope declaration or definition that refers to the specialization.

2 If a function template or member function of a class template is called in a way which uses the definition of a default argument of that function template or member function, the point of instantiation of the default argument is the point of instantiation of the function template or member function specialization.
3 For a class template specialization, a class member template specialization, or a specialization for a class member of a class template, if the specialization is implicitly instantiated because it is referenced from within another template specialization, if the context from which the specialization is referenced depends on a template parameter, and if the specialization is not instantiated previous to the instantiation of the enclosing template, the point of instantiation is immediately before the point of instantiation of the enclosing template. Otherwise, the point of instantiation for such a specialization immediately precedes the namespace scope declaration or definition that refers to the specialization.

4 If a virtual function is implicitly instantiated, its point of instantiation is immediately following the point of instantiation of its enclosing class template specialization.

5 An explicit instantiation definition is an instantiation point for the specialization or specializations specified by the explicit instantiation.

6 The instantiation context of an expression that depends on the template arguments is the set of declarations with external linkage declared prior to the point of instantiation of the template specialization in the same translation unit.

7 A specialization for a function template, a member function template, or of a member function or static data member of a class template may have multiple points of instantiations within a translation unit. A specialization for a class template has at most one point of instantiation within a translation unit. A specialization for any template may have points of instantiation in multiple translation units. If two different points of instantiation give a template specialization different meanings according to the one definition rule (3.2), the program is ill-formed, no diagnostic required.

14.6.4.2 Candidate functions

[temp.dep.candidate]

1 For a function call that depends on a template parameter, if the function name is an unqualified-id but not a template-id, or if the function is called using operator notation, the candidate functions are found using the usual lookup rules (3.4.1, 3.4.2) except that:

- For the part of the lookup using unqualified name lookup (3.4.1), only function declarations with external linkage from the template definition context are found.
- For the part of the lookup using associated namespaces (3.4.2), only function declarations with external linkage found in either the template definition context or the template instantiation context are found.

If the call would be ill-formed or would find a better match had the lookup within the associated namespaces considered all the function declarations with external linkage introduced in those namespaces in all translation units, not just considering those declarations found in the template definition and template instantiation contexts, then the program has undefined behavior.

14.6.5 Friend names declared within a class template

1 Friend classes or functions can be declared within a class template. When a template is instantiated, the names of its friends are treated as if the specialization had been explicitly declared at its point of instantiation.

2 As with non-template classes, the names of namespace-scope friend functions of a class template specialization are not visible during an ordinary lookup unless explicitly declared at namespace scope (11.4). Such names may be found under the rules for associated classes (3.4.2). ${ }^{133)}$ [Example:

```
template<typename T> class number {
public:
    number(int);
    // ...
    friend number gcd(number x, number y) { return 0; };
private:
    // ...
};
void g()
{
    number<double> a(3), b(4);
    // ...
    a = gcd(a,b); // finds gcd because number<double> is an
                    // associated class, making gcd visible
            // in its namespace (global scope)
    b = gcd (3,4); // ill-formed; gcd is not visible
}
- end example ]
```


14.7 Template instantiation and specialization

[temp.spec]
1 The act of instantiating a function, a class, a member of a class template or a member template is referred to as template instantiation.

2 A function instantiated from a function template is called an instantiated function. A class instantiated from a class template is called an instantiated class. A member function, a member class, or a static data member of a class template instantiated from the member definition of the class template is called, respectively, an instantiated member function, member class or static data member. A member function instantiated from a member function template is called an instantiated member function. A member class instantiated from a member class template is called an instantiated member class.

3 An explicit specialization may be declared for a function template, a class template, a member of a class template or a member template. An explicit specialization declaration is introduced by template<>. In an explicit specialization declaration for a class template, a member of a class template or a class member template, the name of the class that is explicitly specialized shall be a simple-template-id. In the explicit specialization declaration for a function template or a member function template, the name of the function or member function explicitly specialized may be a template-id. [Example:

[^101]```
template<class T = int> struct A {
 static int x;
};
template<class U> void g(U) { }
template<> struct A<double> { }; // specialize for T == double
template<> struct A<> { }; // specialize for T == int
template<> void g(char) { } // specialize for U == char
 // U is deduced from the parameter type
template<> void g<int>(int) { } // specialize for U == int
template<> int A<char>::x = 0; // specialize for T == char
template<class T = int> struct B {
 static int x;
};
template<> int B<>::x = 1; // specialize for T == int
- end example]
```

4 An instantiated template specialization can be either implicitly instantiated (14.7.1) for a given argument list or be explicitly instantiated (14.7.2). A specialization is a class, function, or class member that is either instantiated or explicitly specialized (14.7.3).

5 For a given template and a given set of template-arguments,

- an explicit instantiation definition shall appear at most once in a program,
- an explicit specialization shall be defined at most once in a program (according to 3.2), and
- both an explicit instantiation and a declaration of an explicit specialization shall not appear in a program unless the explicit instantiation follows a declaration of the explicit specialization.

An implementation is not required to diagnose a violation of this rule.
6 Each class template specialization instantiated from a template has its own copy of any static members. [Example:

```
template<class T> class X {
 static T s;
 // ...
};
template<class T> T X<T>::s = 0;
X<int> aa;
X<char*> bb;
```

X <int> has a static member s of type int and X <char*> has a static member s of type char*. - end example ]

### 14.7.1 Implicit instantiation

[temp.inst]
1 Unless a class template specialization has been explicitly instantiated (14.7.2) or explicitly specialized (14.7.3), the class template specialization is implicitly instantiated when the specialization is referenced in a context that requires a completely-defined object type or when the completeness of the class type affects the semantics of the program. The
implicit instantiation of a class template specialization causes the implicit instantiation of the declarations, but not of the definitions or default arguments, of the class member functions, member classes, static data members and member templates; and it causes the implicit instantiation of the definitions of member anonymous unions. Unless a member of a class template or a member template has been explicitly instantiated or explicitly specialized, the specialization of the member is implicitly instantiated when the specialization is referenced in a context that requires the member definition to exist; in particular, the initialization (and any associated side-effects) of a static data member does not occur unless the static data member is itself used in a way that requires the definition of the static data member to exist.
2 Unless a function template specialization has been explicitly instantiated or explicitly specialized, the function template specialization is implicitly instantiated when the specialization is referenced in a context that requires a function definition to exist. Unless a call is to a function template explicit specialization or to a member function of an explicitly specialized class template, a default argument for a function template or a member function of a class template is implicitly instantiated when the function is called in a context that requires the value of the default argument.

```
[Example:
template<class T> class Z {
public:
 void f();
 void g();
};
void h()
{
 Z<int> a; // instantiation of class Z<int> required
 Z<char>* p; // instantiation of class Z<char> not
 // required
 Z<double>* q; // instantiation of class Z<double>
 // not required
 a.f(); // instantiation of Z<int>::f() required
 p->g(); // instantiation of class }\textrm{Z}<char> required, and
 // instantiation of Z<char>: :g() required
}
```

Nothing in this example requires class $\mathrm{Z}<$ double>, $\mathrm{Z}<i n t>: \mathrm{g}()$, or $\mathrm{Z}<\mathrm{char}>:: \mathrm{f}()$ to be implicitly instantiated. - end example ]

4 A class template specialization is implicitly instantiated if the class type is used in a context that requires a completelydefined object type or if the completeness of the class type might affect the semantics of the program. [Note: in particular, if the semantics of an expression depend on the member or base class lists of a class template specialization, the class template specialization is implicitly generated. For instance, deleting a pointer to class type depends on whether or not the class declares a destructor, and conversion between pointer to class types depends on the inheritance relationship between the two classes involved. - end note ] [Example:

```
template<class T> class B { /* .. */ };
template<class T> class D : public B<T> { /*...*/ };
void f(void*);
void f(B<int>*);
```

```
void g(D<int>* p, D<char>* pp, D<double>* ppp)
{
 f(p); // instantiation of D<int> required: call f(B<int>*)
 B<char>* q = pp; // instantiation of D<char> required:
 // convert D<char>* to B<char>*
 delete ppp; // instantiation of D<double> required
}
- end example]
```

5 If the overload resolution process can determine the correct function to call without instantiating a class template definition, it is unspecified whether that instantiation actually takes place. [Example:

```
template <class T> struct S {
 operator int();
};
void f(int);
void f(S<int>&);
void f(S<float>);
void g(S<int>& sr) {
 f(sr); // instantiation of S<int> allowed but not required
 // instantiation of S<float> allowed but not required
};
_ end example]
```

6 If an implicit instantiation of a class template specialization is required and the template is declared but not defined, the program is ill-formed. [Example:

```
template<class T> class X;
X<char> ch; // error: definition of X required
- end example]
```

7 The implicit instantiation of a class template does not cause any static data members of that class to be implicitly instantiated.

8 If a function template or a member function template specialization is used in a way that involves overload resolution, a declaration of the specialization is implicitly instantiated (14.8.3).

9 An implementation shall not implicitly instantiate a function template, a member template, a non-virtual member function, a member class or a static data member of a class template that does not require instantiation. It is unspecified whether or not an implementation implicitly instantiates a virtual member function of a class template if the virtual member function would not otherwise be instantiated. The use of a template specialization in a default argument shall not cause the template to be implicitly instantiated except that a class template may be instantiated where its complete
type is needed to determine the correctness of the default argument. The use of a default argument in a function call causes specializations in the default argument to be implicitly instantiated.

10 Implicitly instantiated class and function template specializations are placed in the namespace where the template is defined. Implicitly instantiated specializations for members of a class template are placed in the namespace where the enclosing class template is defined. Implicitly instantiated member templates are placed in the namespace where the enclosing class or class template is defined. [Example:

```
namespace N {
 template<class T> class List {
 public:
 T* get();
 // ...
 };
}
template<class K, class V> class Map {
 N::List<V> lt;
 V get(K);
 // ...
};
void g(Map<char*,int>& m)
{
 int i = m.get("Nicholas");
 // ...
}
```

a call of lt.get() from Map<char*,int>: :get() would place List<int>: :get() in the namespace $N$ rather than in the global namespace. - end example ]
11 If a function template $f$ is called in a way that requires a default argument expression to be used, the dependent names are looked up, the semantics constraints are checked, and the instantiation of any template used in the default argument expression is done as if the default argument expression had been an expression used in a function template specialization with the same scope, the same template parameters and the same access as that of the function template $f$ used at that point. This analysis is called default argument instantiation. The instantiated default argument is then used as the argument of $f$.

```
template<class T> void f(T x, T y = ydef(T()), T z = zdef(T()));
class A { };
A zdef(A);
void g(A a, A b, A c) {
 f(a, b, c);
 // no default argument instantiation
 f(a, b); // default argument z = zdef(T()) instantiated
 f(a); // ill-formed; ydef is not declared
}
```

Draft

## - end example ]

13 [Note: 14.6.4.1 defines the point of instantiation of a template specialization. - end note ]
14 There is an implementation-defined quantity that specifies the limit on the total depth of recursive instantiations, which could involve more than one template. The result of an infinite recursion in instantiation is undefined. [Example:

```
template<class T> class X \{
 X<T>* p; // OK
 \(\mathrm{X}<\mathrm{T} *>\mathrm{a}\); \(/ /\) implicit generation of \(\mathrm{X}<\mathrm{T}>\) requires
 // the implicit instantiation of \(\mathrm{X}<\mathrm{T} *>\) which requires
 // the implicit instantiation of \(\mathrm{X}<\mathrm{T} * *>\) which ...
\};
- end example]
```


### 14.7.2 Explicit instantiation

## [temp.explicit]

1 A class, a function or member template specialization can be explicitly instantiated from its template. A member function, member class or static data member of a class template can be explicitly instantiated from the member definition associated with its class template.

2 The syntax for explicit instantiation is:

```
explicit-instantiation:
 extern opt template declaration
```

There are two forms of explicit instantiation: an explicit instantiation definition and an explicit instantiation declaration. An explicit instantiation declaration begins with the extern keyword.

If the explicit instantiation is for a class or member class, the elaborated-type-specifier in the declaration shall include a simple-template-id. If the explicit instantiation is for a function or member function, the unqualified-id in the declaration shall be either a template-id or, where all template arguments can be deduced, a template-name or operator-function-id. [ Note: the declaration may declare a qualified-id, in which case the unqualified-id of the qualified-id must be a templateid. - end note ] If the explicit instantiation is for a member function, a member class or a static data member of a class template specialization, the name of the class template specialization in the qualified-id for the member name shall be a simple-template-id. An explicit instantiation shall appear in an enclosing namespace of its template. If the name declared in the explicit instantiation is an unqualified name, the explicit instantiation shall appear in the namespace where its template is declared. [Note: regarding qualified names in declarators, see 8.3. - end note] [Example:

```
template<class T> class Array { void mf(); };
template class Array<char>;
template void Array<int>::mf();
template<class T> void sort(Array<T>& v) { /* ...*/ }
template void sort(Array<char>&); // argument is deduced here
namespace N {
 template<class T> void f(T&) { }
}
template void N::f<int>(int&);
_end example]
```

3 A declaration of a function template shall be in scope at the point of the explicit instantiation of the function template. A definition of the class or class template containing a member function template shall be in scope at the point of the explicit instantiation of the member function template. A definition of a class template or class member template shall be in scope at the point of the explicit instantiation of the class template or class member template. A definition of a class template shall be in scope at the point of an explicit instantiation of a member function or a static data member of the class template. A definition of a member class of a class template shall be in scope at the point of an explicit instantiation of the member class. If the declaration of the explicit instantiation names an implicitly-declared special member function (clause 12), the program is ill-formed.

4 For a given set of template parameters, if an explicit instantiation of a template appears after a declaration of an explicit specialization for that template, the explicit instantiation has no effect. Otherwise, for an explicit instantiation definition the definition of a non-exported function template, a non-exported member function template, or a non-exported member function or static data member of a class template shall be present in every translation unit in which it is explicitly instantiated.

5 An explicit instantiation of a class or function template specialization is placed in the namespace in which the template is defined. An explicit instantiation for a member of a class template is placed in the namespace where the enclosing class template is defined. An explicit instantiation for a member template is placed in the namespace where the enclosing class or class template is defined. [Example:

```
namespace N {
 template<class T> class Y { void mf() { } };
}
template class Y<int>; // error: class template Y not visible
 // in the global namespace
using N::Y;
template class Y<int>; // OK: explicit instantiation in namespace N
template class N::Y<char*>; // OK: explicit instantiation in namespace N
template void N::Y<double>::mf(); // OK: explicit instantiation
 // in namespace N
- end example]
```

6 A trailing template-argument can be left unspecified in an explicit instantiation of a function template specialization or of a member function template specialization provided it can be deduced from the type of a function parameter (14.8.2). [ Example:

```
template<class T> class Array { /*...*/ };
template<class T> void sort(Array<T>& v);
// instantiate sort(Array<int>&) - template-argument deduced
template void sort<>(Array<int>&);
_ end example]
```

7 An explicit instantiation that names a class template specialization is an explicit instantion of the same kind (declaration or definition) of each of its members (not including members inherited from base classes) that has not been previously explicitly specialized in the translation unit containing the explicit instantiation, except as described below.

8 An explicit instantiation definition that names a class template specialization explicitly instantiates the class template specialization and is only an explicit instantiation definition of members whose definition is visible at the point of instantiation.

9 An explicit instantiation declaration that names a class template specialization has no effect on the class template specialization itself (except for perhaps resulting in its implicit instantiation). Except for inline functions, other explicit instantiation declarations have the effect of suppressing the implicit instantiation of the entity to which they refer. [Note: The intent is that an inline function that is the subject of an explicit instantiation declaration will still be implicitly instantiated when used so that the body can be considered for inlining, but that no out-of-line copy of the inline function would be generated in the translation unit. - end note]

10 If an entity is the subject of both an explicit instantiation declaration and an explicit instantiation definition in the same translation unit, the definition shall follow the declaration. An entity that is the subject of an explicit instantiation declaration and that is also used in the translation unit shall be the subject of an explicit instantiation definition somewhere in the program; otherwise the program is ill-formed, no diagnostic required. [Note: This rule does apply to inline functions even though an explicit instantiation declaration of such an entity has no other normative effect. This is needed to ensure that if the address of an inline function is taken in a translation unit in which the implementation chose to suppress the out-of-line body, another translation unit will supply the body. - end note] An explicit instantiation declaration shall not name a specialization of a template with internal linkage.

11 The usual access checking rules do not apply to names used to specify explicit instantiations. [Note: In particular, the template arguments and names used in the function declarator (including parameter types, return types and exception specifications) may be private types or objects which would normally not be accessible and the template may be a member template or member function which would not normally be accessible. -end note]

12 An explicit instantiation does not constitute a use of a default argument, so default argument instantiation is not done. [ Example:

```
char* p = 0;
template<class T> T g(T = &p);
template int g<int>(int); // OK even though &p isn't an int.
- end example]
```


### 14.7.3 Explicit specialization

1 An explicit specialization of any of the following:

- function template
- class template
- member function of a class template
- static data member of a class template
- member class of a class template
- member class template of a class template
- member function template of a class template
can be declared by a declaration introduced by template<>; that is:
explicit-specialization:
template < > declaration
[ Example:

```
template<class T> class stream;
template<> class stream<char> { /*... */ };
template<class T> class Array { /*... */ };
template<class T> void sort(Array<T>& v) { /* ...*/ }
template<> void sort<char*>(Array<char*>&) ;
```

Given these declarations, stream<char> will be used as the definition of streams of chars; other streams will be handled by class template specializations instantiated from the class template. Similarly, sort<char*> will be used as the sort function for arguments of type Array<char*>; other Array types will be sorted by functions generated from the template. -end example]

2 An explicit specialization shall be declared in the namespace of which the template is a member, or, for member templates, in the namespace of which the enclosing class or enclosing class template is a member. An explicit specialization
of members of an explicitly specialized class are defined in the same manner as members of normal classes, and not using the syntax for explicit specialization. [Example:

```
template<class T> struct A {
 void f(T) { /* ... */ }
};
template<> struct A<int> {
 void f(int);
};
void h()
{
 A<int> a;
 a.f(16); // A<int>::f must be defined somewhere
}
// explicit specialization syntax not used for a member of
// explicitly specialized class template specialization
void A<int>::f(int) { /* ... */ }
- end example]
```

6 If a template, a member template or the member of a class template is explicitly specialized then that specialization shall be declared before the first use of that specialization that would cause an implicit instantiation to take place, in every translation unit in which such a use occurs; no diagnostic is required. If the program does not provide a definition for an explicit specialization and either the specialization is used in a way that would cause an implicit instantiation to take place or the member is a virtual member function, the program is ill-formed, no diagnostic required. An implicit instantiation is never generated for an explicit specialization that is declared but not defined. [Example:

```
template<class T> class Array {/*...*/ };
template<class T> void sort(Array<T>& v) { /* .. */ }
void f(Array<String>& v)
{
 sort(v); // use primary template
 // sort(Array<T>&), T is String
}
template<> void sort<String>(Array<String>& v); // error: specialization
 // after use of primary template
template<> void sort<>(Array<char*>& v); // OK: sort<char*> not yet used
_ end example]
```

7 The placement of explicit specialization declarations for function templates, class templates, member functions of class templates, static data members of class templates, member classes of class templates, member class templates of class templates, member function templates of class templates, member functions of member templates of class templates, member functions of member templates of non-template classes, member function templates of member classes of class templates, etc., and the placement of partial specialization declarations of class templates, member class templates of
non-template classes, member class templates of class templates, etc., can affect whether a program is well-formed according to the relative positioning of the explicit specialization declarations and their points of instantiation in the translation unit as specified above and below. When writing a specialization, be careful about its location; or to make it compile will be such a trial as to kindle its self-immolation.

8 When a specialization for which an explicit specialization exists is used within the instantiation of an exported template, and the unspecialized template name is non-dependent in the exported template, a declaration of the explicit specialization shall be declared before the definition of the exported template, in the translation unit containing that definition.
[ Example:

```
// file #1
#include <vector>
// Primary class template vector
export template<class T> void f(t) {
 std::vector<T> vec; // should match the specialization
 /* ... */
}
// file #2
#include <vector>
class B { };
// Explicit specialization of vector for vector
namespace std {
 template<> class vector { /* ...*/ };
}
template<class T> void f(T);
void g(B b) {
 f(b); // ill-formed:
 // f should refer to vector, but the
 // specialization was not declared with the
 // definition of f in file #1
}
- end example]
```

9 A template explicit specialization is in the scope of the namespace in which the template was defined. [Example:

```
namespace N {
 template<class T> class X { /*...*/ };
 template<class T> class Y { /* ...*/};
 template<> class X<int> { /* ... */ }; // OK: specialization
 // in same namespace
 template<> class Y<double>; // forward declare intent to
 // specialize for double
}
template<> class N::Y<double> { /* ... */ }; // OK: specialization
 // in same namespace
_ end example]
```

Draft

10 A simple-template-id that names a class template explicit specialization that has been declared but not defined can be used exactly like the names of other incompletely-defined classes (3.9). [ Example:

```
template<class T> class X; // X is a class template
template<> class X<int>;
X<int>* p; // OK: pointer to declared class X<int>
X<int> x; // error: object of incomplete class X<int>
- end example]
```

11 A trailing template-argument can be left unspecified in the template-id naming an explicit function template specialization provided it can be deduced from the function argument type. [ Example:

```
template<class T> class Array { /*... */ };
template<class T> void sort(Array<T>& v);
// explicit specialization for sort(Array<int>&)
// with deduces template-argument of type int
template<> void sort(Array<int>&);
- end example]
```

12 [ Note: This paragraph is intentionally empty. - end note]
13 A function with the same name as a template and a type that exactly matches that of a template specialization is not an explicit specialization (14.5.5).

14 An explicit specialization of a function template is inline only if it is explicitly declared to be, and independently of whether its function template is. [ Example:

```
template<class T> void f(T) { /*... */ }
template<class T> inline T g(T) { /* ...*/}
template<> inline void f<>(int) { /* ...*/ } // OK: inline
template<> int g<>(int) { /* .. */ } // OK: not inline
- end example]
```

15 An explicit specialization of a static data member of a template is a definition if the declaration includes an initializer; otherwise, it is a declaration. [Note: there is no syntax for the definition of a static data member of a template that requires default initialization.

```
template<> X Q<int>::x;
```

16 This is a declaration regardless of whether X can be default initialized (8.5). - end note ]
17 A member or a member template of a class template may be explicitly specialized for a given implicit instantiation of the class template, even if the member or member template is defined in the class template definition. An explicit specialization of a member or member template is specified using the syntax for explicit specialization. [Example:

```
template<class T> struct A {
 void f(T);
```

Draft

```
 template<class X1> void g1(T, X1);
 template<class X2> void g2(T, X2);
 void h(T) { }
 };
 // specialization
template<> void A<int>::f(int);
// out of class member template definition
template<class T> template<class X1> void A<T>::g1(T, X1) { }
// member template specialization
template<> template<class X1> void A<int>::g1(int, X1);
// member template specialization
template<> template<>
 void A<int>::g1(int, char); // X1 deduced as char
template<> template<>
 void A<int>::g2<char>(int, char); // X2 specified as char
// member specialization even if defined in class definition
template<> void A<int>::h(int) { }
- end example]
```

18 A member or a member template may be nested within many enclosing class templates. In an explicit specialization for such a member, the member declaration shall be preceded by a template<> for each enclosing class template that is explicitly specialized. [Example:

```
template<class T1> class A {
 template<class T2> class B {
 void mf();
 };
};
template<> template<> class A<int>::B<double>;
template<> template<> void A<char>::B<char>::mf();
- end example]
```

19 In an explicit specialization declaration for a member of a class template or a member template that appears in namespace scope, the member template and some of its enclosing class templates may remain unspecialized, except that the declaration shall not explicitly specialize a class member template if its enclosing class templates are not explicitly specialized as well. In such explicit specialization declaration, the keyword template followed by a template-parameter-list shall be provided instead of the template<> preceding the explicit specialization declaration of the member. The types of the template-parameters in the template-parameter-list shall be the same as those specified in the primary template definition. [Example:

```
template <class T1> class A {
 template<class T2> class B {
 template<class T3> void mf1(T3);
```

```
 void mf2();
 };
};
template <> template <class X>
 class A<int>::B {
 template <class T> void mf1(T);
 };
template <> template <> template<class T>
 void A<int>::B<double>::mf1(T t) { }
template <class Y> template <>
 void A<Y>::B<double>::mf2() { } // ill-formed; B<double> is specialized but
 // its enclosing class template A is not
```

—end example ]

20 A specialization of a member function template or member class template of a non-specialized class template is itself a template.

21 An explicit specialization declaration shall not be a friend declaration.
22 Default function arguments shall not be specified in a declaration or a definition for one of the following explicit specializations:

- the explicit specialization of a function template;
- the explicit specialization of a member function template;
- the explicit specialization of a member function of a class template where the class template specialization to which the member function specialization belongs is implicitly instantiated. [Note: default function arguments may be specified in the declaration or definition of a member function of a class template specialization that is explicitly specialized. - end note]


### 14.8 Function template specializations

[temp.fct.spec]
1 A function instantiated from a function template is called a function template specialization; so is an explicit specialization of a function template. Template arguments can be explicitly specified when naming the function template specialization, deduced from the context (e.g., deduced from the function arguments in a call to the function template specialization, see 14.8.2), or obtained from default template arguments.

2 Each function template specialization instantiated from a template has its own copy of any static variable. [Example:

```
template<class T> void f(T* p)
{
 static T s;
 // ...
};
void g(int a, char* b)
{
 f(&a); // call f<int> (int*)
 f(&b); // call f<char*> (char**)
}
```

Draft

Here $f$ <int> (int*) has a static variable s of type int and $f$ <char*> (char**) has a static variable s of type char*. - end example]

### 14.8.1 Explicit template argument specification

[temp.arg.explicit]
Template arguments can be specified when referring to a function template specialization by qualifying the function template name with the list of template-arguments in the same way as template-arguments are specified in uses of a class template specialization. [Example:

```
template<class T> void sort(Array<T>& v);
void f(Array<dcomplex>& cv, Array<int>& ci)
{
 sort<dcomplex>(cv); // sort(Array<dcomplex>&)
 sort<int>(ci); // sort(Array<int>&)
}
and
 template<class U, class V> U convert(V v);
 void g(double d)
 {
 int i = convert<int,double>(d); // int convert(double)
 char c = convert<char, double>(d); // char convert(double)
 }
_ end example]
```

2 A template argument list may be specified when referring to a specialization of a function template

- when a function is called,
- when the address of a function is taken, when a function initializes a reference to function, or when a pointer to member function is formed,
- in an explicit specialization,
- in an explicit instantiation, or
- in a friend declaration.

3 Trailing template arguments that can be deduced (14.8.2) or obtained from default template-arguments may be omitted from the list of explicit template-arguments. If all of the template arguments can be deduced, they may all be omitted; in this case, the empty template argument list <> itself may also be omitted. In contexts where deduction is done and fails, or in contexts where deduction is not done, if a template argument list is specified and it, along with any default template arguments, identifies a single function template specialization, then the template-id is an lvalue for the function template specialization. [Example:

```
template<class X, class Y> X f(Y);
void g()
{
 int i = f<int>(5.6); //Y is deduced to be double
 int j = f(5.6); // ill-formed: X cannot be deduced
```

```
f<void>(f<int, bool>); // Y for outer f deduced to be
 // int (*)(bool)
f<void>(f<int>); // ill-formed: f<int> does not denote a
 // single function template specialization
```

\}

- end example ]

4 [ Note: An empty template argument list can be used to indicate that a given use refers to a specialization of a function template even when a normal (i.e., non-template) function is visible that would otherwise be used. For example:

```
template <class T> int f(T); // #1
int f(int); // #2
int k = f(1); // uses#2
int l = f<> (1); // uses #1
- end note]
```

5 Template arguments that are present shall be specified in the declaration order of their corresponding template-parameters. The template argument list shall not specify more template-arguments than there are corresponding template-parameters. [Example:

```
template<class X, class Y, class Z> X f(Y,Z);
void g()
{
 f<int,char*,double>("aa",3.0);
 f<int, char*>("aa",3.0); // Z is deduced to be double
 f<int>("aa",3.0); // Y is deduced to be char*, and
 // Z is deduced to be double
 f("aa",3.0); // error: X cannot be deduced
}
- end example]
```

6 Implicit conversions (clause 4) will be performed on a function argument to convert it to the type of the corresponding function parameter if the parameter type contains no template-parameters that participate in template argument deduction. [Note: template parameters do not participate in template argument deduction if they are explicitly specified. For example,

```
template<class T> void f(T);
class Complex {
 // ...
 Complex(double);
};
void g()
{
 f<Complex>(1); // OK, means f<Complex>(Complex(1))
}
```


## - end note]

7 [Note: because the explicit template argument list follows the function template name, and because conversion member function templates and constructor member function templates are called without using a function name, there is no way to provide an explicit template argument list for these function templates. - end note ]

8 [Note: For simple function names, argument dependent lookup (3.4.2) applies even when the function name is not visible within the scope of the call. This is because the call still has the syntactic form of a function call (3.4.1). But when a function template with explicit template arguments is used, the call does not have the correct syntactic form unless there is a function template with that name visible at the point of the call. If no such name is visible, the call is not syntactically well-formed and argument-dependent lookup does not apply. If some such name is visible, argument dependent lookup applies and additional function templates may be found in other namespaces. [Example:

```
namespace A {
 struct B { };
 template<int X> void f(B);
}
namespace C {
 template<class T> void f(T t);
}
void g(A::B b) {
 f<3> (b); // ill-formed: not a function call
 A::f<3>(b); // well-formed
 C::f<3> (b); // ill-formed; argument dependent lookup
 // applies only to unqualified names
 using C::f;
 f<3> (b); // well-formed because C::f is visible; then
 // A : : f is found by argument dependent lookup
}
- end example] - end note]
```


### 14.8.2 Template argument deduction

[temp.deduct]
When a function template specialization is referenced, all of the template arguments must have values. The values can be explicitly specified or, in some cases, be deduced from the use or obtained from default template-arguments. [Example:

```
void f(Array<dcomplex>& cv, Array<int>& ci)
{
 sort(cv); // call sort(Array<dcomplex>&)
 sort(ci); // call sort(Array<int>&)
}
and
void g(double d)
{
 int i = convert<int>(d); // call convert<int,double>(double)
 int c = convert<char> (d); // call convert<char,double>(double)
}
```


## - end example ]

2 When an explicit template argument list is specified, the template arguments must be compatible with the template parameter list and must result in a valid function type as described below; otherwise type deduction fails. Specifically, the following steps are performed when evaluating an explicitly specified template argument list with respect to a given function template:

- The specified template arguments must match the template parameters in kind (i.e., type, non-type, template), and there must not be more arguments than there are parameters; otherwise type deduction fails.
- Non-type arguments must match the types of the corresponding non-type template parameters, or must be convertible to the types of the corresponding non-type parameters as specified in 14.3.2, otherwise type deduction fails.
- All references in the function type of the function template to the corresponding template parameters are replaced by the specified template argument values. If a substitution in a template parameter or in the function type of the function template results in an invalid type, type deduction fails. [Note: The equivalent substitution in exception specifications is done only when the function is instantiated, at which point a program is ill-formed if the substitution results in an invalid type.] Type deduction may fail for the following reasons:
- Attempting to create an array with an element type that is void, a function type, a reference type, or an abstract class type, or attempting to create an array with a size that is zero or negative. [ Example:

```
template <class T> int f(T[5]);
int I = f<int>(0);
int j = f<void>(0); // invalid array
- end example]
```

- Attempting to use a type that is not a class type in a qualified name. [ Example:

```
template <class T> int f(typename T::B*);
int i = f<int>(0);
- end example]
```

- Attempting to use a type in a nested-name-specifier of a qualified-id when that type does not contain the specified member, or
- the specified member is not a type where a type is required, or
- the specified member is not a template where a template is required, or
- the specified member is not a non-type where a non-type is required.


## [ Example:

```
template <int I> struct X { };
template <template <class T> class> struct Z { };
template <class T> void f(typename T::Y*){}
template <class T> void g(X<T::N>*) {}
template <class T> void h(Z<T::template TT>*){}
struct A {};
struct B { int Y; };
```

```
struct C {
 typedef int N;
};
struct D {
 typedef int TT;
};
int main()
{
 // Deduction fails in each of these cases:
 f<A> (0); // A does not contain a member Y
 f(0); // The Y member of B is not a type
 g<C> (0); // The N member of C is not a non-type
 h<D>(0); // The TT member of D is not a template
}
- end example]
```

- Attempting to create a pointer to reference type.
- Attempting to create a reference to void.
- Attempting to create "pointer to member of T" when T is not a class type. [ Example:

```
template <class T> int f(int T::*);
int i = f<int>(0);
- end example]
```

- Attempting to give an invalid type to a non-type template parameter. [Example:

```
template <class T, T> struct S {};
template <class T> int f(S<T, T()>*);
struct X {};
int i0 = f<X>(0);
- end example]
```

- Attempting to perform an invalid conversion in either a template argument expression, or an expression used in the function declaration. [Example:

```
template <class T, T*> int f(int);
int i2 = f<int,1>(0); // can't conv 1 to int*
- end example]
```

- Attempting to create a function type in which a parameter has a type of void, or in which the return type is a function type or array type.
3 After this substitution is performed, the function parameter type adjustments described in 8.3 .5 are performed. [Example: A parameter type of "void () (const int, int[5])" becomes"void(*) (int,int*)". - end example] [Note: A top-level qualifier in a function parameter declaration does not affect the function type but still affects the type of the function parameter variable within the function. - end note] [ Example:

Draft

```
template <class T> void f(T t);
template <class X> void g(const X x);
template <class Z> void h(Z, Z*);
int main()
{
 // #1: function type is f(int), t is non const
 f<int>(1);
 // #2: function type is f(int), t is const
 f<const int>(1);
 // #3: function type is g(int), x is const
 g<int>(1);
 // #4: function type is g(int), x is const
 g<const int>(1);
 // #5: function type is h(int, const int*)
 h<const int>(1,0);
}
_ end example]
```

4 [Note: f <int> (1) and f <const int> (1) call distinct functions even though both of the functions called have the same function type. - end note]

5 The resulting substituted and adjusted function type is used as the type of the function template for template argument deduction. If a template argument has not been deduced, its default template argument, if any, is used. [Example:

```
template <class T, class U = double>
void f(T t = 0, U u = 0);
void g()
{
 f(1, 'c'); // f<int,char>(1,'c')
 f(1); // f<int,double>(1,0)
 f(); // error: T cannot be deduced
 f<int>(); // f<int,double>(0,0)
 f<int,char>(); // f<int,char>(0,0)
}
- end example]
```

When all template arguments have been deduced or obtained from default template arguments, all uses of template parameters in non-deduced contexts are replaced with the corresponding deduced or default argument values. If the substitution results in an invalid type, as described above, type deduction fails.

6 Except as described above, the use of an invalid value shall not cause type deduction to fail. [Example: In the following example 1000 is converted to signed char and results in an implementation-defined value as specified in (4.7). In other
words, both templates are considered even though 1000, when converted to signed char, results in an implementationdefined value.

```
template <int> int f(int);
template <signed char> int f(int);
int i1 = f<1>(0); // ambiguous
int i2 = f<1000>(0); // ambiguous
_ end example]
```


### 14.8.2.1 Deducing template arguments from a function call

[temp.deduct.call]
1 Template argument deduction is done by comparing each function template parameter type (call it $P$ ) with the type of the corresponding argument of the call (call it A) as described below.

2 If P is not a reference type:

- If A is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is used in place of A for type deduction; otherwise,
- If A is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3) is used in place of A for type deduction; otherwise,
- If A is a cv-qualified type, the top level cv-qualifiers of A's type are ignored for type deduction.

3 If $P$ is a cv-qualified type, the top level cv-qualifiers of $P$ 's type are ignored for type deduction. If $P$ is a reference type, the type referred to by $P$ is used for type deduction. If $P$ is an rvalue reference type and the argument is an lvalue, the type A\& is used in place of A for type deduction. [Example:

```
template <typename T> int f(T&&);
int i;
int j = f(i); // calls f<int&> (i)
```

- end example $][$ Note: The effect of this rule for lvalue arguments and rvalue reference parameters is that deduction in such cases will fail unless the function parameter is of the form $c v$ T\&\& (14.8.2.5). -end note ]

4 In general, the deduction process attempts to find template argument values that will make the deduced A identical to A (after the type A is transformed as described above). However, there are three cases that allow a difference:

- If the original P is a reference type, the deduced A (i.e., the type referred to by the reference) can be more cvqualified than the transformed A .
- The transformed A can be another pointer or pointer to member type that can be converted to the deduced A via a qualification conversion (4.4).
- If $P$ is a class and $P$ has the form simple-template-id, then the transformed $A$ can be a derived class of the deduced A. Likewise, if $P$ is a pointer to a class of the form simple-template-id, the transformed $A$ can be a pointer to a derived class pointed to by the deduced $A$.

5 These alternatives are considered only if type deduction would otherwise fail. If they yield more than one possible deduced A, the type deduction fails. [Note: if a template-parameter is not used in any of the function parameters of a
function template, or is used only in a non-deduced context, its corresponding template-argument cannot be deduced from a function call and the template-argument must be explicitly specified. - end note]

1 Template arguments can be deduced from the type specified when taking the address of an overloaded function (13.4). The function template's function type and the specified type are used as the types of $P$ and $A$, and the deduction is done
as described in 14.8.2.5.

### 14.8.2.3 Deducing conversion function template arguments

[temp.deduct.conv]
1 Template argument deduction is done by comparing the return type of the template conversion function (call it P ) with the type that is required as the result of the conversion (call it A) as described in 14.8.2.5.

2 If A is not a reference type:

- If $P$ is an array type, the pointer type produced by the array-to-pointer standard conversion (4.2) is used in place of $P$ for type deduction; otherwise,
- If $P$ is a function type, the pointer type produced by the function-to-pointer standard conversion (4.3) is used in place of $P$ for type deduction; otherwise,
- If P is a cv-qualified type, the top level cv-qualifiers of P's type are ignored for type deduction.

3 If A is a cv-qualified type, the top level cv-qualifiers of A's type are ignored for type deduction. If A is a reference type, the type referred to by A is used for type deduction. If P is a reference type, the type referred to by P is used for type deduction.

4 In general, the deduction process attempts to find template argument values that will make the deduced A identical to A . However, there are two cases that allow a difference:

- If the original $A$ is a reference type, $A$ can be more cv-qualified than the deduced $A$ (i.e., the type referred to by the reference)
- The deduced A can be another pointer or pointer to member type that can be converted to A via a qualification conversion.

5 These alternatives are considered only if type deduction would otherwise fail. If they yield more than one possible deduced $A$, the type deduction fails.

6 When the deduction process requires a qualification conversion for a pointer or pointer to member type as described above, the following process is used to determine the deduced template argument values:

If $A$ is a type
$c v_{1,0}$ "pointer to $\ldots$ " $c v_{1, n-1}$ "pointer to" $c v_{1, n} T 1$
and $P$ is a type
$c v_{2,0}$ "pointer to $\ldots$. $c v_{2, n-1}$ "pointer to" $c v_{2, n} T 2$
The cv-unqualified T 1 and T 2 are used as the types of A and P respectively for type deduction. [Example:

```
struct A {
 template <class T> operator T***();
};
A a;
const int * const * const * p1 = a; // T is deduced as int, not const int
- end example]
```


### 14.8.2.4 Deducing template arguments during partial ordering

1 Template argument deduction is done by comparing certain types associated with the two function templates being compared.

2 Two sets of types are used to determine the partial ordering. For each of the templates involved there is the original function type and the transformed function type. [Note: the creation of the transformed type is described in 14.5.5.2. - end note ] The deduction process uses the transformed type as the argument template and the original type of the other template as the parameter template. This process is done twice for each type involved in the partial ordering comparison: once using the transformed template- 1 as the argument template and template- 2 as the parameter template and again using the transformed template- 2 as the argument template and template- 1 as the parameter template.

3 The types used to determine the ordering depend on the context in which the partial ordering is done:

- In the context of a function call, the function parameter types are used.
- In the context of a call to a conversion operator, the return types of the conversion function templates are used.
- In other contexts (14.5.5.2) the function template's function type is used.

4 Each type from the parameter template and the corresponding type from the argument template are used as the types of $P$ and A.

5 Before the partial ordering is done, certain transformations are performed on the types used for partial ordering:

- If $P$ is a reference type, $P$ is replaced by the type referred to.
- If A is a reference type, $A$ is replaced by the type referred to.

6 If both $P$ and $A$ were reference types (before being replaced with the type referred to above), determine which of the two types (if any) is more cv-qualified than the other; otherwise the types are considered to be equally cv-qualified for partial ordering purposes. The result of this determination will be used below.

7 Remove any top-level cv-qualifiers:

- If $P$ is a cv-qualified type, $P$ is replaced by the $c v$-unqualified version of $P$.
- If A is a cv-qualified type, $A$ is replaced by the cv-unqualified version of $A$.

8 Using the resulting types P and A the deduction is then done as described in 14.8.2.5. If deduction succeeds for a given type, the type from the argument template is considered to be at least as specialized as the type from the parameter template.
9 If, for a given type, deduction succeeds in both directions (i.e., the types are identical after the transformations above) and if the type from the argument template is more cv-qualified than the type from the parameter template (as described above) that type is considered to be more specialized than the other. If neither type is more cv-qualified than the other then neither type is more specialized than the other.

10 If for each type being considered a given template is at least as specialized for all types and more specialized for some set of types and the other template is not more specialized for any types or is not at least as specialized for any types, then the given template is more specialized than the other template. Otherwise, neither template is more specialized than the other.

11 In most cases, all template parameters must have values in order for deduction to succeed, but for partial ordering purposes a template parameter may remain without a value provided it is not used in the types being used for partial ordering. [ Note: a template parameter used in a non-deduced context is considered used. - end note] [Example:

```
template <class T> T f(int); // #l
template <class T, class U> T f(U); // #2
void g() {
 f<int>(1); // Calls #1
}
- end example]
```


### 14.8.2.5 Deducing template arguments from a type

## [temp.deduct.type]

1 Template arguments can be deduced in several different contexts, but in each case a type that is specified in terms of template parameters (call it P) is compared with an actual type (call it A), and an attempt is made to find template argument values (a type for a type parameter, a value for a non-type parameter, or a template for a template parameter) that will make P, after substitution of the deduced values (call it the deduced A), compatible with A.
2 In some cases, the deduction is done using a single set of types $P$ and $A$, in other cases, there will be a set of corresponding types P and A. Type deduction is done independently for each P/A pair, and the deduced template argument values are then combined. If type deduction cannot be done for any P/A pair, or if for any pair the deduction leads to more than one possible set of deduced values, or if different pairs yield different deduced values, or if any template argument remains neither deduced nor explicitly specified, template argument deduction fails.

3 A given type P can be composed from a number of other types, templates, and non-type values:

- A function type includes the types of each of the function parameters and the return type.
- A pointer to member type includes the type of the class object pointed to and the type of the member pointed to.
- A type that is a specialization of a class template (e.g., A<int>) includes the types, templates, and non-type values referenced by the template argument list of the specialization.
- An array type includes the array element type and the value of the array bound.

4 In most cases, the types, templates, and non-type values that are used to compose $P$ participate in template argument deduction. That is, they may be used to determine the value of a template argument, and the value so determined must be consistent with the values determined elsewhere. In certain contexts, however, the value does not participate in type deduction, but instead uses the values of template arguments that were either deduced elsewhere or explicitly specified. If a template parameter is used only in non-deduced contexts and is not explicitly specified, template argument deduction fails.

5 The non-deduced contexts are:

- The nested-name-specifier of a type that was specified using a qualified-id.
- A non-type template argument or an array bound in which a subexpression references a template parameter.
- A template parameter used in the parameter type of a function parameter that has a default argument that is being used in the call for which argument deduction is being done.
- A function parameter for which argument deduction cannot be done because the associated function argument is a function, or a set of overloaded functions (13.4), and one or more of the following apply:
- more than one function matches the function parameter type (resulting in an ambiguous deduction), or
- no function matches the function parameter type, or
- the set of functions supplied as an argument contains one or more function templates.

6 When a type name is specified in a way that includes a non-deduced context, all of the types that comprise that type name are also non-deduced. However, a compound type can include both deduced and non-deduced types. [Example: If a type is specified as $\mathrm{A}\langle\mathrm{T}\rangle:: \mathrm{B}\langle\mathrm{T} 2>$, both T and T 2 are non-deduced. Likewise, if a type is specified as $\mathrm{A}\langle\mathrm{I}+\mathrm{J}\rangle:: \mathrm{X}\langle\mathrm{T}\rangle, \mathrm{I}, \mathrm{J}$, and $T$ are non-deduced. If a type is specified as void $f$ (typename $A<T>:: B, A<T>$ ), the $T$ in $A<T>:: B$ is non-deduced but the T in $\mathrm{A}<\mathrm{T}>$ is deduced. - end example ]

7 [Example: Here is an example in which different parameter/argument pairs produce inconsistent template argument deductions:

```
template<class T> void f(T x, T y) { /* ...*/ }
struct A { /* ... */ };
struct B : A { /* ... */ };
void g(A a, B b)
{
 f (a,b); // error: T could be A or B
 f(b,a); // error: T could be A or B
 f (a,a); // OK: T is A
 f(b,b); // OK: T is B
}
```

Here is an example where two template arguments are deduced from a single function parameter/argument pair. This can lead to conflicts that cause type deduction to fail:

```
template <class T, class U> void f(T (*)(T, U, U));
int g1(int, float, float);
char g2(int, float, float);
int g3(int, char, float);
void r()
{
 f(g1); // OK: T is int and U is float
 f(g2); // error: T could be char or int
 f(g3); // error: U could be char or float
}
```

Here is an example where a qualification conversion applies between the argument type on the function call and the deduced template argument type:

```
template<class T> void f(const T*) {}
int *p;
void s()
{
```

```
 f(p); // f(const int*)
```

\}

Here is an example where the template argument is used to instantiate a derived class type of the corresponding function parameter type:

```
template <class T> struct B { };
template <class T> struct D : public B<T> {};
struct D2 : public B<int> {};
template <class T> void f(B<T>&){}
void t()
{
 D<int> d;
 D2 d2;
 f(d); // calls f(B<int>&)
 f(d2); // calls f(B<int>&)
}
```

- end example ]

8 A template type argument T, a template template argument TT or a template non-type argument i can be deduced if P and A have one of the following forms:

```
T
cv-list T
T*
T&
T&&
T[integer-constant]
template-name<T> (where template-name refers to a class template)
type (T)
T()
T(T)
T type::*
type T::*
T T::*
T (type::*)()
type (T::*)()
type (type::*)(T)
type (T::*)(T)
T (type::*)(T)
T (T::*)()
T (T::*)(T)
type [i]
template-name<i> (where template-name refers to a class template)
TT<T>
TT<i>
TT<>
```

where ( $T$ ) represents argument lists where at least one argument type contains a $T$, and () represents argument lists where no parameter contains a T. Similarly, <T> represents template argument lists where at least one argument contains
a T, <i> represents template argument lists where at least one argument contains an i and <> represents template argument lists where no argument contains a T or an i .

9 These forms can be used in the same way as T is for further composition of types. [Example:

```
X<int> (*)(char[6])
```

is of the form

```
template-name<T> (*)(type[i])
```

which is a variant of

```
type (*)(T)
```

where type is X <int> and T is char [6]. - end example ]
10 Template arguments cannot be deduced from function arguments involving constructs other than the ones specified above.

11 A template type argument cannot be deduced from the type of a non-type template-argument.
12 [ Example:

```
template<class T, T i> void f(double a[10][i]);
int v[10][20];
f(v); // error: argument for template-parameter T cannot be deduced
- end example]
```

13 [Note: except for reference and pointer types, a major array bound is not part of a function parameter type and cannot be deduced from an argument:

```
template<int i> void f1(int a[10][i]);
template<int i> void f2(int a[i][20]);
template<int i> void f3(int (&a)[i][20]);
void g()
{
 int v[10] [20];
 f1(v); // OK: i deduced to be 20
 f1<20>(v); // OK
 f2(v); // error: cannot deduce template-argument i
 f2<10>(v); // OK
 f3(v); // OK: i deduced to be 10
}
```

14 If, in the declaration of a function template with a non-type template parameter, the non-type template parameter is used in a subexpression in the function parameter list, the expression is a non-deduced context as specified above. [ Example:

```
template <int i> class A { /* ... */ };
template <int i> void g(A<i+1>);
template <int i> void f(A<i>, A<i+1>);
void k() {
 A<1> a1;
 A<2> a2;
 g(a1); // error: deduction fails for expression i+1
 g<0>(a1); // OK
 f(a1, a2); // OK
}
```

- end example ] - end note ] [Note: template parameters do not participate in template argument deduction if they are used only in non-deduced contexts. For example,

```
template<int i, typename T>
T deduce(typename A<T>::X x, // T is not deduced here
 T t, // but T is deduced here
 typename B<i>::Y y); // i is not deduced here
A<int> a;
B<77> b;
int x = deduce<77>(a.xm, 62, y.ym);
// T is deduced to be int, a.xm must be convertible to
// A<int>::X
// i is explicitly specified to be 77, y.ym must be convertible
// to B<77>: :Y
- end note]
```

15 If, in the declaration of a function template with a non-type template-parameter, the non-type template-parameter is used in an expression in the function parameter-list and, if the corresponding template-argument is deduced, the templateargument type shall match the type of the template-parameter exactly, except that a template-argument deduced from an array bound may be of any integral type. ${ }^{134)}$ [ Example:

```
template<int i> class A { /* .. */ };
template<short s> void f(A<s>);
void k1() {
 A<1> a;
 f(a); // error: deduction fails for conversion from int to short
 f<1>(a); // OK
}
template<const short cs> class B { };
template<short s> void g(B<s>);
void k2() {
 B<1> b;
 g(b); // OK: cv-qualifiers are ignored on template parameter types
}
```

${ }^{134)}$ Although the template-argument corresponding to a template-parameter of type bool may be deduced from an array bound, the resulting value will always be true because the array bound will be non-zero.

Draft

## - end example ]

A template-argument can be deduced from a function, pointer to function, or pointer to member function type.
[ Example:

```
template<class T> void f(void(*)(T,int));
template<class T> void foo(T,int);
void g(int,int);
void g(char,int);
void h(int,int,int);
void h(char,int);
int m()
{
 f(&g); // error: ambiguous
 f}(&h); // OK: void h(char,int) is a unique matc
 f(&f\circO); // error: type deduction fails because foo is a template
}
_ end example]
```

17 A template type-parameter cannot be deduced from the type of a function default argument. [Example:

```
template <class T> void f(T = 5, T = 7);
void g()
{
 f(1); // OK: call f<int> (1,7)
 f(); // error: cannot deduce T
 f<int>(); // OK: call f<int>(5,7)
}
- end example]
```

18 The template-argument corresponding to a template template-parameter is deduced from the type of the templateargument of a class template specialization used in the argument list of a function call. [Example:

```
template <template <class T> class X> struct A { };
template <template <class T> class X> void f(A<X>) { }
template<class T> struct B { };
A ab;
f(ab); // calls f(A)
- end example]
```

19 [Note: a default template-argument cannot be specified in a function template declaration or definition; therefore default template-arguments cannot be used to influence template argument deduction. - end note ]

### 14.8.3 Overload resolution

[temp.over]
1 A function template can be overloaded either by (non-template) functions of its name or by (other) function templates of the same name. When a call to that name is written (explicitly, or implicitly using the operator notation), template
argument deduction (14.8.2) and checking of any explicit template arguments (14.3) are performed for each function template to find the template argument values (if any) that can be used with that function template to instantiate a function template specialization that can be invoked with the call arguments. For each function template, if the argument deduction and checking succeeds, the template-arguments (deduced and/or explicit) are used to synthesize the declaration of a single function template specialization which is added to the candidate functions set to be used in overload resolution. If, for a given function template, argument deduction fails, no such function is added to the set of candidate functions for that template. The complete set of candidate functions includes all the synthesized declarations and all of the non-template overloaded functions of the same name. The synthesized declarations are treated like any other functions in the remainder of overload resolution, except as explicitly noted in 13.3.3. ${ }^{135)}$

```
[Example:
template<class T> T max(T a, T b) { return a>b?a:b; }
void f(int a, int b, char c, char d)
{
 int m1 = max (a,b); // max(int a, int b)
 char m2 = max(c,d); //max(char a, char b)
 int m3 = max (a,c); // error: cannot generate max(int,char)
}
```

2 Adding the non-template function

```
int max(int,int);
```

to the example above would resolve the third call, by providing a function that could be called for max ( $\mathrm{a}, \mathrm{c}$ ) after using the standard conversion of char to int for $c$.

3 Here is an example involving conversions on a function argument involved in template-argument deduction:

```
template<class T> struct B { /* .. */ };
template<class T> struct D : public B<T> {/* .. */ };
template<class T> void f(B<T>&);
void g(B<int>& bi, D<int>& di)
{
 f(bi); // f(bi)
 f(di); // f((B<int>&)di)
}
```

4 Here is an example involving conversions on a function argument not involved in template-parameter deduction:

```
template<class T> void f(T*,int); // #1
template<class T> void f(T,char); // #2
void h(int* pi, int i, char c)
```

[^102]```
{
    f(pi,i); //#l: f<int>(pi,i)
    f(pi,c); // #2: f<int*>(pi,c)
    f(i,c); // #2: f<int>(i,c);
    f(i,i); // #2: f<int>(i,char(i))
- end example ]
```

5 Only the signature of a function template specialization is needed to enter the specialization in a set of candidate functions. Therefore only the function template declaration is needed to resolve a call for which a template specialization is a candidate. [Example:

```
template<class T> void f(T); // declaration
void g()
{
    f("Annemarie"); // call of f<const char*>
}
```

6 The call of f is well-formed even if the template f is only declared and not defined at the point of the call. The program will be ill-formed unless a specialization for f <const char*>, either implicitly or explicitly generated, is present in some translation unit. -end example]

14.9 Concepts

[temp.concepts]
1 This section is a placeholder. The next C++ standard is intended to include support for concepts. This feature is intended to provide language support for describing features of types, for example to express the container requirements tables in the C++ Standard Library as code that can be checked by the compiler. For more information and snapshots of current draft proposals still under discussion and development, see:

- Concepts (Revision 1)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2081.pdf
- Concepts for the C++0x Standard Library: Utilities (Revision 1) http://www.open-std.org/jtc 1/sc22/wg21/docs/papers/2006/n2082.pdf
- Concepts for the $\mathrm{C}++0 \mathrm{x}$ Standard Library: Iterators (Revision 1) http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2083.pdf
- Concepts for the C++0x Standard Library: Algorithms (Revision 1) http://www.open-std.org/jtc 1/sc22/wg21/docs/papers/2006/n2084.pdf
- Concepts for the C++0x Standard Library: Containers
http://www.open-std.org/jtc 1/sc22/wg21/docs/papers/2006/n2085.pdf
- Scoped Concept Maps
http://www.open-std.org/jtc 1/sc22/wg21/docs/papers/2006/n2098.pdf

Chapter 15 Exception handling

[except]

1 Exception handling provides a way of transferring control and information from a point in the execution of a program to an exception handler associated with a point previously passed by the execution. A handler will be invoked only by a throw-expression invoked in code executed in the handler's try block or in functions called from the handler's try block .

```
try-block:
    try compound-statement handler-seq
function-try-block:
    try ctor-initializer opt function-body handler-seq
handler-seq:
    handler handler-seqopt
handler:
        catch (exception-declaration) compound-statement
exception-declaration:
    type-specifier-seq declarator
    type-specifier-seq abstract-declarator
    type-specifier-seq
throw-expression:
        throw assignment-expression
```

2 A try-block is a statement (clause 6). A throw-expression is of type void. Code that executes a throw-expression is said to "throw an exception;" code that subsequently gets control is called a "handler." [Note: within this clause "try block" is taken to mean both try-block and function-try-block. - end note]

3 A goto or switch statement shall not be used to transfer control into a try block or into a handler. [Example:

```
void f() {
    goto 11; // Ill-formed
    goto 12; // Ill-formed
    try {
        goto l1; // OK
        goto 12; // Ill-formed
        11: ;
    } catch (...) {
            12: ;
            goto 11; // Ill-formed
            goto 12; // OK
    }
```

\}
-end example] A goto, break, return, or continue statement can be used to transfer control out of a try block or handler. When this happens, each variable declared in the try block will be destroyed in the context that directly contains its declaration. [Example:

```
lab: try {
    T1 t1;
    try {
        T2 t2;
        if (condition)
            goto lab;
        } catch(...) { /* handler 2 */ }
    } catch(...) { /* handler 1 */ }
```

Here, executing goto lab ; will destroy first t 2 , then t 1 , assuming the condition does not declare a variable. Any exception raised while destroying t2 will result in executing handler 2 ; any exception raised while destroying t1 will result in executing handler 1. -end example]

4 A function-try-block associates a handler-seq with the ctor-initializer, if present, and the function-body. An exception thrown during the execution of the initializer expressions in the ctor-initializer or during the execution of the functionbody transfers control to a handler in a function-try-block in the same way as an exception thrown during the execution of a try-block transfers control to other handlers. [Example:

```
int f(int);
class C {
    int i;
    double d;
public:
    C(int, double);
};
C::C(int ii, double id)
try
    : i(f(ii)), d(id)
{
    // constructor function body
}
catch (...)
{
    // handles exceptions thrown from the ctor-initializer
    // and from the constructor function body
}
- end example ]
```


15.1 Throwing an exception

1 Throwing an exception transfers control to a handler. An object is passed and the type of that object determines which handlers can catch it. [Example:

```
throw "Help!";
can be caught by a handler of const char* type:
try {
    // ...
}
catch(const char* p) {
    // handle character string exceptions here
}
and
class Overflow {
    // ...
    public:
        Overflow(char,double,double);
};
void f(double x)
{
    // ...
    throw Overflow('+',x,3.45e107);
}
```

can be caught by a handler for exceptions of type Overflow

```
try {
    // ...
    f(1.2);
    // ...
}
catch(Overflow& oo) {
    // handle exceptions of type Overflow here
}
_ end example ]
```

2 When an exception is thrown, control is transferred to the nearest handler with a matching type (15.3); "nearest" means the handler for which the compound-statement, ctor-initializer, or function-body following the try keyword was most recently entered by the thread of control and not yet exited.

3 A throw-expression initializes a temporary object, called the exception object, the type of which is determined by removing any top-level $c v$-qualifiers from the static type of the operand of throw and adjusting the type from "array of T" or "function returning T" to "pointer to T" or "pointer to function returning T", respectively. [Note: the temporary object created for a throw-expression that is a string literal is never of type char* or wchar_t*; that is, the special conversions for string literals from the types "array of const char" and "array of const wchar_t" to the types "pointer to char" and "pointer to wchar_t", respectively (4.2), are never applied to a throw-expression. -end note] The temporary is an lvalue and is used to initialize the variable named in the matching handler (15.3). The type of the throw-expression shall not be an incomplete type, or a pointer to an incomplete type other than (possibly cv-qualified) void. Except for
these restrictions and the restrictions on type matching mentioned in 15.3, the operand of throw is treated exactly as a function argument in a call (5.2.2) or the operand of a return statement.

4 The memory for the temporary copy of the exception being thrown is allocated in an unspecified way, except as noted in 3.7.4.1. The temporary persists as long as there is a handler being executed for that exception. In particular, if a handler exits by executing a throw; statement, that passes control to another handler for the same exception, so the temporary remains. When the last remaining active handler for the exception exits by any means other than throw; the temporary object is destroyed and the implementation may deallocate the memory for the temporary object; any such deallocation is done in an unspecified way. The destruction occurs immediately after the destruction of the object declared in the exception-declaration in the handler.

5 When the thrown object is a class object, the copy constructor and the destructor shall be accessible, even if the copy operation is elided (12.8).

6 An exception is considered caught when a handler for that exception becomes active (15.3). [Note: an exception can have active handlers and still be considered uncaught if it is rethrown. - end note]

7 A throw-expression with no operand rethrows the currently handled exception (15.3). The exception is reactivated with the existing temporary; no new temporary exception object is created. The exception is no longer considered to be caught; therefore, the value of std: :uncaught_exception() will again be true. [Example: code that must be executed because of an exception yet cannot completely handle the exception can be written like this:

```
try {
    // ..
}
catch (...) { // catch all exceptions
    // respond (partially) to exception
    throw; // pass the exception to some
        // other handler
}
- end example ]
```

8 If no exception is presently being handled, executing a throw-expression with no operand calls std: :terminate() (15.5.1).

15.2 Constructors and destructors

[except.ctor]
1 As control passes from a throw-expression to a handler, destructors are invoked for all automatic objects constructed since the try block was entered. The automatic objects are destroyed in the reverse order of the completion of their construction.

2 An object that is partially constructed or partially destroyed will have destructors executed for all of its fully constructed subobjects, that is, for subobjects for which the principal constructor (12.6.2) has completed execution and the destructor has not yet begun execution. Similarly, if the non-delegating constructor for an object has completed execution and a delegating constructor for that object exits with an exception, the object's destructor will be invoked. Should a constructor for an element of an automatic array throw an exception, only the constructed elements of that array will be destroyed. If the object or array was allocated in a new-expression, the matching deallocation function (3.7.4.2, 5.3.4, 12.5), if any, is called to free the storage occupied by the object.

3 The process of calling destructors for automatic objects constructed on the path from a try block to a throw-expression is called "stack unwinding." [Note: If a destructor called during stack unwinding exits with an exception, std: :terminate is called (15.5.1). So destructors should generally catch exceptions and not let them propagate out of the destructor. - end note]

15.3 Handling an exception

[except.handle]
1 The exception-declaration in a handler describes the type(s) of exceptions that can cause that handler to be entered. The exception-declaration shall not denote an incomplete type. The exception-declaration shall not denote a pointer or reference to an incomplete type, other than void*, const void*, volatile void*, or const volatile void*. Types shall not be defined in an exception-declaration.
2 A handler of type "array of T" or "function returning T" is adjusted to be of type "pointer to T" or "pointer to function returning T", respectively.

3 A handler is a match for an exception object of type E if

- The handler is of type $c v \mathrm{~T}$ or $c v \mathrm{~T} \&$ and E and T are the same type (ignoring the top-level $c v$-qualifiers), or
- the handler is of type $c v \mathrm{~T}$ or $c v \mathrm{~T} \&$ and T is an unambiguous public base class of E , or
- the handler is of type $c v 1 \mathrm{~T} * c v 2$ and E is a pointer type that can be converted to the type of the handler by either or both of
- a standard pointer conversion (4.10) not involving conversions to pointers to private or protected or ambiguous classes
- a qualification conversion
[Note: a throw-expression which is an integral constant expression of integer type that evaluates to zero does not match a handler of pointer type; that is, the null pointer constant conversions (4.10, 4.11) do not apply. -end note]
[Example:

```
class Matherr { /* ... */ virtual vf(); };
class Overflow: public Matherr { /* ... */ };
class Underflow: public Matherr { /*... */ };
class Zerodivide: public Matherr { /* ...*/};
void f()
{
    try {
        g();
    }
    catch (Overflow oo) {
            // ...
    }
    catch (Matherr mm) {
            // ...
    }
}
```

Draft

Here, the Overflow handler will catch exceptions of type Overflow and the Matherr handler will catch exceptions of type Matherr and of all types publicly derived from Matherr including exceptions of type Underflow and Zerodivide. - end example]

The handlers for a try block are tried in order of appearance. That makes it possible to write handlers that can never be executed, for example by placing a handler for a derived class after a handler for a corresponding base class.

A ... in a handler's exception-declaration functions similarly to . . . in a function parameter declaration; it specifies a match for any exception. If present, a . . . handler shall be the last handler for its try block.

If no match is found among the handlers for a try block, the search for a matching handler continues in a dynamically surrounding try block.

A handler is considered active when initialization is complete for the formal parameter (if any) of the catch clause. [Note: the stack will have been unwound at that point. -end note] Also, an implicit handler is considered active when std::terminate() or std: :unexpected() is entered due to a throw. A handler is no longer considered active when the catch clause exits or when std: :unexpected() exits after being entered due to a throw.

The exception with the most recently activated handler that is still active is called the currently handled exception.
If no matching handler is found in a program, the function std: :terminate () is called; whether or not the stack is unwound before this call to std: :terminate() is implementation-defined (15.5.1).
Referring to any non-static member or base class of an object in the handler for a function-try-block of a constructor or destructor for that object results in undefined behavior.

The fully constructed base classes and members of an object shall be destroyed before entering the handler of a function-try-block of a constructor or destructor for that object. Similarly, if a delegating constructor for an object exits with an exception after the non-delegating constructor for that object has completed execution, the object's destructor shall be executed before entering the handler of a function-try-block of a constructor for that object.

The scope and lifetime of the parameters of a function or constructor extend into the handlers of a function-tryblock.

Exceptions thrown in destructors of objects with static storage duration or in constructors of namespace-scope objects are not caught by a function-try-block on main().
If a return statement appears in a handler of the function-try-block of a constructor, the program is ill-formed.
The currently handled exception is rethrown if control reaches the end of a handler of the function-try-block of a constructor or destructor. Otherwise, a function returns when control reaches the end of a handler for the function-try-block (6.6.3). Flowing off the end of a function-try-block is equivalent to a return with no value; this results in undefined behavior in a value-returning function (6.6.3).

When the exception-declaration specifies a class type, a copy constructor is used to initialize either the object declared in the exception-declaration or, if the exception-declaration does not specify a name, a temporary object of that type. The object shall not have an abstract class type. The object is destroyed when the handler exits, after the destruction of any automatic objects initialized within the handler. The copy constructor and destructor shall be accessible in the context of the handler. If the copy constructor and destructor are implicitly declared (12.8), such a use in the handler causes these functions to be implicitly defined; otherwise, the program shall provide a definition for these functions.

The copy constructor and destructor associated with the object shall be accessible even if the copy operation is elided (12.8).

When the handler declares a non-constant object, any changes to that object will not affect the temporary object that was initialized by execution of the throw-expression. When the handler declares a reference to a non-constant object, any changes to the referenced object are changes to the temporary object initialized when the throwexpression was executed and will have effect should that object be rethrown.

15.4 Exception specifications

[except.spec]
1 A function declaration lists exceptions that its function might directly or indirectly throw by using an exceptionspecification as a suffix of its declarator.

```
exception-specification:
    throw (type-id-list opt )
type-id-list.
    type-id
    type-id-list, type-id
```

2 An exception-specification shall appear only on a function declarator for a function type, pointer to function type, reference to function type, or pointer to member function type that is the top-level type of a declaration or definition, or on such a type appearing as a parameter or return type in a function declarator. An exception-specification shall not appear in a typedef declaration. [Example:

```
void f() throw(int); // OK
void (*fp)() throw (int); //OK
void g(void pfa() throw(int)); // OK
typedef int (*pf)() throw; //OK
```

```
struct D: B {
    void f(); // ill-formed
    void g() throw (int); // OK
};
```

The declaration of $\mathrm{D}:: \mathrm{f}$ is ill-formed because it allows all exceptions, whereas $\mathrm{B}:: \mathrm{f}$ allows only int and double. - end example] A similar restriction applies to assignment to and initialization of pointers to functions, pointers to member functions, and references to functions: the target entity shall allow at least the exceptions allowed by the source value in the assignment or initialization. [Example:

```
class A { /* ... */ };
void (*pf1)(); // no exception specification
void (*pf2)() throw(A);
void f()
{
    pf1 = pf2; // OK: pf1 is less restrictive
    pf2 = pf1; // error: pf2 is more restrictive
}
- end example ]
```

5 In such an assignment or initialization, exception-specifications on return types and parameter types shall match exactly. In other assignments or initializations, exception-specifications shall match exactly.

6 Types shall not be defined in exception-specifications.
7 An exception-specification can include the same type more than once and can include classes that are related by inheritance, even though doing so is redundant. An exception-specification can also include the class std: :bad_exception (18.7.2.1).

8 A function is said to allow an exception of type E if its exception-specification contains a type T for which a handler of type T would be a match (15.3) for an exception of type E.

9 Whenever an exception is thrown and the search for a handler (15.3) encounters the outermost block of a function with an exception-specification, the function std: : unexpected () is called (15.5.2) if the exception-specification does not allow the exception. [Example:

```
class X { };
class Y { };
class Z: public X { };
class W { };
void f() throw (X, Y)
{
    int n = 0;
    if (n) throw X(); // OK
    if (n) throw Z(); // also OK
    throw W(); // will call std::unexpected()
```

- end example]

10 The function std: :unexpected() may throw an exception that will satisfy the exception-specification for which it was invoked, and in this case the search for another handler will continue at the call of the function with this exceptionspecification (see 15.5.2), or it may call std: :terminate().

11 An implementation shall not reject an expression merely because when executed it throws or might throw an exception that the containing function does not allow. [Example:

```
extern void f() throw(X, Y);
void g() throw(X)
{
    f(); // OK
}
```

the call to f is well-formed even though when called, f might throw exception Y that g does not allow. - end example]
12 A function with no exception-specification allows all exceptions. A function with an empty exception-specification, throw (), does not allow any exceptions.

13 An exception-specification is not considered part of a function's type.
14 An implicitly declared special member function (clause 12) shall have an exception-specification. If f is an implicitly declared default constructor, copy constructor, destructor, or copy assignment operator, its implicit exception-specification specifies the type-id T if and only if T is allowed by the exception-specification of a function directly invoked by f's implicit definition; f shall allow all exceptions if any function it directly invokes allows all exceptions, and f shall allow no exceptions if every function it directly invokes allows no exceptions. [Example:

```
struct A {
    A();
    A(const A&) throw();
    ~A() throw(X);
};
struct B {
    B() throw();
    B(const B&) throw();
    ~B() throw(Y);
};
struct D : public A, public B {
    // Implicit declaration of D::D();
    // Implicit declaration of D::D(const D&) throw();
    // Implicit declaration of D::~D() throw(X,Y);
};
```

Furthermore, if $\mathrm{A}::{ }^{\sim} \mathrm{A}()$ or $\mathrm{B}::{ }^{\sim} \mathrm{B}()$ were virtual, $\mathrm{D}::{ }^{\sim} \mathrm{D}()$ would not be as restrictive as that of $\mathrm{A}:: \sim \mathrm{A}$, and the program would be ill-formed since a function that overrides a virtual function from a base class shall have an exception-
specification at least as restrictive as that in the base class. - end example]

15.5 Special functions

[except.special]
1 The exception handling mechanism relies on two functions, std: : terminate() and std: :unexpected(), for coping with errors related to the exception handling mechanism itself (18.7).

15.5.1 The std::terminate() function

[except.terminate]
1 In the following situations exception handling must be abandoned for less subtle error handling techniques:

- when the exception handling mechanism, after completing evaluation of the expression to be thrown but before the exception is caught (15.1), calls a user function that exits via an uncaught exception, ${ }^{136}$)
- when the exception handling mechanism cannot find a handler for a thrown exception (15.3), or
— when the destruction of an object during stack unwinding (15.2) exits using an exception, or
- when construction or destruction of a non-local object with static storage duration exits using an exception (3.6.2), or
— when execution of a function registered with std: : atexit exits using an exception (18.4), or
- when a throw-expression with no operand attempts to rethrow an exception and no exception is being handled (15.1), or
- when std: : unexpected throws an exception which is not allowed by the previously violated exception-specification, and std: : bad_exception is not included in that exception-specification (15.5.2), or
— when the implementation's default unexpected exception handler is called (18.7.2.2).
2 In such cases, std: :terminate() is called (18.7.3). In the situation where no matching handler is found, it is implementation-defined whether or not the stack is unwound before std: :terminate() is called. In all other situations, the stack shall not be unwound before std: :terminate() is called. An implementation is not permitted to finish stack unwinding prematurely based on a determination that the unwind process will eventually cause a call to std::terminate().

15.5.2 The std: :unexpected() function

[except.unexpected]

1 If a function with an exception-specification throws an exception that is not listed in the exception-specification, the function std: : unexpected () is called (18.7.2) immediately after completing the stack unwinding for the former function

2 The std: : unexpected() function shall not return, but it can throw (or re-throw) an exception. If it throws a new exception which is allowed by the exception specification which previously was violated, then the search for another handler will continue at the call of the function whose exception specification was violated. If it throws or rethrows an exception that the exception-specification does not allow then the following happens: If the exception-specification does not include the class std: : bad_exception (18.7.2.1) then the function std: :terminate() is called, otherwise the thrown exception is replaced by an implementation-defined object of the type std: :bad_exception and the search for another handler will continue at the call of the function whose exception-specification was violated.

[^103]3 Thus, an exception-specification guarantees that only the listed exceptions will be thrown. If the exception-specification includes the type std: : bad_exception then any exception not on the list may be replaced by std: :bad_exception within the function std: : unexpected().
15.5.3 The std: :uncaught_exception() function
[except.uncaught]
1 The function std: :uncaught_exception() returns true after completing evaluation of the object to be thrown until completing the initialization of the exception-declaration in the matching handler (18.7.4). This includes stack unwinding. If the exception is rethrown (15.1), std: :uncaught_exception() returns true from the point of rethrow until the rethrown exception is caught again.

15.6 Exceptions and access

[except.access]
1 If the exception-declaration in a catch clause has class type, and the function in which the catch clause occurs does not have access to the destructor of that class, the program is ill-formed.
2 An object can be thrown if it can be copied and destroyed in the context of the function in which the throw-expression occurs.

Chapter 16 Preprocessing directives

[cpp]

1 A preprocessing directive consists of a sequence of preprocessing tokens. The first token in the sequence is a \# preprocessing token that (at the start of translation phase 4) is either the first character in the source file (optionally after white space containing no new-line characters) or that follows white space containing at least one new-line character. The last token in the sequence is the first new-line character that follows the first token in the sequence. ${ }^{137)}$ A new-line character ends the preprocessing directive even if it occurs within what would otherwise be an invocation of a function-like macro.

```
preprocessing-file:
    group opt
group:
    group-part
    group group-part
group-part:
    if-section
    control-line
    text-line
    \# non-directive
if-section:
    if-group elif-groups opt else-group \(_{\text {opt }}\) endif-line
if-group:
    \# if constant-expression new-line group opt
    \# ifdef identifier new-line groupopt
    \# ifndef identifier new-line groupopt
elif-groups:
    elif-group
    elif-groups elif-group
elif-group:
    \# elif constant-expression new-line group \({ }_{\text {opt }}\)
else-group:
    \# else new-line group opt
endif-line:
    \# endif new-line
```

[^104]```
control-line:
 # include pp-tokens new-line
 # define identifier replacement-list new-line
 # define identifier lparen identifier-list opt) replacement-list new-line
 # define identifierlparen ...) replacement-list new-line
 # define identifierlparen identifier-list, . .) replacement-list new-line
 # undef identifier new-line
 # line pp-tokens new-line
 # error pp-tokens opt new-line
 # pragma pp-tokens sopt new-line
 # new-line
text-line:
 pp-tokens }\mp@subsup{s}{\mathrm{ opt }}{}\mathrm{ new-line
non-directive:
 pp-tokens }\mp@subsup{\mp@code{opt }}{\mathrm{ new-line}}{
lparen:
 a (character not immediately preceded by white-space
identifier-list:
 identifier
 identifier-list, identifier
replacement-list:
 pp-tokens sopt
pp-tokens:
 preprocessing-token
 pp-tokens preprocessing-token
new-line:
 the new-line character
```

2 A text line shall not begin with a \# preprocessing token. A non-directive shall not begin with any of the directive names appearing in the syntax.

3 When in a group that is skipped (16.1), the directive syntax is relaxed to allow any sequence of preprocessing tokens to occur between the directive name and the following new-line character.

4 The only white-space characters that shall appear between preprocessing tokens within a preprocessing directive (from just after the introducing \# preprocessing token through just before the terminating new-line character) are space and horizontal-tab (including spaces that have replaced comments or possibly other white-space characters in translation phase 3).

5 The implementation can process and skip sections of source files conditionally, include other source files, and replace macros. These capabilities are called preprocessing, because conceptually they occur before translation of the resulting translation unit.

6 The preprocessing tokens within a preprocessing directive are not subject to macro expansion unless otherwise stated.
[ Example: In:
\#define EMPTY

Draft

EMPTY \# include <file.h>
the sequence of preprocessing tokens on the second line is not a preprocessing directive, because it does not begin with a \# at the start of translation phase 4, even though it will do so after the macro EMTPY has been replaced. - end example ]

### 16.1 Conditional inclusion

1 The expression that controls conditional inclusion shall be an integral constant expression except that: it shall not contain a cast; identifiers (including those lexically identical to keywords) are interpreted as described below; ${ }^{138)}$ and it may contain unary operator expressions of the form
defined identifier
or
defined (identifier)
which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is predefined or if it has been the subject of a \#define preprocessing directive without an intervening \#undef directive with the same subject identifier), 0 if it is not.

2 Each preprocessing token that remains after all macro replacements have occurred shall be in the lexical form of a token (2.6).

3 Preprocessing directives of the forms

$$
\begin{array}{ll}
\text { \# if } & \text { constant-expression new-line } \text { group }_{\text {opt }} \\
\text { \# elif } & \text { constant-expression new-line group opt }
\end{array}
$$

check whether the controlling constant expression evaluates to nonzero.
4 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling constant expression are replaced (except for those macro names modified by the defined unary operator), just as in normal text. If the token defined is generated as a result of this replacement process or use of the defined unary operator does not match one of the two specified forms prior to macro replacement, the behavior is undefined. After all replacements due to macro expansion and the defined unary operator have been performed, all remaining identifiers and keywords ${ }^{139}$, except for true and false, are replaced with the pp-number 0 , and then each preprocessing token is converted into a token. The resulting tokens comprise the controlling constant expression which is evaluated according to the rules of 5.19 using arithmetic that has at least the ranges specified in 18.2, except that all signed and unsigned integer types act as if they have the same representation as, respectively, intmax_t or uintmax_t (18.3.2). This includes interpreting character literals, which may involve converting escape sequences into execution character set members. Whether the numeric value for these character literals matches the value obtained when an identical character literal occurs in an expression (other than within a \#if or \#elif directive) is implementation-defined. ${ }^{140 \text { ) Also, whether a single-character }}$

[^105]character literal may have a negative value is implementation-defined. Each subexpression with type bool is subjected to integral promotion before processing continues.

5 Preprocessing directives of the forms
\# ifdef identifier new-line group ${ }_{\text {opt }}$
\# ifndef identifier new-line group ${ }_{\text {opt }}$
check whether the identifier is or is not currently defined as a macro name. Their conditions are equivalent to \#if defined identifier and \#if !defined identifier respectively.

6 Each directive's condition is checked in order. If it evaluates to false (zero), the group that it controls is skipped: directives are processed only through the name that determines the directive in order to keep track of the level of nested conditionals; the rest of the directives' preprocessing tokens are ignored, as are the other preprocessing tokens in the group. Only the first group whose control condition evaluates to true (nonzero) is processed. If none of the conditions evaluates to true, and there is a \#else directive, the group controlled by the \#else is processed; lacking a \#else directive, all the groups until the \#endif are skipped. ${ }^{141)}$

### 16.2 Source file inclusion

A \#include directive shall identify a header or source file that can be processed by the implementation.
A preprocessing directive of the form
\# include <h-char-sequence> new-line
searches a sequence of implementation-defined places for a header identified uniquely by the specified sequence between the < and > delimiters, and causes the replacement of that directive by the entire contents of the header. How the places are specified or the header identified is implementation-defined.
3 A preprocessing directive of the form
\# include "q-char-sequence" new-line
causes the replacement of that directive by the entire contents of the source file identified by the specified sequence between the " delimiters. The named source file is searched for in an implementation-defined manner. If this search is not supported, or if the search fails, the directive is reprocessed as if it read
\# include <h-char-sequence> new-line
with the identical contained sequence (including > characters, if any) from the original directive.
4 A preprocessing directive of the form
\# include pp-tokens new-line
(that does not match one of the two previous forms) is permitted. The preprocessing tokens after include in the directive are processed just as in normal text (each identifier currently defined as a macro name is replaced by its replacement list of preprocessing tokens). If the directive resulting after all replacements does not match one of the two previous forms, the behavior is undefined. ${ }^{142)}$ The method by which a sequence of preprocessing tokens between $\mathrm{a}<$

[^106]and a > preprocessing token pair or a pair of " characters is combined into a single header name preprocessing token is implementation-defined.

5 The implementation provides unique mappings for sequences consisting of one or more nondigits or digits (2.10) followed by a period (.) and a single nondigit. The first character shall not be a digit. The implementation may ignore the distinctions of alphabetical case.

6 A \#include preprocessing directive may appear in a source file that has been read because of a \#include directive in another file, up to an implementation-defined nesting limit.
[Note: Although an implementation may provide a mechanism for making arbitrary source files available to the < > search, in general programmers should use the < > form for headers provided with the implementation, and the " " form for sources outside the control of the implementation. For instance:

```
#include <stdio.h>
#include <unistd.h>
#include "usefullib.h"
#include "myprog.h"
- end note]
[Example: Here is a macro-replaced \#include directive:
```

```
#if VERSION == 1
```

\#if VERSION == 1
\#define INCFILE "vers1.h"
\#define INCFILE "vers1.h"
\#elif VERSION == 2
\#elif VERSION == 2
\#define INCFILE "vers2.h" // and so on*/
\#define INCFILE "vers2.h" // and so on*/
\#else
\#else
\#define INCFILE "versN.h"
\#define INCFILE "versN.h"
\#endif
\#endif
\#include INCFILE
\#include INCFILE

- end example ]

```
- end example]
```


### 16.3 Macro replacement

1 Two replacement lists are identical if and only if the preprocessing tokens in both have the same number, ordering, spelling, and white-space separation, where all white-space separations are considered identical.

2 An identifier currently defined as an object-like macro may be redefined by another \#define preprocessing directive provided that the second definition is an object-like macro definition and the two replacement lists are identical, otherwise the program is ill-formed. Likewise, an identifier currently defined as a function-like macro may be redefined by another \#define preprocessing directive provided that the second definition is a function-like macro definition that has the same number and spelling of parameters, and the two replacement lists are identical, otherwise the program is ill-formed.

3 There shall be white-space between the identifier and the replacement list in the definition of an object-like macro.
4 If the identifier-list in the macro definition does not end with an ellipsis, the number of arguments (including those arguments consisting of no preprocessing tokens) in an invocation of a function-like macro shall equal the number of
parameters in the macro definition. Otherwise, there shall be more arguments in the invocation than there are parameters in the macro definition (excluding the . . .). There shall exist a ) preprocessing token that terminates the invocation.

5 The identifier _ _ VA_ARGS _ shall occur only in the replacement-list of a function-like macro that uses the ellipsis notation in the parameters.

6 A parameter identifier in a function-like macro shall be uniquely declared within its scope.
7 The identifier immediately following the define is called the macro name. There is one name space for macro names. Any white-space characters preceding or following the replacement list of preprocessing tokens are not considered part of the replacement list for either form of macro.

8 If a \# preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing directive could begin, the identifier is not subject to macro replacement.

9 A preprocessing directive of the form
\# define identifier replacement-list new-line
defines an object-like macro that causes each subsequent instance of the macro name ${ }^{143)}$ to be replaced by the replacement list of preprocessing tokens that constitute the remainder of the directive. ${ }^{144)}$ The replacement list is then rescanned for more macro names as specified below.

10 A preprocessing directive of the form
\# define identifier lparen identifier-list ${ }_{\text {opt }}$ ) replacement-list new-line
\# define identifier lparen . . . ) replacement-list new-line
\# define identifier lparen identifier-list , ... ) replacement-list new-line
defines a function-like macro with parameters, similar syntactically to a function call. The parameters are specified by the optional list of identifiers, whose scope extends from their declaration in the identifier list until the new-line character that terminates the \#define preprocessing directive. Each subsequent instance of the function-like macro name followed by a ( as the next preprocessing token introduces the sequence of preprocessing tokens that is replaced by the replacement list in the definition (an invocation of the macro). The replaced sequence of preprocessing tokens is terminated by the matching ) preprocessing token, skipping intervening matched pairs of left and right parenthesis preprocessing tokens. Within the sequence of preprocessing tokens making up an invocation of a function-like macro, new-line is considered a normal white-space character.

11 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of arguments for the function-like macro. The individual arguments within the list are separated by comma preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate arguments. If there are sequences of preprocessing tokens within the list of arguments that would otherwise act as preprocessing directives, the behavior is undefined.

12 If there is a . . . in the identifier-list in the macro definition, then the trailing arguments, including any separating comma preprocessing tokens, are merged to form a single item: the variable arguments. The number of arguments so combined

[^107]is such that, following merger, the number of arguments is one more than the number of parameters in the macro definition (excluding the . . .).

### 16.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified, argument substitution takes place. A parameter in the replacement list, unless preceded by a \# or \#\# preprocessing token or followed by a \#\# preprocessing token (see below), is replaced by the corresponding argument after all macros contained therein have been expanded. Before being substituted, each argument's preprocessing tokens are completely macro replaced as if they formed the rest of the preprocessing file; no other preprocessing tokens are available.

2 An identifier _ _ VA_ARGS _ _ that occurs in the replacement list shall be treated as if it were a paremeter, and the variable arguments shall form the preprocessing tokens used to replace it.

### 16.3.2 The \# operator

[cpp.stringize]
1 Each \# preprocessing token in the replacement list for a function-like macro shall be followed by a parameter as the next preprocessing token in the replacement list.

2 If, in the replacement list, a parameter is immediately preceded by a \# preprocessing token, both are replaced by a single character string literal preprocessing token that contains the spelling of the preprocessing token sequence for the corresponding argument. Each occurrence of white space between the argument's preprocessing tokens becomes a single space character in the character string literal. White space before the first preprocessing token and after the last preprocessing token comprising the argument is deleted. Otherwise, the original spelling of each preprocessing token in the argument is retained in the character string literal, except for special handling for producing the spelling of string literals and character literals: a \character is inserted before each " and $\backslash$ character of a character literal or string literal (including the delimiting " characters). If the replacement that results is not a valid character string literal, the behavior is undefined. The character string literal corresponding to an empty argument is " ". The order of evaluation of \# and \#\# operators is unspecified.

### 16.3.3 The \#\# operator

[cpp.concat]
1 A \#\# preprocessing token shall not occur at the beginning or at the end of a replacement list for either form of macro definition.

2 If, in the replacement list of a function-like macro, a parameter is immediately preceded or followed by a \#\# preprocessing token, the parameter is replaced by the corresponding argument's preprocessing token sequence; however, if an argument consists of no preprocessing tokens, the parameter is replaced by a placemarker preprocessing token instead. ${ }^{145)}$

3 For both object-like and function-like macro invocations, before the replacement list is reexamined for more macro names to replace, each instance of a \#\# preprocessing token in the replacement list (not from an argument) is deleted and the preceding preprocessing token is concatenated with the following preprocessing token. Placemarker preprocessing tokens are handled specially; concatenation of two placemarkers results in a single placemarker preprocessing token, and concatenation of a placemarker with a non-placemarker preprocessing token results in the non-placemarker preprocessing token. If the result is not a valid preprocessing token, the behavior is undefined. The resulting token is available for further macro replacement. The order of evaluation of \#\# operators is unspecified.
[ Example: In the following fragment:

[^108]```
#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)
char p[] = join(x, y); // equivalent to
    // char p[] = "x ## y";
```

The expansion produces, at various stages:

```
join(x, y)
in_between(x hash_hash y)
in_between(x ## y)
mkstr(x ## y)
"x ## y"
```

In other words, expanding hash_hash produces a new token, consisting of two adjacent sharp signs, but this new token is not the \#\# operator. - end example]

16.3.4 Rescanning and further replacement

[cpp.rescan]
1 After all parameters in the replacement list have been substituted and \# and \#\# processing has taken place, all placemarker preprocessing tokens are removed. Then the resulting preprocessing token sequence is rescanned, along with all subsequent preprocessing tokens of the source file, for more macro names to replace.

2 If the name of the macro being replaced is found during this scan of the replacement list (not including the rest of the source file's preprocessing tokens), it is not replaced. Furthermore, if any nested replacements encounter the name of the macro being replaced, it is not replaced. These nonreplaced macro name preprocessing tokens are no longer available for further replacement even if they are later (re)examined in contexts in which that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed as a preprocessing directive even if it resembles one, but all pragma unary operator expressions within it are then processed as specified in 16.9 below.

16.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding \#undef directive is encountered or (if none is encountered) until the end of the translation unit. Macro definitions have no significance after translation phase 4.

2 A preprocessing directive of the form
\# undef identifier new-line
causes the specified identifier no longer to be defined as a macro name. It is ignored if the specified identifier is not currently defined as a macro name.

3 [Note: The simplest use of this facility is to define a "manifest constant," as in

```
#define TABSIZE 100
int table[TABSIZE];
```

4 The following defines a function-like macro whose value is the maximum of its arguments. It has the advantages of working for any compatible types of the arguments and of generating in-line code without the overhead of function calling. It has the disadvantages of evaluating one or the other of its arguments a second time (including side effects) and generating more code than a function if invoked several times. It also cannot have its address taken, as it has none.

```
#define max(a, b) ((a) > (b) ? (a) : (b))
```

The parentheses ensure that the arguments and the resulting expression are bound properly.
5 To illustrate the rules for redefinition and reexamination, the sequence

```
#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(~
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x
#define r(x,y) x ## y
#define str(x) # x
f(y+1) + f(f(z)) % t(t(g)(0) + t) (1);
g(x+(3,4)-w) | h 5) & m
    (f) ^m(m);
p() i[q()] = {q(1),r(2,3),r(4,),r(,5),r(,) };
char c[2] [6] = { str(hello), str() };
```

results in

```
f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (~5)) & f(2 * (0,1)) ^m(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };
```

6 To illustrate the rules for creating character string literals and concatenating tokens, the sequence

```
#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \
    x ## s, x ## t)
#define INCFILE(n) vers ## n
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"
```

```
debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", '\4') // this goes away
    == 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)
```

results in

```
printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs("strncmp(\"abc\\\0d\", \"abc\", ,\\4') == 0" ": @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"
```

or, after concatenation of the character string literals,

```
printf("x1= %d, x2= %s", x1, x2);
fputs("strncmp(\"abc\\0d\", \"abc\", '\\4') == 0: @\n", s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"
```

Space around the \# and \#\# tokens in the macro definition is optional.
7 To illustrate the rules for placemarker preprocessing tokens, the sequence

```
#define t(x,y.z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6, ,7), t(8,9,),
    t(10,,), t(,11,), t(,,12), t(,,) };
```

results in

```
int j[] = { 123, 45, 67, 89,
    10, 11, 12, };
```

8 To demonstrate the redefinition rules, the following sequence is valid.

```
#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */(1-1)/* other */
#define FTN_LIKE(a) ( a )
#define FTN_LIKE( a )( /* note the white space */\
    a /* other stuff on this line
    */ )
```

9 But the following redefinitions are invalid:

\#define OBJ_LIKE	(0)	// different token sequence
\#define OBJ_LIKE	$(1-1)$ // different white space	
\#define FTN_LIKE(b)	(a)	// different parameter usage
\#define FTN_LIKE(b)	(b)	// different parameter spelling

- end note]

Finally, to show the variable argument list macro facilities:

```
#define debug(...) fprintf(stderr, _ _ VA_ARGS _ _)
#define showlist(...) puts(#_ _ VA_ARGS _ _)
#define report(test, ...) ((test) ? puts(#test) : printf(__VA_ARGS _ _))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);
results in
```

```
fprintf(stderr, "Flag" );
```

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
puts("The first, second, and third items.");
((x>y) ? puts("x>y") : printf("x is %d but y is %d", x, y));

```
((x>y) ? puts("x>y") : printf("x is %d but y is %d", x, y));
```


16.4 Line control

[cpp.line]
1 The string literal of a \#line directive, if present, shall be a character string literal.
2 The line number of the current source line is one greater than the number of new-line characters read or introduced in translation phase 1 (2.1) while processing the source file to the current token.
3 A preprocessing directive of the form
\# line digit-sequence new-line
causes the implementation to behave as if the following sequence of source lines begins with a source line that has a line number as specified by the digit sequence (interpreted as a decimal integer). If the digit sequence specifies zero or a number greater than 2147483647, the behavior is undefined.

4 A preprocessing directive of the form
\# line digit-sequence " s-char-sequence ${ }_{\text {opt }}$ " new-line
sets the line number similarly and changes the presumed name of the source file to be the contents of the character string literal.

5 A preprocessing directive of the form
\# line pp-tokens new-line
(that does not match one of the two previous forms) is permitted. The preprocessing tokens after line on the directive are processed just as in normal text (each identifier currently defined as a macro name is replaced by its replacement list of preprocessing tokens). If the directive resulting after all replacements does not match one of the two previous forms, the behavior is undefined; otherwise, the result is processed as appropriate.

16.5 Error directive

1 A preprocessing directive of the form
\# error pp-tokens ${ }_{\text {opt }}$ new-line
causes the implementation to produce a diagnostic message that includes the specified sequence of preprocessing tokens, and renders the program ill-formed.

16.6 Pragma directive

[cpp.pragma]
1 A preprocessing directive of the form
\# pragma pp-tokens ${ }_{\text {opt }}$ new-line
causes the implementation to behave in an implementation-defined manner. The behavior might cause translation to fail or cause the translator or the resulting program to behave in a non-conforming manner. Any pragma that is not recognized by the implementation is ignored.

16.7 Null directive

[cpp.null]
1 A preprocessing directive of the form
\# new-line
has no effect.

16.8 Predefined macro names

[cpp.predefined]
1 The following macro names shall be defined by the implementation:
_ _ cplusplus
The name _ _ cplusplus is defined to the value [tbd] when compiling a C++ translation unit. ${ }^{146)}$
_ _ DATE _ _
The date of translation of the source file (a character string literal of the form "Mmm dd yyyy", where the names of the months are the same as those generated by the asctime function, and the first character of dd is a space character if the value is less than 10). If the date of translation is not available, an implementation-defined valid date is supplied.
_ _ FILE _ _
The presumed name of the source file (a character string literal).
_ _ LINE _ _
The line number of the current source line (a decimal constant).
_ _ STDC_HOSTED _ _
The integer constant 1 if the implementation is a hosted implementation or the integer constant 0 if it is not.
_ _ TIME _ _
The time of translation of the source file (a character string literal of the form "hh:mm:ss" as in the time generated by the asctime function). If the time of translation is not available, an implementation-defined valid time is supplied.

2 The following macro names are conditionally defined by the implementation:
_ _ STDC _ _
Whether _ _ STDC _ _ is predefined and if so, what its value is, are implementation-defined.

[^109]```
_ _ STDC_VERSION _ _
```

Whether _ _ STDC_VERSION _ _ is predefined and if so, what its value is, are implementation-defined.
_ _ STDC_ISO_10646 _ _
An integer constant of the form yyyymL (for example, 199712L), intended to indicate that values of type wchar_t are the coded representations of the characters defined by ISO/IEC 10646, along with all amendments and technical corrigenda as of the specified year and month.

3 The values of the predefined macros (except for _ _ LINE _ _ and _ _ FILE _ _) remain constant throughout the translation unit.

4 If any of the pre-defined macro names in this subclause, or the identifier defined, is the subject of a \#define or a \#undef preprocessing directive, the behavior is undefined. Any other predefined macro names shall begin with a leading underscore followed by an uppercase letter or a second underscore.

### 16.9 Pragma operator

[cpp.pragma.op]
A unary operator expression of the form:
_Pragma ( string-literal)
is processed as follows: The string literal is destringized by deleting the L prefix, if present, deleting the leading and trailing double-quotes, replacing each escape sequence $\backslash "$ by a double-quote, and replacing each escape sequence $\backslash \backslash$ by a single backslash. The resulting sequence of characters is processed through translation phase 3 to produce preprocessing tokens that are executed as if they were the pp-tokens in a pragma directive. The original four preprocessing tokens in the unary operator expression are removed.

## [ Example:

\#pragma listing on "..\listing.dir"
can also be expressed as:

```
_Pragma (listing on "\"..\\listing.dir\"")
```

The latter form is processed in the same way whether it appears literally as shown, or results from macro replacement, as in:

```
#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)
LISTING(..\listing.dir)
- end example]
```


## Chapter 17 Library introduction

1 This clause describes the contents of the C++ Standard Library, how a well-formed C++ program makes use of the library, and how a conforming implementation may provide the entities in the library.

2 The C++ Standard Library provides an extensible framework, and contains components for: language support, diagnostics, general utilities, strings, locales, containers, iterators, algorithms, numerics, and input/output. The language support components are required by certain parts of the $\mathrm{C}++$ language, such as memory allocation (5.3.4, 5.3.5) and exception processing (clause 15).

3 The general utilities include components used by other library elements, such as a predefined storage allocator for dynamic storage management (3.7.4). The diagnostics components provide a consistent framework for reporting errors in a $\mathrm{C}++$ program, including predefined exception classes.

4 The strings components provide support for manipulating text represented as sequences of type char, sequences of type wchar_t, or sequences of any other "character-like" type. The localization components extend internationalization support for such text processing.

5 The containers, iterators, and algorithms provide a C++ program with access to a subset of the most widely used algorithms and data structures.

6 Numeric algorithms and the complex number components extend support for numeric processing. The valarray components provide support for $n$-at-a-time processing, potentially implemented as parallel operations on platforms that support such processing.

7 The iostreams components are the primary mechanism for C++ program input/output. They can be used with other elements of the library, particularly strings, locales, and iterators.

8 This library also makes available the facilities of the Standard C library, suitably adjusted to ensure static type safety.
9 The descriptions of many library functions rely on the Standard C99 Library for the signatures and semantics of those functions. In all such cases, any use of the restrict qualifier shall be omitted.

10 The following subclauses describe the definitions (17.1), and method of description (17.3) for the library. Clause 17.4, and clauses 18 through 27, and Annex D specify the contents of the library, and library requirements and constraints on both well-formed $\mathrm{C}++$ programs and conforming implementations.

### 17.1 Definitions

[definitions]
17.1.1
[defns.arbitrary.stream]
arbitrary-positional stream
a stream (described in clause 27) that can seek to any integral position within the length of the stream. Every arbitrarypositional stream is also a repositional stream ().

### 17.1.2

[defns.character]
character
in clauses 21, 22, and 27, means any object which, when treated sequentially, can represent text. The term does not only mean char and wchar_t objects, but any value that can be represented by a type that provides the definitions specified in these clauses.

### 17.1.3

[defns.character.container] character container type
a class or a type used to represent a character (). It is used for one of the template parameters of the string and iostream class templates. A character container class shall be a POD (3.9) type.

### 17.1.4

[defns.comparison]
comparison function
an operator function (13.5) for any of the equality (5.10) or relational (5.9) operators.

### 17.1.5

[defns.component]
component
a group of library entities directly related as members, parameters, or return types. For example, the class template basic_string and the non-member function templates that operate on strings are referred to as the string component.

### 17.1.6

[defns.default.behavior]
default behavior
a description of replacement function and handler function semantics. Any specific behavior provided by the implementation, within the scope of the required behavior.

### 17.1.7

[defns.handler]

## handler function

a non-reserved function whose definition may be provided by a $\mathrm{C}++$ program. A C++ program may designate a handler function at various points in its execution, by supplying a pointer to the function when calling any of the library functions that install handler functions (clause 18).

### 17.1.8

## [defns.iostream.templates]

iostream class templates
templates, defined in clause 27, that take two template arguments: charT and traits. The argument charT is a character container class, and the argument traits is a structure which defines additional characteristics and functions of the character type represented by charT necessary to implement the iostream class templates.

## modifier function

a class member function (9.3), other than constructors, assignment, or destructor, that alters the state of an object of the class.

### 17.1.10

[defns.obj.state]
object state
the current value of all non-static class members of an object (9.2). The state of an object can be obtained by using one or more observer functions.
17.1.11
[defns.ntcts]
NTCTS
a sequence of values that have character type, that precede the terminating null character type value charT().

### 17.1.12

[defns.narrow.iostream] narrow-oriented iostream classes
the instantiations of the iostream class templates on the character container class char and the default value of the traits parameter. The traditional iostream classes are regarded as the narrow-oriented iostream classes (27.3.1).

### 17.1.13

## [defns.observer]

 observer functiona class member function (9.3) that accesses the state of an object of the class, but does not alter that state. Observer functions are specified as const member functions (9.3.2).

### 17.1.14

[defns.replacement]
replacement function
a non-reserved function whose definition is provided by a $\mathrm{C}++$ program. Only one definition for such a function is in effect for the duration of the program's execution, as the result of creating the program (2.1) and resolving the definitions of all translation units (3.5).

### 17.1.15

[defns.repositional.stream]
repositional stream
a stream (described in clause 27) that can seek only to a position that was previously encountered.

### 17.1.16 <br> required behavior

[defns.required.behavior]
a description of replacement function and handler function semantics, applicable to both the behavior provided by the implementation and the behavior that shall be provided by any function definition in the program. If a function defined in a C++ program fails to meet the required behavior when it executes, the behavior is undefined.
a function, specified as part of the C++ Standard Library, that must be defined by the implementation. If a C++ program provides a definition for any reserved function, the results are undefined.

### 17.1.18

[defns.stable]
stable algorithm
an algorithm that preserves, as appropriate to the particular algorithm, the order of elements.

- For the sort algorithms the relative order of equivalent elements is preserved.
- For the remove algorithms the relative order of the elements that are not removed is preserved.
- For the merge algorithms, for equivalent elements in the original two ranges, the elements from the first range precede the elements from the second range.


### 17.1.19

[defns.traits] traits class
a class that encapsulates a set of types and functions necessary for class templates and function templates to manipulate objects of types for which they are instantiated. Traits classes defined in clauses 21, 22 and 27 are chararacter traits, which provide the character handling support needed by the string and iostream classes.

### 17.1.20

[defns.wide.iostream]
wide-oriented iostream classes
the instantiations of the iostream class templates on the character container class wchar_t and the default value of the traits parameter (27.3.2).

### 17.2 Additional definitions

[defns.additional]
$1 \quad 1.3$ defines additional terms used elsewhere in this International Standard.
17.3 Method of description (Informative)
[description]
1 17.3 describes the conventions used to describe the C++ Standard Library. It describes the structures of the normative clauses 18 through 27 (17.3.1), Annex D and other editorial conventions (17.3.2).

### 17.3.1 Structure of each subclause

[structure]
1 17.4.1 provides a summary of the C++ Standard library's contents. Other Library clauses provide detailed specifications for each of the components in the library, as shown in Table 11.

2 Each Library clause contains the following elements, as applicable: ${ }^{147)}$

- Summary
- Requirements
- Detailed specifications

[^110]Table 11: Library Categories

| Clause | Category |
| :--- | :--- |
| 18 | Language support |
| 19 | Diagnostics |
| 20 | General utilities |
| 21 | Strings |
| 22 | Localization |
| 23 | Containers |
| 24 | Iterators |
| 25 | Algorithms |
| 26 | Numerics |
| 27 | Input/output |
| 28 | Regular expressions |

- References to the Standard C library


### 17.3.1.1 Summary

[structure.summary]
1 The Summary provides a synopsis of the category, and introduces the first-level subclauses. Each subclause also provides a summary, listing the headers specified in the subclause and the library entities provided in each header.

2 Paragraphs labelled "Note(s):" or "Example(s):" are informative, other paragraphs are normative.
3 The summary and the detailed specifications are presented in the order:

- Macros
- Values
- Types
- Classes
- Functions
— Objects


### 17.3.1.2 Requirements

1 The library can be extended by a C++ program. Each clause, as applicable, describes the requirements that such extensions must meet. Such extensions are generally one of the following:

- Template arguments
- Derived classes
- Containers, iterators, and/or algorithms that meet an interface convention

2 The string and iostreams components use an explicit representation of operations required of template arguments. They use a class template char_traits to define these constraints.

3 Interface convention requirements are stated as generally as possible. Instead of stating "class X has to define a member function operator ++() ," the interface requires "for any object $x$ of class $X,++x$ is defined." That is, whether the operator is a member is unspecified.

4 Requirements are stated in terms of well-defined expressions, which define valid terms of the types that satisfy the requirements. For every set of requirements there is a table that specifies an initial set of the valid expressions and their semantics (20.1.6, 23.1, 24.1). Any generic algorithm (clause 25) that uses the requirements is described in terms of the valid expressions for its formal type parameters.

5 Template argument requirements are sometimes referenced by name. See 17.3.2.1.
6 In some cases the semantic requirements are presented as C++ code. Such code is intended as a specification of equivalence of a construct to another construct, not necessarily as the way the construct must be implemented. ${ }^{148)}$

### 17.3.1.3 Specifications

## [structure.specifications]

The detailed specifications each contain the following elements: ${ }^{149)}$

- Name and brief description
- Synopsis (class definition or function prototype, as appropriate)
- Restrictions on template arguments, if any
- Description of class invariants
- Description of function semantics

Descriptions of class member functions follow the order (as appropriate): ${ }^{150)}$

- Constructor(s) and destructor
- Copying \& assignment functions
- Comparison functions
- Modifier functions
- Observer functions
- Operators and other non-member functions

Descriptions of function semantics contain the following elements (as appropriate): ${ }^{151)}$

- Requires: the preconditions for calling the function

[^111]- Effects: the actions performed by the function
- Postconditions: the observable results established by the function
- Returns: a description of the value(s) returned by the function
- Throws: any exceptions thrown by the function, and the conditions that would cause the exception
- Complexity: the time and/or space complexity of the function

4 For non-reserved replacement and handler functions, clause 18 specifies two behaviors for the functions in question: their required and default behavior. The default behavior describes a function definition provided by the implementation. The required behavior describes the semantics of a function definition provided by either the implementation or a C++ program. Where no distinction is explicitly made in the description, the behavior described is the required behavior.

5 Complexity requirements specified in the library clauses are upper bounds, and implementations that provide better complexity guarantees satisfy the requirements.

### 17.3.1.4 C Library

[structure.see.also]
1 Paragraphs labelled "SEE ALSO:" contain cross-references to the relevant portions of this Standard and the ISO C standard, which is incorporated into this Standard by reference.

### 17.3.2 Other conventions

[conventions]
1 This subclause describes several editorial conventions used to describe the contents of the C++ Standard Library. These conventions are for describing implementation-defined types (17.3.2.1), and member functions (17.3.2.2).

### 17.3.2.1 Type descriptions

[type.descriptions]
1 The Requirements subclauses may describe names that are used to specify constraints on template arguments. ${ }^{152)}$ These names are used in library clauses to describe the types that may be supplied as arguments by a C++ program when instantiating template components from the library.

2 Certain types defined in clause 27 are used to describe implementation-defined types. They are based on other types, but with added constraints.

### 17.3.2.1.1 Enumerated types

[enumerated.types]
1 Several types defined in clause 27 are enumerated types. Each enumerated type may be implemented as an enumeration or as a synonym for an enumeration. ${ }^{153)}$

2 The enumerated type enumerated can be written:

```
enum enumerated { VO, V1, V2, V3,};
static const enumerated CO (VO);
static const enumerated C1 (V1);
static const enumerated C2 (V2);
static const enumerated C3 (V3);
```

[^112]3 Here, the names C0, C1, etc. represent enumerated elements for this particular enumerated type. All such elements have distinct values.

### 17.3.2.1.2 Bitmask types

[bitmask.types]
1 Several types defined in clauses 18 through 27 and Annex D are bitmask types. Each bitmask type can be implemented as an enumerated type that overloads certain operators, as an integer type, or as a bitset (23.3.5).

2 The bitmask type bitmask can be written:

```
enum bitmask {
 VO = 1<< 0,V1 = 1<< 1, V2 = 1<< 2,V3 = 1<< 3,
};
static const bitmask CO(VO);
static const bitmask C1(V1);
static const bitmask C2(V2);
static const bitmask C3(V3);

bitmask operator& (bitmask X, bitmask Y)
 // For exposition only.
 // int_type is an integral type capable of
 // representing all values of bitmask
 { return static_cast<bitmask>(
 static_cast<int_type>(X) &
 static_cast<int_type>(Y)); }
bitmask operator| (bitmask X, bitmask Y)
 { return static_cast<bitmask>(
 static_cast<int_type>(X) |
 static_cast<int_type>(Y)); }
bitmask operator^ (bitmask X, bitmask Y)
 { return static_cast<bitmask>(
 static_cast<int_type>(X) ^
 static_cast<int_type>(Y)); }
bitmask operator~ (bitmask X)
 { return static_cast<bitmask>(~static_cast<int_type>(X)); }
bitmask& operator&=(bitmask& X, bitmask Y)
 { X = X&Y; return X; }
bitmask& operator|=(bitmask& X, bitmask Y)
 { X = X Y ; return X; }
bitmask& operator^=(bitmask& X, bitmask Y)
 { X = X^Y; return X; }
```

3 Here, the names $C 0, C 1$, etc. represent bitmask elements for this particular bitmask type. All such elements have distinct values such that, for any pair $C i$ and $C j, C i \& C i$ is nonzero and $C i \& C j$ is zero.

4 The following terms apply to objects and values of bitmask types:

- To set a value $Y$ in an object $X$ is to evaluate the expression $X \mid=Y$.
- To clear a value $Y$ in an object $X$ is to evaluate the expression $X \&=\sim Y$.
- The value $Y$ is set in the object $X$ if the expression $X \& Y$ is nonzero.


### 17.3.2.1.3 Character sequences

## [character.seq]

1 The Standard C library makes widespread use of characters and character sequences that follow a few uniform conventions:

- A letter is any of the 26 lowercase or 26 uppercase letters in the basic execution character set. ${ }^{154)}$
- The decimal-point character is the (single-byte) character used by functions that convert between a (single-byte) character sequence and a value of one of the floating-point types. It is used in the character sequence to denote the beginning of a fractional part. It is represented in clauses 18 through 27 and Annex D by a period, '. ', which is also its value in the " C " locale, but may change during program execution by a call to setlocale (int, const char*), ${ }^{155)}$ or by a change to a locale object, as described in clauses 22.1 and 27.
- A character sequence is an array object (8.3.4) A that can be declared as $T A[N]$, where $T$ is any of the types char, unsigned char, or signed char (3.9.1), optionally qualified by any combination of const or volatile. The initial elements of the array have defi827.9.4.eJ01-469.fi8278othe cae elemcae

2 A static NTMBS is an NTMBS with static storage duration.

### 17.3.2.1.3.3 Wide-character sequences

[wide.characters]
1 A wide-character sequence is an array object (8.3.4) A that can be declared as $T A[N]$, where $T$ is type wchar_t (3.9.1), optionally qualified by any combination of const or volatile. The initial elements of the array have defined contents up to and including an element determined by some predicate. A character sequence can be designated by a pointer value $S$ that designates its first element.

2 A null-terminated wide-character string, or NTWCS, is a wide-character sequence whose highest-addressed element with defined content has the value zero. ${ }^{159)}$

3 The length of an NTWCS is the number of elements that precede the terminating null wide character. An empty NTWCS has a length of zero.

4 The value of an NTWCS is the sequence of values of the elements up to and including the terminating null character.
5 A static NTWCS is an NTWCS with static storage duration. ${ }^{160)}$

### 17.3.2.2 Functions within classes

[functions.within.classes]
1 For the sake of exposition, clauses 18 through 27 and Annex D do not describe copy constructors, assignment operators, or (non-virtual) destructors with the same apparent semantics as those that can be generated by default (12.1, 12.4, 12.8).

2 It is unspecified whether the implementation provides explicit definitions for such member function signatures, or for virtual destructors that can be generated by default.

### 17.3.2.3 Private members

[objects.within.classes]
1 Clauses 18 through 27 and Annex D do not specify the representation of classes, and intentionally omit specification of class members (9.2). An implementation may define static or non-static class members, or both, as needed to implement the semantics of the member functions specified in clauses 18 through 27 and Annex D.

2 Objects of certain classes are sometimes required by the external specifications of their classes to store data, apparently in member objects. For the sake of exposition, some subclauses provide representative declarations, and semantic requirements, for private member objects of classes that meet the external specifications of the classes. The declarations for such member objects and the definitions of related member types are enclosed in a comment that ends with exposition only, as in:

```
// streambuf*sb; exposition only
```

3 Any alternate implementation that provides equivalent external behavior is equally acceptable.

### 17.4 Library-wide requirements

1 This subclause specifies requirements that apply to the entire C++ Standard library. Clauses 18 through 27 and Annex D specify the requirements of individual entities within the library.

[^113]2 The following subclauses describe the library's contents and organization (17.4.1), how well-formed C++ programs gain access to library entities (17.4.2), constraints on such programs (17.4.3), and constraints on conforming implementations (17.4.4).

### 17.4.1 Library contents and organization

1 This subclause provides a summary of the entities defined in the C++ Standard Library. In general, these entites are defined in library headers, which subclause 17.4.1.2 lists alphabetically.

### 17.4.1.1 Library contents

[contents]
1 The C++ Standard Library provides definitions for the following types of entities: Macros, Values, Types, Templates, Classes, Functions, Objects.

2 All library entities except macros, operator new and operator delete are defined within the namespace std or namespaces nested within namespace std.

3 Whenever a name x defined in the standard library is mentioned, the name x is assumed to be fully qualified as : : std: : x, unless explicitly described otherwise. For example, if the Effects section for library function $F$ is described as calling library function $G$, the function : :std: : $G$ is meant.

### 17.4.1.2 Headers

1 The elements of the C++ Standard Library are declared or defined (as appropriate) in a header. ${ }^{161 \text { ) }}$
2 The C++ Standard Library provides 40 C++ headers, as shown in Table 12.

Table 12: C++ Library Headers

| <algorithm> | <iomanip> | <locale> | <regex> | <tuple> |
| :--- | :--- | :--- | :--- | :--- |
| <array> | <ios> | <map> | <set> | <type_traits> |
| <bitset> | <iosfwd> | <memory> | <sstream> | <typeinfo> |
| <complex> | <iostream> | <new> | <stack> | <unordered_map> |
| <deque> | <istream> | <numeric> | <stdexcept> | <unordered_set> |
| <exception> | <iterator> | <ostream> | <streambuf> | <utility> |
| <fstream> | <limits> | <queue> | <string> | <valarray> |
| <functional> | <list> | <random> | <strstream> | <vector> |

3 The facilities of the Standard C Library are provided in 24 additional headers, as shown in Table 13.

Table 13: C++ Headers for C Library Facilities

| <cassert> | <cfloat> | <cmath> | <cstddef> | <ctgmath> |
| :--- | :--- | :--- | :--- | :--- |
| <ccomplex> | <cinttypes> | <csetjmp> | <cstdio> | <ctime> |
| <cctype> | <ciso646> | <csignal> | <cstdint> | <cwchar> |
| <cerrno> | <climits> | <cstdarg> | <cstdlib> | <cwctype> |
| <cfenv> | <clocale> | <cstdbool> | <cstring> |  |

[^114]4 Except as noted in clauses 18 through 27 and Annex D the contents of each header cname shall be the same as that of the corresponding header name.h, as specified in ISO/IEC 9899:1990 Programming Languages C (clause 7), or ISO/IEC:1990 Programming Languages - C AMENDMENT 1: C Integrity, (clause 7), as appropriate, as if by inclusion. In the C++ Standard Library, however, the declarations and definitions (except for names which are defined as macros in C) are within namespace scope (3.3.5) of the namespace std.

5 Names which are defined as macros in C shall be defined as macros in the C++ Standard Library, even if C grants license for implementation as functions. [Note: the names defined as macros in C include the following: assert, offsetof, setjmp, va_arg, va_end, and va_start. -end note]
6 Names that are defined as functions in C shall be defined as functions in the C++ Standard Library. ${ }^{162)}$
7 Identifiers that are keywords or operators in C++ shall not be defined as macros in C++ standard library headers. ${ }^{163)}$
8 D.5, Standard C library headers, describes the effects of using the name. h (C header) form in a C++ program. ${ }^{164 \text { ) }}$

### 17.4.1.3 Freestanding implementations

## [compliance]

1 Two kinds of implementations are defined: hosted and freestanding (1.4). For a hosted implementation, this International Standard describes the set of available headers.

2 A freestanding implementation has an implementation-defined set of headers. This set shall include at least the following headers, as shown in Table 14.

Table 14: C++ Headers for Freestanding Implementations

| Subclause | Header(s) |
| :--- | :--- |
| 18.1 Types | <cstddef> |
| 18.2 Implementation properties | <limits> |
| 18.4 Start and termination | <cstdlib> |
| 18.5 Dynamic memory management | <new> |
| 18.6 Type identification | <typeinfo> |
| 18.7 Exception handling | <exception> |
| 18.8 Other runtime support | <cstdarg> |

3 The supplied version of the header <cstdlib> shall declare at least the functions abort(), atexit(), and exit() (18.4).

[^115]
### 17.4.2 Using the library

1 This subclause describes how a C++ program gains access to the facilities of the C++ Standard Library. 17.4.2.1 describes effects during translation phase 4 , while 17.4.2.2 describes effects during phase 8 (2.1).

### 17.4.2.1 Headers

1 The entities in the C++ Standard Library are defined in headers, whose contents are made available to a translation unit when it contains the appropriate \#include preprocessing directive (16.2).

2 A translation unit may include library headers in any order (clause 2). Each may be included more than once, with no effect different from being included exactly once, except that the effect of including either <cassert> or <assert.h> depends each time on the lexically current definition of NDEBUG. ${ }^{165)}$

3 A translation unit shall include a header only outside of any external declaration or definition, and shall include the header lexically before the first reference to any of the entities it declares in that translation unit.

### 17.4.2.2 Linkage

[using.linkage]
1 Entities in the C++ Standard Library have external linkage (3.5). Unless otherwise specified, objects and functions have the default extern "C++" linkage (7.5).

2 Whether a name from the Standard C library declared with external linkage has extern "C" or extern "C++" linkage is implementation-defined. It is recommended that an implementation use extern "C++" linkage for this purpose. ${ }^{166)}$

3 Objects and functions defined in the library and required by a C++ program are included in the program prior to program startup

SEE ALSO: replacement functions (17.4.3.4), run-time changes (17.4.3.5).

### 17.4.3 Constraints on programs

[constraints]
1 This subclause describes restrictions on C++ programs that use the facilities of the C++ Standard Library. The following subclauses specify constraints on the program's namespace (17.4.3.1), its use of headers (17.4.3.2), classes derived from standard library classes (17.4.3.3), definitions of replacement functions (17.4.3.4), and installation of handler functions during execution (17.4.3.5).

### 17.4.3.1 Reserved names

[reserved.names]
1 It is undefined for a C++ program to add declarations or definitions to namespace std or namespaces within namespace std unless otherwise specified. A program may add template specializations for any standard library template to namespace std. Such a specialization (complete or partial) of a standard library template results in undefined behavior unless the declaration depends on a user-defined type of external linkage and unless the specialization meets the standard library requirements for the original template. ${ }^{167)}$ A program may explicitly instantiate any templates in the standard library only if the declaration depends on the name of a user-defined type of external linkage and the instantiation meets the standard library requirements for the original template.

2 The C++ Standard Library reserves the following kinds of names:

[^116]- Macros
- Global names
- Names with external linkage

3 If the program declares or defines a name in a context where it is reserved, other than as explicitly allowed by this clause, the behavior is undefined.

### 17.4.3.1.1 Macro names

[macro.names]
1 A translation unit that includes a standard library header shall not \#define or \#undef names declared in any standard library header.

2 A translation unit shall not \#define or \#undef names lexically identical to keywords.

### 17.4.3.1.2 Global names

[global.names]
1 Certain sets of names and function signatures are always reserved to the implementation:

- Each name that contains a double underscore _ _ or begins with an underscore followed by an uppercase letter (2.11) is reserved to the implementation for any use.
- Each name that begins with an underscore is reserved to the implementation for use as a name in the global namespace. ${ }^{168)}$


### 17.4.3.1.3 External linkage

[extern.names]
1 Each name declared as an object with external linkage in a header is reserved to the implementation to designate that library object with external linkage, ${ }^{169)}$ both in namespace std and in the global namespace.
2 Each global function signature declared with external linkage in a header is reserved to the implementation to designate that function signature with external linkage. ${ }^{170)}$

3 Each name having two consecutive underscores (2.11) is reserved to the implementation for use as a name with both extern "C" and extern "C++" linkage.

4 Each name from the Standard C library declared with external linkage is reserved to the implementation for use as a name with extern "C" linkage, both in namespace std and in the global namespace.

5 Each function signature from the Standard C library declared with external linkage is reserved to the implementation for use as a function signature with both extern "C" and extern "C++" linkage, ${ }^{171)}$ or as a name of namespace scope in

[^117]the global namespace.

### 17.4.3.1.4 Types

[extern.types]
1 For each type T from the Standard C library, ${ }^{172)}$ the types $:: \mathrm{T}$ and std: $: \mathrm{T}$ are reserved to the implementation and, when defined, : : T shall be identical to std: : T .

### 17.4.3.2 Headers

[alt.headers]
1 If a file with a name equivalent to the derived file name for one of the $\mathrm{C}++$ Standard Library headers is not provided as part of the implementation, and a file with that name is placed in any of the standard places for a source file to be included (16.2), the behavior is undefined.

### 17.4.3.3 Derived classes

[derived.classes]
1 Virtual member function signatures defined for a base class in the $\mathrm{C}++$ Standard library may be overridden in a derived class defined in the program (10.3).

### 17.4.3.4 Replacement functions

[replacement.functions]
1 Clauses 18 through 27 and Annex D describe the behavior of numerous functions defined by the C++ Standard Library. Under some circumstances, however, certain of these function descriptions also apply to replacement functions defined in the program (17.1).
2 A C++ program may provide the definition for any of eight dynamic memory allocation function signatures declared in header <new> (3.7.4, clause 18):

```
- operator new(std::size_t)
_ operator new(std::size_t, const std::nothrow_t&)
- operator new[](std::size_t)
_ operator new[](std::size_t, const std::nothrow_t&)
_ operator delete(void*)
_ operator delete(void*, const std::nothrow_t&)
_ operator delete[] (void*)
_ operator delete[](void*, const std::nothrow_t&)
```

3 The program's definitions are used instead of the default versions supplied by the implementation (18.5). Such replacement occurs prior to program startup (3.2,3.6). The program's definitions shall not be specified as inline. No diagnostic is required.

### 17.4.3.5 Handler functions

[handler.functions]
1 The C++ Standard Library provides default versions of the following handler functions (clause 18):

- unexpected_handler

[^118]- terminate_handler

2 A C++ program may install different handler functions during execution, by supplying a pointer to a function defined in the program or the library as an argument to (respectively):

- set_new_handler
- set_unexpected
- set_terminate

SEE ALSO: subclauses 18.5.2, Storage allocation errors, and 18.7, Exception handling.

### 17.4.3.6 Other functions

## [res.on.functions]

1 In certain cases (replacement functions, handler functions, operations on types used to instantiate standard library template components), the C++ Standard Library depends on components supplied by a C++ program. If these components do not meet their requirements, the Standard places no requirements on the implementation.

2 In particular, the effects are undefined in the following cases:

- for replacement functions (18.5.1), if the installed replacement function does not implement the semantics of the applicable Required behavior: paragraph.
- for handler functions (18.5.2.2, 18.7.3.1, 18.7.2.2), if the installed handler function does not implement the semantics of the applicable Required behavior: paragraph
- for types used as template arguments when instantiating a template component, if the operations on the type do not implement the semantics of the applicable Requirements subclause (20.1.6, 23.1, 24.1, 26.1). Operations on such types can report a failure by throwing an exception unless otherwise specified.
- if any replacement function or handler function or destructor operation throws an exception, unless specifically allowed in the applicable Required behavior: paragraph.
- if an incomplete type (3.9) is used as a template argument when instantiating a template component.


### 17.4.3.7 Function arguments

## [res.on.arguments]

1 Each of the following statements applies to all arguments to functions defined in the C++ Standard Library, unless explicitly stated otherwise.

- If an argument to a function has an invalid value (such as a value outside the domain of the function, or a pointer invalid for its intended use), the behavior is undefined.
- If a function argument is described as being an array, the pointer actually passed to the function shall have a value such that all address computations and accesses to objects (that would be valid if the pointer did point to the first element of such an array) are in fact valid.


### 17.4.3.8 Required paragraph

1 Violation of the preconditions specified in a function's Required behavior: paragraph results in undefined behavior unless the function's Throws: paragraph specifies throwing an exception when the precondition is violated.

### 17.4.4 Conforming implementations

[conforming]
1 This subclause describes the constraints upon, and latitude of, implementations of the C++ Standard library. The following subclauses describe an implementation's use of headers (17.4.4.1), macros (17.4.4.2), global functions (17.4.4.3), member functions (17.4.4.4), reentrancy (17.4.4.5), access specifiers (17.4.4.6), class derivation (17.4.4.7), and exceptions (17.4.4.8).

### 17.4.4.1 Headers

[res.on.headers]
1 A C++ header may include other C++ headers. ${ }^{173)}$
2 Certain types and macros are defined in more than one header. For such an entity, a second or subsequent header that also defines it may be included after the header that provides its initial definition (3.2).

3 Header inclusion is limited as follows:

- The C headers ( .h form, described in Annex D, D.5) shall include only their corresponding C++ header, as described above (17.4.1.2).


### 17.4.4.2 Restrictions on macro definitions

[res.on.macro.definitions]
1 The names or global function signatures described in 17.4.1.1 are reserved to the implementation.
2 All object-like macros defined by the Standard C library and described in this clause as expanding to integral constant expressions are also suitable for use in \#if preprocessing directives, unless explicitly stated otherwise.

### 17.4.4.3 Global or non-member functions

[global.functions]
1 It is unspecified whether any global or non-member functions in the $\mathrm{C}++$ Standard Library are defined as inline (7.1.2).
2 A call to a global or non-member function signature described in clauses 18 through 27 and Annex D behaves the same as if the implementation declares no additional global or non-member function signatures. ${ }^{174)}$

A global or non-member function cannot be declared by the implementation as taking additional default arguments.
4 Unless otherwise specified, no global or non-member function in the standard library shall use a function from another namespace which is found through argument-dependent name lookup (3.4.2). [Note: The phrase "unless otherwise specified" is intended to allow argument-dependent lookup in cases like that of ostream_iterators: Effects:

```
*out_stream << value;
 if (delim != 0)
 *out_stream << delim;
 return (*this);
```

[^119]
## - end note ]

### 17.4.4.4 Member functions

[member.functions]
1 It is unspecified whether any member functions in the C++ Standard Library are defined as inline (7.1.2).
2 An implementation can declare additional non-virtual member function signatures within a class:
— by adding arguments with default values to a member function signature; ${ }^{175)}$ The same latitude does not extend to the implementation of virtual or global or non-member functions, however.

- by replacing a member function signature with default values by two or more member function signatures with equivalent behavior;
- by adding a member function signature for a member function name.

3 A call to a member function signature described in the C++ Standard library behaves the same as if the implementation declares no additional member function signatures. ${ }^{176)}$

### 17.4.4.5 Reentrancy

[reentrancy]
1 Which of the functions in the C++ Standard Library are not reentrant subroutines is implementation-defined.

### 17.4.4.6 Protection within classes

[protection.within.classes]
1 It is unspecified whether a function signature or class described in clauses 18 through 27 and Annex D is a friend of another class in the C++ Standard Library.

### 17.4.4.7 Derived classes

[derivation]
1 It is unspecified whether a class in the C++ Standard Library is itself derived from other classes (with names reserved to the implementation).

2 Certain classes defined in the C++ Standard Library are derived from other classes in the C++ Standard Library:

- It is unspecified whether a class described in the C++ Standard Library as derived from another class is derived from that class directly, or through other classes (with names reserved to the implementation) that are derived from the specified base class.

In any case:

- A base class described as virtual is always virtual;
- A base class described as virtual" non- is never virtual;
— Unless explicitly stated otherwise, types with distinct names are distinct types. ${ }^{177)}$

[^120]
### 17.4.4.8 Restrictions on exception handling

1 Any of the functions defined in the C++ Standard Library can report a failure by throwing an exception of the type(s) described in their Throws: paragraph and/or their exception-specification (15.4). An implementation may strengthen the exception-specification for a non-virtual function by removing listed exceptions. ${ }^{178)}$

2 None of the functions from the Standard C library shall report an error by throwing an exception, ${ }^{179)}$ unless it calls a program-supplied function that throws an exception. ${ }^{180)}$

No destructor operation defined in the C++ Standard Library will throw an exception. Any other functions defined in the C++ Standard Library that do not have an exception-specification may throw implementation-defined exceptions unless otherwise specified. ${ }^{181)}$ An implementation may strengthen this implicit exception-specification by adding an explicit one. ${ }^{182)}$

[^121]
## Chapter 18 Language support library [language.support]

1 This clause describes the function signatures that are called implicitly, and the types of objects generated implicitly, during the execution of some $\mathrm{C}++$ programs. It also describes the headers that declare these function signatures and define any related types.

2 The following subclauses describe common type definitions used throughout the library, characteristics of the predefined types, functions supporting start and termination of a C++ program, support for dynamic memory management, support for dynamic type identification, support for exception processing, and other runtime support, as summarized in Table 15.

Table 15: Language support library summary

| Subclause | Header(s) |
| :---: | :---: |
| 18.1 Types | <cstddef> |
| 18.2 Implementation properties | $\begin{aligned} & \text { <limits> } \\ & \text { <climits> } \\ & \text { <cfloat> } \\ & \text { <cstdint> } \\ & \text { <cinttypes> } \end{aligned}$ |
| 18.4 Start and termination | <cstdlib> |
| 18.5 Dynamic memory management | <new> |
| 18.6 Type identification | <typeinfo> |
| 18.7 Exception handling | <exception> |
| 18.8 Other runtime support | <cstdarg> <br> <csetjmp> <br> <ctime> <br> <csignal> <br> <cstdlib> <br> <cstdbool> |

18.1 Types

1 Common definitions.

Table 16: Header <cstddef> synopsis

| Type | Name(s) |  |
| :--- | :--- | :--- |
| Macros: | NULL | offsetof |
| Types: | ptrdiff_t | size_t |

Header <cstddef> (Table 16).
2 The contents are the same as the Standard C library header <stddef.h>, with the following changes:
3 The macro NULL is an implementation-defined C++ null pointer constant in this International Standard (4.10). ${ }^{183)}$
4 The macro offsetof(type, member-designator) accepts a restricted set of type arguments in this International Standard. If type is not a POD structure or a POD union (clause 9), the results are undefined. ${ }^{184)}$ The expression off setof (type, member-designator) is never type-dependent (14.6.2.2) and it is value-dependent (14.6.2.3) if and only if type is dependent. The result of applying the offsetof macro to a field that is a static data member or a function member is undefined.

SEE ALSO: subclause 5.3.3, Sizeof, subclause 5.7, Additive operators, subclause 12.5, Free store, and ISO C subclause 7.1.6.

### 18.2 Implementation properties

1 The headers <limits>, <climits>, <cfloat>, and <cinttypes> supply characteristics of implementation-dependent fundamental types (3.9.1).

### 18.2.1 Numeric limits

[limits]
1 The numeric_limits component provides a C++ program with information about various properties of the implementation's representation of the fundamental types.

2 Specializations shall be provided for each fundamental type, both floating point and integer, including bool. The member is_specialized shall be true for all such specializations of numeric_limits.

3 For all members declared static const in the numeric_limits template, specializations shall define these values in such a way that they are usable as integral constant expressions.

4 Non-fundamental standard types, such as complex<T> (26.3.2), shall not have specializations.

```
Header <limits> synopsis
namespace std {
 template<class T> class numeric_limits;
 enum float_round_style;
 enum float_denorm_style;
 template<> class numeric_limits<bool>;
 template<> class numeric_limits<char>;
 template<> class numeric_limits<signed char>;
```

${ }^{183)}$ Possible definitions include 0 and $0 L$, but not (voi $\left.d^{*}\right) 0$.
${ }^{184)}$ Note that of $f$ set of is required to work as specified even if unary oper at or \&is overloaded for any of the types involved.

```
 template<> class numeric_limits<unsigned char>;
 template<> class numeric_limits<wchar_t>;
 template<> class numeric_limits<short>;
 template<> class numeric_limits<int>;
 template<> class numeric_limits<long>;
 template<> class numeric_limits<long long>;
 template<> class numeric_limits<unsigned short>;
 template<> class numeric_limits<unsigned int>;
 template<> class numeric_limits<unsigned long>;
 template<> class numeric_limits<unsigned long long>;
 template<> class numeric_limits<float>;
 template<> class numeric_limits<double>;
 template<> class numeric_limits<long double>;
}
```

18.2.1.1 Class template numeric_limits
[numeric.limits]

```
namespace std {
 template<class T> class numeric_limits {
 public:
 static const bool is_specialized = false;
 static T min() throw();
 static T max() throw();
 static const int digits = 0;
 static const int digits10 = 0;
 static const int max_digits10 = 0;
 static const bool is_signed = false;
 static const bool is_integer = false;
 static const bool is_exact = false;
 static const int radix = 0;
 static T epsilon() throw();
 static T round_error() throw();
 static const int min_exponent = 0;
 static const int min_exponent10 = 0;
 static const int max_exponent = 0;
 static const int max_exponent10 = 0;
 static const bool has_infinity = false;
 static const bool has_quiet_NaN = false;
 static const bool has_signaling_NaN = false;
 static const float_denorm_style has_denorm = denorm_absent;
 static const bool has_denorm_loss = false;
 static T infinity() throw();
 static T quiet_NaN() throw();
 static T signaling_NaN() throw();
 static T denorm_min() throw();
```

Draft

```
 static const bool is_iec559 = false;
 static const bool is_bounded = false;
 static const bool is_modulo = false;
 static const bool traps = false;
 static const bool tinyness_before = false;
 static const float_round_style round_style = round_toward_zero;
 };
}
```

1 The member is_specialized makes it possible to distinguish between fundamental types, which have specializations, and non-scalar types, which do not.

2 The default numeric_limits<T> template shall have all members, but with 0 or false values.
18.2.1.2 numeric_limits members
[numeric.limits.members]
static T min() throw();
Minimum finite value. ${ }^{185)}$
For floating types with denormalization, returns the minimum positive normalized value.
Meaningful for all specializations in which is_bounded $!=$ false, or is_bounded == false \&\& is_signed
== false.
static $T \max ()$ throw();
Maximum finite value. ${ }^{186)}$
Meaningful for all specializations in which is_bounded $!=$ false.
static const int digits;
Number of radix digits that can be represented without change.
For built-in integer types, the number of non-sign bits in the representation.
For floating point types, the number of radix digits in the mantissa. ${ }^{187)}$
static const int digits10;
Number of base 10 digits that can be represented without change. ${ }^{188)}$
Meaningful for all specializations in which is_bounded != false.
static const int max_digits10;
Number of base 10 digits required to ensure that values which differ by only one epsilon are always differentiated.

[^122]static const bool is_signed;

True if the type is signed.
Meaningful for all specializations.
static const bool is_integer;
True if the type is integer.
Meaningful for all specializations.
static const bool is_exact;
True if the type uses an exact representation. All integer types are exact, but not all exact types are integer. For example, rational and fixed-exponent representations are exact but not integer.
Meaningful for all specializations.
static const int radix;
For floating types, specifies the base or radix of the exponent representation (often 2). ${ }^{189)}$
For integer types, specifies the base of the representation. ${ }^{190)}$
Meaningful for all specializations.
static $T$ epsilon() throw();
Machine epsilon: the difference between 1 and the least value greater than 1 that is representable. ${ }^{191)}$
Meaningful for all floating point types.
static T round_error() throw();
Measure of the maximum rounding error. ${ }^{192 \text { ) }}$

```
static const int min_exponent;
```

Minimum negative integer such that radix raised to the power of one less than that integer is a normalized floating point number. ${ }^{193)}$

Meaningful for all floating point types.

```
static const int min_exponent10;
```

Minimum negative integer such that 10 raised to that power is in the range of normalized floating point numbers. ${ }^{194)}$

Meaningful for all floating point types.

[^123]Draft

```
static const int max_exponent;
```

Maximum positive integer such that radix raised to the power one less than that integer is a representable finite floating point number. ${ }^{195)}$

Meaningful for all floating point types.
static const int max_exponent10;
Maximum positive integer such that 10 raised to that power is in the range of representable finite floating point numbers. ${ }^{196)}$

Meaningful for all floating point types.
static const bool has_infinity;
True if the type has a representation for positive infinity.
Meaningful for all floating point types.
Shall be true for all specializations in which is_iec559 != false.
static const bool has_quiet_NaN;
True if the type has a representation for a quiet (non-signaling) "Not a Number.," ${ }^{197 \text { ) }}$
Meaningful for all floating point types.
Shall be true for all specializations in which is_iec559 != false.
static const bool has_signaling_NaN;
True if the type has a representation for a signaling "Not a Number." ${ }^{198)}$
Meaningful for all floating point types.
Shall be true for all specializations in which is_iec559 != false.
static const float_denorm_style has_denorm;
denorm_present if the type allows denormalized values (variable number of exponent bits) ${ }^{199)}$, denorm_absent if the type does not allow denormalized values, and denorm_indeterminate if it is indeterminate at compile time whether the type allows denormalized values.

Meaningful for all floating point types.
static const bool has_denorm_loss;
True if loss of accuracy is detected as a denormalization loss, rather than as an inexact result. ${ }^{200}$ )

[^124]static $T$ infinity() throw();

Representation of positive infinity, if available. ${ }^{201)}$
Meaningful for all specializations for which has_infinity $!=f a l s e$. Required in specializations for which is_iec559 != false.

```
static T quiet_NaN() throw();
```

Representation of a quiet "Not a Number," if available. ${ }^{202)}$
Meaningful for all specializations for which has_quiet_NaN $!=$ false. Required in specializations for which is_iec559 != false.
static T signaling_NaN() throw();
Representation of a signaling "Not a Number," if available. ${ }^{203)}$
Meaningful for all specializations for which has_signaling_NaN $!=f a l s e$. Required in specializations for which is_iec559 ! = false.
static $T$ denorm_min() throw();
Minimum positive denormalized value. ${ }^{204)}$
Meaningful for all floating point types.
In specializations for which has_denorm $==\mathrm{false}$, returns the minimum positive normalized value.
static const bool is_iec559;
True if and only if the type adheres to IEC 559 standard. ${ }^{205)}$
Meaningful for all floating point types.
static const bool is_bounded;
True if the set of values representable by the type is finite. ${ }^{206)}$ All built-in types are bounded, this member would be false for arbitrary precision types.
Meaningful for all specializations.
static const bool is_modulo;
True if the type is modulo. ${ }^{2077}$ A type is modulo if it is possible to add two positive numbers and have a result that wraps around to a third number that is less.
Generally, this is false for floating types, true for unsigned integers, and true for signed integers on most machines.

[^125]Meaningful for all specializations.
static const bool traps;
true if, at program startup, there exists a value of the type that would cause an arithmetic operation using that value to trap. ${ }^{208)}$

Meaningful for all specializations.
static const bool tinyness_before;
true if tinyness is detected before rounding. ${ }^{209)}$
Meaningful for all floating point types.
static const float_round_style round_style;
The rounding style for the type. ${ }^{210)}$
Meaningful for all floating point types. Specializations for integer types shall return round_toward_zero.

### 18.2.1.3 Type float_round_style

[round.style]

```
namespace std {
 enum float_round_style {
 round_indeterminate = -1,
 round_toward_zero = 0,
 round_to_nearest = 1,
 round_toward_infinity = 2,
 round_toward_neg_infinity = 3
 };
}
```

1 The rounding mode for floating point arithmetic is characterized by the values:

- round_indeterminate if the rounding style is indeterminable
- round_toward_zero if the rounding style is toward zero
- round_to_nearest if the rounding style is to the nearest representable value
- round_toward_infinity if the rounding style is toward infinity
- round_toward_neg_infinity if the rounding style is toward negative infinity
18.2.1.4 Type float_denorm_style
[denorm.style]

[^126]```
namespace std {
    enum float_denorm_style {
        denorm_indeterminate = -1,
        denorm_absent = 0,
        denorm_present = 1
    };
}
```

1 The presence or absence of denormalization (variable number of exponent bits) is characterized by the values:

- denorm_indeterminate if it cannot be determined whether or not the type allows denormalized values
- denorm_absent if the type does not allow denormalized values
- denorm_present if the type does allow denormalized values

18.2.1.5 numeric_limits specializations

[numeric.special]

1 All members shall be provided for all specializations. However, many values are only required to be meaningful under certain conditions (for example, epsilon() is only meaningful if is_integer is false). Any value that is not "meaningful" shall be set to 0 or false.

2 [Example:

```
namespace std {
    template<> class numeric_limits<float> {
    public:
        static const bool is_specialized = true;
        inline static float min() throw() { return 1.17549435E-38F; }
        inline static float max() throw() { return 3.40282347E+38F; }
        static const int digits = 24;
        static const int digits10 = 6;
        static const bool is_signed = true;
        static const bool is_integer = false;
        static const bool is_exact = false;
        static const int radix = 2;
        inline static float epsilon() throw() { return 1.19209290E-07F; }
        inline static float round_error() throw() { return 0.5F; }
        static const int min_exponent = -125;
        static const int min_exponent10 = - 37;
        static const int max_exponent = +128;
        static const int max_exponent10 = + 38;
        static const bool has_infinity = true;
        static const bool has_quiet_NaN = true;
        static const bool has_signaling_NaN = true;
```

Draft

```
        static const float_denorm_style has_denorm = denorm_absent;
        static const bool has_denorm_loss = false;
        inline static float infinity() throw() { return ...; }
        inline static float quiet_NaN() throw() { return ...; }
        inline static float signaling_NaN() throw() { return ...; }
        inline static float denorm_min() throw() { return min(); }
        static const bool is_iec559 = true;
        static const bool is_bounded = true;
        static const bool is_modulo = false;
        static const bool traps = true;
        static const bool tinyness_before = true;
        static const float_round_style round_style = round_to_nearest;
    };
}
_ end example ]
```

3 The specialization for bool shall be provided as follows:

```
namespace std {
    template<> class numeric_limits<bool> {
    public:
        static const bool is_specialized = true;
        static bool min() throw() { return false; }
        static bool max() throw() { return true; }
        static const int digits = 1;
        static const int digits10 = 0;
        static const bool is_signed = false;
        static const bool is_integer = true;
        static const bool is_exact = true;
        static const int radix = 2;
        static bool epsilon() throw() { return 0; }
        static bool round_error() throw() { return 0; }
        static const int min_exponent = 0;
        static const int min_exponent10 = 0;
        static const int max_exponent = 0;
        static const int max_exponent10 = 0;
    static const bool has_infinity = false;
    static const bool has_quiet_NaN = false;
    static const bool has_signaling_NaN = false;
    static const float_denorm_style has_denorm = denorm_absent;
    static const bool has_denorm_loss = false;
    static bool infinity() throw() { return 0; }
    static bool quiet_NaN() throw() { return 0; }
    static bool signaling_NaN() throw() { return 0; }
```

Draft

```
    static bool denorm_min() throw() { return 0; }
    static const bool is_iec559 = false;
    static const bool is_bounded = true;
    static const bool is_modulo = false;
    static const bool traps = false;
    static const bool tinyness_before = false;
    static const float_round_style round_style = round_toward_zero;
};
}
```


18.2.2 C Library

[c.limits]
1 Header <climits> (Table 17) $)^{211)}$

Table 17: Header <climits> synopsis

Type			Names(s)		
Values:					
CHAR_BIT	INT_MAX	LONG_MAX	SCHAR_MIN	SHRT_MIN	ULLONG_MAX
CHAR_MAX	LLONG_MAX	LONG_MIN	SCHAR_MAX	UCHAR_MAX	ULONG_MAX
CHAR_MIN	LLONG_MIN	MB_LEN_MAX	SHRT_MAX	UINT_MAX	USHRT_MAX
INT_MIN					

2 The contents are the same as the Standard C library header <limits.h>.
3 Header <cfloat> (Table 18) ${ }^{212)}$

Table 18: Header <cfloat> synopsis

Type		Name(s)	
Values:			
DBL_DIG	DBL_MIN_EXP	FLT_MAX_EXP	LDBL_MANT_DIG
DBL_EPSILON	DECIMAL_DIG	FLT_MIN	LDBL_MAX_10_EXP
DBL_MANT_DIG	FLT_DIG	FLT_MIN_10_EXP	LDBL_MAX_EXP
DBL_MAX	FLT_EPSILON	FLT_MIN_EXP	LDBL_MAX
DBL_MAX_10_EXP	FLT_EVAL_METHOD	FLT_RADIX	LDBL_MIN
DBL_MAX_EXP	FLT_MANT_DIG	FLT_ROUNDS	LDBL_MIN_10_EXP
DBL_MIN	FLT_MAX	LDBL_DIG	LDBL_MIN_EXP
DBL_MIN_10_EXP	FLT_MAX_10_EXP	LDBL_EPSILON	

4 The contents are the same as the Standard C library header <float.h>.
See also: ISO C subclause 7.1.5, 5.2.4.2.2, 5.2.4.2.1.

[^127]Draft

18.3 Integer types

18.3.1 Header <cstdint> synopsis

```
namespace std {
    typedef signed integer type int8_t; // optional
    typedef signed integer type int16_t; // optional
    typedef signed integer type int32_t; // optional
    typedef signed integer type int64_t; // optional
    typedef signed integer type int_fast8_t;
    typedef signed integer type int_fast16_t;
    typedef signed integer type int_fast32_t;
    typedef signed integer type int_fast64_t;
    typedef signed integer type int_least8_t;
    typedef signed integer type int_least16_t;
    typedef signed integer type int_least32_t;
    typedef signed integer type int_least64_t;
    typedef signed integer type intmax_t;
    typedef signed integer type intptr_t;
    typedef unsigned integer type uint8_t; // optional
    typedef unsigned integer type uint16_t; // optional
    typedef unsigned integer type uint32_t; // optional
    typedef unsigned integer type uint64_t; // optional
    typedef unsigned integer type uint_fast8_t;
    typedef unsigned integer type uint_fast16_t;
    typedef unsigned integer type uint_fast32_t;
    typedef unsigned integer type uint_fast64_t;
    typedef unsigned integer type uint_least8_t;
    typedef unsigned integer type uint_least16_t;
    typedef unsigned integer type uint_least32_t;
    typedef unsigned integer type uint_least64_t;
    typedef unsigned integer type uintmax_t;
    typedef unsigned integer type uintptr_t;
} // namespace std
```

1 The header also defines numerous macros of the form:

```
INT[FAST LEAST]{8 16 32 64}_MIN
[U]INT[FAST LEAST]{8 16 32 64}_MAX
INT{MAX PTR}_MIN
[U]INT{MAX PTR}_MAX
{PTRDIFF SIG_ATOMIC WCHAR WINT}{_MAX _MIN}
SIZE_MAX
```

plus function macros of the form:
[U]INT\{8 163264 MAX\}_C
2 The header defines all functions, types, and macros the same as C99 subclause 7.18.

18.3.2 The header <stdint. h >

[stdinth]
1 The header behaves as if it includes the header <cstdint>, and provides sufficient using declarations to declare in the global namespace all type names defined in the header <cstdint>.

18.4 Start and termination

[support.start.term]
Header <cstdlib> (partial), Table 19:

Table 19: Header <cstdlib> synopsis

Type	Name(s)		
Macros:	EXIT_FAILURE	EXIT_SUCCESS	
Functions:	abort	atexit	exit

The contents are the same as the Standard C library header <stdlib.h>, with the following changes:

```
abort(void)
```

The function abort () has additional behavior in this International Standard:

- The program is terminated without executing destructors for objects of automatic or static storage duration and without calling the functions passed to atexit() (3.6.3).

```
extern "C" int atexit(void (*f)(void))
extern "C++" int atexit(void (*f)(void))
```

Effects: The atexit() functions register the function pointed to by f, to be called without arguments at normal program termination.

For the execution of a function registered with atexit (), if control leaves the function because it provides no handler for a thrown exception, terminate () is called (18.7.3.3).

Implementation limits: The implementation shall support the registration of at least 32 functions.
Returns: The atexit() function returns zero if the registration succeeds, nozero if it fails.

```
exit(int status)
```

The function exit() has additional behavior in this International Standard:

- First, objects with static storage duration are destroyed and functions registered by calling atexit are called. Non-local objects with static storage duration are destroyed in the reverse order of the completion of their constructor. (Automatic objects are not destroyed as a result of calling exit().) ${ }^{213)}$ Functions registered with atexit are called in the reverse order of their registration, except that a function is called after any

[^128]previously registered functions that had already been called at the time it was registered. ${ }^{214)}$ A function registered with atexit before a non-local object obj1 of static storage duration is initialized will not be called until obj1's destruction has completed. A function registered with atexit after a non-local object obj2 of static storage duration is initialized will be called before obj2's destruction starts. A local static object obj3 is destroyed at the same time it would be if a function calling the obj3 destructor were registered with atexit at the completion of the obj3 constructor.

- Next, all open C streams (as mediated by the function signatures declared in <cstdio>) with unwritten buffered data are flushed, all open C streams are closed, and all files created by calling tmpfile() are removed. ${ }^{215)}$
- Finally, control is returned to the host environment. If status is zero or EXIT_SUCCESS, an implemen-tation-defined form of the status successful termination is returned. If status is EXIT_FAILURE, an implementation-defined form of the status unsuccessful termination is returned. Otherwise the status returned is implementation-defined. ${ }^{216)}$

The function exit() never returns to its caller.
SEE ALSO: subclauses 3.6, 3.6.3, ISO C subclause 7.10.4.

18.5 Dynamic memory management

[support.dynamic]
1 The header <new> defines several functions that manage the allocation of dynamic storage in a program. It also defines components for reporting storage management errors.

Header <new> synopsis

```
namespace std {
    class bad_alloc;
    struct nothrow_t {};
    extern const nothrow_t nothrow;
    typedef void (*new_handler)();
    new_handler set_new_handler(new_handler new_p) throw();
}
```

 void* operator new(std::size_t size) throw(std::bad_alloc);
 void* operator new(std::size_t size, const std::nothrow_t\&) throw();
 void operator delete(void* ptr) throw();
 void operator delete(void* ptr, const std: :nothrow_t\&) throw();
 void* operator new[] (std::size_t size) throw(std::bad_alloc);
 void* operator new[] (std::size_t size, const std::nothrow_t\&) throw();
 void operator delete[] (void* ptr) throw();
 void operator delete[](void* ptr, const std: :nothrow_t\&) throw();
 void* operator new (std::size_t size, void* ptr) throw();
 void* operator new[] (std::size_t size, void* ptr) throw();
 [^129]```
void operator delete (void* ptr, void*) throw();
void operator delete[](void* ptr, void*) throw();
```

SEE ALSO: 1.7, 3.7.4, 5.3.4, 5.3.5, 12.5, 20.6.

### 18.5.1 Storage allocation and deallocation

[new.delete]
1 Except where otherwise specified, the provisions of (3.7.4) apply to the library versions of operator new and operator delete.

### 18.5.1.1 Single-object forms

[new.delete.single]
void* operator new(std::size_t size) throw(std::bad_alloc);

Effects:The allocation function (3.7.4.1) called by a new-expression (5.3.4) to allocate size bytes of storage suitably aligned to represent any object of that size.

Replaceable: a C++ program may define a function with this function signature that displaces the default version defined by the C++ Standard library.

Required behavior: Return a non-null pointer to suitably aligned storage (3.7.4), or else throw a bad_alloc exception. This requirement is binding on a replacement version of this function.

## Default behavior:

- Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether the attempt involves a call to the Standard C library function malloc is unspecified.
- Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last argument to set_new_handler() was a null pointer, throw bad_alloc.
— Otherwise, the function calls the current new_handler (18.5.2.2). If the called function returns, the loop repeats.
- The loop terminates when an attempt to allocate the requested storage is successful or when a called new_handler function does not return.
void* operator new(std::size_t size, const std::nothrow_t\&) throw();
Effects: Same as above, except that it is called by a placement version of a new-expression when a C++ program prefers a null pointer result as an error indication, instead of a bad_alloc exception.

Replaceable: a C++ program may define a function with this function signature that displaces the default version defined by the C++ Standard library.

Required behavior: Return a non-null pointer to suitably aligned storage (3.7.4), or else return a null pointer. This nothrow version of operator new returns a pointer obtained as if acquired from the ordinary version. This requirement is binding on a replacement version of this function.

## Default behavior:

- Executes a loop: Within the loop, the function first attempts to allocate the requested storage. Whether the attempt involves a call to the Standard C library function malloc is unspecified.
- Returns a pointer to the allocated storage if the attempt is successful. Otherwise, if the last argument to set_new_handler() was a null pointer, return a null pointer.
- Otherwise, the function calls the current new_handler (18.5.2.2). If the called function returns, the loop repeats.
- The loop terminates when an attempt to allocate the requested storage is successful or when a called new_handler function does not return. If the called new_handler function terminates by throwing a bad_alloc exception, the function returns a null pointer.
[ Example:

```
T* p1 = new T; // throws bad_alloc if it fails
\(\mathrm{T} * \mathrm{p} 2=\) new (nothrow) T ; // returns 0 if it fails
- end example]
```

void operator delete(void* ptr) throw();
void operator delete(void* ptr, const std: nothrow_t\&) throw();

Effects: The deallocation function (3.7.4.2) called by a delete-expression to render the value of $p t r$ invalid.
Replaceable: a C++ program may define a function with this function signature that displaces the default version defined by the C++ Standard library.

Requires: the value of ptr is null or the value returned by an earlier call to the default operator new (std: : size_t) or operator new (std::size_t,const std::nothrow_t\&).

Default behavior:

- For a null value of $p t r$, do nothing.
- Any other value of $p t r$ shall be a value returned earlier by a call to the default operator new, which was not invalidated by an intervening call to operator delete (void*) (17.4.3.7). For such a non-null value of $p t r$, reclaims storage allocated by the earlier call to the default operator new.

Remarks: It is unspecified under what conditions part or all of such reclaimed storage is allocated by a subsequent call to operator new or any of calloc, malloc, or realloc, declared in <cstdlib>.

### 18.5.1.2 Array forms

[new.delete.array]

```
void* operator new[](std::size_t size) throw(std::bad_alloc);
```

Effects: The allocation function (3.7.4.1) called by the array form of a new-expression (5.3.4) to allocate size bytes of storage suitably aligned to represent any array object of that size or smaller. ${ }^{217)}$

Replaceable: a C++ program can define a function with this function signature that displaces the default version defined by the $\mathrm{C}++$ Standard library.

[^130]
### 18.5.1.3 Placement forms

[new.delete.placement] library (17.4.3). The provisions of (3.7.4) do not apply to these reserved placement forms of operator new and operator delete.

```
void* operator new(std::size_t size, void* ptr) throw();
```

Returns: ptr.
Remarks: Intentionally performs no other action.
[ Example: This can be useful for constructing an object at a known address:

```
 void* place = operator new(sizeof(Something));
 Something* p = new (place) Something();
 - end example]
```

void* operator new[](std::size_t size, void* ptr) throw();

### 18.5.2 Storage allocation errors

18.5.2.1 Class bad_alloc

```
namespace std {
 class bad_alloc : public exception {
 public:
 bad_alloc() throw();
 bad_alloc(const bad_alloc&) throw();
 bad_alloc& operator=(const bad_alloc&) throw();
 virtual const char* what() const throw();
 };
}
```

1 The class bad_alloc defines the type of objects thrown as exceptions by the implementation to report a failure to allocate storage.

```
bad_alloc() throw();
```

Effects: Constructs an object of class bad_alloc.
Remarks: The result of calling what () on the newly constructed object is implementation-defined.

```
bad_alloc(const bad_alloc&) throw();
bad_alloc& operator=(const bad_alloc&) throw();
```

Effects: Copies an object of class bad_alloc.
virtual const char* what() const throw();

Returns: An implementation-defined NTBS.

### 18.5.2.2 Type new_handler

[new.handler]
typedef void (*new_handler)();
18.5.2.3 set_new_handler
new_handler set_new_handler(new_handler new_p) throw();
Effects: Establishes the function designated by $n e w_{-} p$ as the current new_handler.
Returns: 0 on the first call, the previous new_handler on subsequent calls.

### 18.6 Type identification

[support.rtti]

1 The header <typeinfo> defines a type associated with type information generated by the implementation. It also defines two types for reporting dynamic type identification errors.

## Header <typeinfo> synopsis

```
namespace std {
 class type_info;
 class bad_cast;
 class bad_typeid;
}
```

SEE ALSO: 5.2.7, 5.2.8.

### 18.6.1 Class type_info

```
namespace std {
 class type_info {
 public:
 virtual ~type_info();
 bool operator==(const type_info& rhs) const;
 bool operator!=(const type_info& rhs) const;
 bool before(const type_info& rhs) const;
 const char* name() const;
 private:
 type_info(const type_info& rhs);
 type_info& operator=(const type_info& rhs);
 };
}
```

Draft

1 The class type_info describes type information generated by the implementation. Objects of this class effectively store a pointer to a name for the type, and an encoded value suitable for comparing two types for equality or collating order. The names, encoding rule, and collating sequence for types are all unspecified and may differ between programs.

```
 bool operator==(const type_info& rhs) const;
```

Effects: Compares the current object with rhs .
Returns: true if the two values describe the same type.

```
bool operator!=(const type_info& rhs) const;
```

    Returns: ! (*this == rhs).
    bool before(const type_info\& rhs) const;

Effects: Compares the current object with rhs .
Returns: true if *this precedes rhs in the implementation's collation order.

```
const char* name() const;
```

Returns: an implementation-defined NTBS.
Remarks: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and display as a wstring (21.2, 22.2.1.4)
type_info(const type_info\& rhs);
type_info\& operator=(const type_info\& rhs);
Effects: Copies a type_info object.
Remarks: Since the copy constructor and assignment operator for type_info are private to the class, objects of this type cannot be copied.

### 18.6.2 Class bad_cast

[bad.cast]

```
namespace std {
 class bad_cast : public exception {
 public:
 bad_cast() throw();
 bad_cast(const bad_cast&) throw();
 bad_cast& operator=(const bad_cast&) throw();
 virtual const char* what() const throw();
 };
}
```

1 The class bad_cast defines the type of objects thrown as exceptions by the implementation to report the execution of an invalid dynamic-cast expression (5.2.7).

```
bad_cast() throw();
```


### 18.6.3 Class bad_typeid

```
namespace std {
 class bad_typeid : public exception {
 public:
 bad_typeid() throw();
 bad_typeid(const bad_typeid&) throw();
 bad_typeid& operator=(const bad_typeid&) throw();
 virtual const char* what() const throw();
 };
}
```

1 The class bad_typeid defines the type of objects thrown as exceptions by the implementation to report a null pointer in a typeid expression (5.2.8).
bad_typeid() throw();
Effects: Constructs an object of class bad_typeid.
Remarks: The result of calling what () on the newly constructed object is implementation-defined.

```
bad_typeid(const bad_typeid&) throw();
bad_typeid& operator=(const bad_typeid&) throw();
```

Effects: Copies an object of class bad_typeid.

```
virtual const char* what() const throw();
```

Returns: An implementation-defined NTBS.
Remarks: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and display as a wstring (21.2, 22.2.1.4)

### 18.7 Exception handling

[support.exception]
The header <exception> defines several types and functions related to the handling of exceptions in a C++ program.

Draft

## Header <exception> synopsis

```
namespace std {
 class exception;
 class bad_exception;
 typedef void (*unexpected_handler)();
 unexpected_handler set_unexpected(unexpected_handler f) throw();
 void unexpected();
 typedef void (*terminate_handler)();
 terminate_handler set_terminate(terminate_handler f) throw();
 void terminate();
 bool uncaught_exception() throw();
}
```

SEE ALSO: 15.5.
18.7.1 Class exception
[exception]

```
namespace std {
 class exception {
 public:
 exception() throw();
 exception(const exception&) throw();
 exception& operator=(const exception&) throw();
 virtual ~exception() throw();
 virtual const char* what() const throw();
 };
}
```

1 The class exception defines the base class for the types of objects thrown as exceptions by C++ Standard library components, and certain expressions, to report errors detected during program execution.
exception() throw();

```
virtual ~exception() throw();
```

Effects: Destroys an object of class exception.
Remarks: Does not throw any exceptions.

```
virtual const char* what() const throw();
```


### 18.7.2 Violating exception-specifications

18.7.2.1 Class bad_exception

```
namespace std {
 class bad_exception : public exception {
 public:
 bad_exception() throw();
 bad_exception(const bad_exception&) throw();
 bad_exception& operator=(const bad_exception&) throw();
 virtual const char* what() const throw();
 };
}
```

1 The class bad_exception defines the type of objects thrown as described in (15.5.2).

```
bad_exception() throw();
```

Effects: Constructs an object of class bad_exception.
Remarks: The result of calling what () on the newly constructed object is implementation-defined.

```
bad_exception(const bad_exception&) throw();
bad_exception& operator=(const bad_exception&) throw();
```

Effects: Copies an object of class bad_exception.
virtual const char* what() const throw();
Returns: An implementation-defined NTBS.
Remarks: The message may be a null-terminated multibyte string (17.3.2.1.3.2), suitable for conversion and display as a wstring (21.2, 22.2.1.4).

### 18.7.2.2 Type unexpected_handler

[unexpected.handler]
typedef void (*unexpected_handler)();
The type of a handler function to be called by unexpected() when a function attempts to throw an exception not listed in its exception-specification.
Required behavior: An unexpected_handler shall not return. See also 15.5.2.
Default behavior: The implementation's default unexpected_handler calls terminate().

Draft
18.7 Exception handling $\quad$ Language support library 420
18.7.2.3 set_unexpected
[set.unexpected]
unexpected_handler set_unexpected(unexpected_handler f) throw();

Called by the implementation when exception handling must be abandoned for any of several reasons (15.5.1). May also be called directly by the program.

Effects: Calls the terminate_handler function in effect immediately after evaluating the throw-expression (18.7.3.1), if called by the implementation, or calls the current terminate_handler function, if called by the program.

### 18.7.4 uncaught_exception

[uncaught]
bool uncaught_exception() throw();
Returns: true after completing evaluation of a throw-expression until either completing initialization of the exception-declaration in the matching handler or entering unexpected() due to the throw; or after entering terminate () for any reason other than an explicit call to terminate () . [Note: This includes stack unwinding (15.2). - end note ]

Remarks: When uncaught_exception() is true, throwing an exception can result in a call of terminate() (15.5.1).

### 18.8 Other runtime support

[support.runtime]
1 Headers <cstdarg> (variable arguments), <csetjmp> (nonlocal jumps), <ctime> (system clock clock(), time()), <csignal> (signal handling), <cstdlib> (runtime environment getenv(), system()), and <cstdbool> (_ _ bool_true_false_are_defined.

Table 20: Header <cstdarg> synopsis

| Type |  | Name(s) |  |
| :--- | :--- | :--- | :--- |
| Macros: va_arg va_end va_start <br> va_copy    |  |  |  |
| Type: | va_list |  |  |

Table 21: Header <csetjmp> synopsis

| Type | Name(s) |
| :--- | :--- |
| Macro: | setjmp |
| Type: | jmp_buf |
| Function: | longjmp |

Table 22: Header <ctime> synopsis

| Type | Name(s) |
| :--- | :--- |
| Macro: | CLOCKS_PER_SEC |
| Type: | clock_t |
| Function: | clock |

Draft

Table 23: Header <csignal> synopsis

| Type | Name(s) |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Macros: | SIGABRT | SIGILL | SIGSEGV | SIG_DFL |
| SIG_IGN | SIGFPE | SIGINT | SIGTERM | SIG_ERR |
| Type: | sig_atomic_t |  |  |  |
| Functions: | raise | signal |  |  |

Table 24: Header <cstdlib> synopsis

| Type | Name(s) |
| :---: | :---: |
| Functions: | getenv system |

2 The contents of these headers are the same as the Standard C library headers <stdarg.h>, <setjmp.h>, <time.h>, <signal.h>, and <stdlib.h> respectively, with the following changes:

3 The restrictions that ISO C places on the second parameter to the va_start() macro in header <stdarg. h > are different in this International Standard. The parameter parmN is the identifier of the rightmost parameter in the variable parameter list of the function definition (the one just before the ...). ${ }^{218)}$ If the parameter parmN is declared with a function, array, or reference type, or with a type that is not compatible with the type that results when passing an argument for which there is no parameter, the behavior is undefined.
SEE ALSO: ISO C subclause 4.8.1.1.
4 The function signature longjmp (jmp_buf jbuf, int val) has more restricted behavior in this International Standard. If any automatic objects would be destroyed by a thrown exception transferring control to another (destination) point in the program, then a call to longjmp ( $j b u f, v a l$ ) at the throw point that transfers control to the same (destination) point has undefined behavior.

SEE ALSO: ISO C subclause 7.10.4, 7.8, 7.6, 7.12.
5 The header <cstdbool> and the header <stdbool.h> shall not define macros named bool, true, and false.
6 The common subset of the C and $\mathrm{C}++$ languages consists of all declarations, definitions, and expressions that may appear in a well formed C++ program and also in a conforming C program. A POF ("plain old function") is a function that uses only features from this common subset, and that does not directly or indirectly use any function that is not a POF. All signal handlers shall have C linkage. A POF that could be used as a signal handler in a conforming C program does not produce undefined behavior when used as a signal handler in a $\mathrm{C}++$ program. The behavior of any other function used as a signal handler in a $\mathrm{C}++$ program is implementation-defined. ${ }^{219)}$

[^131]Table 25: Header <cstdbool> synopsis

| Type | Name(s) |
| :---: | :---: |
| Macro: | __bool_true_false_are_defined |

## Chapter 19 Diagnostics library

## [diagnostics]

1 This clause describes components that C++ programs may use to detect and report error conditions.
2 The following subclauses describe components for reporting several kinds of exceptional conditions, documenting program assertions, and a global variable for error number codes, as summarized in Table 26.

Table 26: Diagnostics library summary

| Subclause | Header(s) |
| :--- | :--- |
| 19.1 Exception classes | <stdexcept> |
| 19.2 Assertions | <cassert> |
| 19.3 Error numbers | <cerrno> |

### 19.1 Exception classes

[std.exceptions]
1 The Standard C++ library provides classes to be used to report certain errors (17.4.4.8) in C++ programs. In the error model reflected in these classes, errors are divided into two broad categories: logic errors and runtime errors.

2 The distinguishing characteristic of logic errors is that they are due to errors in the internal logic of the program. In theory, they are preventable.

3 By contrast, runtime errors are due to events beyond the scope of the program. They cannot be easily predicted in advance. The header <stdexcept> defines several types of predefined exceptions for reporting errors in a C++ program. These exceptions are related by inheritance.

```
Header <stdexcept> synopsis
namespace std {
 class logic_error;
 class domain_error;
 class invalid_argument;
 class length_error;
 class out_of_range;
 class runtime_error;
 class range_error;
 class overflow_error;
 class underflow_error;
}
```

19.1.1 Class logic_error

```
namespace std {
 class logic_error : public exception {
 public:
 explicit logic_error(const string& what_arg);
 };
}
```

1 The class logic_error defines the type of objects thrown as exceptions to report errors presumably detectable before the program executes, such as violations of logical preconditions or class invariants.

```
logic_error(const string& what_arg);
```

2 Effects: Constructs an object of class logic_error.
3 Postcondition: $\operatorname{strcmp}($ what (), what_arg.c_str()) $==0$.

### 19.1.2 Class domain_error

[domain.error]

```
namespace std {
 class domain_error : public logic_error {
 public:
 explicit domain_error(const string& what_arg);
 };
}
```

1 The class domain_error defines the type of objects thrown as exceptions by the implementation to report domain errors.

```
domain_error(const string& what_arg);
```

Effects: Constructs an object of class domain_error.
Postcondition: $\operatorname{strcmp}(w h a t()$, what_arg.c_str()) $==0$.
19.1.3 Class invalid_argument
[invalid.argument]

```
namespace std {
 class invalid_argument : public logic_error {
 public:
 explicit invalid_argument(const string& what_arg);
 };
}
```

1 The class invalid_argument defines the type of objects thrown as exceptions to report an invalid argument.

```
invalid_argument(const string& what_arg);
 Effects: Constructs an object of class invalid_argument.
 Postcondition: strcmp(what(), what_arg.c_str()) == 0.
```


### 19.1.4 Class length_error

[length.error]

```
namespace std {
 class length_error : public logic_error {
 public:
 explicit length_error(const string& what_arg);
 };
}
```

1 The class length_error defines the type of objects thrown as exceptions to report an attempt to produce an object whose length exceeds its maximum allowable size.

```
length_error(const string& what_arg);
```

2 Effects: Constructs an object of class length_error.
3
Postcondition: $\operatorname{strcmp}(w h a t()$, what_arg.c_str()) $==0$.
19.1.5 Class out_of_range
[out.of.range]

```
namespace std {
 class out_of_range : public logic_error {
 public:
 explicit out_of_range(const string& what_arg);
 };
}
```

1 The class out_of_range defines the type of objects thrown as exceptions to report an argument value not in its expected range.

```
out_of_range(const string& what_arg);
```

Effects: Constructs an object of class out_of_range.
Postcondition: $\operatorname{strcmp}($ what (), what_arg.c_str()) $==0$.

### 19.1.6 Class runtime_error

[runtime.error]

```
namespace std {
 class runtime_error : public exception {
 public:
 explicit runtime_error(const string& what_arg);
 };
}
```

1 The class runtime_error defines the type of objects thrown as exceptions to report errors presumably detectable only when the program executes.

```
runtime_error(const string& what_arg);
```


### 19.1.7 Class range_error

[range.error]

```
namespace std {
 class range_error : public runtime_error {
 public:
 explicit range_error(const string& what_arg);
 };
}
```


### 19.1.8 Class overflow_error

[overflow.error]

```
namespace std {
 class overflow_error : public runtime_error {
 public:
 explicit overflow_error(const string& what_arg);
 };
}
```

1 The class overflow_error defines the type of objects thrown as exceptions to report an arithmetic overflow error.

```
overflow_error(const string& what_arg);
```

Effects: Constructs an object of class overflow_error.
Postcondition: strcmp(what(), what_arg.c_str()) ==0.

### 19.1.9 Class underflow_error

[underflow.error]

```
namespace std {
 class underflow_error : public runtime_error {
 public:
 explicit underflow_error(const string& what_arg);
 };
}
```

1 The class underflow_error defines the type of objects thrown as exceptions to report an arithmetic underflow error. underflow_error (const string\& what_arg);

Draft

### 19.2 Assertions

1 Provides macros for documenting C++ program assertions, and for disabling the assertion checks.
Header <cassert> (Table 27):

Table 27: Header <cassert> synopsis

| Type | Name(s) |
| :---: | :--- |
| Macro: | assert |

2 The contents are the same as the Standard C library header <assert.h>.
SEE ALSO: ISO C subclause 7.2.

### 19.3 Error numbers

[errno]
1 Header <cerrno> (Table 28):

Table 28: Header <cerrno> synopsis

| Type | Name(s) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Macros: | EDOM | EILSEQ | ERANGE | errno |

2 The contents are the same as the Standard C library header <errno.h>, except that errno shall be defined as a macro. SEE ALSO: ISO C subclause 7.1.4, 7.2, Amendment 1 subclause 4.3.

## Chapter 20 General utilities library

## [utilities]

1 This clause describes components used by other elements of the Standard C++ library. These components may also be used by C++ programs.

2 The following clauses describe utility and allocator requirements, utility components, tuples, type traits templates, function objects, dynamic memory management utilities, and date/time utilities, as summarized in Table 29.

Table 29: General utilities library summary

| Subclause | Header(s) |
| :--- | :--- |
| 20.1 Requirements |  |
| 20.2 Utility components | <utility> |
| 20.3 Tuples | <tuple> |
| 20.4 Type traits | <type_traits> |
| 20.5 Function objects | <functional> |
| 20.6 Memory | <memory> <br> <cstdlib> <br> <cstring> |
| 20.7 Date and time | <ctime> |

Table 30: EqualityComparable requirements

| expression | return type | requirement |
| :--- | :--- | :--- |
| $\mathrm{a}=\mathrm{b}$ | convertible to bool | $==$ is an equivalence relation, that is, it satisfies the |
|  |  | following properties: |
|  |  | - For all $\mathrm{a}, \mathrm{a}=\mathrm{a}$. |
|  |  | - If $\mathrm{a}==\mathrm{b}$, then $\mathrm{b}==\mathrm{a}$. |
|  |  | - If $\mathrm{a}==\mathrm{b}$ and $\mathrm{b}==\mathrm{c}$, then $\mathrm{a}=\mathrm{c}=\mathrm{c}$. |
|  |  |  |

Table 31: LessThanComparable requirements

| expression | return type | requirement |
| :--- | :---: | :---: |
| $\mathrm{a}<\mathrm{b}$ | convertible to bool | $<$ is a strict weak ordering relation (25.3) |

Table 32: CopyConstructible requirements

| expression | return type | requirement |
| :--- | :--- | :---: |
| $\mathrm{T}(\mathrm{t})$ |  | t is equivalent to $\mathrm{T}(\mathrm{t})$ |
| $\mathrm{T}(\mathrm{u})$ |  | u is equivalent to $\mathrm{T}(\mathrm{u})$ |
| $\mathrm{t} \sim \sim \mathrm{T}()$ |  |  |
| $\& t$ | $\mathrm{~T} *$ | denotes the address of t |
| $\& \mathrm{u}$ | const $\mathrm{T} *$ | denotes the address of u |

Table 33: Swappable requirements

| expression | return type | post-condition |
| :--- | :--- | :--- |
| swap(t,u) | void | t has the value originally held by $u$, and $u$ has the value originally <br> held by $t$ |

20.1 Requirements
[utility.requirements]
120.1 describes requirements on template arguments. 20.1.1 through 20.1.4 describe requirements on types used to instantiate templates. 20.1.6 describes the requirements on storage allocators.

### 20.1.1 Equality comparison

[equalitycomparable]
1 In Table 30, T is a type to be supplied by a C++ program instantiating a template, $\mathrm{a}, \mathrm{b}$, and c are values of type const T.
20.1.2 Less than comparison
[lessthancomparable]
1 In the following Table 31, T is a type to be supplied by a $\mathrm{C}++$ program instantiating a template, a and b are values of type T.

### 20.1.3 Copy construction

[copyconstructible]
1 In the following Table 32, T is a type to be supplied by a $\mathrm{C}++$ program instantiating a template, t is a value of type T , and $u$ is a value of type const $T$.
20.1.4 Swapping
[swappable]
1 In the following Table 33, $T$ is a non-const type to be supplied by a $C++$ program instantiating a template, and $t$ and $u$ are values of type $T$.

2 The Swappable requirement is met by satisfying one or more of the following conditions:

- T is Swappable if T satisfies the CopyConstructible requirements (20.1.3) and the Assignable requirements (23.1);
- T is Swappable if a namespace scope function named swap exists in the same namespace as the definition of T, such that the expression $\operatorname{swap}(t, u)$ is valid and has the semantics described in Table 33.


### 20.1.5 Default construction

[default.con.req]
1 The default constructor is not required. Certain container class member function signatures specify the default constructor as a default argument. T () shall be a well-defined expression (8.5) if one of those signatures is called using the default argument (8.3.6).

### 20.1.6 Allocator requirements

1 The library describes a standard set of requirements for allocators, which are objects that encapsulate the information about an allocation model. This information includes the knowledge of pointer types, the type of their difference, the type of the size of objects in this allocation model, as well as the memory allocation and deallocation primitives for it. All of the containers (clause 23) are parameterized in terms of allocators.

2 Table 34 describes the requirements on types manipulated through allocators. All the operations on the allocators are expected to be amortized constant time. Table 35 describes the requirements on allocator types.

Table 34: Descriptive variable definitions

| Variable | Definition |
| :---: | :---: |
| T, U | any non-const, non-reference type |
| X | an Allocator class for type T |
| Y | the corresponding Allocator class for type U |
| t |  |
| a, a1, a2 |  |
| b | a value of type $Y$ |
| p | a value of type $\mathrm{X}:$ : pointer, obtained by calling a1.allocate, where a1 == a |
| q | a value of type X : :const_pointer obtained by conversion from a value $p$. |
| r | a value of type X : :reference obtained by the expression *p. |
| s | a value of type $\mathrm{X}:$ : const_reference obtained by the expression $* q$ or by conversion from a value $r$. |
| u | a value of type Y : : const_pointer obtained by calling Y: :allocate, or else 0 . |
| n | a value of type X: :size_type. |

Table 35: Allocator requirements

| expression | return type | assertion/note pre/post-condition |
| :---: | :---: | :---: |
| X: : pointer | Pointer to T. |  |
| X: :const_pointer | Pointer to const T. |  |
| X: :reference | T\& |  |
| X: :const_reference | T const\& |  |
| X: :value_type | Identical to T |  |
| X: :size_type | unsigned integral type | a type that can represent the size of the largest object in the allocation model. |
| X: :difference_type | signed integral type | a type that can represent the difference between any two pointers in the allocation model. |
| typename X::template rebind<U>::other | Y | For all U (including T), Y: :template rebind<T>: : other is X . |
| a.address (r) | X: : pointer |  |
| a.address(s) | X::const_pointer |  |
| $\begin{aligned} & \text { a.allocate(n) } \\ & \text { a.allocate(n,u) } \end{aligned}$ | X: pointer | Memory is allocated for $n$ objects of type T but objects are not constructed. allocate may raise an appropriate exception. The result is a random access iterator. ${ }^{220)}$ [Note: If $\mathrm{n}=0$, the return value is unspecified. -end note ] |
| a.deallocate (p,n) | (not used) | All $n$ T objects in the area pointed to by p shall be destroyed prior to this call. $n$ shall match the value passed to allocate to obtain this memory. Does not throw exceptions. [Note: p shall not be null. - end note] |
| a.max_size() | X::size_type | the largest value that can meaningfully be passed to $\mathrm{X}:$ : allocate () |
| a1 == a2 | bool | returns true iff storage allocated from each can be deallocated via the other. |
| a1 ! = a2 | bool | same as ! (a1 == a2) |
| X () |  | creates a default instance. [Note: a destructor is assumed. - end note] |
| X a(b); |  | post: $\mathrm{Y}(\mathrm{a})==\mathrm{b}$ |
| a.construct (p,t) | (not used) | Effect: : :new ( void ) p ) T(t) |
| a.destroy (p) | (not used) | Effect: ( $\mathrm{T} *$ ) p$)->\sim \mathrm{T}$ () |

3 The member class template rebind in the table above is effectively a typedef template: if the name Allocator is bound to SomeAllocator<T>, then Allocator: :rebind<U> : : other is the same type as SomeAllocator<U>.

4 Implementations of containers described in this International Standard are permitted to assume that their Allocator template parameter meets the following two additional requirements beyond those in Table 35 .

[^132]- All instances of a given allocator type are required to be interchangeable and always compare equal to each other.
- The typedef members pointer, const_pointer, size_type, and difference_type are required to be T*, T const*, std::size_t, and std: :ptrdiff_t, respectively.

5 Implementors are encouraged to supply libraries that can accept allocators that encapsulate more general memory models and that support non-equal instances. In such implementations, any requirements imposed on allocators by containers beyond those requirements that appear in Table 35, and the semantics of containers and algorithms when allocator instances compare non-equal, are implementation-defined.

### 20.2 Utility components

[utility]
1 This subclause contains some basic function and class templates that are used throughout the rest of the library.

## Header <utility> synopsis

```
namespace std {
 // 20.2.1, operators:
 namespace rel_ops {
 template<class T> bool operator!=(const T&, const T&);
 template<class T> bool operator> (const T&, const T&);
 template<class T> bool operator<=(const T&, const T&);
 template<class T> bool operator>=(const T&, const T&);
 }
 // 20.2.2, pairs:
 template <class T1, class T2> struct pair;
 template <class T1, class T2>
 bool operator==(const pair<T1,T2>&, const pair<T1,T2>&);
 template <class T1, class T2>
 bool operator< (const pair<T1,T2>&, const pair<T1,T2>&);
 template <class T1, class T2>
 bool operator!=(const pair<T1,T2>&, const pair<T1,T2>&);
 template <class T1, class T2>
 bool operator> (const pair<T1,T2>&, const pair<T1,T2>&);
 template <class T1, class T2>
 bool operator>=(const pair<T1,T2>&, const pair<T1,T2>&);
 template <class T1, class T2>
 bool operator<=(const pair<T1,T2>&, const pair<T1,T2>&);
 template <class T1, class T2> pair<T1,T2> make_pair(T1, T2);
 // 20.2.2, tuple-like access to pair:
 template <class T> class tuple_size;
 template <int I, class T> class tuple_element;
 template <class T1, class T2> struct tuple_size<std::pair<T1, T2> >;
 template <class T1, class T2> struct tuple_element<0, std::pair<T1, T2> >;
 template <class T1, class T2> struct tuple_element<1, std::pair<T1, T2> >;
 template<int I, class T1, class T2> P& get(std::pair<T1, T2>&);
```

Draft

```
 template<int I, class T1, class T2> const P& get(const std::pair<T1, T2>&);
}
```


### 20.2.1 Operators

[operators]
1 To avoid redundant definitions of operator! = out of operator== and operators $>$, $<=$, and $>=$ out of operator<, the library provides the following:

```
template <class T> bool operator!=(const T& x, const T& y);
 Requires: Type T is EqualityComparable (20.1.1).
 Returns: !(x == y).
 template <class T> bool operator>(const T& x, const T& y);
 Requires: Type T is LessThanComparable (20.1.2).
 Returns: y < x.
 template <class T> bool operator<=(const T& x, const T& y);
 Requires: Type T is LessThanComparable (20.1.2).
 Returns: ! (y < x).
template <class T> bool operator>=(const T& x, const T& y);
 Requires: Type T is LessThanComparable (20.1.2).
 Returns: ! (x < y).
```

In this library, whenever a declaration is provided for an operator $!=$, operator>, operator $>=$, or operator<=, and requirements and semantics are not explicitly provided, the requirements and semantics are as specified in this clause.

### 20.2.2 Pairs

[pairs]
1 The library provides a template for heterogeneous pairs of values. The library also provides a matching function template to simplify their construction and several templates that provide access to pair objects as if they were tuple objects (see 20.3.1.3 and 20.3.1.4).

```
template <class T1, class T2>
struct pair {
 typedef T1 first_type;
 typedef T2 second_type;
 T1 first;
 T2 second;
 pair();
 pair(const T1& x, const T2& y);
 template<class U, class V> pair(const pair<U, V> &p);
};
```

```
 pair();
```

Effects: Initializes its members as if implemented: pair() : first(), second() \{\}

```
pair(const T1& x, const T2& y);
```

Effects: The constructor initializes first with $x$ and second with $y$.
template<class $U$, class $V\rangle$ pair (const pair<U, $V\rangle \& p$ );
Effects: Initializes members from the corresponding members of the argument, performing implicit conversions as needed.

```
 template <class T1, class T2>
```

    bool operator==(const pair<T1, T2>\& \(x\), const pair<T1, T2>\& \(y\) );
            Returns: x.first \(==\) y.first \&\& x.second \(==\mathrm{y}\). second.
    template <class T1, class T2>
    bool operator<(const pair<T1, T2>\& \(x\), const pair<T1, T2>\& \(y\) );
            Returns: x.first < y.first \| (! (y.first < x.first) \&\& x.second < y.second).
    template <class T1, class T2>
    pair<T1, T2> make_pair (T1 \(x\), T2 \(y\) );
            Returns: pair<T1, T2>(x, y). \({ }^{221)}\)
            [ Example: In place of:
                return pair<int, double>(5, 3.1415926); //explicit types
            a C++ program may contain:
                return make_pair (5, 3.1415926); // types are deduced
            -end example ]
    tuple_size<pair<T1, T2\gg::value
            Returns: integral constant expression.
            Value: 2.
    tuple_element<0, pair<T1, T2\gg::type

Value: the type T1.
tuple_element<1, pair<T1, T2\gg::type

Value: the type T2.
template<int I, class T1, class T2> P\& get(pair<T1, T2>\&);

[^133]```
template<int I, class T1, class T2>
    const P& get(const pair<T1, T2>&);
```

Return type: If $\mathrm{I}=0$ then P is T 1 , if $\mathrm{I}=1$ then P is T 2 , and otherwise the program is ill-formed.
Returns: If $I==0$ returns p.first, otherwise returns p.second.

20.3 Tuples

[tuple]
120.3 describes the tuple library that provides a tuple type as the class template tuple that can be instantiated with any number of arguments. An implementation can set an upper limit for the number of arguments. The minimum value for this implementation quantity is defined in Annex 18.2.1. Each template argument specifies the type of an element in the tuple. Consequently, tuples are heterogeneous, fixed-size collections of values.

Header <tuple> synopsis

```
namespace std {
    // 20.3.1, class template tuple:
    template <class T1 = unspecified,
            class T2 = unspecified,
            class TM = unspecified> class tuple;
```

 // 20.3.1.2, tuple creation functions:
 const unspecified ignore;
 template<class T1, class T2, ..., class TN>
 tuple<V1, \(V 2, \ldots, V N>\) make_tuple(const T1\&, const T2\& , ..., const TN\&);
 template<class T1, class T2, ..., class TN>
 tuple<T1\&, T2\&, ..., TN\&> tie(T1\&, T2\& , ..., TN\&);
 // 20.3.1.3, tuple helper classes:
 template <class T> class tuple_size;
 template <int I, class T> class tuple_element;
 // 20.3.1.4, element access:
 template <int I, class T1, class T2, ..., class TN>
 \(R J\) get (tuple<T1, T2, ..., TN>\&);
 template <int I, class T1, class T2, ..., class TN>
 \(P J\) get (const tuple<T1, T2, ..., TN>\&);
 // 20.3.1.5, relational operators:
 template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
 bool operator==(const tuple<T1, T2, ..., TM>\&, const tuple<U1, U2, ..., UM>\&);
 template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
 bool operator<(const tuple<T1, T2, ..., TM>\&, const tuple<U1, U2, ..., UM>\&);
 Draft
    ```
    template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
    bool operator!=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);
    template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
    bool operator>(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);
    template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
    bool operator<=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);
    template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
    bool operator>=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);
} // namespace std
```


20.3.1 Class template tuple

[tuple.tuple]
$1 M$ denotes the implementation-defined number of template type parameters to the tuple class template, and N denotes the number of template arguments specified in an instantiation.

```
template <class T1 = unspecified,
                    class T2 = unspecified,
                        class TM = unspecified>
class tuple
{
public:
    tuple();
    explicit tuple(P1, P2, ..., PN); // iff N>0
    tuple(const tuple&);
    template <class U1, class U2, ..., class UN>
            tuple(const tuple<U1, U2, ..., UN>&);
        template <class U1, class U2>
            tuple(const pair<U1, U2>&); // iff N==2
        tuple& operator=(const tuple&);
        template <class U1, class U2, ..., class UN>
            tuple& operator=(const tuple<U1, U2, ..., UN>&);
        template <class U1, class U2>
            tuple& operator=(const pair<U1, U2>&); // iff N==2
};
```


20.3.1.1 Construction

[tuple.cnstr]
tuple();
Requires: Each type Ti shall be default constructible.
2 Effects: Default initializes each element.
tuple(P1, P2, ..., PN);
where Pi is Ti if Ti is a reference type, or const $\mathrm{Ti} \&$ otherwise.
Requires: Each type Ti shall be copy constructible.
Effects: Copy initializes each element with the value of the corresponding parameter.
tuple(const tuple\& u);
Requires: Each type Ti shall be copy constructible.
Effects: Copy constructs each element of *this with the corresponding element of u.
template <class U1, class U2, ..., class UN> tuple(const tuple<U1, U2, ..., UN>\& u);
Requires: Each type Ti shall be constructible from the corresponding type Ui.
Effects: Constructs each element of $*$ this with the corresponding element of u.
[Note: In an implementation where one template definition serves for many different values for N , enable_if can be used to make the converting constructor and assignment operator exist only in the cases where the source and target have the same number of elements. Another way of achieving this is adding an extra integral template parameter which defaults to N (more precisely, a metafunction that computes N), and then defining the converting copy constructor and assignment only for tuples where the extra parameter in the source is N . - end note]
template <class U1, class U2> tuple(const pair<U1, U2>\& u);
Requires: T 1 shall be constructible from $\mathrm{U} 1, \mathrm{~T} 2$ shall be constructible from $\mathrm{U} 2 . \mathrm{N}==2$.
Effects: Constructs the first element with u.first and the second element with u.second.
tuple\& operator=(const tuple\& u);
Requires: Each type Ti shall be assignable.
Effects: Assigns each element of u to the corresponding element of $*$ this.
Returns: *this
template <class U1, class U2, ..., class UN>
tuple\& operator=(const tuple<U1, U2, ..., UN>\& u);
Requires: Each type Ti shall be assignable from the corresponding type Ui.
Effects: Assigns each element of u to the corresponding element of *this.
Returns: *this
template <class U1, class U2> tuple\& operator=(const pair<U1, U2>\& u);
Requires: T 1 shall be assignable from $\mathrm{U} 1, \mathrm{~T} 2$ shall be assignable from $\mathrm{U} 2 . \mathrm{N}==2$.
Effects: Assigns u.first to the first element of $*$ this and u.second to the second element of $*$ this.
Returns: *this

20.3.1.2 Tuple creation functions

[tuple.creation]

```
template<class T1, class T2, ..., class TN>
    tuple<V1, V2, ..., VN> make_tuple(const T1& t1, const T2& t2, ..., const TN& tn);
```

where Vi is $\mathrm{X} \&$ if the cv-unqualified type Ti is reference_wrapper<X>, otherwise Vi is Ti .
The make_tuple function template shall be implemented for each different number of arguments from 0 to the maximum number of allowed tuple elements.
3 Returns: tuple<V1, V2, ..., VN>(t1, t2, ..., tn).

```
    template<class T1, class T2, ..., class TN>
    tuple<T1&, T2&, ..., TN> tie(T1& t1, T2& t2, ..., TN& tn);
```

[Note: There are rare conditions where the converting copy constructor is a better match than the element-wise construction, even though the user might intend differently. An example of this is if one is constructing a oneelement tuple where the element type is another tuple type T and if the parameter passed to the constructor is not of type T, but rather a tuple type that is convertible to T. The effect of the converting copy construction is most likely the same as the effect of the element-wise construction would have been. However, it it possible to compare the "nesting depths" of the source and target tuples and decide to select the element-wise constructor if the source nesting depth is smaller than the target nesting-depth. This can be accomplished using an enable_if template or other tools for constrained templates. - end note]
[Example:

```
                int i; float j;
                make_tuple(1, ref(i), cref(j))
```

creates a tuple of type
tuple<int, int\&, const float\&>
—end example]

The tie function template shall be implemented for each different number of arguments from 0 to the maximum number of allowed tuple elements.

Returns: tuple<T1\&, T2\&, ..., TN\&>($\mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tn}$). When an argument t_{i} is ignore, assigning any value to the corresponding tuple element has no effect.
[Example: tie functions allow one to create tuples that unpack tuples into variables. ignore can be used for elements that are not needed:

```
int i; std::string s;
tie(i, ignore, s) = make_tuple(42, 3.14, "C++");
// i == 42,s == "C++"
—end example]
```


20.3.1.3 Tuple helper classes

tuple_size<T>: :value
Requires: T is an instantiation of class template tuple.
Type: integral constant expression.
Value: Number of elements in T.
tuple_element<I, T>::type
Requires: $0 \leq \mathrm{I}<\mathrm{N}$. The program is ill-formed if I is out of bounds.
Value: The type of the Ith element of T, where indexing is zero-based.

20.3.1.4 Element access

```
template <int I, class T1, class T2, ..., class TN>
    RJ get(tuple<T1, T2, ..., TN>& t);
```

Requires: $0 \leq \mathrm{I}<\mathrm{N}$. The program is ill-formed if I is out of bounds.
Return type: RJ, where $\mathrm{J}=\mathrm{I}+1$. If TJ is a reference type, then RJ is TJ , otherwise RJ is $\mathrm{TJ} \&$.
Returns: A reference to the Ith element of t , where indexing is zero-based.
template <int I, class T1, class T2, ..., class TN>
PJ get (const tuple<T1, T2, ..., TN $>\& ~ t$);
Requires: $0 \leq \mathrm{I}<\mathrm{N}$. The program is ill-formed if I is out of bounds.
Return type: PJ, where $\mathrm{J}=\mathrm{I}+1$. If TJ is a reference type, then PJ is TJ , otherwise PJ is const $\mathrm{TJ} \&$.
Returns: A const reference to the Ith element of t , where indexing is zero-based.
[Note: Constness is shallow. If TJ is some reference type $\mathrm{X} \&$, the return type is $\mathrm{X} \&$, not const $\mathrm{X} \&$. However, if the element type is non-reference type T, the return type is const $T \&$. This is consistent with how constness is defined to work for member variables of reference type. -end note.]
[Note: The reason get is a nonmember function is that if this functionality had been provided as a member function, invocations where the type depended on a template parameter would have required using the template keyword. -end note]

20.3.1.5 Relational operators

[tuple.rel]

```
template<class T1, class T2, ..., class TN, class U1, class U2, ..., class UN>
    bool operator==(const tuple<T1, T2, ..., TN>& t, const tuple<U1, U2, ..., UN>& u);
```

Requires: For all i, where $0<=\mathrm{i}<\mathrm{N}$, get<i>(t) == get<i>(u) is a valid expression returning a type that is convertible to bool.
template<class T1, class T2, ..., class TN, class U1, class U2, ..., class UN>
bool operator>=(const tuple<T1, T2, ..., TN>\& t, const tuple<U1, U2, ..., UN>\& u); be possible, as t and u are not required to be copy constructible. Also, all comparison operators are short circuited; they do not perform element accesses beyond what is required to determine the result of the comparison. - end note]

20.4 Metaprogramming and type traits

[meta]
1 This subclause describes components used by C++ programs, particularly in templates, to support the widest possible range of types, optimise template code usage, detect type related user errors, and perform type inference and transformation at compile time. It describes type traits requirements, unary type traits, traits that describe relationships between types, and traits that perform transformations on types, as summarized in Table 36.

20.4.1 Requirements

[meta.rqmts]
1 A UnaryTypeTrait is a template that describes a property of a type. It shall be a class template that takes one template type argument and, optionally, additional arguments that help define the property being described. It shall be DefaultConstructible and derived, directly or indirectly, from an instance of the template integral_constant (20.4.3),

Table 36: Type traits library summary

| Subclause | Header(s) |
| :--- | :--- |
| 20.4.1 Requirements | |
| 20.4.5 Unary type traits | <type_traits> |
| 20.4.6 Relationships between types | <type_traits> |
| 20.4.7 Transformations between types | <type_traits> |

with the arguments to the template integral_constant determined by the requirements for the particular property being described.
2 A BinaryTypeTrait is a template that describes a relationship between two types. It shall be a class template that takes two template type arguments and, optionally, additional arguments that help define the relationship being described. It shall be DefaultConstructible and derived, directly or indirectly, from an instance of the template integral_constant (20.4.3), with the arguments to the template integral_constant determined by the requirements for the particular relationship being described.

3 A TransformationTypeTrait is a template that modifies a property of a type. It shall be a class template that takes one template type argument and, optionally, additional arguments that help define the modification. It shall define a nested type named type, which shall be a synonym for the modified type.

20.4.2 Header <type_traits> synopsis

```
namespace std {
    // [20.4.3] helper class:
    template <class T, T v> struct integral_constant;
    typedef integral_constant<bool, true> true_type;
    typedef integral_constant<bool, false> false_type;
    // [20.4.5.1] primary type categories:
    template <class T> struct is_void;
    template <class T> struct is_integral;
    template <class T> struct is_floating_point;
    template <class T> struct is_array;
    template <class T> struct is_pointer;
    template <class T> struct is_reference;
    template <class T> struct is_member_object_pointer;
    template <class T> struct is_member_function_pointer;
    template <class T> struct is_enum;
    template <class T> struct is_union;
    template <class T> struct is_class;
    template <class T> struct is_function;
    // [20.4.5.2] composite type categories:
    template <class T> struct is_arithmetic;
    template <class T> struct is_fundamental;
    template <class T> struct is_object;
    template <class T> struct is_scalar;
    template <class T> struct is_compound;
```

```
template <class T> struct is_member_pointer;
// [20.4.5.3] type properties.
template <class T> struct is_const;
template <class T> struct is_volatile;
template <class T> struct is_pod;
template <class T> struct is_empty;
template <class T> struct is_polymorphic;
template <class T> struct is_abstract;
template <class T> struct has_trivial_constructor;
template <class T> struct has_trivial_copy;
template <class T> struct has_trivial_assign;
template <class T> struct has_trivial_destructor;
template <class T> struct has_nothrow_constructor;
template <class T> struct has_nothrow_copy;
template <class T> struct has_nothrow_assign;
template <class T> struct has_virtual_destructor;
template <class T> struct is_signed;
template <class T> struct is_unsigned;
template <class T> struct alignment_of;
template <class T> struct rank;
template <class T, unsigned I = 0> struct extent;
// [20.4.6] type relations:
template <class T, class U> struct is_same;
template <class Base, class Derived> struct is_base_of;
template <class From, class To> struct is_convertible;
// [20.4.7.1] const-volatile modifications:
template <class T> struct remove_const;
template <class T> struct remove_volatile;
template <class T> struct remove_cv;
template <class T> struct add_const;
template <class T> struct add_volatile;
template <class T> struct add_cv;
// [20.4.7.2] reference modifications
template <class T> struct remove_reference;
template <class T> struct add_reference;
// [20.4.7.3] array modifications.
template <class T> struct remove_extent;
template <class T> struct remove_all_extents;
// [20.4.7.4] pointer modifications.
template <class T> struct remove_pointer;
template <class T> struct add_pointer;
// [20.4.8] other transformations.
template <std::size_t Len, std::size_t Align> struct aligned_storage;
```

\} // namespace std

```
20.4.3 Helper classes
[meta.help]
```

```
template <class T, T v>
```

template <class T, T v>
struct integral_constant
struct integral_constant
{
{
static const T value = v;
static const T value = v;
typedef T value_type;
typedef T value_type;
typedef integral_constant<T,v> type;
typedef integral_constant<T,v> type;
};
};
typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, false> false_type;

```
typedef integral_constant<bool, false> false_type;
```

1 The class template integral_constant and its associated typedefs true_type and false_type are used as base classes to define the interface for various type traits.

20.4.4 General Requirements

[meta.requirements]
1 Tables 37, 38, 39, and 41 define type predicates. Each type predicate pred<T> shall be a UnaryTypeTrait (20.4.1), derived directly or indirectly from true_type if the corresponding condition is true, otherwise from false_type. Each type predicate pred<T, U> shall be a BinaryTypeTrait (20.4.1), derived directly or indirectly from true_type if the corresponding condition is true, otherwise from false_type.

2 Table 40 defines various type queries. Each type query shall be a UnaryTypeTrait (20.4.1), derived directly or indirectly from integral_constant<std::size_t, value>, where value is the value of the property being queried.

3 Tables 42, 43, 44, and 45 define type transformations. Each transformation shall be a TransformationTrait (20.4.1).
4 Table 46 defines a template that can be instantiated to define a type with a specific alignment and size.
20.4.5 Unary Type Traits
[meta.unary]
1 This sub-clause contains templates that may be used to query the properties of a type at compile time.
2 For all of the class templates X declared in this clause, instantiating that template with a template-argument that is a class template specialization may result in the implicit instantiation of the template argument if and only if the semantics of X require that the argument must be a complete type.

20.4.5.1 Primary Type Categories

[meta.unary.cat]
The primary type categories correspond to the descriptions given in section [basic.types] of the C++ standard.
For any given type T , the result of applying one of these templates to T and to $c v$-qualified T shall yield the same result.
The behavior of a program that adds specializations for any of the class templates defined in this clause is undefined.
[Note: For any given type T, exactly one of the primary type categories has a value member that evaluates to true. - end note]

Table 37: Primary Type Category Predicates

| Template | Condition | Comments |
| :---: | :---: | :---: |

| ```template <class T> struct is_void;``` | T is void | |
| :---: | :---: | :---: |
| template <class T> struct is_integral; | T is an integral type ([basic.fundamental]) | |
| ```template <class T> struct is_floating_point;``` | T is a floating point type ([basic.fundamental]) | |
| template <class T> struct is_array; | T is an array type ([basic.compound]) | Class template array ([23.2.1]) is not an array type. |
| template <class T> struct is_pointer; | T is a pointer type ([basic.compound]) | Includes function pointers, but not pointers to members. |
| template <class T> struct is_reference; | T is a reference type ([basic.fundamental]) | Includes references to functions. |
| ```template <class T> struct is_member_object_pointer;``` | T is a pointer to data member | |
| ```template <class T> struct is_member_function_pointer;``` | T is a pointer to member function | |
| template <class T> struct is_enum; | T is an enumeration type ([basic.compound]) | |
| template <class T> struct is_union; | T is a union type ([basic.compound]) | |
| template <class T> struct is_class; | T is a class type but not a union type ([basic.compound]) | |
| template <class T> struct is_function; | T is a function type ([basic.compound]) | |

20.4.5.2 Composite type traits

[meta.unary.comp]
1 These templates provide convenient compositions of the primary type categories, corresponding to the descriptions given in section [basic.types].

2 For any given type T , the result of applying one of these templates to T , and to cv -qualified T shall yield the same result. The behavior of a program that adds specializations for any of the class templates defined in this clause is undefined.

Table 38: Composite Type Category Predicates

| Template | Condition | Comments |
| :--- | :--- | :--- |
| template <class T> | T is an arithmetic type | |
| struct is_arithmetic; | ([basic.fundamental]) | |
| template <class T> | T is a fundamental type | |
| struct is_fundamental; | ([basic.fundamental]) | |
| template <class T> | T is an object type | |
| struct is_object; | ([basic.types]amental type | |

| template <class T> | T is a compound type
 struct is_compound; |
| :--- | :--- |
| (basic.compound]) | |
| template <class T> | T is a pointer to a member or |
| struct is_member_pointer; | member function |

20.4.5.3 Type properties

[meta.unary.prop]
1 These templates provide access to some of the more important properties of types.
2 It is unspecified whether the library defines any full or partial specialisations of any of these templates. A program may specialise any of these templates on a user-defined type, provided the semantics of the specialisation match those given for the template in its description.

Table 39: Type Property Predicates

| Template | Condition | Preconditions |
| :---: | :---: | :---: |
| template <class T> struct is_const; | T is const-qualified ([basic.qualifier]) | |
| template <class T> struct is_volatile; | T is volatile-qualified ([basic.qualifier]) | |
| template <class T> struct is_pod; | T is a POD type ([basic.types]) | T shall be a complete type. |
| template <class T> struct is_empty; | T is an empty class ([class]) | T shall be a complete type. |
| ```template <class T> struct is_polymorphic;``` | T is a polymorphic class ([class.virtual]) | T shall be a complete type. |
| template <class T> struct is_abstract; | T is an abstract class ([class.abstract]) | T shall be a complete type. |
| ```template <class T> struct has_trivial_constructor;``` | The default constructor for T is trivial ([class.ctor]) | T shall be a complete type. |
| template <class T> struct has_trivial_copy; | The copy constructor for T is trivial ([class.copy]) | T shall be a complete type. |
| ```template <class T> struct has_trivial_assign;``` | The assignment operator for T is trivial ([class.copy]) | T shall be a complete type. |
| ```template <class T> struct has_trivial_destructor;``` | The destructor for T is trivial ([class.dtor]) | T shall be a complete type. |
| ```template <class T> struct has_nothrow_constructor;``` | The default constructor for T has an empty exception specification or can otherwise be deduced never to throw an exception | T shall be a complete type. |

| template <class T> struct has_nothrow_copy; | The copy constructor for T has an empty exception specification or can otherwise be deduced never to throw an exception | T shall be a complete type. |
| :---: | :---: | :---: |
| template <class T> struct has_nothrow_assign; | The assignment operator for T has an empty exception specification or can otherwise be deduced never to throw an exception | T shall be a complete type. |
| ```template <class T> struct has_virtual_destructor;``` | T has a virtual destructor ([class.dtor]) | T shall be a complete type. |
| template <class T> struct is_signed; | T is a signed integral type ([basic.fundamental]) | |
| template <class T> struct is_unsigned; | T is an unsigned integral type ([basic.fundamental]) | |

Table 40: Type Property Queries

| Template | value |
| :---: | :---: |
| template <class T> struct alignment_of; | An integer value representing the number of bytes of the alignment of objects of type T; an object of type T may be allocated at an address that is a multiple of its alignment ([basic.types]).
 Precondition: T shall be a complete type. |
| template <class T> struct rank; | An integer value representing the rank of objects of type T ([dcl.array]). [Note: The term "rank" here is used to describe the number of dimensions of an array type. - end note] |
| ```template <class T, template <unsigned \(\mathrm{I}=0\) > struct extent;``` | An integer value representing the extent (dimension) of the I'th bound of objects of type T (8.3.4). If the type T is not an array type, has rank of less than I, or if I $==0$ and T is of type "array of unknown bound of U ," then value shall evaluate to zero; otherwise value shall evaluate to the number of elements in the I'th array bound of T. [Note: The term "extent" here is used to describe the number of elements in an array type -end note] |

```
[ Example:
    // the following assertions hold:
    assert(rank<int>::value == 0);
    assert(rank<int[2]>::value == 1);
    assert(rank<int[][4]>::value == 2);
    _ end example ]
```

4 [Example:

```
    // the following assertions hold:
assert(extent<int>::value == 0);
assert(extent<int[2]>::value == 2);
assert(extent<int[2][4]>::value == 2);
assert(extent<int[][4]>::value == 0);
assert((extent<int, 1>::value) == 0);
assert((extent<int[2], 1>::value) == 0)
assert((extent<int[2] [4], 1>::value) == 4);
assert((extent<int[] [4], 1>::value) == 4);
- end example ]
```

20.4.6 Relationships between types [meta.rel]

Table 41: Type Relationship Predicates

| Template | Condition | Comments |
| :---: | :---: | :---: |
| template <class T, class U> struct is_same; | T and U name the same type | |
| ```template <class Base, class Derived> struct is_base_of;``` | Base is a base class of Derived ([class.derived]) or Base and Derived name the same type | Preconditions: Base and Derived shall be complete types. |
| template <class From, class To> struct is_convertible; | An imaginary lvalue of type From is implicitly convertible to type To ([conv]) | Special conversions involving string-literals and null-pointer constants are not considered ([conv.array], [conv.ptr], and [conv.mem]). No function-parameter adjustments ([dcl.fct]) are made to type To when determining whether From is convertible to To; this implies that if type To is a function type or an array type, then the condition is false. See below. |

The expression is_convertible<From,To>: :value is ill-formed if:

- Type From is an incomplete type ([basic.types]).
- Type To is an incomplete or abstract type ([basic.types]).
- The conversion is ambiguous. An example of an ambiguous conversion is a type From that has multiple base classes of type To ([class.member.lookup]).
- Type To is of class type and the conversion would invoke a non-public constructor of To ([class.access] and [class.conv.ctor]).
- Type From is of class type and the conversion would invoke a non-public conversion operator of From ([class.access] and [class.conv.fct]).

20.4.7 Transformations between types

[meta.trans]
1 This sub-clause contains templates that may be used to transform one type to another following some predefined rule.
2 Each of the templates in this header shall be a TransformationTrait (20.4.1).

20.4.7.1 Const-volatile modifications

[meta.trans.cv]
Table 42: Const-volatile modifications

| Template | Comments |
| :---: | :---: |
| template <class T> struct remove_const; | The member typedef type shall be the same as T except that any top level const-qualifier has been removed. [Example: remove_const<const volatile int>::type evaluates to volatile int, whereas remove_const<const int*> is const int*. -end example] |
| template <class T> struct remove_volatile; | The member typedef type shall be the same as T except that any top level volatile-qualifier has been removed. [Example: remove_volatile<const volatile int>::type evaluates to const int, whereas remove_volatile<volatile int*> is volatile int*. -end example] |
| template <class T>
 struct remove_cv; | The member typedef type shall be the same as T except that any top level cv-qualifier has been removed. [Example: remove_cv<const volatile int>: :type evaluates to int, whereas remove_cv<const volatile int*> is const volatile int*. - end example] |
| template <class T> struct add_const; | If T is a reference, function, or top level const-qualified type, then type shall be the same type as T, otherwise T const. |
| template <class T> struct add_volatile; | If T is a reference, function, or top level volatile-qualified type, then type shall be the same type as T, otherwise T volatile. |
| template <class T> struct add_cv; | The member typedef type shall be the same type as add_const<typename add_volatile<T>::type>::type. |

20.4.7.2 Reference modifications
 [meta.trans.ref]

Table 43: Reference modifications

| Template | Comments |
| :--- | :--- |
| template <class T>
 struct remove_reference; | The member typedef type shall be the same as T, except any reference qualifier |
| has been removed. | |

Table 46: Other transformations

| Template | Condition | Comments |
| :--- | :--- | :--- |
| template <template | Len is nonzero. Align is equal | The member typedef type shall be a POD |
| <std: :size_t Len, | to alignment_of<T> : :value | type suitable for use as uninitialized |
| std: :size_t Align> | for some type T. | storage for any object whose size is at |
| struct aligned_storage; | | most Len and whose alignment is a divisor |
| | | of Align. |

1 [Note: a typical implementation would define type as:

```
union type
{
    unsigned char __data[Len];
    Aligner __align;
};
```

where Aligner is the smallest POD type for which alignment_of<Aligner>: :value is Align. -end note]

20.4.9 Implementation requirements

1 The behaviour of all the class templates defined in <type_traits> shall conform to the specifications given, except where noted below.

2 [Note: The latitude granted to implementers in this clause is temporary, and is expected to be removed in future revisions of this document. - end note]

3 If the implementation cannot differentiate between class and union types, then the class templates is_class and is_union shall be defined as follows:

```
template <class T> struct is_class {};
template <class T> struct is_union {};
```

4 If the implementation cannot detect polymorphic types, then the class template is_polymorphic shall be defined as follows:

```
template <class T> struct is_polymorphic {};
```

5 If the implementation cannot detect abstract types, then the class template is_abstract shall be defined as follows:

```
template <class T> struct is_abstract {};
```

6 If the implementation cannot determine whether a type T has a virtual destructor, e.g. a pure library implementation with no compiler support, then has_virtual_destructor<T> shall be derived, directly or indirectly, from false_type (20.4.1).

7 It is unspecified under what circumstances, if any, is_empty<T>: : value evaluates to true.
8 It is unspecified under what circumstances, if any, is_pod<T> : : value evaluates to true, except that, for all types T:

```
is_pod<T>::value == is_pod<remove_extent<T>::type>::value
is_pod<T>::value == is_pod<T const volatile>::value
is_pod<T>::value >= (is_scalar<T>::value || is_void<T>::value)
```

9 It is unspecified under what circumstances, if any, has_trivial_*<T>: : value evaluates to true, except that:

```
has_trivial_*<T>::value == has_trivial_*<remove_extent<T>::type>::value
has_trivial_*<T>::value >= is_pod<T>::value
```

10 It is unspecified under what circumstances, if any, has_nothrow_*<T>: : value evaluates to true.
11 There are trait templates whose semantics do not require their argument(s) to be completely defined, nor does such completeness in any way affect the exact definition of the traits class template specializations. However, in the absence of compiler support these traits cannot be implemented without causing implicit instantiation of their arguments; in particular: is_class, is_enum, and is_scalar. For these templates, it is unspecified whether their template argument(s) are implicitly instantiated when the traits class is itself instantiated.

20.5 Function objects

[function.objects]

1 Function objects are objects with an operator () defined. In the places where one would expect to pass a pointer to a function to an algorithmic template (clause 25), the interface is specified to accept an object with an operator() defined. This not only makes algorithmic templates work with pointers to functions, but also enables them to work with arbitrary function objects.

2 Header <functional> synopsis

```
namespace std {
    // 20.5.3, base:
    template <class Arg, class Result> struct unary_function;
    template <class Arg1, class Arg2, class Result> struct binary_function;
    // 20.5.4 result_of:
    template <class FunctionCallType> class result_of;
    // 20.5.5, reference_wrapper:
    template <class T> class reference_wrapper;
    template <class T> reference_wrapper<T> ref(T&);
    template <class T> reference_wrapper<const T> cref(const T&);
    template <class T> reference_wrapper<T> ref(reference_wrapper<T>);
    template <class T> reference_wrapper<const T> cref(reference_wrapper<T>);
    // 20.5.6, arithmetic operations:
    template <class T> struct plus;
    template <class T> struct minus;
    template <class T> struct multiplies;
    template <class T> struct divides;
    template <class T> struct modulus;
    template <class T> struct negate;
```

```
// 20.5.7, comparisons:
template <class T> struct equal_to;
template <class T> struct not_equal_to;
template <class T> struct greater;
template <class T> struct less;
template <class T> struct greater_equal;
template <class T> struct less_equal;
// 20.5.8, logical operations:
template <class T> struct logical_and;
template <class T> struct logical_or;
template <class T> struct logical_not;
// 20.5.9, negators:
template <class Predicate> class unary_negate;
template <class Predicate>
    unary_negate<Predicate> not1(const Predicate&);
template <class Predicate> class binary_negate;
template <class Predicate>
    binary_negate<Predicate> not2(const Predicate&);
// 20.5.10, bind:
template<class T> struct is_bind_expression;
template<class T> struct is_placeholder;
template<class Fn, class T1, ..., class TN>
    unspecified bind(Fn, T1, ..., TN);
template<class R, class Fn, class T1, ..., class Tn>
    unspecified bind(Fn, T1, ..., TN);
namespace placeholders {
    // M is the implementation-defined number of placeholders
    extern unspecified _1;
    extern unspecified _2;
    extern unspecified _M;
}
// D.8, binders (deprecated):
template <class Fn> class binder1st;
template <class Fn, class T>
    binder1st<Fn> bind1st(const Fn&, const T&);
template <class Fn> class binder2nd;
template <class Fn, class T>
    binder2nd<Fn> bind2nd(const Fn&, const T&);
// 20.5.11, adaptors:
template <class Arg, class Result> class pointer_to_unary_function;
```

Draft

```
template <class Arg, class Result>
    pointer_to_unary_function<Arg,Result> ptr_fun(Result (*)(Arg));
template <class Arg1, class Arg2, class Result>
    class pointer_to_binary_function;
template <class Arg1, class Arg2, class Result>
    pointer_to_binary_function<Arg1,Arg2,Result>
        ptr_fun(Result (*)(Arg1,Arg2));
// 20.5.12, adaptors:
template<class S, class T> class mem_fun_t;
template<class S, class T, class A> class mem_fun1_t;
template<class S, class T>
        mem_fun_t<S,T> mem_fun(S (T::*f)());
template<class S, class T, class A>
    mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A));
template<class S, class T> class mem_fun_ref_t;
template<class S, class T, class A> class mem_fun1_ref_t;
template<class S, class T>
    mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)());
template<class S, class T, class A>
    mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A));
template <class S, class T> class const_mem_fun_t;
template <class S, class T, class A> class const_mem_fun1_t;
template <class S, class T>
    const_mem_fun_t<S,T> mem_fun(S (T::*f)() const);
template <class S, class T, class A>
    const_mem_fun1_t<S,T,A> mem_fun(S (T::*f)(A) const);
template <class S, class T> class const_mem_fun_ref_t;
template <class S, class T, class A> class const_mem_fun1_ref_t;
template <class S, class T>
    const_mem_fun_ref_t<S,T> mem_fun_ref(S (T::*f)() const);
template <class S, class T, class A>
    const_mem_fun1_ref_t<S,T,A> mem_fun_ref(S (T::*f)(A) const);
// 20.5.13, member function adaptors:
template<class R, class T> unspecified mem_fn(R T::*);
// 20.5.14
```

```
    template <class Function>
        bool operator==(const function<Function>&, unspecified-null-pointer-type);
    template <class Function>
        bool operator==(unspecified-null-pointer-type, const function<Function>&);
    template <class Function>
        bool operator!=(const function<Function>&, unspecified-null-pointer-type);
    template <class Function>
        bool operator!=(unspecified-null-pointer-type, const function<Function>&);
    // 20.5.15, hash function base template:
    template <class T> struct hash;
    // Hash function specializations
    template <> struct hash<bool>;
    template <> struct hash<char>;
    template <> struct hash<signed char>;
    template <> struct hash<unsigned char>;
    template <> struct hash<wchar_t>;
    template <> struct hash<short>;
    template <> struct hash<unsigned short>;
    template <> struct hash<int>;
    template <> struct hash<unsigned int>;
    template <> struct hash<long>;
    template <> struct hash<long long>;
    template <> struct hash<unsigned long>;
    template <> struct hash<unsigned long long>;
    template <> struct hash<float>;
    template <> struct hash<double>;
    template <> struct hash<long double>;
    template<class T> struct hash<T*>;
    template <> struct hash<std::string>;
    template <> struct hash<std::wstring>;
}
```

3 [Example: If a C++ program wants to have a by-element addition of two vectors a and b containing double and put the result into a, it can do:

```
transform(a.begin(), a.end(), b.begin(), a.begin(), plus<double>());
```

-end example]
4 [Example: To negate every element of a:

```
    transform(a.begin(), a.end(), a.begin(), negate<double>());
```

-end example]

Draft

5 To enable adaptors and other components to manipulate function objects that take one or two arguments it is required that the function objects correspondingly provide typedefs argument_type and result_type for function objects that take one argument and first_argument_type, second_argument_type, and result_type for function objects that take two arguments.

20.5.1 Definitions

[func.def]
1 The following definitions apply to this clause:
2 A call signature is the name of a return type followed by a parenthesized comma-separated list of zero or more argument types.
3 A call wrapper is an object of a call wrapper type.
4 A call wrapper type is a type that holds a callable object and supports a call operation that forwards to that object.
5 A callable object is an object of a callable type.
6 A callable type is a pointer to function, a pointer to member function, a pointer to member data, or a class type whose objects can appear immediately to the left of a function call operator.

7 A target object is the callable object held by a call wrapper object.

20.5.2 Requirements

[func.require]
1 Define $\operatorname{INVOKE}(\mathrm{f}, \mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tN}$) as follows:

- ($\mathrm{t} 1 . . * \mathrm{f})(\mathrm{t} 2, \ldots, \mathrm{tN})$ when f is a pointer to a member function of a class T and t 1 is an object of type T or a reference to an object of type T or a reference to an object of a type derived from T;
$-((* \mathrm{t} 1) . * \mathrm{f})(\mathrm{t} 2, \ldots, \mathrm{tN})$ when f is a pointer to a member function of a class T and t 1 is not one of the types described in the previous item;
- t1. $* \mathrm{f}$ when f is a pointer to member data of a class T and t 1 is an object of type T or a reference to an object of type T or a reference to an object of a type derived from T;
- (*t1).*f when f is a pointer to member data of a class T and t 1 is not one of the types described in the previous item;
- $f(t 1, t 2, \ldots, t N)$ in all other cases.

2 Define $\operatorname{INVOKE}(\mathrm{f}, \mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tN}, \mathrm{R}$) as $\operatorname{INVOKE}(\mathrm{f}, \mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tN}$) implicitly converted to R.
3 If a call wrapper ([20.5.1]) has a weak result type the type of its member type result_type is based on the type T of the wrapper's target object ([20.5.1]):

- if T is a function, reference to function, or pointer to function type, result_type shall be a synonym for the return type of T ;
— if T is a pointer to member function, result_type shall be a synonym for the return type of T;
- if T is a class type with a member type result_type, then result_type shall be a synonym for $\mathrm{T}:$:result_type;
- otherwise result_type shall not be defined.

4 Every call wrapper [20.5.1] shall be CopyConstructible. A simple call wrapper is a call wrapper that is Assignable and whose copy constructor and assignment operator do not throw exceptions. A forwarding call wrapper is a call wrapper that can be called with an argument list $\mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tN}$ where each ti is an lvalue. The effect of calling a forwarding call wrapper with one or more arguments that are rvalues is implementation defined. [Note: in a typical implementation forwarding call wrappers have overloaded function call operators of the form

```
template<class T1, class T2, ..., class TN>
R operator()(T1& t1, T2& t2, ..., TN& tN) cv-qual;
_end note]
```


20.5.3 Base

[base]
1 The following classes are provided to simplify the typedefs of the argument and result types:

```
template <class Arg, class Result>
struct unary_function {
    typedef Arg argument_type;
    typedef Result result_type;
};
template <class Arg1, class Arg2, class Result>
struct binary_function {
    typedef Arg1 first_argument_type;
    typedef Arg2 second_argument_type;
    typedef Result result_type;
};
```


20.5.4 Function object return types

[func.ret]

```
namespace std {
    template <class FunctionCallTypes> // F(T1,T2, ...,TN)
    class result_of {
    public :
        // types
        typedef see below type;
    };
} // namespace std
```

1 Given an rvalue fn of type Fn and values $\mathrm{t} 1, \mathrm{t} 2, \ldots$, tN of types $\mathrm{T} 1, \mathrm{~T} 2, \ldots$, TN , respectively, the type member is the result type of the expression $f(\mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tN})$. The values ti are lvalues when the corresponding type Ti is a reference type, and rvalues otherwise.

2 The implementation may determine the type member via any means that produces the exact type of the expression $\mathrm{f}(\mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tN}$) for the given types. [Note: The intent is that implementations are permitted to use special compiler hooks - end note]
3 If Fn is not a function object defined by the standard library, and if either the implementation cannot determine the type of the expression $\mathrm{fn}(\mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tN})$ or the expression is ill-formed, the implementation shall use the following process to determine the type member:

1. If Fn is a function pointer or function reference type, type shall be the return type of the function type.
2. If Fn is a member function pointer type, type shall be the return type of the member function type.
3. If Fn is a member data pointer type $\mathrm{R} T:: *$, type shall be $c v \mathrm{R} \&$ when $T 1$ is $c v \mathrm{U} 1 \&, \mathrm{R}$ otherwise.
4. If Fn is a possibly $c v$-qualified class type with a member type result_type, type shall be typename $\mathrm{F}:$:result_type.
5. If Fn is a possibly $c v$-qualified class type with no member named result_type or if typename Fn: :result_type is not a type:
(a) If $\mathrm{N}=0$ (no arguments), type shall be void.
(b) If $N>0$, type shall be typename $\mathrm{Fn}:$:template result<Fn(T1, T2,..., TN) $>:$:type.
6. Otherwise, the program is ill-formed.
20.5.5 Class template reference_wrapper
[refwrap]
```
template <class T> class reference_wrapper
    : public unary_function<T1, R> // see below
    : public binary_function<T1, T2, R> // see below
{
public :
    // types
    typedef T type;
    typedef see below result_type; // Not always defined
    // construct/copy/destroy
    explicit reference_wrapper(T&);
    reference_wrapper(const reference_wrapper<T>& x);
    // assignment
    reference_wrapper& operator=(const reference_wrapper<T>& x);
    // access
    operator T& () const;
    T& get() const;
    // invocation
    template <class T1, class T2, ..., class TN>
    typename result_of<T(T1, T2, ..., TN)>::type
    operator() (T1&, T2&, ..., TN&) const;
};
```

reference_wrapper<T> is a CopyConstructible and Assignable wrapper around a reference to an object of type T.
reference_wrapper has a weak result type ([20.5.2]).
The template instantiation reference_wrapper<T> shall be derived from std: : unary_function<T1, $R>$ only if the type T is any of the following:

- a function type or a pointer to function type taking one argument of type T1 and returning R
- a pointer to member function $\mathrm{R} \mathrm{T0}:: \mathrm{f} c v$ (where $c v$ represents the member function's cv-qualifiers); the type T1 is $c v \mathrm{~T} 0 *$
- a class type that is derived from std: :unary_function<T1, R> only if the type T is any of the following:
- a function type or a pointer to function type taking two arguments of types T1 and T2 and returning R
- a pointer to member function $\mathrm{R} \mathrm{T} 0:: \mathrm{f}(\mathrm{T} 2) c v$ (where $c v$ represents the member function's cv-qualifiers); the type T1 is $c v$ T0*
— a class type that is derived from std: :binary_function<T1, T2, R>
20.5.5.1 reference_wrapper construct/copy/destroy
[refwrap.const]
explicit reference_wrapper (T\& t);
Effects: Constructs a reference_wrapper object that stores a reference to t.
Throws: nothing.
reference_wrapper(const reference_wrapper<T>\& x);
Effects: Constructs a reference_wrapper object that stores a reference to x.get().
Throws: nothing.

20.5.5.2 reference_wrapper assignment

[refwrap.assign]
reference_wrapper\& operator=(const reference_wrapper<T>\& x);
Postconditions: *this stores a reference to $\mathrm{x} . \operatorname{get}()$.
Throws: Nothing.
20.5.5.3 reference_wrapper access
[refwrap.access]
operator T\& () const;
Returns: The stored reference.
Throws: nothing.
T\& get() const;
Returns: The stored reference.
Throws: nothing.

Draft

20.5.5.4 reference_wrapper invocation

```
template <class T1, class T2, ..., class TN>
    typename result_of<T(T1, T2, ..., TN)>::type operator()(
        T1& a1, T2& a1, ..., TN& aN) const;
```


20.5.6 Arithmetic operations

The library provides basic function object classes for all of the arithmetic operators in the language (5.6, 5.7).

```
template <class T> struct plus : binary_function<T,T,T> {
    T operator()(const T& x, const T& y) const;
};
            operator() returns x + y.
template <class T> struct minus : binary_function<T,T,T> {
    T operator()(const T& x, const T& y) const;
};
    operator() returns x - y.
```

```
    template <class T> struct multiplies : binary_function<T,T,T> {
    T operator()(const T& x, const T& y) const;
    };
    template <class T> struct divides : binary_function<T,T,T> {
    T operator()(const T& x, const T& y) const;
    };
    template <class T> struct modulus : binary_function<T,T,T> {
    T operator()(const T& }x\mathrm{ , const T& y) const;
    };
    template <class T> struct negate : unary_function<T,T> {
    T operator()(const T& x) const;
    };
    operator() returns - x .
```

4
5
6

20.5.7 Comparisons

[comparisons]
1 The library provides basic function object classes for all of the comparison operators in the language (5.9, 5.10).

```
    template <class T> struct equal_to : binary_function<T,T,bool> {
    bool operator()(const T& x, const T& y) const;
    };
            operator() returns x == y.
    template <class T> struct not_equal_to : binary_function<T,T,bool> {
        bool operator()(const T& }x\mathrm{ , const T& }y\mathrm{ ) const;
    };
3 operator() returns x != y.
    template <class T> struct greater : binary_function<T,T,bool> {
        bool operator()(const T& x, const T& y) const;
    };
4 operator() returns x>y.
    template <class T> struct less : binary_function<T,T,bool> {
        bool operator()(const T& }x\mathrm{ , const T& y) const;
    };
5 operator() returns x<y.
template <class T> struct greater_equal : binary_function<T,T,bool> {
```

```
        bool operator()(const T& x, const T& y) const;
    };
6
    template <class T> struct less_equal : binary_function<T,T,bool> {
    bool operator()(const T& x, const T& y) const;
    };
7 operator() returns }x<=y
```

8 For templates greater, less, greater_equal, and less_equal, the specializations for any pointer type yield a total order, even if the built-in operators $\langle\rangle,,<=,>=$ do not.

20.5.8 Logical operations

[logical.operations]
1 The library provides basic function object classes for all of the logical operators in the language (5.14, 5.15, 5.3.1).

```
    template <class T> struct logical_and : binary_function<T,T,bool> {
    bool operator()(const T& x, const T& y) const;
    };
            operator() returns }x\mathrm{ && }y\mathrm{ .
    template <class T> struct logical_or : binary_function<T,T,bool> {
        bool operator()(const T& x, const T& y) const;
    };
3 operator() returns x || y.
    template <class T> struct logical_not : unary_function<T,bool> {
    bool operator()(const T& x) const;
    };
            operator() returns ! x.
```


20.5.9 Negators

[negators]
1 Negators not1 and not2 take a unary and a binary predicate, respectively, and return their complements (5.3.1).

```
template <class Predicate>
    class unary_negate
        : public unary_function<typename Predicate::argument_type,bool> {
    public:
        explicit unary_negate(const Predicate& pred);
        bool operator()(const typename Predicate::argument_type& x) const;
};
            operator() returns ! pred (x).
template <class Predicate>
    unary_negate<Predicate> not1(const Predicate& pred);
```

 Returns: unary_negate<Predicate>(pred).
    ```
    template <class Predicate>
    class binary_negate
        : public binary_function<typename Predicate::first_argument_type,
            typename Predicate::second_argument_type, bool> {
    public:
        explicit binary_negate(const Predicate& pred);
        bool operator()(const typename Predicate::first_argument_type& }x\mathrm{ ,
            const typename Predicate::second_argument_type& y) const;
    };
            operator() returns !pred (x,y).
    template <class Predicate>
    binary_negate<Predicate> not2(const Predicate& pred);
            Returns:
```

4
5
binary_negate<Predicate>(pred).

20.5.10 Template function bind

[bind]
1 The template function bind returns an object that binds a function object passed as an argument to additional arguments.
2 Binders bind1st and bind2nd take a function object fn of two arguments and a value x and return a function object of one argument constructed out of $f n$ with the first or second argument correspondingly bound to x.

20.5.10.1 Function object binders

[func.bind]
1 This subclause describes a uniform mechanism for binding arguments of function objects.
20.5.10.1.1 Class template is_bind_expression
[func.bind.isbind]

```
namespace std {
    template<class T> struct is_bind_expression {
        static const bool value = see below;
    };
} // namespace std
```

1 is_bind_expression can be used to detect function objects generated by bind. bind uses is_bind_expression to detect subexpressions. Users may specialize this template to indicate that a type should be treated as a subexpression in a bind call.

```
static const bool value;
```

true if T is a type returned from bind, false otherwise.
20.5.10.1.2 Class template is_placeholder

```
namespace std {
    template<class T> struct is_placeholder {
            static const int value = see below;
        };
} // namespace std
```

1 is_placeholder can be used to detect the standard placeholders _1, _2, and so on. bind uses is_placeholder to detect placeholders. Users may specialize this template to indicate a placeholder type.

```
static const int value;
    value is J if T is the type of std::tr1::placeholders::_J,0 otherwise.
```


20.5.10.1.3 Function template bind

[func.bind.bind]

```
template<class F, class T1, class T2, ...., class TN>
    unspecified bind(F f, T1 t1, T2 t2, ..., TN tN);
```

Requires: F and Ti shall be CopyConstructible. INVOKE (f, w1, w2, . . . , wN) ([20.5.2]) shall be a valid expression for some values $w 1, w 2, \ldots, w N$.

Returns: A forwarding call wrapper g with a weak result type ([20.5.2]). The effect of g ($u 1, u 2, \ldots, u M$) shall be INVOKE (f, v1, v2, ..., vN, result_of<F cv (V1, V2, ..., VN)>::type), where cv represents the $c v$-qualifiers of g and the values and types of the bound arguments $v 1, \mathrm{v} 2, \ldots, \mathrm{vN}$ are determined as specified below.

```
template<class R, class F, class T1, class T2, ...., class TN>
    unspecified bind(F f, T1 t1, T2 t2, ..., TN tN);
```

Requires: F and Ti shall be CopyConstructible. INVOKE (f, w1, w2, ..., wN) shall be a valid expression for some values w1, w2, ..., wN.

Returns: A forwarding call wrapper g with a nested type result_type defined as a synonym for R. The effect of $\mathrm{g}(\mathrm{u} 1, \mathrm{u} 2, \ldots, \mathrm{uM}$) shall be $\operatorname{INVOKE}(\mathrm{f}, \mathrm{v} 1, \mathrm{v} 2, \ldots, \mathrm{vN}, \mathrm{R}$), where the values and types of the bound arguments v1, v2, ..., vN are determined as specified below.

5 The values of the bound arguments v1, v2, ..., vN and their corresponding types V1, V2, ..., VN depend on the type of the corresponding argument ti of type Ti in the call to bind and the $c v$-qualifiers $c v$ of the call wrapper g as follows:
— if ti is of type reference_wrapper<T> the argument is ti.get () and its type Vi is T\&;
— if the value of std::tr1::is_bind_expression<Ti>::value is true the argument is ti(u1, u2, ..., uM) and its type Vi is result_of<Ti cv (U1\&, U2\&, ..., UM\&) >: :type;
— if the value j of std::tr1::is_placeholder<Ti>::value is not zero the argument is uj and its type Vi is Uj\&;

- otherwise the value is ti and its type Vi is Ti cv \& .

20.5.10.1.4 Placeholders

```
namespace std {
    namespace placeholders {
        // M is the implementation-defined number of placeholders
        extern unspecified _1;
        extern unspecified _2;
        extern unspecified _M;
    }
} // namespace std
```

1 All placeholder types shall be DefaultConstructible and CopyConstructible, and their default constructors and copy constructors shall not throw exceptions. It is implementation defined whether placeholder types are Assignable. Assignable placeholders' copy assignment operators shall not throw exceptions.

20.5.11 Adaptors for pointers to functions

[function.pointer.adaptors]
1 To allow pointers to (unary and binary) functions to work with function adaptors the library provides:

```
template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result> {
public:
    explicit pointer_to_unary_function(Result (*f)(Arg));
    Result operator()(Arg x) const;
};
            operator() returns f
```

2

```
int compare(const char*, const char*);
replace_if(v.begin(), v.end(),
    not1(bind2nd(ptr_fun(compare), "abc")), "def");
```

replaces each abc with def in sequence v . -end example]

20.5.12 Adaptors for pointers to members

[member.pointer.adaptors]
1 The purpose of the following is to provide the same facilities for pointer to members as those provided for pointers to functions in 20.5.11.

```
template <class S, class T> class mem_fun_t
            : public unary_function<T*, S> {
public:
    explicit mem_fun_t(S (T::*p)());
        S operator()(T* p) const;
};
mem_fun_t calls the member function it is initialized with given a pointer argument.
    template <class S, class T, class A> class mem_fun1_t
            : public binary_function<T*, A, S> {
public:
    explicit mem_fun1_t(S (T::*p)(A));
    S operator()(T* p, A x) const;
};
```

3 mem_fun1_t calls the member function it is initialized with given a pointer argument and an additional argument of the appropriate type.

```
template<class S, class T> mem_fun_t<S,T>
        mem_fun(S (T::*f)());
template<class S, class T, class A> mem_fun1_t<S,T,A>
        mem_fun(S (T::*f)(A));
            mem_fun(&X::f) returns an object through which X::f can be called given a pointer to an X followed by the
            argument required for f (if any).
```

4

```
template <class S, class T> class mem_fun_ref_t
            : public unary_function<T, S> {
public:
    explicit mem_fun_ref_t(S (T::*p)());
        S operator()(T& p) const;
};
```

5
mem_fun_ref_t calls the member function it is initialized with given a reference argument.

```
template <class S, class T, class A> class mem_fun1_ref_t
            : public binary_function<T, A, S> {
public:
    explicit mem_fun1_ref_t(S (T::*p)(A));
```

```
    S operator()(T& p, A x) const;
};
```

```
template<class S, class T> mem_fun_ref_t<S,T>
    mem_fun_ref(S (T::*f)());
template<class S, class T, class A> mem_fun1_ref_t<S,T,A>
    mem_fun_ref(S (T::*f)(A));
```

7

```
template <class S, class T> class const_mem_fun_t
            : public unary_function<const T*, S> {
public:
    explicit const_mem_fun_t(S (T::*p)() const);
    S operator()(const T* p) const;
};
```

```
template <class S, class T, class A> class const_mem_fun1_t
```

template <class S, class T, class A> class const_mem_fun1_t
: public binary_function<const T*, A, S> {
: public binary_function<const T*, A, S> {
public:
public:
explicit const_mem_fun1_t(S (T::*p)(A) const);
explicit const_mem_fun1_t(S (T::*p)(A) const);
S operator()(const T* p, A x) const;
S operator()(const T* p, A x) const;
};

```
};
```

8

9 const_mem_fun1_t calls the member function it is initialized with given a pointer argument and an additional argument of the appropriate type.

```
template<class S, class T> const_mem_fun_t<S,T>
    mem_fun(S (T::*f)() const);
template<class S, class T, class A> const_mem_fun1_t<S,T,A>
    mem_fun(S (T::*f)(A) const);
```

10

```
template <class S, class T> class const_mem_fun_ref_t
            : public unary_function<T, S> {
public:
    explicit const_mem_fun_ref_t(S (T::*p)() const);
    S operator()(const T& p) const;
};
```

const_mem_fun_ref_t calls the member function it is initialized with given a reference argument.

```
template <class S, class T, class A> class const_mem_fun1_ref_t
            : public binary_function<T, A, S> {
public:
```

```
    explicit const_mem_fun1_ref_t(S (T::*p)(A) const);
    S operator()(const T& p, A x) const;
};
```

```
template<class S, class T> const_mem_fun_ref_t<S,T>
    mem_fun_ref(S (T::*f)() const);
template<class S, class T, class A> const_mem_fun1_ref_t<S,T,A>
        mem_fun_ref(S (T::*f)(A) const);
```

mem_fun_ref (\&X: :f) returns an object through which $X:: f$ can be called given a reference to an X followed by the argument required for f (if any).

20.5.13 Function template mem_fn

[func.memfn]
template<class R, class T > unspecified mem_fn(R $T:: * p m)$;
Returns: A simple call wrapper ([20.5.1]) fn such that the expression $f n(t, a 2, \ldots, a N)$ is equivalent to INVOKE (pm, $\mathrm{t}, \mathrm{a} 2, \ldots, \mathrm{aN}$) ([20.5.2]). fn shall have a nested type result_type that is a synonym for the return type of pm when pm is a pointer to member function.

The simple call wrapper shall be derived from std: :unary_function<cv $\mathrm{T} *, \operatorname{Ret}>$ when pm is a pointer to member function with cv-qualifier $c v$ and taking no arguments, where Ret is pm's return type.
The simple call wrapper shall be derived from std: : binary_function<cv $\mathrm{T} *$, T 1 , Ret> when pm is a pointer to member function with cv -qualifier $c v$ and taking one argument of type T 1 , where Ret is pm's return type.

Throws: Nothing.
Remarks: Implementations may implement mem_fn as a set of overloaded function templates.

20.5.14 Polymorphic function wrappers

[func.wrap]
1 This subclause describes a polymorphic wrapper class that encapsulates arbitrary function objects.
20.5.14.1 Class bad_function_call
[func.wrap.badcall]
1 An exception of type bad_function_call is thrown by function: :operator () ([20.5.14.2.4]) when the function wrapper object has no target.

```
namespace std {
    class bad_function_call : public std::exception
    {
    public:
        // 20.5.14.1.1, constructor:
        bad_function_call();
    };
} // namespace std
```

20.5.14.1.1 bad_function_call constructor
[func.wrap.badcall.const]
bad_function_call();
1
Effects: constructs a bad_function_call object.

20.5.14.2 Class template function

```
namespace std {
    // Function type R (T1,T2, ..,TN), 0\leqN\leqN Nmax
    template<class Function>
    class function
    : public unary_function<T1, R> // iff N== 1
    : public binary_function<T1, T2, R> // iff N == 2
    {
    public:
        typedef R result_type;
    // 20.5.14.2.1, construct/copy/destroy:
    explicit function();
    function(unspecified-null-pointer-type);
    function(const function&);
    template<class F> function(F);
    function& operator=(const function&);
    function& operator=(unspecified-null-pointer-type);
    template<class F> function& operator=(F);
    template<class F> function& operator=(reference_wrapper<F>);
    ~}\mathrm{ function();
    // 20.5.14.2.2, function modifiers:
    void swap(function&);
    // 20.5.14.2.3, function capacity:
    operator unspecified-bool-type() const;
    // 20.5.14.2.4, function invocation:
    R operator()(T1, T2, ..., TN) const;
    // 20.5.14.2.5, function target access:
    const std::type_info& target_type() const;
    template <typename T> T* target();
    template <typename T> const T* target() const;
    private:
    // 20.5.14.2.6, undefined operators:
    template<class Function2> bool operator==(const function<Function2>&);
    template<class Function2> bool operator!=(const function<Function2>&);
    };
```

```
// 20.5.14.2.7, Null pointer comparisons:
template <class Function>
    bool operator==(const function<Function>&, unspecified-null-pointer-type);
template <class Function>
    bool operator==(unspecified-null-pointer-type, const function<Function>&);
template <class Function>
    bool operator!=(const function<Function>&, unspecified-null-pointer-type);
template <class Function>
    bool operator!=(unspecified-null-pointer-type, const function<Function>&);
// 20.5.14.2.8, specialized algorithms:
template<class Function> void swap(function<Function>&, function<Function>&);
} // namespace std
```

1 The function class template provides polymorphic wrappers that generalize the notion of a function pointer. Wrappers can store, copy, and call arbitrary callable objects ([20.5.1]), given a call signature ([20.5.1]), allowing functions to be first-class objects.

2 A function object f of type F is Callable for argument types T1, T2, ..., TN and a return type R, if, given lvalues t1, $\mathrm{t} 2, \ldots, \mathrm{tN}$ of types $\mathrm{T} 1, \mathrm{~T} 2, \ldots$, TN , respectively, $\operatorname{INVOKE}(\mathrm{f}, \mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{tN}$) is well-formed ([20.5.2]) and, if R is not void, convertible to R.
20.5.14.2.1 function construct/copy/destroy
[func.wrap.func.con]

```
explicit function();
Postconditions: !*this.
Throws: nothing.
```

```
    function(unspecified-null-pointer-type);
```

```
    function(unspecified-null-pointer-type);
```

Postconditions: !*this.
Throws: nothing.
function(const function\& f);
Postconditions: $!*$ this if $!f$; otherwise, $*$ this targets a copy of $f . \operatorname{target}()$.
Throws: shall not throw exceptions if f 's target is a function pointer or a function object passed via reference_wrapper. Otherwise, may throw bad_alloc or any exception thrown by the copy constructor of the stored function object.
template<class F> function(F f);
Requires: f shall be callable for argument types $\mathrm{T} 1, \mathrm{~T} 2, \ldots, \mathrm{TN}$ and return type R .

Postconditions: ! *this if any of the following hold:

- f is a NULL function pointer.
- f is a NULL member function pointer.
- F is an instance of the function class template, and !f

Otherwise, *this targets a copy of f if f is not a pointer to member function, and targets a copy of mem_fn(f) if f is a pointer to member function.

Throws: shall not throw exceptions when f is a function pointer or a reference_wrapper<T> for some T. Otherwise, may throw bad_alloc or any exception thrown by F's copy constructor.
function\& operator=(const function\& f);
Effects: function(f).swap(*this);
Returns: *this
function\& operator=(unspecified-null-pointer-type);
Effects: If *this ! = NULL, destroys the target of this.
Postconditions: ! (*this).
Returns: *this
template<class F> function\& operator=(F f);
Effects: function(f).swap(*this);
Returns: *this
template<class F> function\& operator=(reference_wrapper<F>f);
Effects: function(f).swap(*this);
Returns: *this
Throws: nothing.
~function();
Effects: If *this != NULL, destroys the target of this.

20.5.14.2.2 function modifiers

void swap(function\& other);
Effects: interchanges the targets of $*$ this and other.
Throws: nothing.
operator unspecified-bool-type() const

20.5.14.2.5 function target access

[func.wrap.func.targ]
const std::type_info\& target_type() const;
Returns: If *this has a target of type T, typeid(T); otherwise, typeid(void).
Throws: nothing.
template<typename $\mathrm{T}>\quad \mathrm{T} *$ target();
template<typename T > const $T *$ target () const;
Requires: T is a function object type that is Callable ([20.5.14.2]) for parameter types T1, T2, . . , TN and return type R.

Returns: If type () == typeid(T), a pointer to the stored function target; otherwise a null pointer.
Throws: nothing.

20.5.14.2.6 undefined operators

[func.wrap.func.undef]

```
template<class Function2> bool operator==(const function<Function2>&);
template<class Function2> bool operator!=(const function<Function2>&);
```

These member functions shall be left undefined.
[Note: the boolean-like conversion opens a loophole whereby two function instances can be compared via $==$ or $!=$. These undefined void operators close the loophole and ensure a compile-time error. -end note]

20.5.14.2.7 null pointer comparison operators

```
    template <class Function>
    bool operator==(const function<Function>& f, unspecified-null-pointer-type);
    template <class Function>
    bool operator==(unspecified-null-pointer-type, const function<Function>& f);
1 Returns: !f.
    template <class Function>
        bool operator!=(const function<Function>& f, unspecified-null-pointer-type);
    template <class Function>
        bool operator!=(unspecified-null-pointer-type, const function<Function>& f);
            Returns: (bool) f.
            Throws: nothing.
```

2

20.5.14.2.8 specialized algorithms

[func.wrap.func.alg]

```
template<class Function>
    void swap(function<Function>& f1, function<Function>& f2);
```

1
Effects: f1.swap(f2);

20.5.15 Class template hash

1 The unordered associative containers defined in clause 23.4 use specializations of hash as the default hash function. This class template is only required to be instantiable for integer types (3.9.1), floating point types (3.9.1), pointer types (8.3.1), and std:: string and std: :wstring.

```
template <class T>
struct hash : public std::unary_function<T, std::size_t>
{
    std::size_t operator()(T val) const;
};
```

2 The return value of operator() is unspecified, except that equal arguments shall yield the same result. operator() shall not throw exceptions.
20.6 Memory
[memory]
Header <memory> synopsis
namespace std \{
// 20.6.1, the default allocator:
template <class T> class allocator;

Draft

```
template <> class allocator<void>;
template <class T, class U>
    bool operator==(const allocator<T>&, const allocator<U>&) throw();
template <class T, class U>
    bool operator!=(const allocator<T>&, const allocator<U>&) throw();
// 20.6.2, raw storage iterator:
template <class OutputIterator, class T> class raw_storage_iterator;
// 20.6.3, temporary buffers:
template <class T>
    pair<T*,ptrdiff_t> get_temporary_buffer(ptrdiff_t n);
template <class T>
    void return_temporary_buffer(T* p);
// 20.6.4, specialized algorithms:
template <class InputIterator, class ForwardIterator>
    ForwardIterator
        uninitialized_copy(InputIterator first, InputIterator last,
                            ForwardIterator result)
template <class ForwardIterator, class T>
    void uninitialized_fill(ForwardIterator first, ForwardIterator last,
                                    const T& x);
template <class ForwardIterator, class Size, class T>
    void uninitialized_fill_n(ForwardIterator first, Size n, const T& x);
// 20.6.5, pointers:
template <class X> class auto_ptr;
template <> class auto_ptr<void>;
// 20.6.6.1, Class bad_weak_ptr:
class bad_weak_ptr;
// 20.6.6.2, Class template shared_ptr:
template<class T> class shared_ptr;
// 20.6.6.2.6, shared_ptr comparisons.
template<class T, class U>
    bool operator==(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U>
    bool operator!=(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U>
    bool operator<(shared_ptr<T> const& a, shared_ptr<U> const& b);
// 20.6.6.2.8, shared_ptr specialized algorithms:
template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b);
// 20.6.6.2.9, shared_ptr casts:
template<class T, class U>
    shared_ptr<T> static_pointer_cast(shared_ptr<U> const& r);
template<class T, class U>
```

```
        shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const& r);
    template<class T, class U>
        shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r);
    // 20.6.6.2.7, shared_ptr I/O:
    template<class E, class T, class Y>
        basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, shared_ptr<Y> const& p);
    // 20.6.6.2.10, shared_ptr get_deleter:
    template<class D, class T> D* get_deleter(shared_ptr<T> const& p);
    // 20.6.6.3, Class template weak_ptr:
    template<class T> class weak_ptr;
    // 20.6.6.3.6, weak_ptr comparison:
    template<class T, class U> bool operator<(weak_ptr<T> const& a, weak_ptr<U> const& b);
    // 20.6.6.3.7, weak_ptr specialized algorithms:
    template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b);
    // 20.6.6.4, Class enable_shared_from_this.
    template<class T> class enable_shared_from_this;
}
```


20.6.1 The default allocator

[default.allocator]

```
namespace std {
    template <class T> class allocator;
    // specialize for void:
    template <> class allocator<void> {
    public:
        typedef void* pointer;
        typedef const void* const_pointer;
        // reference-to-void members are impossible.
        typedef void value_type;
        template <class U> struct rebind { typedef allocator<U> other; };
    };
    template <class T> class allocator {
        public:
        typedef size_t size_type;
        typedef ptrdiff_t difference_type;
        typedef T* pointer;
        typedef const T* const_pointer;
        typedef T& reference;
        typedef const T& const_reference;
        typedef T value_type;
        template <class U> struct rebind { typedef allocator<U> other; };
```

```
    allocator() throw();
    allocator(const allocator&) throw();
    template <class U> allocator(const allocator<U>&) throw();
    ~allocator() throw();
    pointer address(reference x) const;
    const_pointer address(const_reference x) const;
    pointer allocate(
        size_type, allocator<void>::const_pointer hint = 0);
    void deallocate(pointer p, size_type n);
    size_type max_size() const throw();
    void construct(pointer p, const T& val);
    void destroy(pointer p);
    };
}
```

20.6.1.1 allocator members
[allocator.members]
pointer address (reference x) const;
Returns: \& x.
const_pointer address(const_reference x) const;
Returns: \& x.
pointer allocate(size_type n, allocator<void>: const_pointer hint=0);
Remarks: Uses : : operator new (std: :size_t) (18.5.1).
Requires: hint either 0 or previously obtained from member allocate and not yet passed to member deallocate. The value hint may be used by an implementation to help improve performance ${ }^{222}$.

Returns: a pointer to the initial element of an array of storage of size $n *$ sizeof (T), aligned appropriately for objects of type T.

Remark: the storage is obtained by calling : : operator new (std: :size_t), but it is unspecified when or how often this function is called. The use of hint is unspecified, but intended as an aid to locality if an implementation so desires.

Throws: bad_alloc if the storage cannot be obtained.
void deallocate(pointer p, size_type n);
Requires: p shall be a pointer value obtained from allocate(). n shall equal the value passed as the first argument to the invocation of allocate which returned p.
9 Effects: Deallocates the storage referenced by p.
Remarks: Uses : : operator delete (void*) (18.5.1), but it is unspecified when this function is called.

[^134]```
size_type max_size() const throw();
```


### 20.6.1.2 allocator globals

template <class T1, class T2>
bool operator==(const allocator<T1>\&, const allocator<T2>\&) throw();
Returns: true.
template <class T1, class T2>
bool operator!=(const allocator<T1>\&, const allocator<T2>\&) throw();
Returns: false.

### 20.6.2 Raw storage iterator

[storage.iterator]
1 raw_storage_iterator is provided to enable algorithms to store their results into uninitialized memory. The formal template parameter OutputIterator is required to have its operator* return an object for which operator\& is defined and returns a pointer to T , and is also required to satisfy the requirements of an output iterator (24.1.2).

```
 namespace std {
 template <class OutputIterator, class T>
 class raw_storage_iterator
 : public iterator<output_iterator_tag,void,void,void,void> {
 public:
 explicit raw_storage_iterator(OutputIterator x);
 raw_storage_iterator<0utputIterator,T>& operator*();
 raw_storage_iterator<OutputIterator,T>& operator=(const T& element);
 raw_storage_iterator<0utputIterator,T>& operator++();
 raw_storage_iterator<0utputIterator,T> operator++(int);
 };
 }
```

raw_storage_iterator (OutputIterator $x$ );

Effects: Initializes the iterator to point to the same value to which $x$ points.
raw_storage_iterator<0utputIterator, T>\& operator*();
Returns: *this

```
raw_storage_iterator<OutputIterator,T>& operator=(const T& element);
```


### 20.6.3 Temporary buffers

```
template <class T>
 pair<T*, ptrdiff_t> get_temporary_buffer(ptrdiff_t n);
```

Effects: Obtains a pointer to storage sufficient to store up to $n$ adjacent $T$ objects.
Returns: A pair containing the buffer's address and capacity (in the units of sizeof (T) ), or a pair of 0 values if no storage can be obtained or if $n<=0$.

```
template <class T> void return_temporary_buffer(T* p);
```

Effects: Deallocates the buffer to which $p$ points.
Requires: The buffer shall have been previously allocated by get_temporary_buffer.

### 20.6.4 Specialized algorithms

## [specialized.algorithms]

1 All the iterators that are used as formal template parameters in the following algorithms are required to have their operator* return an object for which operator\& is defined and returns a pointer to $T$. In the algorithm uninitialized_copy, the formal template parameter InputIterator is required to satisfy the requirements of an input iterator (24.1.1). In all of the following algorithms, the formal template parameter ForwardIterator is required to satisfy the requirements of a forward iterator (24.1.3) and also to satisfy the requirements of a mutable iterator (24.1), and is required to have the property that no exceptions are thrown from increment, assignment, comparison, or dereference of valid iterators. In the following algorithms, if an exception is thrown there are no effects.
20.6.4.1 uninitialized_copy
[uninitialized.copy]

```
template <class InputIterator, class ForwardIterator>
 ForwardIterator
 uninitialized_copy(InputIterator first, InputIterator last,
 ForwardIterator result);
```


## Effects:

for (; first != last; ++result, ++first)
new (static_cast<void*>(\&*result))
typename iterator_traits<ForwardIterator>::value_type(*first);
20.6.4.2 uninitialized_fill
[uninitialized.fill]

```
template <class ForwardIterator, class T>
 void uninitialized_fill(ForwardIterator first, ForwardIterator last,
 const T& x);
```

1
Effects:
for (; first != last; ++first)
new (static_cast<void*>(\&*first))
typename iterator_traits<ForwardIterator>::value_type(x);
20.6.4.3 uninitialized_fill_n
[uninitialized.fill.n]

```
template <class ForwardIterator, class Size, class T>
 void uninitialized_fill_n(ForwardIterator first, Size n, const T& x);
```

1
Effects:

```
for (; n--; ++first)
 new (static_cast<void*>(&*first))
 typename iterator_traits<ForwardIterator>::value_type(x);
```


### 20.6.5 Class template auto_ptr

[auto.ptr]
1 Template auto_ptr stores a pointer to an object obtained via new and deletes that object when it itself is destroyed (such as when leaving block scope 6.7).

2 Template auto_ptr_ref holds a reference to an auto_ptr. It is used by the auto_ptr conversions to allow auto_ptr objects to be passed to and returned from functions.

```
namespace std {
 template <class Y> struct auto_ptr_ref {};
 template <class X> class auto_ptr {
 public:
 typedef X element_type;
 // 20.6.5.1 construct/copy/destroy:
 explicit auto_ptr(X* p =0) throw();
 auto_ptr(auto_ptr&) throw();
 template<class Y> auto_ptr(auto_ptr<Y>&) throw();
 auto_ptr& operator=(auto_ptr&) throw();
 template<class Y> auto_ptr& operator=(auto_ptr<Y>&) throw();
 auto_ptr& operator=(auto_ptr_ref<X> r) throw();
 ~auto_ptr() throw();
```

```
 // 20.6.5.2 members:
 X& operator*() const throw();
 X* operator->() const throw();
 X* get() const throw();
 X* release() throw();
 void reset(X* p =0) throw();
 // 20.6.5.3 conversions:
 auto_ptr(auto_ptr_ref<X>) throw();
 template<class Y> operator auto_ptr_ref<Y>() throw();
 template<class Y> operator auto_ptr<Y>() throw();
};
template <> class auto_ptr<void>
{
public:
 typedef void element_type;
};
```

\}

3 The auto_ptr provides a semantics of strict ownership. An auto_ptr owns the object it holds a pointer to. Copying an auto_ptr copies the pointer and transfers ownership to the destination. If more than one auto_ptr owns the same object at the same time the behavior of the program is undefined. [Note: The uses of auto_ptr include providing temporary exception-safety for dynamically allocated memory, passing ownership of dynamically allocated memory to a function, and returning dynamically allocated memory from a function. auto_ptr does not meet the CopyConstructible and Assignable requirements for Standard Library container elements and thus instantiating a Standard Library container with an auto_ptr results in undefined behavior. - end note ]

### 20.6.5.1 auto_ptr constructors

[auto.ptr.cons]

```
 explicit auto_ptr(X* p =0) throw();
```

Postconditions: *this holds the pointer $p$.

```
 auto_ptr(auto_ptr& a) throw();
```

    Effects: Calls \(a\).release().
    Postconditions: *this holds the pointer returned from \(a\).release().
    template<class Y> auto_ptr(auto_ptr<Y>\& a) throw();
    Requires: \(Y *\) can be implicitly converted to \(X *\).
    Effects: Calls \(a\).release().
    Postconditions: *this holds the pointer returned from \(a\).release().
    auto_ptr\& operator=(auto_ptr\& a) throw();
    Requires: The expression delete get() is well formed.
    
### 20.6.5.3 auto_ptr conversions

auto_ptr(auto_ptr_ref<X> r) throw();
Effects: Calls p.release() for the auto_ptr p that $r$ holds.
Postconditions: *this holds the pointer returned from release().
template<class Y> operator auto_ptr_ref<Y>() throw();

Draft

### 20.6.6 Smart pointers

## [util.smartptr]

20.6.6.1 Class bad_weak_ptr

```
namespace std {
 class bad_weak_ptr: public std::exception
 {
 public:
 bad_weak_ptr();
 };
} // namespace std
```

1 An exception of type bad_weak_ptr is thrown by the shared_ptr constructor taking a weak_ptr.

```
bad_weak_ptr();
```

Postconditions: what() returns "bad_weak_ptr".
Throws: nothing.

### 20.6.6.2 Class template shared_ptr

[util.smartptr.shared]
1 The shared_ptr class template stores a pointer, usually obtained via new. shared_ptr implements semantics of shared ownership; the last remaining owner of the pointer is responsible for destroying the object, or otherwise releasing the resources associated with the stored pointer.

```
namespace std {
 template<class T> class shared_ptr {
 public:
 typedef T element_type;
 // 20.6.6.2.1, constructors:
 shared_ptr();
 template<class Y> explicit shared_ptr(Y* p);
 template<class Y, class D> shared_ptr(Y* p, D d);
 shared_ptr(shared_ptr const& r);
 template<class Y> shared_ptr(shared_ptr<Y> const& r);
```

```
 template<class Y> explicit shared_ptr(weak_ptr<Y> const& r);
 template<class Y> explicit shared_ptr(auto_ptr<Y>& r);
 // 20.6.6.2.2, destructor:
 ~shared_ptr();
 // 20.6.6.2.3, assignment.
 shared_ptr& operator=(shared_ptr const& r);
 template<class Y> shared_ptr& operator=(shared_ptr<Y> const& r);
 template<class Y> shared_ptr& operator=(auto_ptr<Y>& r);
 // 20.6.6.2.4, modifiers:
 void swap(shared_ptr& r);
 void reset();
 template<class Y> void reset(Y* p);
 template<class Y, class D> void reset(Y* p, D d);
 // 20.6.6.2.5, observers:
 T* get() const;
 T& operator*() const;
 T* operator->() const;
 long use_count() const;
 bool unique() const;
 operator unspecified-bool-type() const;
};
// 20.6.6.2.6, shared_ptr comparisons:
template<class T, class U>
 bool operator==(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U>
 bool operator!=(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U>
 bool operator<(shared_ptr<T> const& a, shared_ptr<U> const& b);
// 20.6.6.2.7, shared_ptr I/O:
template<class E, class T, class Y>
 basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, shared_ptr<Y> const& p);
// 20.6.6.2.8, shared_ptr specialized algorithms:
template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b);
// 20.6.6.2.9, shared_ptr casts:
template<class T, class U>
 shared_ptr<T> static_pointer_cast(shared_ptr<U> const& r);
template<class T, class U>
 shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const& r);
template<class T, class U>
 shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r);
// 20.6.6.2.10, shared_ptr get_deleter:
```

```
 template<class D, class T> D* get_deleter(shared_ptr<T> const& p);
} // namespace std
``` in standard containers. Specializations of shared_ptr shall be convertible to bool, allowing their use in boolean expressions and declarations in conditions. The template parameter T of shared_ptr may be an incomplete type.
```

if(shared_ptr<X> px = dynamic_pointer_cast<X>(py))
{
// do something with px
}

```
-end example.]
20.6.6.2.1 shared_ptr constructors
[util.smartptr.shared.const]
shared_ptr();
Effects: Constructs an empty shared_ptr object.
Postconditions: use_count() == 0 \&\& get() == 0 .
Throws: nothing.
template<class \(\mathrm{Y}>\) explicit shared_ptr (Y* p);
Requires: p shall be convertible to \(\mathrm{T} *\). Y shall be a complete type. The expression delete p shall be well-formed, shall have well defined behavior, and shall not throw exceptions.

Effects: Constructs a shared_ptr object that owns the pointer p.
Postconditions: use_count() == 1 \&\& get() == p.
Throws: bad_alloc, or an implementation-defined exception when a resource other than memory could not be obtained.

Exception safety: If an exception is thrown, delete p is called.
template<class Y, class D> shared_ptr(Y* p, D d);
Requires: p shall be convertible to T*. D shall be CopyConstructible. The copy constructor and destructor of D shall not throw exceptions. The expression \(d(p)\) shall be well-formed, shall have well defined behavior, and shall not throw exceptions.

Effects: Constructs a shared_ptr object that owns the pointer p and the deleter d.
Postconditions: use_count() == 1 \&\& get() == p.
Throws: bad_alloc, or an implementation-defined exception when a resource other than memory could not be obtained.

Exception safety: If an exception is thrown, \(\mathrm{d}(\mathrm{p})\) is called.
```

shared_ptr(shared_ptr const\& r);
template<class Y> shared_ptr(shared_ptr<Y> const\& r);

```

Requires: For the second constructor \(\mathrm{Y} *\) shall be convertible to T .
Effects: If r is empty, constructs an empty shared_ptr object; otherwise, constructs a shared_ptr object that shares ownership with r .

Postconditions: get() == r.get() \&\& use_count() == r.use_count().
Throws: nothing.
template<class Y> explicit shared_ptr(weak_ptr<Y> const\& r);
Requires: \(\mathrm{Y} *\) shall be convertible to \(\mathrm{T} *\).
Effects: Constructs a shared_ptr object that shares ownership with \(r\) and stores a copy of the pointer stored in r.

Postconditions: use_count() == r.use_count().
Throws: bad_weak_ptr when r.expired().
Exception safety: If an exception is thrown, the constructor has no effect.
template<class Y> shared_ptr(auto_ptr<Y>\& r);
Requires: r.release() shall be convertible to T*. Y shall be a complete type. The expression delete r.release() shall be well-formed, shall have well defined behavior, and shall not throw exceptions.
Effects: Constructs a shared_ptr object that stores and owns r.release().
Postconditions: use_count () == \(1 \& \& \mathrm{r} . \operatorname{get}()==0\).
Throws: bad_alloc, or an implementation-defined exception when a resource other than memory could not be obtained.

Exception safety: If an exception is thrown, the constructor has no effect.
20.6.6.2.2 shared_ptr destructor
[util.smartptr.shared.dest]
~shared_ptr();
Effects:
- If *this is empty, there are no side effects.
- If *this shares ownership with another shared_ptr instance (use_count () > 1), decrements that instance's use count.
- Otherwise, if *this owns a pointer p and a deleter \(\mathrm{d}, \mathrm{d}(\mathrm{p})\) is called.
- Otherwise, *this owns a pointer p , and delete p is called.

Throws: nothing.
```

 shared_ptr& operator=(shared_ptr const& r);
 template<class Y> shared_ptr& operator=(auto_ptr<Y>& r);
 Effects: Equivalent to shared_ptr(r).swap(*this).
 Returns: *this. creating a temporary. In particular, in the example:
    ```
```

shared_ptr<int> p(new int);

```
shared_ptr<int> p(new int);
shared_ptr<void> q(p);
shared_ptr<void> q(p);
p = p;
p = p;
q = p;
```

q = p;

```
    template<class \(Y>\) shared_ptr\& operator=(shared_ptr<Y> const\& r);
[ Note: The use count updates caused by the temporary object construction and destruction are not observable side effects, so the implementation may meet the effects (and the implied guarantees) via different means, without
both assignments may be no-ops. -end note]
```

 20.6.6.2.4 shared_ptr modifiers
 void swap(shared_ptr& r);
 Effects: Exchanges the contents of *this and r.
 Throws: nothing.
 void reset();
 Effects: Equivalent to shared_ptr().swap(*this).
 template<class Y> void reset(Y* p);
 Effects: Equivalent to shared_ptr(p).swap(*this).
 template<class Y, class D> void reset(Y* p, D d);
 Effects: Equivalent to shared_ptr(p, d).swap(*this).
    ```
                                    [util.smartptr.shared.mod]
20.6.6.2.5 shared_ptr observers

T* get() const;
Returns: the stored pointer. Returns a null pointer if \(*\) this is empty.
Throws: nothing.
T\& operator*() const;

\subsection*{20.6.6.2.6 shared_ptr comparison}
[util.smartptr.shared.cmp]
template<class T, class U> bool operator==(shared_ptr<T> const\& a, shared_ptr<U> const\& b);
Returns: a.get() == b.get().
Throws: nothing.
```

 template<class T, class U> bool operator!=(shared_ptr<T> const& a, shared_ptr<U> const& b);
 Returns: a.get() != b.get().
 Throws: nothing.
 template<class T, class U> bool operator<(shared_ptr<T> const\& a, shared_ptr<U> const\& b);
Returns: an unspecified value such that

- operator< is a strict weak ordering as described in [lib.alg.sorting];
- under the equivalence relation defined by operator<, ! $(\mathrm{a}<\mathrm{b}) \& \&!(\mathrm{b}<\mathrm{a})$, two shared_ptr instances are equivalent if and only if they share ownership or are both empty.

```

Throws: nothing.
[ Note: Defining a comparison operator allows shared_ptr objects to be used as keys in associative containers. - end note]

\subsection*{20.6.6.2.7 shared_ptr I/O}
[util.smartptr.shared.io]
template<class E, class T, class Y>
basic_ostream<E, T>\& operator<< (basic_ostream<E, T>\& os, shared_ptr<Y> const\& p);
Effects: os << p.get();
Returns: os.

\subsection*{20.6.6.2.8 shared_ptr specialized algorithms}
[util.smartptr.shared.spec]
```

template<class T> void swap(shared_ptr<T>\& a, shared_ptr<T>\& b);

```

Effects: Equivalent to a.swap (b).
Throws: nothing.
20.6.6.2.9 shared_ptr casts
[util.smartptr.shared.cast]
template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U> const\& r);
Requires: The expression static_cast<T*>(r.get()) shall be well-formed.
Returns: If r is empty, an empty shared_ptr<T>; otherwise, a shared_ptr<T> object that stores static_cast<T*>(r.get()) and shares ownership with r .

Throws: nothing.
[ Note: The seemingly equivalent expression shared_ptr<T> (static_cast<T*>(r.get())) will eventually result in undefined behavior, attempting to delete the same object twice. - end note ]
```

template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const\& r);

```

\subsection*{20.6.6.3 Class template weak_ptr}
[util.smartptr.weak]
1 The weak_ptr class template stores a weak reference to an object that is already managed by a shared_ptr. To access the object, a weak_ptr can be converted to a shared_ptr using the member function lock.
```

namespace std {
template<class T> class weak_ptr
{
public:
typedef T element_type;
// constructors
weak_ptr();
template<class Y> weak_ptr(shared_ptr<Y> const\& r);
weak_ptr(weak_ptr const\& r);
template<class Y> weak_ptr(weak_ptr<Y> const\& r);

```
// destructor
~weak_ptr();
// assignment
weak_ptr\& operator=(weak_ptr const\& r);
template<class Y> weak_ptr\& operator=(weak_ptr<Y> const\& r);
template<class \(\mathrm{Y}>\) weak_ptr\& operator=(shared_ptr<Y> const\& r);
// modifiers
void swap(weak_ptr\& r);
void reset();
// observers
long use_count() const;
bool expired() const;
shared_ptr<T> lock() const;
\};
// comparison
template<class T, class U> bool operator<(weak_ptr<T> const\& a, weak_ptr<U> const\& b);
// specialized algorithms
template<class T> void swap(weak_ptr<T>\& a, weak_ptr<T>\& b);
\} // namespace std
2 Specializations of weak_ptr shall be CopyConstructible, Assignable, and LessThanComparable, allowing their use in standard containers. The template parameter \(T\) of weak_ptr may be an incomplete type.

\subsection*{20.6.6.3.1 weak_ptr constructors}
[util.smartptr.weak.const]
weak_ptr();
Effects: Constructs an empty weak_ptr object.
Postconditions: use_count () == 0 .
Throws: nothing.
```

template<class Y> weak_ptr(shared_ptr<Y> const\& r);
weak_ptr(weak_ptr const\& r);
template<class Y> weak_ptr(weak_ptr<Y> const\& r);

```

Requires: For the second and third constructors, \(\mathrm{Y} *\) shall be convertible to \(\mathrm{T} *\).
Effects: If r is empty, constructs an empty weak_ptr object; otherwise, constructs a weak_ptr object that shares ownership with r and stores a copy of the pointer stored in r .
Postconditions: use_count () == r.use_count ().
Throws: nothing.
20.6.6.3.2 weak_ptr destructor
[util.smartptr.weak.dest]
~weak_ptr();

Effects: Destroys this weak_ptr object but has no effect on the object its stored pointer points to.
Throws: nothing.

\subsection*{20.6.6.3.3 weak_ptr assignment}
[util.smartptr.weak.assign]
weak_ptr\& operator=(weak_ptr const\& r);
template<class Y> weak_ptr\& operator=(weak_ptr<Y> const\& r);
template<class \(Y>\) weak_ptr\& operator=(shared_ptr<Y> const\& r);
Effects: Equivalent to weak_ptr (r). \(\operatorname{swap}(*\) this \()\).
Throws: nothing.
Remarks: The implementation may meet the effects (and the implied guarantees) via different means, without creating a temporary.

\subsection*{20.6.6.3.4 weak_ptr modifiers}
[util.smartptr.weak.mod]
void swap(weak_ptr\& r);
Effects: Exchanges the contents of *this and r.
Throws: nothing.
void reset();
Effects: Equivalent to weak_ptr ().swap(*this).

\subsection*{20.6.6.3.5 weak_ptr observers}
[util.smartptr.weak.obs]
long use_count() const;
Returns: 0 if *this is empty; otherwise, the number of shared_ptr instances that share ownership with *this.
Throws: nothing.
[Note: use_count () is not necessarily efficient. Use only for debugging and testing purposes, not for production code. -end note]
bool expired() const;
Returns: use_count () == 0 .
Throws: nothing.
[Note: expired() may be faster than use_count (). - end note]
shared_ptr<T> lock() const;
20.6.6.4 Class template enable_shared_from_this
[util.smartptr.enab]
1 A class T can inherit from enable_shared_from_this<T> to inherit the shared_from_this member functions that obtain a shared_ptr instance pointing to *this.
[Example:
```

 struct X: public enable_shared_from_this<X>
    ```
    \{
    \};
    int main()
    \{
        shared_ptr \(\langle X>p\) (new \(X\) );
        shared_ptr<X> q = p->shared_from_this();
        \(\operatorname{assert}(\mathrm{p}==\mathrm{q})\);
        \(\operatorname{assert}(!(\mathrm{p}<\mathrm{q})\) \&\& \(!(\mathrm{q}<\mathrm{p})) ; / / p\) and \(q\) share ownership
    \}
-end example.]

Draft
```

namespace std {
template<class T> class enable_shared_from_this {
protected:
enable_shared_from_this();
enable_shared_from_this(enable_shared_from_this const\&);
enable_shared_from_this\& operator=(enable_shared_from_this const\&);
~enable_shared_from_this();
public:
shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;
};
} // namespace std

```

The template parameter \(T\) of enable_shared_from_this may be an incomplete type.
```

enable_shared_from_this();
enable_shared_from_this(enable_shared_from_this<T> const\&);

```
    Effects: Constructs an enable_shared_from_this<T> object.
    Throws: nothing.
enable_shared_from_this<T>\& operator=(enable_shared_from_this<T> const\&);
    Returns: *this.
    Throws: nothing.
~enable_shared_from_this();
    Effects: Destroys *this.
    Throws: nothing.
shared_ptr<T> shared_from_this();
shared_ptr<T const> shared_from_this() const;

Requires: enable_shared_from_this<T> shall be an accessible base class of T. *this shall be a subobject of an object \(t\) of type T. There shall be at least one shared_ptr instance p that owns \&t.

Returns: A shared_ptr<T> object r that shares ownership with p .
Postconditions: r.get () == this.
[ Note: a possible implementation is shown below:
```

 enable_shared_from_this& operator=(enable_shared_from_this const &) { return *this; }
 ~enable_shared_from_this() {}
 public:
shared_ptr<T> shared_from_this() { return shared_ptr<T>(__weak_this); }
shared_ptr<T const> shared_from_this() const { return shared_ptr<T const>(__weak_this); }
};

```

14 The shared_ptr constructors that create unique pointers can detect the presence of an enable_shared_from_this base and assign the newly created shared_ptr to its __weak_this member. - end note ]

\subsection*{20.6.7 C Library}
[c.malloc]
1 Header <cstdlib> (Table 47):

Table 47: Header <cstdlib> synopsis
\begin{tabular}{|cll|}
\hline \multicolumn{1}{|c}{ Type } & \multicolumn{2}{c|}{ Name(s) } \\
\hline \hline Functions: & \begin{tabular}{l} 
calloc \\
free
\end{tabular} & \begin{tabular}{l} 
malloc \\
realloc
\end{tabular} \\
\hline
\end{tabular}

2 The contents are the same as the Standard C library header <stdlib.h>, with the following changes:
3 The functions calloc (), malloc (), and realloc() do not attempt to allocate storage by calling : :operator new() (18.5).

4 The function free() does not attempt to deallocate storage by calling : : operator delete().
SEE ALSO: ISO C clause 7.11.2.
5 Header <cstring> (Table 48):

Table 48: Header <cstring> synopsis
\begin{tabular}{|lll|}
\hline \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Name(s) } \\
\hline \hline Macro: & NULL \\
\hline Type: & size_t & \\
\hline \begin{tabular}{l} 
Functions: \\
memcpy
\end{tabular} & \begin{tabular}{lll} 
memchr & memcmp \\
memmove & memset
\end{tabular} \\
\hline
\end{tabular}

6 The contents are the same as the Standard C library header <string.h>, with the change to memchr() specified in 21.4. SEE ALSO: ISO C clause 7.11.2.

Draft

Table 49: Header <ctime> synopsis
\begin{tabular}{|lllll|}
\hline \multicolumn{1}{|c}{ Type } & & & Name(s) \\
\hline \hline Macros: & NULL & CLOCKS_PER_SEC & \\
\hline Types: & size_t & clock_t & time_t & \\
\hline Struct: & tm & & & \\
\hline \begin{tabular}{l} 
Functions: \\
asctime \\
ctime
\end{tabular} & clock & gmtime & difftime & mktime
\end{tabular}

\subsection*{20.7 Date and time}

1 Header <ctime> (Table 49):
2 The contents are the same as the Standard C library header <time.h>. 223)
SEE ALSO: ISO C clause 7.12, Amendment 1 clause 4.6.4.

\footnotetext{
\({ }^{223)}\) TR1: strfti ne supports the C99 conversion specifiers C, D, e, F, g, Gh, r, R, t, T, u, V, and z, and the modifiers E and C
}

Draft

\section*{Chapter 21 Strings library}

\section*{[strings]}

1 This clause describes components for manipulating sequences of any POD (3.9) type. In this clause such types are called char-like types, and objects of char-like types are called char-like objects or simply characters.
2 The following subclauses describe a character traits class, a string class, and null-terminated sequence utilities, as summarized in Table 50:

Table 50: Strings library summary
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Subclause } & Header(s) \\
\hline \hline 21.1 Character traits & <string> \\
\hline 21.2 String classes & <string> \\
\hline & <cctype> \\
21.4 Null-terminated sequence utilities & <cwctype> \\
& <cstring> \\
& <cwchar> \\
& cstalib>
\end{tabular}

\subsection*{21.1 Character traits}
[char.traits]
1 This subclause defines requirements on classes representing character traits, and defines a class template char_traits<charT>, along with two specializations, char_traits<char> and char_traits<wchar_t>, that satisfy those requirements.

2 Most classes specified in clauses 21.2 and 27 need a set of related types and functions to complete the definition of their semantics. These types and functions are provided as a set of member typedefs and functions in the template parameter 'traits' used by each such template. This subclause defines the semantics guaranteed by these members.
3 To specialize those templates to generate a string or iostream class to handle a particular character container type CharT, that and its related character traits class Traits are passed as a pair of parameters to the string or iostream template as formal parameters charT and traits. Traits: : char_type shall be the same as CharT.

4 This subclause specifies a struct template, char_traits<charT>, and two explicit specializations of it, char_traits< char> and char_traits<wchar_t>, all of which appear in the header <string> and satisfy the requirements below.

\subsection*{21.1.1 Character traits requirements}
[char.traits.require]
1 In Table 51, X denotes a Traits class defining types and functions for the character container type CharT; c and d denote values of type CharT; p and q denote values of type const CharT*; s denotes a value of type CharT*; \(n\), i and j denote
values of type std: :size_t; e and f denote values of type X : :int_type; pos denotes a value of type \(\mathrm{X}:\) : pos_type; state denotes a value of type X: :state_type; and r denotes an lvalue of type CharT. Operations on Traits shall not throw exceptions.

Table 51: Traits requirements
\begin{tabular}{|c|c|c|c|}
\hline expression & return type & assertion/note pre/post condition & complexity \\
\hline X: :char_type & char T & (described in 21.1.2) & compile-time \\
\hline X::int_type & & (described in 21.1.2) & compile-time \\
\hline X::off_type & & (described in 21.1.2) & compile-time \\
\hline X::pos_type & & (described in 21.1.2) & compile-time \\
\hline X: :state_type & & (described in 21.1.2) & compile-time \\
\hline X: :eq(c, d) & bool & yields: whether c is to be treated as equal to d. & constant \\
\hline X: : \(7 \mathrm{l}(\mathrm{c}, \mathrm{d}\) ) & bool & yields: whether c is to be treated as less than d. & constant \\
\hline X: : compare (p,q,n) & int & yields: 0 if for each i in [0,n), \(X:\) :eq( \(\mathrm{p}[\mathrm{i}], q[i]\) ) is true; else, a negative value if, for some \(j\) in \([0, n), X:: l t(p[j], q[j])\) is true and for each \(i\) in \([0, j)\) \(X:\) :eq( \(p[i], q[i]\) ) is true; else a positive value. & linear \\
\hline X: :length (p) & std::size_t & yields: the smallest i such that X: :eq(p[i], charT()) is true. & linear \\
\hline X: :find (p,n, c) & const X: :char_type* & yields: the smallest \(q\) in \([p, p+n)\) such that \(\mathrm{X}:: \mathrm{eq}(* q, c)\) is true, zero otherwise. & linear \\
\hline X: :move (s,p,n) & X: :char_type* & for each \(i\) in \([0, n)\), performs X: :assign(s[i],p[i]). Copies correctly even where the ranges \([p, p+n)\) and \([s, s+n)\) overlap. yields: s. & linear \\
\hline X: :copy (s,p,n) & X: :char_type* & pre: p not in \([\mathrm{s}, \mathrm{s}+\mathrm{n})\). yields: s . for each i in [0,n), performs X: assign(s[i],p[i]). & linear \\
\hline X: :assign (r,d) & (not used) & assigns \(\mathrm{r}=\mathrm{d}\). & constant \\
\hline X: \(\mathrm{assign}(\mathrm{s}, \mathrm{n}, \mathrm{c})\) & X: :char_type* & for each \(i\) in \([0, n)\), performs X: :assign(s[i],c). yields: s. & linear \\
\hline
\end{tabular}

Draft
\begin{tabular}{|c|c|c|c|}
\hline expression & return type & assertion/note pre/post condition & complexity \\
\hline X: :not_eof (e) & int_type & ```
yields: e if
X::eq_int_type(e,X::eof())
is false, otherwise a value f such
that
X::eq_int_type(f,X::eof())
is false.
``` & constant \\
\hline X: :to_char_type(e) & X: :char_type & yields: if for some \(c\), X: :eq_int_type (e, X: :to_int_type (c)) is true, \(c\); else some unspecified value. & constant \\
\hline X: :to_int_type(c) & X: :int_type & yields: some value e, constrained by the definitions of to_char_type and eq_int_type. & constant \\
\hline X: :eq_int_type (e,f) & bool & yields: for all c and d , \(X:: e q(c, d)\) is equal to \(X:\) :eq_int_type(X::to_int_type(c), X::to_int_type(d)); otherwise, yields true if e and \(f\) are both copies of \(X\) : : eof (); otherwise, yields false if one of \(e\) and \(f\) is a copy of \(X\) : :eof () and the other is not; otherwise the value is unspecified. & constant \\
\hline X: : eof () & X: :int_type & yields: a value e such that X: :eq_int_type(e, X: :to_int_type (c)) is false for all values \(c\). & constant \\
\hline
\end{tabular}

The struct template
```

template<class charT> struct char_traits;

```
shall be provided in the header <string> as a basis for explicit specializations.

\subsection*{21.1.2 traits typedefs}
[char.traits.typedefs]
typedef CHAR_T char_type;
1 The type char_type is used to refer to the character container type in the implementation of the library classes defined in 21.2 and clause 27.
typedef INT_T int_type;
2 Requires: For a certain character container type char_type, a related container type INT_T shall be a type or class which can represent all of the valid characters converted from the corresponding char_type values, as well as an
end-of-file value, eof (). The type int_type represents a character container type which can hold end-of-file to be used as a return type of the iostream class member functions. \({ }^{224)}\)
```

typedef OFF_T off_type;
typedef POS_T pos_type;

```
```

typedef STATE_T state_type;

```

Requires: state_type shall meet the requirements of Assignable (23.1), CopyConstructible (20.1.3), and DefaultConstructible (20.1.5) types.
```

21.1.3 char_traits specializations
namespace std {
template<> struct char_traits<char>;
template<> struct char_traits<wchar_t>;
}

```

1 The header <string> shall define two specializations of the template struct char_traits: char_traits<char> and char_traits<wchar_t>.

2 The requirements for the members of these specializations are given in clause 21.1.1.
21.1.3.1 struct char_traits<char>
[char.traits.specializations.char]
```

namespace std {
template<>
struct char_traits<char> {
typedef char char_type;
typedef int int_type;
typedef streamoff off_type;
typedef streampos pos_type;
typedef mbstate_t state_type;
static void assign(char_type\& c1, const char_type\& c2);
static bool eq(const char_type\& c1, const char_type\& c2);
static bool lt(const char_type\& c1, const char_type\& c2);
static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,
const char_type\& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);
static int_type not_eof(const int_type\& c);

```

\footnotetext{
\({ }^{224)}\) If eof () can be held in char _t ype then some iostreams operations may give surprising results.
}
```

        static char_type to_char_type(const int_type& c);
        static int_type to_int_type(const char_type& c);
        static bool eq_int_type(const int_type& c1, const int_type& c2);
        static int_type eof();
    };
    }

```

1 The defined types for int_type, pos_type, off_type, and state_type shall be int, streampos, streamoff, and mbstate_t respectively.

2 The type streampos shall be an implementation-defined type that satisfies the requirements for POS_T in 21.1.2.
3 The type streamoff shall be an implementation-defined type that satisfies the requirements for OFF_T in 21.1.2.
4 The type mbstate_t is defined in <cwchar> and can represent any of the conversion states that can occur in an implementation-defined set of supported multibyte character encoding rules.

5 The two-argument member assign shall be defined identically to the built-in operator \(=\). The two-argument members eq and lt shall be defined identically to the built-in operators \(==\) and < for type unsigned char.

6 The member eof () shall return EOF.
```

21.1.3.2 struct char_traits<wchar_t>
[char.traits.specializations.wchar.t]
namespace std {
template<>
struct char_traits<wchar_t> {
typedef wchar_t char_type;
typedef wint_t int_type;
typedef streamoff off_type;
typedef wstreampos pos_type;
typedef mbstate_t state_type;
static void assign(char_type\& c1, const char_type\& c2);
static bool eq(const char_type\& c1, const char_type\& c2);
static bool lt(const char_type\& c1, const char_type\& c2);
static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,
const char_type\& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);
static int_type not_eof(const int_type\& c);
static char_type to_char_type(const int_type\& c);
static int_type to_int_type(const char_type\& c);
static bool eq_int_type(const int_type\& c1, const int_type\& c2);
static int_type eof();
};
}

```

Draft

1 The defined types for int_type, pos_type, and state_type shall be wint_t, wstreampos, and mbstate_t respectively.

2 The type wstreampos shall be an implementation-defined type that satisfies the requirements for POS_T in 21.1.2.
3 The type mbstate_t is defined in <cwchar> and can represent any of the conversion states that can occur in an implementation-defined set of supported multibyte character encoding rules.
4 The two-argument members assign, eq, and lt shall be defined identically to the built-in operators \(=,==\), and \(<\) respectively.
5 The member eof () shall return WEOF.

\subsection*{21.2 String classes}

\section*{[string.classes]}

1 The header <string> defines the basic_string class template for manipulating varying-length sequences of char-like objects and two typedefs, string and wstring, that name the specializations basic_string<char> and basic_string<wchar_t>, respectively.

\section*{Header <string> synopsis}
```

namespace std {
// 21.1, character traits:
template<class charT>
struct char_traits;
template <> struct char_traits<char>;
template <> struct char_traits<wchar_t>;
// 21.3, basic_string:
template<class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
class basic_string;
template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>\& lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>
operator+(const charT* lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>
operator+(charT lhs, const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>\& lhs,
const charT* rhs);
template<class charT, class traits, class Allocator>
basic_string<charT,traits,Allocator>
operator+(const basic_string<charT,traits,Allocator>\& lhs, charT rhs);

```
```

template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>\& lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator==(const charT* lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>\& lhs,
const charT* rhs);
template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>\& lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator!=(const charT* lhs
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>\& lhs,
const charT* rhs);
template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>\& lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator< (const basic_string<charT,traits,Allocator>\& lhs,
const charT* rhs);
template<class charT, class traits, class Allocator>
bool operator< (const charT* lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>\& lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>\& lhs,
const charT* rhs);
template<class charT, class traits, class Allocator>
bool operator> (const charT* lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>\& lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator<=(const basic_string<charT,traits,Allocator>\& lhs,
const charT* rhs);
template<class charT, class traits, class Allocator>
bool operator<=(const charT* lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>\& lhs,
const basic_string<charT,traits,Allocator>\& rhs);

```
```

template<class charT, class traits, class Allocator>
bool operator>=(const basic_string<charT,traits,Allocator>\& lhs,
const charT* rhs);
template<class charT, class traits, class Allocator>
bool operator>=(const charT* lhs,
const basic_string<charT,traits,Allocator>\& rhs);
// 21.3.8.8:
template<class charT, class traits, class Allocator>
void swap(basic_string<charT,traits,Allocator>\& lhs,
basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
basic_istream<charT,traits>\&
operator>>(basic_istream<charT,traits>\& is,
basic_string<charT,traits,Allocator>\& str);
template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>\&
operator<<(basic_ostream<charT, traits>\& os,
const basic_string<charT,traits,Allocator>\& str);
template<class charT, class traits, class Allocator>
basic_istream<charT,traits>\&
getline(basic_istream<charT,traits>\& is,
basic_string<charT,traits,Allocator>\& str,
charT delim);
template<class charT, class traits, class Allocator>
basic_istream<charT,traits>\&
getline(basic_istream<charT,traits>\& is,
basic_string<charT,traits,Allocator>\& str);
typedef basic_string<char> string;
typedef basic_string<wchar_t> wstring;

```
\}

\subsection*{21.3 Class template basic_string}

\section*{[basic.string]}

1 The class template basic_string describes objects that can store a sequence consisting of a varying number of arbitrary char-like objects with the first element of the sequence at position zero. Such a sequence is also called a "string" if the type of the char-like objects that it holds is clear from context. In the rest of this clause, the type of the char-like objects held in a basic_string object is designated by charT.

2 The member functions of basic_string use an object of the Allocator class passed as a template parameter to allocate and free storage for the contained char-like objects \({ }^{225)}\)
3 The class template basic_string conforms to the requirements for a Sequence (23.1.1) and for a Reversible Container (23.1). Thus, the iterators supported by basic_string are random access iterators (24.1.5).

4 In all cases, size() <= capacity().

\footnotetext{
\({ }^{225)}\) [Note: A I ocat or: : val ue_t ype must name the same type as charT(21.3.1). -end note]
}

5 The functions described in this clause can report two kinds of errors, each associated with an exception type:
- a length error is associated with exceptions of type length_error (19.1.4);
- an out-of-range error is associated with exceptions of type out_of_range (19.1.5).
namespace std \{
 template<class charT, class traits = char_traits<charT>,
 class Allocator = allocator<charT\gg
 class basic_string \{
 public:
 // types:
 typedef traits traits_type;
 typedef typename traits::char_type value_type;
 typedef Allocator allocator_type;
 typedef typename Allocator::size_type size_type;
 typedef typename Allocator::difference_type difference_type;
 typedef typename Allocator::reference reference;
 typedef typename Allocator::const_reference const_reference;
 typedef typename Allocator::pointer pointer;
 typedef typename Allocator::const_pointer const_pointer;
 typedef implementation-defined iterator; // See 23.1
 typedef implementation-defined const_iterator; // See 23.1
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 static const size_type npos = -1;
 // 21.3 .2 construct/copy/destroy:
 explicit basic_string(const Allocator\& \(a=\) Allocator());
 basic_string(const basic_string\& str);
 basic_string(const basic_string\& str, size_type pos, size_type \(n=\) npos,
 const Allocator\& \(a=\) Allocator());
 basic_string(const charT* s,
 size_type \(n\), const Allocator\& \(a=\) Allocator());
 basic_string(const charT* \(s\), const Allocator\& \(a=\) Allocator());
 basic_string(size_type \(n\), charT \(c\), const Allocator\& \(a=\) Allocator());
 template<class InputIterator>
 basic_string(InputIterator begin, InputIterator end,
 const Allocator\& \(a=\) Allocator());
 ~basic_string();
 basic_string\& operator=(const basic_string\& str);
 basic_string\& operator=(const charT* s);
 basic_string\& operator=(charT c);
 // 21.3.3 iterators:
 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;

Draft
```

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
// 21.3.4 capacity:
size_type size() const;
size_type length() const;
size_type max_size() const;
void resize(size_type n, charT c);
void resize(size_type n);
size_type capacity() const;
void reserve(size_type res_arg = 0);
void clear();
bool empty() const;
// 21.3.5 element access:
const_reference operator[](size_type pos) const;
reference operator[](size_type pos);
const_reference at(size_type n) const;
reference at(size_type n);
// 21.3.6 modifiers:
basic_string\& operator+=(const basic_string\& str);
basic_string\& operator+=(const charT* s);
basic_string\& operator+=(charT c);
basic_string\& append(const basic_string\& str);
basic_string\& append(const basic_string\& str, size_type pos,
size_type n);
basic_string\& append(const charT* s, size_type n);
basic_string\& append(const charT* s);
basic_string\& append(size_type n, charT c);
template<class InputIterator>
basic_string\& append(InputIterator first, InputIterator last);
void push_back(charT c);
basic_string\& assign(const basic_string\& str);
basic_string\& assign(const basic_string\& str, size_type pos,
size_type n);
basic_string\& assign(const charT* s, size_type n);
basic_string\& assign(const charT* s);
basic_string\& assign(size_type n, charT c);
template<class InputIterator>
basic_string\& assign(InputIterator first, InputIterator last);

```

Draft
```

basic_string\& insert(size_type pos1, const basic_string\& str);
basic_string\& insert(size_type pos1, const basic_string\& str,
size_type pos2, size_type n);
basic_string\& insert(size_type pos, const charT* s, size_type n);
basic_string\& insert(size_type pos, const charT* s);
basic_string\& insert(size_type pos, size_type n, charT c);
iterator insert(iterator p, charT c);
void insert(iterator p, size_type n, charT c);
template<class InputIterator>
void insert(iterator p, InputIterator first, InputIterator last);
basic_string\& erase(size_type pos = 0, size_type n = npos);
iterator erase(iterator position);
iterator erase(iterator first, iterator last);
basic_string\& replace(size_type pos1, size_type n1,
const basic_string\& str);
basic_string\& replace(size_type pos1, size_type n1,
const basic_string\& str,
size_type pos2, size_type n2);
basic_string\& replace(size_type pos, size_type n1, const charT* s,
size_type n2);
basic_string\& replace(size_type pos, size_type n1, const charT* s);
basic_string\& replace(size_type pos, size_type n1, size_type n2,
charT c);
basic_string\& replace(iterator i1, iterator i2,
const basic_string\& str);
basic_string\& replace(iterator i1, iterator i2, const charT* s,
size_type n);
basic_string\& replace(iterator i1, iterator i2, const charT* s);
basic_string\& replace(iterator i1, iterator i2,
size_type n, charT c);
template<class InputIterator>
basic_string\& replace(iterator i1, iterator i2,
InputIterator j1, InputIterator j2);
size_type copy(charT* s, size_type n, size_type pos = 0) const;
void swap(basic_string\& str);
// 21.3.7 string operations:
const charT* c_str() const; // explicit
const charT* data() const;
allocator_type get_allocator() const;
size_type find (const basic_string\& str, size_type pos = 0) const;
size_type find (const charT* s, size_type pos, size_type n) const;
size_type find (const charT* s, size_type pos = 0) const;
size_type find (charT c, size_type pos = 0) const;

```
```

    size_type rfind(const basic_string& str, size_type pos = npos) const;
    size_type rfind(const charT* s, size_type pos, size_type n) const;
    size_type rfind(const charT* s, size_type pos = npos) const;
    size_type rfind(charT c, size_type pos = npos) const;
    size_type find_first_of(const basic_string& str,
            size_type pos = 0) const;
    size_type find_first_of(const charT* s,
                size_type pos, size_type n) const;
    size_type find_first_of(const charT* s, size_type pos = 0) const;
    size_type find_first_of(charT c, size_type pos = 0) const;
    size_type find_last_of (const basic_string& str,
                size_type pos = npos) const;
    size_type find_last_of (const charT* s,
                size_type pos, size_type n) const;
    size_type find_last_of (const charT* s, size_type pos = npos) const;
    size_type find_last_of (charT c, size_type pos = npos) const;
    size_type find_first_not_of(const basic_string& str,
            size_type pos = 0) const;
    size_type find_first_not_of(const charT* s, size_type pos,
                size_type n) const;
    size_type find_first_not_of(const charT* s, size_type pos = 0) const;
    size_type find_first_not_of(charT c, size_type pos = 0) const;
    size_type find_last_not_of (const basic_string& str,
                size_type pos = npos) const;
    size_type find_last_not_of (const charT* s, size_type pos,
                size_type n) const;
    size_type find_last_not_of (const charT* s,
                size_type pos = npos) const;
    size_type find_last_not_of (charT c, size_type pos = npos) const;
    basic_string substr(size_type pos = 0, size_type n = npos) const;
    int compare(const basic_string& str) const;
    int compare(size_type pos1, size_type n1,
            const basic_string& str) const;
    int compare(size_type pos1, size_type n1,
                        const basic_string& str,
                            size_type pos2, size_type n2) const;
    int compare(const charT* s) const;
    int compare(size_type pos1, size_type n1,
            const charT* s) const;
        int compare(size_type pos1, size_type n1,
            const charT* s, size_type n2) const;
    };
    ```
\}

Draft

\subsection*{21.3.1 basic_string general requirements}

1 If any operation would cause size() to exceed max_size(), that operation shall throw an exception object of type length_error.

2 In every specialization basic_string<charT, traits, Allocator>, the nested type Allocator::value_type shall name the same type as charT. Every object of type basic_string<charT, traits, Allocator> shall use an object of type Allocator to allocate and free storage for the contained charT objects as needed. The Allocator object used shall be a copy of the Allocator object passed to the basic_string object's constructor or, if the constructor does not take an Allocator argument, a copy of a default-constructed Allocator object.
3 The char-like objects in a basic_string object shall be stored contiguously. That is, for any basic_string object s, the identity \(\& *(\operatorname{s.begin}()+n)==\& * \operatorname{s.begin}()+\mathrm{n}\) shall hold for all values of n such that \(0<=\mathrm{n}<\mathrm{s} . \operatorname{size}()\).

4 References, pointers, and iterators referring to the elements of a basic_string sequence may be invalidated by the following uses of that basic_string object:
- As an argument to non-member functions swap() (21.3.8.8), operator>>() (21.3.8.9), and getline() (21.3.8.9).
- As an argument to basic_string: :swap().
- Calling data() and c_str() member functions.
- Calling non-const member functions, except operator [], at, begin, rbegin, end, and rend.
- Following construction or any of the above uses, except the forms of insert and erase that return iterators, the first call to non-const member functions operator [], at, begin, rbegin, end, or rend.

5 [Note: These rules are formulated to allow, but not require, a reference counted implementation. A reference counted implementation must have the same semantics as a non-reference counted implementation. [Example:
```

string s1("abc");
string::iterator i = s1.begin();
string s2 = s1;
*i = 'a'; // Must modify only s1
—end example] - end note ]

```
21.3.2 basic_string constructors and assigment operators
[string.cons]
explicit basic_string(const Allocator\& \(a=\) Allocator());
1
Effects: Constructs an object of class basic_string. The postconditions of this function are indicated in Table 52.
```

basic_string(const basic_string<charT,traits,Allocator>\& str);
basic_string(const basic_string<charT,traits,Allocator>\& str,
size_type pos, size_type n = npos,
const Allocator\& a = Allocator());

```

Draft

Table 52: basic_string(const Allocator\&) effects
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Element } & Value \\
\hline \hline data() & \begin{tabular}{l}
a non-null pointer that is copyable and can have 0 \\
added to it
\end{tabular} \\
\hline size() & 0 \\
\hline capacity() & an unspecified value \\
\hline
\end{tabular}
basic_string(const charT* s, size_type \(n\),
const Allocator\& \(a=\) Allocator());
Requires: pos <= str.size()
Throws: out_of_range if pos > str.size(). value used is copied from str.get_allocator().

Requires: \(s\) shall not be a null pointer and \(n<\) npos.
[Note: This paragraph is intentionally empty. - end note]
basic_string(const charT* \(s\), const Allocator\& \(a=\) Allocator());
Requires: \(s\) shall not be a null pointer.

Effects: Constructs an object of class basic_string and determines the effective length \(r l e n\) of the initial string value as the smaller of \(n\) and str. size() - pos, as indicated in Table 53. In the first form, the Allocator

Table 53: basic_string(basic_string, size_type, size_type, const Allocator\&) effects
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Element } & \multicolumn{1}{c|}{ Value } \\
\hline \hline data() & \begin{tabular}{l}
points at the first element of an allocated copy of rlen \\
consecutive elements of the string controlled by str \\
beginning at position pos
\end{tabular} \\
size() & \begin{tabular}{l}
rlen \\
capacity ()
\end{tabular} \\
a value at least as large as size()
\end{tabular}

Effects: Constructs an object of class basic_string and determines its initial string value from the array of charT of length \(n\) whose first element is designated by \(s\), as indicated in Table 54.

Table 54: basic_string(const charT*, size_type, const Allocator\&) effects
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Element } & \multicolumn{1}{c|}{ Value } \\
\hline \hline data() & \(\begin{array}{l}\text { points at the first element of an allocated copy of the } \\
\text { array whose first element is pointed at by s }\end{array}\) \\
& \(\begin{array}{l}\mathrm{n}\end{array}\) \\
size() & capacity ()
\end{tabular}\()\) a value at least as large as size().

Effects: Constructs an object of class basic_string and determines its initial string value from the array of charT of length traits: : length (\(s\)) whose first element is designated by \(s\), as indicated in Table 55.

Table 55: basic_string(const charT*, const Allocator\&) effects
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Element } & \multicolumn{1}{c|}{ Value } \\
\hline \hline data() & \begin{tabular}{l}
points at the first element of an allocated copy of the \\
array whose first element is pointed at by s
\end{tabular} \\
size() & \begin{tabular}{l}
traits: :length(s) \\
capacity () \\
a value at least as large as size()
\end{tabular} \\
\hline
\end{tabular}

Remarks: Uses traits: :length().
```

    basic_string(size_type n, charT c, const Allocator& a = Allocator());
    ```

Requires: \(n\) < npos
[Note: This paragraph is intentionally empty. - end note]
Effects: Constructs an object of class basic_string and determines its initial string value by repeating the charlike object \(c\) for all \(n\) elements, as indicated in Table 56:

Table 56: basic_string(size_t, charT, const Allocator\&) effects
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Element } & \multicolumn{1}{c|}{ Value } \\
\hline \hline data() & \begin{tabular}{l}
points at the first element of an allocated array of n \\
elements, each storing the initial value c
\end{tabular} \\
& n \\
size() & n \\
capacity () & a value at least as large as size() \\
\hline
\end{tabular}
template<class InputIterator>
basic_string(InputIterator begin, InputIterator end, const Allocator\& \(a=\) Allocator());

Effects: If InputIterator is an integral type, equivalent to
```

basic_string(static_cast<size_type>(begin), static_cast<value_type>(end), a)

```

Otherwise constructs a string from the values in the range [begin, end), as indicated in the Sequence Requirements table (see 23.1.1).
basic_string<charT,traits,Allocator>\&
operator=(const basic_string<charT,traits,Allocator>\& str);
Effects: If *this and str are not the same object, modifies *this as shown in Table 57:
If \(*\) this and str are the same object, the member has no effect.
Returns: *this
basic_string<charT,traits,Allocator>\& operator=(const charT* s);

Draft

Table 57: operator=(const basic_string<charT, traits, Allocator>\&) effects
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Element } & \multicolumn{1}{c|}{ Value } \\
\hline \hline data() & \begin{tabular}{l}
points at the first element of an allocated copy of the \\
array whose first element is pointed at by str.data()
\end{tabular} \\
size() & \begin{tabular}{l}
str.size() \\
capacity ()
\end{tabular} \\
a value at least as large as size()
\end{tabular}
 Returns: *this = basic_string<charT,traits,Allocator>(s).
 Remarks: Uses traits: :length().
 basic_string<charT,traits,Allocator>\& operator=(charT c);
 Returns: *this = basic_string<charT,traits,Allocator>(1, c).
21.3.3 basic_string iterator support
```

iterator begin();
const_iterator begin() const;

```

Returns: an iterator referring to the first character in the string.
```

iterator end();
const_iterator end() const;

```

Returns: an iterator which is the past-the-end value.
```

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;

```

Returns: an iterator which is semantically equivalent to reverse_iterator(end()).
```

reverse_iterator rend();
const_reverse_iterator rend() const;

```

Returns: an iterator which is semantically equivalent to reverse_iterator(begin()).

\subsection*{21.3.4 basic_string capacity}
size_type size() const;

Returns: a count of the number of char-like objects currently in the string.
```

size_type length() const;

```
 Returns: size().
size_type max_size() const;

Returns: The maximum size of the string.
Remark: See Container requirements table (23.1).
```

void resize(size_type n, charT c);

```

Requires: \(n<=\) max_size()
Throws: length_error if \(n>\) max_size(). \(^{\text {(}}\)
Effects: Alters the length of the string designated by *this as follows:
- If \(n<=\operatorname{size}()\), the function replaces the string designated by \(*\) this with a string of length \(n\) whose elements are a copy of the initial elements of the original string designated by \(*\) this.
- If \(n>\operatorname{size}()\), the function replaces the string designated by \(*\) this with a string of length \(n\) whose first size() elements are a copy of the original string designated by \(*\) this, and whose remaining elements are all initialized to \(c\).
void resize(size_type \(n\));
Effects: resize(\(n, \operatorname{charT}())\).
size_type capacity() const;
Returns: the size of the allocated storage in the string.
```

void reserve(size_type res_arg=0);

```

The member function reserve () is a directive that informs a basic_string object of a planned change in size, so that it can manage the storage allocation accordingly.

Effects: After reserve (), capacity () is greater or equal to the argument of reserve. [Note: Calling reserve() with a res_arg argument less than capacity () is in effect a non-binding shrink request. A call with res_arg <= size() is in effect a non-binding shrink-to-fit request. - end note]

Throws: length_error if res_arg > max_size(). \({ }^{226)}\)
void clear();
Effects: Behaves as if the function calls:
erase(begin(), end());
bool empty() const;
Returns: size() == 0.
21.3.5 basic_string element access
[string.access]
```

const_reference operator[](size_type pos) const;
reference operator[](size_type pos);

```

\footnotetext{
\({ }^{226)}\) reser ve() uses A I ocat or: : al I ocate() which may throw an appropriate exception.
}

Returns: If pos < size(), returns *(begin() + pos). Otherwise, if pos == size(), the const version returns charT(). Otherwise, the behavior is undefined.
```

const_reference at(size_type pos) const;
reference at(size_type pos);
Requires: pos < size()
Throws: out_of_range if pos >= size().
Returns: operator[](pos).

```
21.3.6 basic_string modifiers
21.3.6.1 basic_string: :operator+=
basic_string<charT,traits,Allocator>\&
 operator+=(const basic_string<charT,traits,Allocator>\& str);
 Returns: append(str).
basic_string<charT,traits,Allocator>\& operator+=(const charT* s);
 Returns: *this += basic_string<charT,traits,Allocator>(s).
 Remarks: Uses traits: :length().
basic_string<charT,traits,Allocator>\& operator+=(charT c);
 Returns: *this += basic_string<charT,traits,Allocator>(1, c).
21.3.6.2 basic_string::append
[string::append]
```

basic_string<charT,traits,Allocator>\&
append(const basic_string<charT,traits>\& str);
Returns: append(str, 0, npos).
basic_string<charT,traits,Allocator>\&
append(const basic_string<charT,traits>\& str, size_type pos, size_type n);
Requires: pos <= str.size()
Throws: out_of_range if pos > str.size().

```
 Effects: Determines the effective length \(r l e n\) of the string to append as the smaller of \(n\) and str.size() -
 pos. The function then throws length_error if size() >= npos - rlen.

Otherwise, the function replaces the string controlled by *this with a string of length size() \(+r l e n\) whose first size () elements are a copy of the original string controlled by \(*\) this and whose remaining elements are a copy of the initial elements of the string controlled by str beginning at position pos.

Returns: *this.

Draft
```

    basic_string<charT,traits,Allocator>&
    append(const charT* s, size_type n);
            Returns: append(basic_string<charT,traits,Allocator>( }s,n))
    basic_string<charT,traits,Allocator>\& append(const charT* s);
Returns: append(basic_string<charT,traits,Allocator>(s)).
Remarks: Uses traits::length().
basic_string<charT,traits,Allocator>\&
append(size_type n, charT c);
Returns: append(basic_string<charT,traits,Allocator>(n, c)).
template<class InputIterator>
basic_string\& append(InputIterator first, InputIterator last);
Returns: append(basic_string<charT,traits,Allocator>(first,last)).
void push_back(charT c)
Effects: Equivalent to append(static_cast<size_type>(1), c).

```

\subsection*{21.3.6.3 basic_string::assign}
[string::assign]
basic_string<charT,traits,Allocator>\&
assign(const basic_string<charT,traits>\& str);
Returns: assign(str, 0, npos).
basic_string<charT,traits,Allocator>\&
assign(const basic_string<charT,traits>\& str, size_type pos, size_type \(n\));

Requires: pos <= str.size()
Throws: out_of_range if pos > str.size().
Effects: Determines the effective length \(r l e n\) of the string to assign as the smaller of \(n\) and str. size() - pos.
The function then replaces the string controlled by \(*\) this with a string of length \(r l e n\) whose elements are a copy of the string controlled by str beginning at position \(p o s\).
```

            Returns: *this.
    ```
basic_string<charT,traits,Allocator>\&
 assign(const charT* \(s\), size_type \(n\));
 Returns: assign(basic_string<charT,traits,Allocator>(\(s, n\))).
basic_string<charT,traits,Allocator>\& assign(const charT* s);

\subsection*{21.3.6.4 basic_string::insert}
basic_string<charT,traits,Allocator>\&
insert(size_type pos1,
const basic_string<charT,traits,Allocator>\& str);
Returns: insert(pos1, str, \(0, n p o s)\).
basic_string<charT,traits,Allocator>\&
insert(size_type pos1,
const basic_string<charT, traits, Allocator>\& str,
size_type pos2, size_type \(n\));
Requires: pos1 <= size() and pos2 <= str.size()
Throws: out_of_range if pos1 > size() or pos2 > str.size().
Effects: Determines the effective length rlen of the string to insert as the smaller of \(n\) and str.size() pos2. Then throws length_error if size() >= npos - rlen.

Otherwise, the function replaces the string controlled by *this with a string of length size() \(+r l e n\) whose first pos1 elements are a copy of the initial elements of the original string controlled by \(*\) this, whose next rlen elements are a copy of the elements of the string controlled by str beginning at position pos2, and whose remaining elements are a copy of the remaining elements of the original string controlled by *this.
```

basic_string<charT,traits,Allocator>\&

```
 insert (size_type pos, const charT* s, size_type \(n\));
 Returns: insert(pos,basic_string<charT,traits,Allocator>(\(s, n\))).
 basic_string<charT,traits,Allocator>\&
 insert(size_type pos, const charT* s);
 Returns: insert(pos,basic_string<charT,traits,Allocator>(s)).
 Remarks: Uses traits: :length().
```

    basic_string<charT,traits,Allocator>&
    insert(size_type pos, size_type n, charT c);
    ```

Returns: insert(pos,basic_string<charT,traits,Allocator>(\(n, c\))).
iterator insert(iterator \(p\), charT \(c\));
Requires: \(p\) is a valid iterator on *this.
Effects: inserts a copy of \(c\) before the character referred to by \(p\).
Returns: an iterator which refers to the copy of the inserted character.
void insert(iterator \(p\), size_type \(n\), charT \(c\));
Requires: \(p\) is a valid iterator on *this.
Effects: inserts \(n\) copies of \(c\) before the character referred to by \(p\).
template<class InputIterator>
void insert(iterator \(p\), InputIterator first, InputIterator last);
Requires: \(p\) is a valid iterator on *this. [first, last) is a valid range.
Effects: Equivalent to insert(p - begin(), basic_string(first, last)).
21.3.6.5 basic_string: :erase
[string::erase]
basic_string<charT,traits,Allocator>\&
erase(size_type pos \(=0\), size_type \(n=\) npos);
Requires: pos <= size()
Throws: out_of_range if pos > size().
Effects: Determines the effective length \(x l e n\) of the string to be removed as the smaller of \(n\) and size() - pos.
The function then replaces the string controlled by \(*\) this with a string of length size() \(-x l e n\) whose first pos elements are a copy of the initial elements of the original string controlled by \(*\) this, and whose remaining elements are a copy of the elements of the original string controlled by \(*\) this beginning at position pos \(+x l\) en.

Returns: *this.
iterator erase(iterator \(p\));
Effects: removes the character referred to by \(p\).
Returns: an iterator which points to the element immediately following \(p\) prior to the element being erased. If no such element exists, end () is returned.
iterator erase(iterator first, iterator last);
Requires: first and last are valid iterators on *this, defining a range [first,last).
Effects: removes the characters in the range [first, last).
21.3.6.6 basic_string: :replace
```

basic_string<charT,traits,Allocator>\&
replace(size_type pos1, size_type n1,
const basic_string<charT,traits,Allocator>\& str);
Returns: replace(pos1, n1, str, 0, npos).
basic_string<charT,traits,Allocator>\&
replace(size_type pos1, size_type n1,
const basic_string<charT,traits,Allocator>\& str,
size_type pos2, size_type n2);

```
 Requires: pos1 <= size() \&\& pos2 <= str.size().
 Throws: out_of_range if pos1 > size() or pos2 >str.size(), or length_error if the length of the
 resulting string would exceed max_size() (see below).
 Effects: Determines the effective length \(x\) len of the string to be removed as the smaller of \(n 1\) and size() -
 pos1. Also determines the effective length \(r l\) en of the string to be inserted as the smaller of \(n 2\) and str.size ()
 - pos2. If size() - xlen >= max_size() - rlen, throws length_error. Otherwise, the function re-
 places the string controlled by *this with a string of length size () \(-x l e n+r l e n\) whose first pos1 ele-
 ments are a copy of the initial elements of the original string controlled by \(*\) this, whose next \(r l\) en elements are
 a copy of the initial elements of the string controlled by str beginning at position \(p o s 2\), and whose remaining
 elements are a copy of the elements of the original string controlled by \(*\) this beginning at position \(p o s 1+\)
 xlen.
 Returns: *this.
 basic_string<charT,traits,Allocator>\&
 replace(size_type pos, size_type \(n 1\), const charT* s, size_type \(n 2\));
 Returns: replace(pos, \(n 1\), basic_string<charT,traits, Allocator>(\(s, n 2\))).
 basic_string<charT,traits,Allocator>\&
 replace(size_type pos, size_type n1, const charT* s);
 Returns: replace(pos, \(n 1\), basic_string<charT, traits,Allocator>(s)).
 Remarks: Uses traits: : length().
 basic_string<charT,traits,Allocator>\&
 replace (size_type pos, size_type \(n 1\),
 size_type \(n 2\), charT \(c\));
 Returns: replace (pos, \(n 1\), basic_string<charT,traits,Allocator>(\(n 2, c\))).
basic_string\& replace(iterator i1, iterator i2, const basic_string\& str);

Requires: The iterators \(i 1\) and \(i 2\) are valid iterators on \(*\) this, defining a range \([i 1, i 2)\).
Effects: Replaces the string controlled by *this with a string of length size() - (i2 - i1) + str.size() whose first begin() - i1 elements are a copy of the initial elements of the original string controlled by *this, whose next str.size () elements are a copy of the string controlled by str, and whose remaining elements are a copy of the elements of the original string controlled by *this beginning at position \(i 2\).
Returns: *this.
Remarks: After the call, the length of the string will be changed by: str . size() - (i2 -i1).
basic_string\&
replace(iterator \(i 1\), iterator \(i 2\), const charT* \(s\), size_type \(n\));
Returns: replace(i1, i2, basic_string(\(s, n\))).
Remarks: Length change: \(n-(i 2-i 1)\).
basic_string\& replace(iterator \(i 1\), iterator \(i 2\), const charT* s);
Returns: replace (i1, i2, basic_string(s)).
Remarks: Length change: traits: : length(s) - (i2 - i1).
Uses traits: :length().
basic_string\& replace(iterator i1, iterator i2, size_type \(n\),
charT c);
Returns: replace (i1, i2, basic_string(n, c)).
Remarks: Length change: \(n-(i 2-i 1)\).
template<class InputIterator>
basic_string\& replace(iterator i1, iterator i2,
InputIterator j1, InputIterator j2);
Returns: replace (i1, i2, basic_string(j1, j2)).
Remarks: Length change: \(j 2-j 1-(i 2-i 1)\).
21.3.6.7 basic_string: :copy
[string::copy]
```

size_type copy(charT* s, size_type n, size_type pos = 0) const;

```

Requires: pos \(<=\) size()
Throws: out_of_range if pos \(>\) size().
Effects: Determines the effective length \(r\) len of the string to copy as the smaller of \(n\) and size() \(-p o s . s\) shall designate an array of at least \(r l e n\) elements.

The function then replaces the string designated by \(s\) with a string of length \(r l e n\) whose elements are a copy of the string controlled by \(*\) this beginning at position pos.

The function does not append a null object to the string designated by \(s\).
21.3.7 basic_string string operations
const charT* c_str() const;
Returns: A pointer to the initial element of an array of length size() +1 whose first size() elements equal the corresponding elements of the string controlled by *this and whose last element is a null character specified by charT().

Requires: The program shall not alter any of the values stored in the array. Nor shall the program treat the returned value as a valid pointer value after any subsequent call to a non-const member function of the class basic_string that designates the same object as this.
const charT* data() const;
Returns: If size() is nonzero, the member returns a pointer to the initial element of an array whose first size() elements equal the corresponding elements of the string controlled by *this. If size() is zero, the member returns a non-null pointer that is copyable and can have zero added to it.

Requires: The program shall not alter any of the values stored in the character array. Nor shall the program treat the returned value as a valid pointer value after any subsequent call to a non- const member function of basic_string that designates the same object as this.
```

allocator_type get_allocator() const;

```

Returns: a copy of the Allocator object used to construct the string.
21.3.7.1 basic_string::find
[string::find]
size_type find(const basic_string<charT, traits, Allocator>\& str, size_type pos \(=0\)) const;

Effects: Determines the lowest position xpos, if possible, such that both of the following conditions obtain:
- pos <= xpos and xpos + str.size() <= size();
- traits: :eq(at (xpos+I), str.at(I)) for all elements \(I\) of the string controlled by str.
21.3.7.3 basic_string: :find_first_of
```

size_type
find_first_of(const basic_string<charT,traits,Allocator>\& str,
size_type pos = 0) const;

```

Effects: Determines the lowest position xpos, if possible, such that both of the following conditions obtain:
- pos <= xpos and xpos < size();
— traits: : eq(at(xpos), str.at(I)) for some element \(I\) of the string controlled by str.

\section*{size_type}
find_last_of (const basic_string<charT,traits,Allocator>\& str, size_type pos \(=\) npos) const;
Effects: Determines the highest position \(x p o s\), if possible, such that both of the following conditions obtain:
- xpos <= pos and xpos < size();
- traits: : eq (at (xpos), str.at (I)) for some element \(I\) of the string controlled by str.

Returns: xpos if the function can determine such a value for xpos. Otherwise, returns npos.
Remarks: Uses traits: : eq().
size_type find_last_of (const charT* \(s\), size_type pos, size_type \(n\)) const;
Returns: find_last_of (basic_string<charT,traits,Allocator>(\(s, n\)), pos).
size_type find_last_of(const charT* s, size_type pos = npos) const;
Returns: find_last_of(basic_string<charT,traits,Allocator>(s), pos).
Remarks: Uses traits: :length().
size_type find_last_of (charT c, size_type pos = npos) const;
Returns: find_last_of (basic_string<charT,traits,Allocator>(1, c), pos).
21.3.7.5 basic_string: :find_first_not_of
[string::find.first.not.of]
```

size_type
find_first_not_of(const basic_string<charT,traits,Allocator>\& str,
size_type pos = 0) const;

```
21.3.7.6 basic_string::find_last_not_of
```

size_type
find_last_not_of(const basic_string<charT,traits,Allocator>\& str,
size_type pos = npos) const;

```

Effects: Determines the highest position xpos, if possible, such that both of the following conditions obtain:
- xpos <= pos and xpos < size();
- traits: : eq(at(xpos), str.at(I)) for no element \(I\) of the string controlled by str.

Returns: xpos if the function can determine such a value for \(x p o s\). Otherwise, returns npos.
Remarks: Uses traits: : eq().
```

size_type find_last_not_of(const charT* s, size_type pos,

```
 size_type \(n\)) const;

Returns: find_last_not_of(basic_string<charT,traits,Allocator>(s,n), pos).
size_type find_last_not_of(const charT* s, size_type pos = npos) const;

Returns: find_last_not_of(basic_string<charT,traits,Allocator>(s), pos).
Remarks: Uses traits: :length().
size_type find_last_not_of (charT c, size_type pos = npos) const;
Returns: find_last_not_of(basic_string<charT,traits,Allocator>(1, c), pos).
21.3.7.7 basic_string: :substr
[string::substr]
basic_string<charT,traits, Allocator>
substr (size_type pos \(=0\), size_type \(n=\) npos) const;
Requires: pos <= size()
Throws: out_of_range if pos > size().
Effects: Determines the effective length \(r l e n\) of the string to copy as the smaller of \(n\) and size() - pos.
Returns: basic_string<charT,traits,Allocator>(data()+pos,rlen).
21.3.7.8 basic_string::compare
[string::compare]
int compare(const basic_string<charT,traits,Allocator>\& str) const
Effects: Determines the effective length rlen of the strings to compare as the smallest of size() and str.size(). The function then compares the two strings by calling traits: : compare (data(), str.data(), rlen).

Returns: the nonzero result if the result of the comparison is nonzero. Otherwise, returns a value as indicated in Table 58.

Table 58: compare () results
\begin{tabular}{|c|c|}
\hline Condition & Return Value \\
\hline size() < str.size() & < 0 \\
\hline size() == str.size() & 0 \\
\hline size() > str.size() & > 0 \\
\hline
\end{tabular}
int compare(size_type pos1, size_type \(n 1\), const basic_string<charT,traits,Allocator>\& str) const;

\section*{Returns:}
```

    basic_string<charT,traits,Allocator>(*this,pos1,n1).compare(str).
    ```
int compare(size_type pos1, size_type \(n 1\),
const basic_string<charT,traits,Allocator>\& str, size_type pos2, size_type n2) const;
Returns:

Draft
```

        basic_string<charT,traits,Allocator>(*this,pos1,n1).compare(
            basic_string<charT,traits,Allocator>(str,pos2,n2)).
    int compare(const charT *s) const;
    int compare(size_type pos, size_type n1,
        const charT *s) const;
    ```

\section*{Returns:}
```

basic_string<charT,traits,Allocator>(*this, pos, $n 1$ ).compare ( basic_string<charT,traits,Allocator>(s))
int compare(size_type pos, size_type $n 1$, const charT $* s$, size_type n2) const;
Returns:

```
```

basic_string<charT,traits,Allocator>(*this,pos,n1).compare(

```
basic_string<charT,traits,Allocator>(*this,pos,n1).compare(
 basic_string<charT,traits,Allocator>(}s,n2)
```

21.3.8 basic_string non-member functions
[string.nonmembers]
21.3.8.1 operator+
[string::op+]

```
template<class charT, class traits, class Allocator>
 basic_string<charT,traits,Allocator>
 operator+(const basic_string<charT,traits,Allocator>& lhs,
 const basic_string<charT,traits,Allocator>& rhs);
```

    template<class charT, class traits, class Allocator>
    basic_string<charT,traits,Allocator>
        operator+(const charT* lhs,
                        const basic_string<charT,traits,Allocator>\& rhs);
            Returns: basic_string<charT,traits,Allocator>(lhs) + rhs.
            Remarks: Uses traits: : length ().
    template<class charT, class traits, class Allocator>
    basic_string<charT,traits,Allocator>
        operator+(charT lhs,
                        const basic_string<charT,traits,Allocator>\& rhs);
    4
Returns: basic_string<charT,traits,Allocator>(1,lhs) + rhs.
template<class charT, class traits, class Allocator> basic_string<charT,traits,Allocator>

```
 operator+(const basic_string<charT,traits,Allocator>& lhs,
 const charT* rhs);
 Returns: lhs + basic_string<charT,traits,Allocator>(rhs).
 Remarks: Uses traits::length().
template<class charT, class traits, class Allocator>
 basic_string<charT,traits,Allocator>
 operator+(const basic_string<charT,traits,Allocator>& lhs,
 charT rhs);
 Returns: lhs + basic_string<charT,traits,Allocator>(1,rhs).
```


### 21.3.8.2 operator==

[string::operator==]

```
template<class charT, class traits, class Allocator>
 bool operator==(const basic_string<charT,traits,Allocator>& lhs,
 const basic_string<charT,traits,Allocator>& rhs);
```

            Returns: lhs.compare(rhs) == 0 .
    template<class charT, class traits, class Allocator>
bool operator==(const charT* lhs,
const basic_string<charT,traits,Allocator>\& rhs);
template<class charT, class traits, class Allocator>
bool operator==(const basic_string<charT,traits,Allocator>\& lhs,
const charT* rhs);
Returns: lhs == basic_string<charT,traits,Allocator>(rhs).
Remarks: Uses traits: : length().
21.3.8.3 operator! =
template<class charT, class traits, class Allocator>
bool operator!=(const basic_string<charT,traits,Allocator>\& lhs,
const basic_string<charT,traits,Allocator>\& rhs);
Returns: ! (lhs == rhs).
template<class charT, class traits, class Allocator>
bool operator!=(const charT* lhs,
const basic_string<charT,traits,Allocator>\& rhs);

Returns: basic_string<charT,traits,Allocator>(lhs) !=rhs.
template<class charT, class traits, class Allocator> bool operator!=(const basic_string<charT,traits,Allocator>\& lhs,
const charT* rhs);

### 21.3.8.5 operator>

template<class charT, class traits, class Allocator>
bool operator> (const basic_string<charT,traits,Allocator>\& lhs, const basic_string<charT,traits,Allocator>\& rhs);

Returns: lhs.compare(rhs) >0.
template<class charT, class traits, class Allocator> bool operator> (const charT* lhs, const basic_string<charT,traits,Allocator>\& rhs);

```
template<class charT, class traits, class Allocator>
```

    bool operator> (const basic_string<charT,traits,Allocator>\& lhs,
                const charT* rhs);
            Returns: lhs > basic_string<charT,traits,Allocator>(rhs).
    21.3.8.6
bool operator<=(const basic_string<charT,traits,Allocator>\& lhs,
const basic_string<charT,traits,Allocator>\& rhs);
[string::op<]
[string::op>]
[string::op<=]

Draft

Effects: Behaves as a formatted input function (27.6.1.2.1). After constructing a sentry object, if the sentry converts to true, calls str. erase () and then extracts characters from $i s$ and appends them to $s t r$ as if by calling str.append (1, c). If is.width() is greater than zero, the maximum number $n$ of characters appended is $i s$. width(); otherwise $n$ is str.max_size(). Characters are extracted and appended until any of the following occurs:

- $n$ characters are stored;
- end-of-file occurs on the input sequence;
- isspace ( $c$, is.getloc()) is true for the next available input character $c$.

After the last character (if any) is extracted, $i s$.width ( 0 ) is called and the sentry object $k$ is destroyed.
If the function extracts no characters, it calls is.setstate(ios::failbit), which may throw ios_base: :failure (27.4.4.3).

Returns: is
template<class charT, class traits, class Allocator>
basic_ostream<charT, traits>\& operator<<(basic_ostream<charT, traits>\& os,
const basic_string<charT,traits,Allocator>\& str);
Effects: Begins by constructing a sentry object $k$ as if $k$ were constructed by typename basic_ostream< charT, traits>: :sentry $k$ (os). If bool $(k)$ is true, determines padding as described in 22.2.2.2.2, then inserts the resulting sequence of characters seq as if by calling os.rdbuf() $->\operatorname{sputn}(s e q, n$ ), where $n$ is the larger of os.width() and str.size(); then calls os .width(0). If the call to sputn fails, calls os .setstate(ios_base: :failbit).

Returns: os

```
template<class charT, class traits, class Allocator>
 basic_istream<charT,traits>&
 getline(basic_istream<charT,traits>& is,
 basic_string<charT,traits,Allocator>& str,
 charT delim);
```

Effects: Behaves as an unformatted input function (27.6.1.3), except that it does not affect the value returned by subsequent calls to basic_istream<>: :gcount (). After constructing a sentry object, if the sentry converts to true, calls str.erase() and then extracts characters from $i s$ and appends them to str as if by calling str.append (1, c) until any of the following occurs:

- end-of-file occurs on the input sequence (in which case, the getline function calls is .setstate(ios_base: :eofbit)).
— traits: :eq ( $c$, delim) for the next available input character $c$ (in which case, $c$ is extracted but not appended) (27.4.4.3)
- str.max_size() characters are stored (in which case, the function calls is.setstate(ios_base:: failbit)) (27.4.4.3)


### 21.4 Null-terminated sequence utilities

## [c.strings]

1 Tables 59, ${ }^{227)} 60,61,62$, and $63^{228)}{ }^{229)}$ describe headers <cctype>, <cwctype>, <cstring>, <cwchar>, and <cstdlib> (character conversions), respectively.

Table 59: Header <cctype> synopsis

Type	Name(s)			
Functions:				
isalnum	isblank	isdigit	isprint	isupper
tolower	isalpha	isgraph	ispunct	isxdigit
toupper	iscntrl	islower	isspace	

Table 60: Header <cwctype> synopsis

Type		Name(s)			
Macro:	WEOF <cwctype>				
Types:	wctrans_t	wctype_t	wint_t <cwctype>		
Functions:					
iswalnum	iswcntrl	iswgraph	iswpunct	iswxdigit	towupper
iswalpha	iswctype	iswlower	iswspace	towctrans	wctrans
iswblank	iswdigit	iswprint	iswupper	towlower	wctype

2 The contents of these headers are the same as the Standard C library headers <ctype.h>, <wctype.h>, <string.h>, <wchar.h> and <stdlib.h> respectively, with the following modifications:

3 None of the headers shall define the type wchar_t (2.11).
4 The function signature strchr (const char*, int) is replaced by the two declarations:

[^135]Table 61: Header <cstring> synopsis

Type	Name(s)			
Macro:	NULL	<cstring>		
Type:	size_t	<cstring>		
Functions:				
memchr	strcat	strcspn	strncpy	strtok
memcmp	strchr	strerror	strpbrk	strxfrm
memcpy	strcmp	strlen	strrchr	
memmove	strcoll	strncat	strspn	
memset	strcpy	strncmp	strstr	

Table 62: Header <cwchar> synopsis

Type		Name(s)			
Macros:	NULL <cwchar>	WCHAR_MAX	WCHAR_MIN	WEOF <cwchar>	
Types:	mbstate_t	wint_t <cwchar>	size_t	tm	
Functions:					
btowc	mbrlen	vfwscanf	wcscpy	wcsspn	wcsxfrm
fgetwc	mbrtowc	vswscanf	wcscspn	wcsstr	wctob
fgetws	mbsinit	vswprintf	wcsftime	wcstod	wmemchr
fputwc	mbsrtowcs	vwprintf	wcslen	wcstof	wmemcmp
fputws	putwc	vwscanf	wcsncat	wcstok	wmemcpy
fwide	putwchar	wcrtomb	wcsncmp	wcstol	wmemmove
fwprintf	swprintf	wcscat	wcsncpy	wcstold	wmemset
fwscanf	swscanf	wcschr	wcspbrk	wcstoll	wprintf
getwc	ungetwc	wcscmp	wcsrchr	wcstoul	wscanf
getwchar	vfwprintf	wcscoll	wcsrtombs	wcstoull	

Table 63: Header <cstdlib> synopsis

Type	Name(s)		
Macros:	MB_CUR_MAX		
Functions:			
atof	mblen	strtol	strtoull
atoi	mbtowc	strtold	wctomb
atol	mbstowcs	strtoll	wcstombs
atoll	strtod	strtoul	

```
const char* strchr(const char* s, int c);
 char* strchr(char* s, int c);
```

both of which have the same behavior as the original declaration.
5 The function signature strpbrk (const char*, const char*) is replaced by the two declarations:

```
const char* strpbrk(const char* s1, const char* s2);
 char* strpbrk(char* s1, const char* s2);
```

both of which have the same behavior as the original declaration.
6 The function signature strrchr (const char*, int) is replaced by the two declarations:

```
const char* strrchr(const char* s, int c);
 char* strrchr(char* s, int c);
```

both of which have the same behavior as the original declaration.
7 The function signature strstr (const char*, const char*) is replaced by the two declarations:

```
const char* strstr(const char* s1, const char* s2);
 char* strstr(char* s1, const char* s2);
```

both of which have the same behavior as the original declaration.
8 The function signature memchr (const void*, int, size_t) is replaced by the two declarations:

```
const void* memchr(const void* s, int c, size_t n);
 void* memchr(void* s, int c, size_t n);
```

both of which have the same behavior as the original declaration.
9 The function signature wcschr (const wchar_t*, wchar_t) is replaced by the two declarations:

```
const wchar_t* wcschr(const wchar_t* s, wchar_t c);
 wchar_t* wcschr(wchar_t* s, wchar_t c);
```

both of which have the same behavior as the original declaration.
The function signature wcspbrk (const wchar_t*, const wchar_t*) is replaced by the two declarations:

```
const wchar_t* wcspbrk(const wchar_t* s1, const wchar_t* s2);
 wchar_t* wcspbrk(wchar_t* s1, const wchar_t* s2);
```

both of which have the same behavior as the original declaration.
11 The function signature wcsrchr (const wchar_t*, wchar_t) is replaced by the two declarations:

```
const wchar_t* wcsrchr(const wchar_t* s, wchar_t c);
 wchar_t* wcsrchr(wchar_t* s, wchar_t c);
```

both of which have the same behavior as the original declaration.
12 The function signature wcsstr (const wchar_t*, const wchar_t*) is replaced by the two declarations:

Draft

```
const wchar_t* wcsstr(const wchar_t* s1, const wchar_t* s2);
 wchar_t* wcsstr(wchar_t* s1, const wchar_t* s2);
```

both of which have the same behavior as the original declaration.
13 The function signature wmemchr (const wwchar_t*, int, size_t) is replaced by the two declarations:

```
const wchar_t* wmemchr (const wchar_t* s, wchar_t c, size_t n);
 wchar_t* wmemchr(wchar_t* s, wchar_t c, size_t n);
```

both of which have the same behavior as the original declaration.
See also: ISO C subclauses 7.3, 7.10.7, 7.10.8, and 7.11. Amendment 1 subclauses 4.4, 4.5, and 4.6.

## Chapter 22 Localization library

## [localization]

1 This clause describes components that C++ programs may use to encapsulate (and therefore be more portable when confronting) cultural differences. The locale facility includes internationalization support for character classification and string collation, numeric, monetary, and date/time formatting and parsing, and message retrieval.

2 The following subclauses describe components for locales themselves, the standard facets, and facilities from the ISO C library, as summarized in Table 64

Table 64: Localization library summary

Subclause	Header(s)
22.1 Locales	<locale>
22.2 Standard locale Categories	
22.3 C library locales	<clocale>

### 22.1 Locales

[locales]

## Header <locale> synopsis

```
namespace std {
 // 22.1.1, locale:
 class locale;
 template <class Facet> const Facet& use_facet(const locale&);
 template <class Facet> bool has_facet(const locale&) throw();
 // 22.1.3, convenience interfaces:
 template <class charT> bool isspace (charT c, const locale& loc);
 template <class charT> bool isprint (charT c, const locale& loc);
 template <class charT> bool iscntrl (charT c, const locale& loc);
 template <class charT> bool isupper (charT c, const locale& loc);
 template <class charT> bool islower (charT c, const locale& loc);
 template <class charT> bool isalpha (charT c, const locale& loc);
 template <class charT> bool isdigit (charT c, const locale& loc);
 template <class charT> bool ispunct (charT c, const locale& loc);
 template <class charT> bool isxdigit(charT c, const locale& loc);
 template <class charT> bool isalnum (charT c, const locale& loc);
 template <class charT> bool isgraph (charT c, const locale& loc);
 template <class charT> charT toupper(charT c, const locale& loc);
 template <class charT> charT tolower(charT c, const locale& loc);
```

```
 // 22.2.1 and 22.2.1.3, ctype:
 class ctype_base;
 template <class charT> class ctype;
 template <> class ctype<char>; // specialization
 template <class charT> class ctype_byname;
 template <> class ctype_byname<char>; // specialization
 class codecvt_base;
 template <class internT, class externT, class stateT>
 class codecvt;
 template <class internT, class externT, class stateT>
 class codecvt_byname;
 // 22.2.2 and 22.2.3, numeric:
 template <class charT, class InputIterator> class num_get;
 template <class charT, class OutputIterator> class num_put;
 template <class charT> class numpunct;
 template <class charT> class numpunct_byname;
 // 22.2.4, collation:
 template <class charT> class collate;
 template <class charT> class collate_byname;
 // 22.2.5, date and time:
 class time_base;
 template <class charT, class InputIterator> class time_get;
 template <class charT, class InputIterator> class time_get_byname;
 template <class charT, class OutputIterator> class time_put;
 template <class charT, class OutputIterator> class time_put_byname;
 // 22.2.6, money:
 class money_base;
 template <class charT, class InputIterator> class money_get;
 template <class charT, class OutputIterator> class money_put;
 template <class charT, bool Intl> class moneypunct;
 template <class charT, bool Intl> class moneypunct_byname;
 // 22.2.7, message retrieval:
 class messages_base;
 template <class charT> class messages;
 template <class charT> class messages_byname;
}
```

2 The header <locale> defines classes and declares functions that encapsulate and manipulate the information peculiar to a locale. ${ }^{230)}$

### 22.1.1 Class locale

[locale]
namespace std \{

[^136]Draft

```
class locale {
public:
 // types:
 class facet;
 class id;
 typedef int category;
 static const category // values assigned here are for exposition only
 none = 0,
 collate = 0x010, ctype = 0x020,
 monetary = 0x040, numeric = 0x080,
 time = 0x100, messages = 0x200,
 all = collate | ctype | monetary | numeric | time | messages;
 // construct/copy/destroy:
 locale() throw();
 locale(const locale& other) throw();
 explicit locale(const char* std_name);
 explicit locale(const string& std_name);
 locale(const locale& other, const char* std_name, category);
 locale(const locale& other, const string& std_name, category);
 template <class Facet> locale(const locale& other, Facet* f);
 locale(const locale& other, const locale& one, category);
 ~locale() throw(); // non-virtual
 const locale& operator=(const locale& other) throw();
 template <class Facet> locale combine(const locale& other) const;
 // locale operations.
 basic_string<char> name() const;
 bool operator==(const locale& other) const;
 bool operator!=(const locale& other) const;
 template <class charT, class Traits, class Allocator>
 bool operator()(const basic_string<charT,Traits,Allocator>& s1,
 const basic_string<charT,Traits,Allocator>& s2) const;
 // global locale objects:
 static locale global(const locale&);
 static const locale& classic();
 };
}
```

1 Class locale implements a type-safe polymorphic set of facets, indexed by facet type. In other words, a facet has a dual role: in one sense, it's just a class interface; at the same time, it's an index into a locale's set of facets.

2 Access to the facets of a locale is via two function templates, use_facet<> and has_facet<>.
3 [Example: An iostream operator<< might be implemented as: ${ }^{231)}$

[^137]Draft

```
template <class charT, class traits>
 basic_ostream<charT,traits>&
 operator<< (basic_ostream<charT,traits>& s, Date d)
{
 typename basic_ostream<charT,traits>::sentry cerberos(s);
 if (cerberos) {
 ios_base::iostate err = 0;
 tm tmbuf; d.extract(tmbuf);
 use_facet< time_put<charT,ostreambuf_iterator<charT,traits> > > (
 s.getloc()).put(s, s, s.fill(), err, &tmbuf, 'x');
 s.setstate(err); // might throw
 }
 return s;
}
```

- end example ]

4 In the call to use_facet<Facet> (loc), the type argument chooses a facet, making available all members of the named type. If Facet is not present in a locale, it throws the standard exception bad_cast. A C++ program can check if a locale implements a particular facet with the function template has_facet<Facet>(). User-defined facets may be installed in a locale, and used identically as may standard facets (22.2.8).

5 [Note: All locale semantics are accessed via use_facet<> and has_facet<>, except that:

- A member operator template operator() (basic_string $\langle C, T, A>\&$, basic_string $<C, T, A>\&$ ) is provided so that a locale may be used as a predicate argument to the standard collections, to collate strings.
- Convenient global interfaces are provided for traditional ctype functions such as isdigit() and isspace(), so that given a locale object loc a C++ program can call isspace ( $c, l o c$ ). (This eases upgrading existing extractors (27.6.1.2).) -end note ]

6 Once a facet reference is obtained from a locale object by calling use_facet<>, that reference remains usable, and the results from member functions of it may be cached and re-used, as long as some locale object refers to that facet.

7 In successive calls to a locale facet member function on a facet object installed in the same locale, the returned result shall be identical.

8 A locale constructed from a name string (such as "POSIX"), or from parts of two named locales, has a name; all others do not. Named locales may be compared for equality; an unnamed locale is equal only to (copies of) itself. For an unnamed locale, locale: :name() returns the string "*".

### 22.1.1.1 locale types

[locale.types]
22.1.1.1.1 Type locale: : category
[locale.category]
typedef int category;
1 Valid category values include the locale member bitmask elements collate, ctype, monetary, numeric, time, and messages, each of which represents a single locale category. In addition, locale member bitmask constant none is defined as zero and represents no category. And locale member bitmask constant all is defined such that the expression

```
(collate | ctype | monetary | numeric | time | messages | all) == all
```

is true, and represents the union of all categories. Further, the expression (X $\mid \mathrm{Y}$ ), where X and Y each represent a single category, represents the union of the two categories.

2 locale member functions expecting a category argument require one of the category values defined above, or the union of two or more such values. Such a category value identifies a set of locale categories. Each locale category, in turn, identifies a set of locale facets, including at least those shown in Table 65:

Table 65: Locale Category Facets

Category	Includes Facets
collate	collate<char>, collate<wchar_t>
ctype	ctype<char>, ctype<wchar_t>   codecvt<char, char,mbstate_t>   codecvt<wchar_t, char,mbstate_t>
monetary	moneypunct<char>, moneypunct<wchar_t>   moneypunct<char, true>, moneypunct<wchar_t,true>   money_get<char>, money_get<wchar_t>   money_put<char>, money_put<wchar_t>
numeric	numpunct<char>, numpunct<wchar_t>   num_get<char>, num_get<wchar_t>   num_put<char>, num_put<wchar_t>
time	time_get<char>, time_get<wchar_t>   time_put<char>, time_put<wchar_t>
messages	messages<char>, messages<wchar_t>

3 For any locale loc either constructed, or returned by locale: :classic(), and any facet Facet shown in Table 65, has_facet<Facet> (loc) is true. Each locale member function which takes a locale: : category argument operates on the corresponding set of facets.

4 An implementation is required to provide those specializations for facet templates identified as members of a category, and for those shown in Table 66:

5 The provided implementation of members of facets num_get<charT> and num_put<charT> calls use_facet <F> (l) only for facet F of types numpunct<char $\mathrm{T}>$ and ctype<char T >, and for locale 1 the value obtained by calling member getloc () on the ios_base\& argument to these functions.

6 In declarations of facets, a template formal parameter with name InputIterator or OutputIterator indicates the set of all possible specializations on parameters that satisfy the requirements of an Input Iterator or an Output Iterator, respectively (24.1). A template formal parameter with name C represents the set of all possible specializations on a parameter that satisfies the requirements for a character on which any of the iostream components can be instantiated. A template formal parameter with name International represents the set of all possible specializations on a bool parameter.

Table 66: Required Specializations

Category	Includes Facets
collate	collate_byname<char>, collate_byname<wchar_t>
ctype	ctype_byname<char>, ctype_byname<wchar_t> codecvt_byname<char, char,mbstate_t> codecvt_byname<wchar_t, char,mbstate_t>
monetary	```moneypunct_byname<char,International> moneypunct_byname<wchar_t,International> money_get<C,InputIterator> money_put<C,OutputIterator>```
numeric	numpunct_byname<char>, numpunct_byname<wchar_t> num_get<C, InputIterator>, num_put<C,OutputIterator>
time	```time_get<char,InputIterator> time_get_byname<char,InputIterator> time_get<wchar_t,InputIterator> time_get_byname<wchar_t,InputIterator> time_put<char,OutputIterator> time_put_byname<char,OutputIterator> time_put<wchar_t,OutputIterator> time_put_byname<wchar_t,OutputIterator>```
messages	messages_byname<char>, messages_byname<wchar_t>

```
namespace std {
 class locale::facet {
 protected:
 explicit facet(size_t refs = 0);
 virtual ~facet();
 private:
 facet(const facet&); // not defined
 void operator=(const facet&); // not defined
 };
}
```

1 Template parameters in this clause which are required to be facets are those named Facet in declarations. A program that passes a type that is not a facet, or a type that refers to a volatile-qualified facet, as an (explicit or deduced) template parameter to a locale function expecting a facet, is ill-formed. A const-qualified facet is a valid template argument to any locale function that expects a Facet template parameter.

2 The refs argument to the constructor is used for lifetime management.

- For refs $==0$, the implementation performs delete static_cast[locale::facet*](locale::facet*)(f) (where $f$ is a pointer to the facet) when the last locale object containing the facet is destroyed; for refs $==1$, the implementation never destroys the facet.
3 Constructors of all facets defined in this clause take such an argument and pass it along to their facet base class constructor. All one-argument constructors defined in this clause are explicit, preventing their participation in automatic
conversions.
4 For some standard facets a standard "..._byname" class, derived from it, implements the virtual function semantics equivalent to that facet of the locale constructed by locale (const char*) with the same name. Each such facet provides a constructor that takes a const char* argument, which names the locale, and a refs argument, which is passed to the base class constructor. Each such facet also provides a constructor that takes a string argument str and a refs argument, which has the same effect as calling the first constructor with the two arguments str.c_str() and refs. If there is no "..._byname" version of a facet, the base class implements named locale semantics itself by reference to other facets.

```
22.1.1.1.3 Class locale::id
```

```
namespace std {
```

namespace std {
class locale::id {
class locale::id {
public:
public:
id();
id();
private:
private:
void operator=(const id\&); // not defined
void operator=(const id\&); // not defined
id(const id\&); // not defined
id(const id\&); // not defined
};
};
}

```
}
```

    [locale.id]
    1 The class locale::id provides identification of a locale facet interface, used as an index for lookup and to encapsulate initialization.

2 [Note: Because facets are used by iostreams, potentially while static constructors are running, their initialization cannot depend on programmed static initialization. One initialization strategy is for locale to initialize each facet's id member the first time an instance of the facet is installed into a locale. This depends only on static storage being zero before constructors run (3.6.2). - end note]

### 22.1.1.2 locale constructors and destructor

[locale.cons]

```
locale() throw();
```

Default constructor: a snapshot of the current global locale.
Effects: Constructs a copy of the argument last passed to locale::global(locale\&), if it has been called; else, the resulting facets have virtual function semantics identical to those of locale::classic(). [Note: This constructor is commonly used as the default value for arguments of functions that take a const locale\& argument. -end note]

```
locale(const locale& other) throw();
```

Effects: Constructs a locale which is a copy of other.

```
const locale& operator=(const locale& other) throw();
```

    Effects: Creates a copy of other, replacing the current value.
    Returns: *this
    explicit locale(const char* std_name);

Effects: Constructs a locale using standard C locale names, e.g. "POSIX". The resulting locale implements semantics defined to be associated with that name.

Throws: runtime_error if the argument is not valid, or is null.
Remarks: The set of valid string argument values is "C", " ", and any implementation-defined values.
explicit locale(const string\& std_name);
Effects: The same as locale(std_name.c_str()).
locale(const locale\& other, const char* std_name, category);
Effects: Constructs a locale as a copy of other except for the facets identified by the category argument, which instead implement the same semantics as locale(std_name).

Throws: runtime_error if the argument is not valid, or is null.
Remarks: The locale has a name if and only if other has a name.
locale(const locale\& other, const string\& std_name, category cat);
Effects: The same as locale(other, std_name.c_str(), cat).
template <class Facet> locale(const locale\& other, Facet* f);
Effects: Constructs a locale incorporating all facets from the first argument except that of type Facet, and installs the second argument as the remaining facet. If $f$ is null, the resulting object is a copy of other.
Remarks: The resulting locale has no name.
locale(const locale\& other, const locale\& one, category cats);
Effects: Constructs a locale incorporating all facets from the first argument except those that implement cats, which are instead incorporated from the second argument.

Remarks: The resulting locale has a name if and only if the first two arguments have names.
~locale() throw();
A non-virtual destructor that throws no exceptions.

### 22.1.1.3 locale members

[locale.members]
template <class Facet> locale combine(const locale\& other) const;
Effects: Constructs a locale incorporating all facets from *this except for that one facet of other that is identified by Facet.

Returns: The newly created locale.
Throws: runtime_error if has_facet<Facet>(other) is false.
Remarks: The resulting locale has no name.
Draft
basic_string<char> name() const;

### 22.1.1.4 locale operators

bool operator=$=($ const locale\& other $)$ const;
Returns: true if both arguments are the same locale, or one is a copy of the other, or each has a name and the names are identical; false otherwise.
bool operator!=(const locale\& other) const;
Returns: The result of the expression:

```
static const locale& classic();
```


### 22.1.3 Convenience interfaces

### 22.1.3.1 Character classification

```
template <class charT> bool isspace (charT c, const locale& loc);
template <class charT> bool isprint (charT c, const locale& loc);
template <class charT> bool iscntrl (charT c, const locale& loc);
template <class charT> bool isupper (charT c, const locale& loc);
template <class charT> bool islower (charT c, const locale& loc);
template <class charT> bool isalpha (charT c, const locale& loc);
template <class charT> bool isdigit (charT c, const locale& loc);
template <class charT> bool ispunct (charT c, const locale& loc);
template <class charT> bool isxdigit(charT c, const locale& loc);
template <class charT> bool isalnum (charT c, const locale& loc);
template <class charT> bool isgraph (charT c, const locale& loc);
```

1 Each of these functions isF returns the result of the expression:

```
use_facet< ctype<charT> >(loc).is(ctype_base::F, c)
```

where $\boldsymbol{F}$ is the ctype_base: : mask value corresponding to that function (22.2.1). ${ }^{232)}$

### 22.1.3.2 Character conversions

[conversions]

```
template <class charT> charT toupper(charT c, const locale& loc);
```

    Returns: use_facet<ctype<charT\gg(loc).toupper(c).
    [^138]```
template <class charT> charT tolower(charT c, const locale& loc);
    Returns: use_facet<ctype<charT> >(loc).tolower(c).
```


22.2 Standard locale categories

[locale.categories]
1 Each of the standard categories includes a family of facets. Some of these implement formatting or parsing of a datum, for use by standard or users' iostream operators << and >>, as members put() and get(), respectively. Each such member function takes an ios_base\& argument whose members flags(), precision(), and width(), specify the format of the corresponding datum. (27.4.2). Those functions which need to use other facets call its member getloc() to retrieve the locale imbued there. Formatting facets use the character argument fill to fill out the specified width where necessary.

2 The put() members make no provision for error reporting. (Any failures of the OutputIterator argument must be extracted from the returned iterator.) The get () members take an ios_base: :iostate\& argument whose value they ignore, but set to ios_base: :failbit in case of a parse error.

22.2.1 The ctype category

```
namespace std {
    class ctype_base {
    public:
        typedef T mask;
        // numeric values are for exposition only.
        static const mask space = 1 << 0;
        static const mask print = 1 << 1;
        static const mask cntrl = 1 << 2;
        static const mask upper = 1 << 3;
        static const mask lower = 1 << 4;
        static const mask alpha = 1 << 5;
        static const mask digit = 1 << 6;
        static const mask punct = 1 << 7;
        static const mask xdigit = 1 << 8;
        static const mask alnum = alpha | digit;
        static const mask graph = alnum | punct;
    };
}
```

1 The type mask is a bitmask type (17.3.2.1.2).

22.2.1.1 Class template ctype

[locale.ctype]

```
namespace std {
    template <class charT>
    class ctype : public locale::facet, public ctype_base {
    public:
        typedef charT char_type;
        explicit ctype(size_t refs = 0);
        bool is(mask m, charT c) const;
```

 Draft
    ```
    const charT* is(const charT* low, const charT* high, mask* vec) const;
    const charT* scan_is(mask m,
                            const charT* low, const charT* high) const;
    const charT* scan_not(mask m,
                            const charT* low, const charT* high) const;
    charT toupper(charT c) const;
    const charT* toupper(charT* low, const charT* high) const;
    charT tolower(charT c) const;
    const charT* tolower(charT* low, const charT* high) const;
    charT widen(char c) const;
    const char* widen(const char* low, const char* high, charT* to) const;
    char narrow(charT c, char dfault) const;
    const charT* narrow(const charT* low, const charT*, char dfault,
                    char* to) const;
    static locale::id id;
    protected:
    ~ctype(); // virtual
    virtual bool do_is(mask m, charT c) const;
    virtual const charT* do_is(const charT* low, const charT* high,
                    mask* vec) const;
    virtual const charT* do_scan_is(mask m,
                            const charT* low, const charT* high) const;
    virtual const charT* do_scan_not(mask m,
                        const charT* low, const charT* high) const;
    virtual charT do_toupper(charT) const;
    virtual const charT* do_toupper(charT* low, const charT* high) const;
    virtual charT do_tolower(charT) const;
    virtual const charT* do_tolower(charT* low, const charT* high) const;
    virtual charT do_widen(char) const;
    virtual const char* do_widen(const char* low, const char* high,
                                    charT* dest) const;
    virtual char do_narrow(charT, char dfault) const;
    virtual const charT* do_narrow(const charT* low, const charT* high,
                                    char dfault, char* dest) const;
    };
}
```

1 Class ctype encapsulates the C library <cctype> features. istream members are required to use ctype<> for character classing during input parsing.

2 The specializations required in Table 65 (22.1.1.1.1), namely ctype<char> and ctype<wchar_t>, implement character classing appropriate to the implementation's native character set.
22.2.1.1. 1 ctype members
[locale.ctype.members]
bool is (mask m, charT c) const;
const charT* is (const charT* low, const charT* high,
mask* vec) const;

22.2.1.1.2 ctype virtual functions

[locale.ctype.virtuals]
bool do_is(mask m, charT c) const;
const charT* do_is (const charT* low, const charT* high,
mask* vec) const;

Effects: Classifies a character or sequence of characters. For each argument character, identifies a value M of type ctype_base: :mask. The second form identifies a value M of type ctype_base: :mask for each $* p$ where (low<=p \&\& $p<h i g h$), and places it into vec [p-low].

Returns: The first form returns the result of the expression ($M \& m$) ! $=0$; i.e., true if the character has the characteristics specified. The second form returns high.

```
```

const charT* do_scan_is(mask m,

```
```

const charT* do_scan_is(mask m,
const charT* low, const charT* high) const;

```
```

const charT* low, const charT* high) const;

```
```

Effects: Locates a character in a buffer that conforms to a classification m.

Returns: The smallest pointer p in the range [low, high) such that is ($m, * p$) would return true; otherwise, returns high.
const charT* do_scan_not(mask m,
const charT* low, const charT* high) const;
Effects: Locates a character in a buffer that fails to conform to a classification m .
Returns: The smallest pointer p, if any, in the range [low, high) such that is ($m, * p$) would return false; otherwise, returns high.

```
charT do_toupper(charT c) const;
```

const charT* do_toupper (charT* low, const charT* high) const;

Effects: Converts a character or characters to upper case. The second form replaces each character $* p$ in the range [low, high) for which a corresponding upper-case character exists, with that character.

Returns: The first form returns the corresponding upper-case character if it is known to exist, or its argument if not. The second form returns high.
charT do_tolower (charT c) const;
const charT* do_tolower (charT* low, const charT* high) const;
Effects: Converts a character or characters to lower case. The second form replaces each character $* p$ in the range [low, high) and for which a corresponding lower-case character exists, with that character.

Returns: The first form returns the corresponding lower-case character if it is known to exist, or its argument if not. The second form returns high.

```
charT do_widen(char c) const;
const char* do_widen(const char* low, const char* high,
    charT* dest) const;
```

Effects: Applies the simplest reasonable transformation from a char value or sequence of char values to the corresponding charT value or values. ${ }^{233)}$ The only characters for which unique transformations are required are those in the basic source character set (2.2).

For any named ctype category with a ctype<charT> facet ctc and valid ctype_base: :mask value M, (ctc. is ($M, ~ c$) \|| !is (M, do_widen(c))) is true. ${ }^{234)}$

The second form transforms each character $* p$ in the range [low, high), placing the result in dest [$p-l o w$].
Returns: The first form returns the transformed value. The second form returns high.

```
char do_narrow(charT c, char dfault) const;
const charT* do_narrow(const charT* low, const charT* high,
    char dfault, char* dest) const;
```

Effects: Applies the simplest reasonable transformation from a charT value or sequence of char T values to the corresponding char value or values.

For any character c in the basic source character set(2.2) the transformation is such that

[^139]$$
\text { do_widen(do_narrow }(c, 0))==c
$$

For any named ctype category with a ctype<char> facet ctc however, and ctype_base: :mask value M,

$$
\text { (is }(M, c) \|!c t c . i s(M, \text { do_narrow }(c, d f a u l t)) \text {) }
$$

is true (unless do_narrow returns $d f a u l t$). In addition, for any digit character c, the expression (do_narrow ($c, d f a u l t$) - '0') evaluates to the digit value of the character. The second form transforms each character $* p$ in the range [low, high), placing the result (or $d f a u l t$ if no simple transformation is readily available) in $\operatorname{dest}[p-$ low].

Returns: The first form returns the transformed value; or $d f a u l t$ if no mapping is readily available. The second form returns high.

22.2.1.2 Class template ctype_byname

```
namespace std {
    template <class charT>
    class ctype_byname : public ctype<charT> {
    public:
        typedef ctype<charT>::mask mask;
        explicit ctype_byname(const char*, size_t refs = 0);
        explicit ctype_byname(const string&, size_t refs = 0);
    protected:
        ~ctype_byname(); // virtual
    };
}
```


22.2.1.3 ctype specializations

[facet.ctype.special]

```
namespace std {
    template <> class ctype<char>
        : public locale::facet, public ctype_base {
    public:
        typedef char char_type;
        explicit ctype(const mask* tab = 0, bool del = false,
                        size_t refs = 0);
    bool is(mask m, char c) const;
        const char* is(const char* low, const char* high, mask* vec) const;
        const char* scan_is (mask m,
                const char* low, const char* high) const;
        const char* scan_not(mask m,
                        const char* low, const char* high) const;
        char toupper(char c) const;
        const char* toupper(char* low, const char* high) const;
        char tolower(char c) const;
        const char* tolower(char* low, const char* high) const;
```

Draft

```
        char widen(char c) const;
        const char* widen(const char* low, const char* high, char* to) const;
        char narrow(char c, char dfault) const;
        const char* narrow(const char* low, const char* high, char dfault,
                char* to) const;
    static locale::id id;
    static const size_t table_size = IMPLEMENTATION_DEFINED;
    protected:
    const mask* table() const throw();
    static const mask* classic_table() throw();
    ~ctype(); // virtual
    virtual char do_toupper(char c) const;
    virtual const char* do_toupper(char* low, const char* high) const;
    virtual char do_tolower(char c) const;
    virtual const char* do_tolower(char* low, const char* high) const;
    virtual char do_widen(char c) const;
    virtual const char* do_widen(const char* low,
                                    const char* high,
                            char* to) const;
    virtual char do_narrow(char c, char dfault) const;
    virtual const char* do_narrow(const char* low,
    const char* high,
    char dfault, char* to) const;
    };
```

\}

1 A specialization ctype<char> is provided so that the member functions on type char can be implemented inline. ${ }^{235)}$ The implementation-defined value of member table_size is at least 256.
22.2.1.3.1 ctype<char> destructor
[facet.ctype.char.dtor]

~ctype();

1 Effects: If the constructor's first argument was nonzero, and its second argument was true, does delete [] table().

22.2.1.3.2 ctype<char> members

[facet.ctype.char.members]
1 In the following member descriptions, for unsigned char values v where ($v>=$ table_size), table() [v] is assumed to have an implementation-defined value (possibly different for each such value v) without performing the array lookup.

[^140]explicit ctype(const mask* $t b l=0$, bool del $=$ false, size_t refs $=0$);

Precondition: tbl either 0 or an array of at least table_size elements.
Effects: Passes its refs argument to its base class constructor.

```
bool is(mask m, char c) const;
const char* is(const char* low, const char* high,
    mask* vec) const;
```

Effects: The second form, for all $* p$ in the range [low, high), assigns into vec [$p-l o w$] the value table() [(unsigned char) $* p]$.

Returns: The first form returns table()[(unsigned char)c] \& m; the second form returns high.
const char* scan_is(mask m,
const char* low, const char* high) const;
Returns: The smallest p in the range [low, high) such that

```
table()[(unsigned char) *p] & m
```

is true.
const char* scan_not(mask m,
const char* low, const char* high) const;
Returns: The smallest p in the range [low, high) such that table()[(unsigned char) $* p$] \& m
is false.
char toupper(char c) const;
const char* toupper(char* low, const char* high) const;
Returns: do_toupper (c) or do_toupper (low, high), respectively.
char tolower (char c) const;
const char* tolower (char* low, const char* high) const;
Returns: do_tolower (c) or do_tolower (low, high), respectively.
char widen(char c) const;
const char* widen(const char* low, const char* high,
char* to) const;
Returns: do_widen(c) or do_widen(low, high, to), respectively.
char narrow(char c, char dfault) const;
const char* narrow (const char* low, const char* high, char dfault, char* to) const;

Returns: do_narrow(c, dfault) or do_narrow(low, high, dfault, to), respectively.

```
const mask* table() const throw();
```

Returns: The first constructor argument, if it was non-zero, otherwise classic_table().
22.2.1.3.3 ctype<char> static members
[facet.ctype.char.statics]

```
static const mask* classic_table() throw();
```

Returns: A pointer to the initial element of an array of size table_size which represents the classifications of characters in the " C " locale.

22.2.1.3.4 ctype<char> virtual functions

[facet.ctype.char.virtuals]

```
char do_toupper(char) const;
const char* do_toupper(char* low, const char* high) const;
char do_tolower(char) const;
const char* do_tolower(char* low, const char* high) const;
virtual char do_widen(char c) const;
virtual const char* do_widen(const char* low,
    const char* high,
    char* to) const;
virtual char do_narrow(char c, char dfault) const;
virtual const char* do_narrow(const char* low,
    const char* high,
    char dfault, char* to) const;
```

These functions are described identically as those members of the same name in the ctype class template (22.2.1.1.1).
22.2.1.4 Class template codecvt
[locale.codecvt]

```
namespace std {
    class codecvt_base {
    public:
        enum result { ok, partial, error, noconv };
    };
    template <class internT, class externT, class stateT>
    class codecvt : public locale::facet, public codecvt_base {
    public:
        typedef internT intern_type;
        typedef externT extern_type;
        typedef stateT state_type;
        explicit codecvt(size_t refs = 0);
    result out(stateT& state,
        const internT* from, const internT* from_end, const internT*& from_next,
                externT* to, externT* to_limit, externT*& to_next) const;
    result unshift(stateT& state,
```

Draft

```
    result unshift(stateT& state,
        externT* to, externT* to_limit, externT*& to_next) const;
    Returns: do_unshift(state, to, to_limit, to_next)
    result in(stateT& state,
    const externT* from, const externT* from_end, const externT*& from_next,
            internT* to, internT* to_limit, internT*& to_next) const;
            Returns: do_in(state, from,from_end,from_next, to,to_limit,to_next)
    int encoding() const throw();
            Returns: do_encoding()
    bool always_noconv() const throw();
            Returns: do_always_noconv()
    int length(stateT& state, const externT* from, const externT* from_end,
            size_t max) const;
            Returns: do_length(state, from,from_end,max)
int max_length() const throw();
    Returns: do_max_length()
```


22.2.1.4.2 codecvt virtual functions

[locale.codecvt.virtuals]

```
result do_out(stateT& state,
    const internT* from, const internT* from_end, const internT*& from_next,
    externT* to, externT* to_limit, externT*& to_next) const;
result do_in(stateT& state,
    const externT* from, const externT* from_end, const externT*& from_next,
        internT* to, internT* to_limit, internT*& to_next) const;
```

1 Preconditions: (from<=from_end \&\& to<=to_end) well-defined and true; state initialized, if at the beginning of a sequence, or else equal to the result of converting the preceding characters in the sequence.

Effects: Translates characters in the source range [from,from_end), placing the results in sequential positions starting at destination to. Converts no more than (from_end-from) source elements, and stores no more than (to_limit-to) destination elements.

Stops if it encounters a character it cannot convert. It always leaves the from_next and to_next pointers pointing one beyond the last element successfully converted. If returns noconv, internT and externT are the same type and the converted sequence is identical to the input sequence [from, from_next). to_next is set equal to to, the value of state is unchanged, and there are no changes to the values in [to, to_limit).
3 A codecvt facet that is used by basic_filebuf (27.8) shall have the property that if

```
do_out(state, from, from_end, from_next, to, to_limit, to_next)
```

Draft
would return ok, where from != from_end, then

```
do_out(state, from, from + 1, from_next, to, to_end, to_next)
```

shall also return ok, and that if

```
do_in(state, from, from_end, from_next, to, to_limit, to_next)
```

would return ok, where to != to_end, then

```
do_in(state, from, from_end, from_next, to, to + 1, to_next)
```

shall also return ok. ${ }^{236)}$

Remarks: Its operations on state are unspecified. [Note: This argument can be used, for example, to maintain shift state, to specify conversion options (such as count only), or to identify a cache of seek offsets. - end note] Returns: An enumeration value, as summarized in Table 67:

Table 67: do_in/do_out result values

Value	Meaning
ok	completed the conversion
partial	
error	not all source characters converted encountered a character in [from, from_end) that it could not convert noconv internT and externT are the same type, and input sequence is identical to converted sequence

A return value of partial, if (from_next $==f r o m_{-} e n d$), indicates that either the destination sequence has not absorbed all the available destination elements, or that additional source elements are needed before another destination element can be produced.

```
result do_unshift(stateT& state,
    externT* to, externT* to_limit, externT*& to_next) const;
```

Requires: ($t o<=t o _e n d$) well defined and true; state initialized, if at the beginning of a sequence, or else equal to the result of converting the preceding characters in the sequence.

Effects: Places characters starting at to that should be appended to terminate a sequence when the current stateT is given by state. ${ }^{237)}$ Stores no more than (to_limit-to) destination elements, and leaves the to_next pointer pointing one beyond the last element successfully stored. codecvt<char, char, mbstate_t> stores no characters.

Returns: An enumeration value, as summarized in Table 68:
codecvt<char, char, mbstate_t>, returns noconv.

[^141]Table 68: do_unshift result values

Value	Meaning
ok	completed the sequence
partial	space for more than to_limit-to destination elements was needed to terminate a sequence given the value of state
error	an unspecified error has occurred no termination is needed for this state_type
noconv	no

int do_encoding() const throw();

Returns: -1 if the encoding of the externT sequence is state-dependent; else the constant number of externT characters needed to produce an internal character; or 0 if this number is not a constant ${ }^{238)}$.
bool do_always_noconv() const throw();
Returns: true if do_in() and do_out() return noconv for all valid argument values. codecvt<char, char, mbstate_t> returns true.
int do_length(stateT\& state, const externT* from, const externT* from_end,
size_t max) const;
Preconditions: (from<=from_end) well-defined and true; state initialized, if at the beginning of a sequence, or else equal to the result of converting the preceding characters in the sequence.

Effects: The effect on the state argument is "as if" it called do_in(state, from, from_end, from, to, to $\max ^{\text {, to }}$) for to pointing to a buffer of at least max elements.

Returns: (from_next-from) where from_next is the largest value in the range [from,from_end] such that the sequence of values in the range [from, from_next) represents max or fewer valid complete characters of type internT. The specialization codecvt<char, char, mbstate_t>, returns the lesser of max and (from_-end-from).
int do_max_length() const throw();
Returns: The maximum value that do_length(state, from, from_end, 1) can return for any valid range [from, from_end) and stateT value state. The specialization codecvt<char, char, mbstate_t>:: do_max_length() returns 1.
22.2.1.5 Class template codecvt_byname
[locale.codecvt.byname]

```
namespace std {
    template <class internT, class externT, class stateT>
    class codecvt_byname : public codecvt<internT, externT, stateT> {
    public:
        explicit codecvt_byname(const char*, size_t refs = 0);
```

[^142]```
 explicit codecvt_byname(const string&, size_t refs = 0);
protected:
~codecvt_byname(); // virtual
 };
}
```


### 22.2.2 The numeric category

[category.numeric]
1 The classes num_get<> and num_put<> handle numeric formatting and parsing. Virtual functions are provided for several numeric types. Implementations may (but are not required to) delegate extraction of smaller types to extractors for larger types. ${ }^{239)}$

2 All specifications of member functions for num_put and num_get in the subclauses of 22.2.2 only apply to the specializations required in Tables 65 and 66 (22.1.1.1.1), namely num_get<char>, num_get<wchar_t>, num_get<C, InputIterator>, num_put<char>, num_put<wchar_t>, and num_put<C, OutputIterator>. These specializations refer to the ios_base\& argument for formatting specifications (22.2), and to its imbued locale for the numpunct<> facet to identify all numeric punctuation preferences, and also for the ctype<> facet to perform character classification.

3 Extractor and inserter members of the standard iostreams use num_get<> and num_put<> member functions for formatting and parsing numeric values (27.6.1.2.1, 27.6.2.5.1).

### 22.2.2.1 Class template num_get

[locale.num.get]

```
namespace std {
 template <class charT, class InputIterator = istreambuf_iterator<charT> >
 class num_get : public locale::facet {
 public:
 typedef charT char_type;
 typedef InputIterator iter_type;
 explicit num_get(size_t refs = 0);
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, bool& v) const;
 iter_type get(iter_type in, iter_type end, ios_base& ,
 ios_base::iostate& err, long& v) const;
 iter_type get(iter_type in, iter_type end, ios_base& ,
 ios_base::iostate& err, long long& v) const;}
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, unsigned short& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, unsigned int& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, unsigned long& v) const;
 iter_type get(iter_type in, iter_type end, ios_base& ,
 ios_base::iostate& err, unsigned long long& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
 ios_base::iostate& err, float& v) const;
 iter_type get(iter_type in, iter_type end, ios_base&,
```

[^143]```
            ios_base::iostate& err, double& v) const;
            iter_type get(iter_type in, iter_type end, ios_base&,
            ios_base::iostate& err, long double& v) const;
            iter_type get(iter_type in, iter_type end, ios_base&,
            ios_base::iostate& err, void*& v) const;
            static locale::id id;
protected:
    ~num_get(); // virtual
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, bool& v) const;
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, long& v) const;
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, long long& v) const;
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, unsigned short& v) const;
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, unsigned int& v) const;
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, unsigned long& v) const;
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, unsigned long long& v) const;
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, float& v) const;
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, double& v) const;
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, long double& v) const;
    virtual iter_type do_get(iter_type, iter_type, ios_base&,
        ios_base::iostate& err, void*& v) const;
    };
}
```

1 The facet num_get is used to parse numeric values from an input sequence such as an istream.
22.2.2.1.1 num_get members
[facet.num.get.members]

```
iter_type get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, bool& val) const;
iter_type get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, long& val) const;
iter_type get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, long long& val) const;
iter_type get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, unsigned short& val) const;
iter_type get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, unsigned int& val) const;
iter_type get(iter_type in, iter_type end, ios_base& str,
```

```
    ios_base::iostate& err, unsigned long& val) const;
iter_type get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, unsigned long long& val) const;
iter_type get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, float& val) const;
iter_type get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, double& val) const;
iter_type get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, long double& val) const;
iter_type get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, void*& val) const;
            Returns: do_get(in, end, str, err, val).
```

1

22.2.2.1.2 num_get virtual functions

[facet.num.get.virtuals]

```
iter_type do_get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, long& val) const;
iter_type do_get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, long long& val) const;
iter_type do_get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, unsigned short& val) const;
iter_type do_get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, unsigned int& val) const;
iter_type do_get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, unsigned long& val) const;
iter_type do_get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, unsigned long long& val) const;
iter_type do_get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, float& val) const;
iter_type do_get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, double& val) const;
iter_type do_get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, long double& val) const;
iter_type do_get(iter_type in, iter_type end, ios_base& str,
    ios_base::iostate& err, void*& val) const;
```

1 Effects: Reads characters from in, interpreting them according to str.flags(), use_facet<ctype<charT> $>(l o c)$, and use_facet< numpunct<charT\gg(loc), where loc is str. getloc(). If an error occurs, val is unchanged; otherwise it is set to the resulting value.

The details of this operation occur in three stages

- Stage 1: Determine a conversion specifier
- Stage 2: Extract characters from in and determine a corresponding char value for the format expected by the conversion specification determined in stage 1.
- Stage 3: Store results

The details of the stages are presented below.

Stage 1: The function initializes local variables via

```
fmtflags flags = str .flags();
fmtflags basefield = (flags & ios_base::basefield);
fmtflags uppercase = (flags & ios_base::uppercase);
fmtflags boolalpha = (flags & ios_base::boolalpha);
```

For conversion to an integral type, the function determines the integral conversion specifier as indicated in Table 69. The table is ordered. That is, the first line whose condition is true applies.

Table 69: Integer Conversions

State	stdio equivalent
basefield $==$ oct	$\%$ o
basefield $==$ hex	$\% \mathrm{X}$
basefield $==0$	$\% \mathrm{i}$
signed integral type	$\% \mathrm{~d}$
unsigned integral type	$\% u$

For conversions to a floating type the specifier is $\% \mathrm{~g}$.
For conversions to void* the specifier is \%p.
A length modifier is added to the conversion specification, if needed, as indicated in Table 70.

Table 70: Length Modifier

type	length modifier
short	h
unsigned short	h
long	l
unsigned long	l
long long	ll
unsigned long long	ll
double	l
long double	L

Stage 2: If $i n==e n d$ then stage 2 terminates. Otherwise a charT is taken from $i n$ and local variables are initialized as if by

```
char_type ct = *in ;
char c = src[find(atoms, atoms + sizeof(src) - 1, ct) - atoms];
if ( ct == use_facet<numpunct<charT> >(loc).decimal_point() )
    c = '.';
bool discard =
        ( ct == use_facet<numpunct<charT> >(loc).thousands_sep()
            &&
        use_facet<numpunct<charT> >(loc).grouping().length() != 0 );
```

where the values src and atoms are defined as if by:

```
static const char src[] = "0123456789abcdefxABCDEFX+-";
char_type atoms[sizeof(src)];
use_facet<ctype<charT> >(loc).widen(src, src + sizeof(src), atoms);
```

for this value of loc.
If discard is true, then if '.' has not yet been accumulated, then the position of the character is remembered, but the character is otherwise ignored. Otherwise, if '. ' has already been accumulated, the character is discarded and Stage 2 terminates.

If the character is either discarded or accumulated then $i n$ is advanced by ++in and processing returns to the beginning of stage 2 .

Stage 3: The result of stage 2 processing can be one of

- A sequence of chars has been accumulated in stage 2 that is converted (according to the rules of scanf) to a value of the type of $v a l$. This value is stored in $v a l$ and ios_base: : goodbit is stored in err.
- The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure. ios_base: :failbit is assigned to err.

Digit grouping is checked. That is, the positions of discarded separators is examined for consistency with use_facet<numpunct<charT\gg(loc).grouping(). If they are not consistent then ios_base::failbit is assigned to err.

In any case, if stage 2 processing was terminated by the test for $i n==$ end then err |=ios_base: :eofbit is performed.

```
iter_type do_get(iter_type in, iter_type end, ios_base& str,
ios_base::iostate& err, bool& val) const;
```

Effects: If (str.flags()\&ios_base: : boolalpha) $==0$ then input proceeds as it would for a long except that if a value is being stored into $v a l$, the value is determined according to the following: If the value to be stored is 0 then false is stored. If the value is 1 then true is stored. Otherwise err|=ios_base: :failbit is performed and no value is stored.

Otherwise target sequences are determined "as if" by calling the members falsename() and truename() of the facet obtained by use_facet<numpunct<charT\gg(str.getloc()). Successive characters in the range [$\mathrm{in}, \mathrm{end}$) (see 23.1.1) are obtained and matched against corresponding positions in the target sequences only as necessary to identify a unique match. The input iterator $i n$ is compared to end only when necessary to obtain a character. If and only if a target sequence is uniquely matched, val is set to the corresponding value.

The in iterator is always left pointing one position beyond the last character successfully matched. If val is set, then err is set to str.goodbit; or to str.eofbit if, when seeking another character to match, it is found that ($\mathrm{in}==\mathrm{end}$). If val is not set, then err is set to str.failbit; or to (str.failbit|str.eofbit) if the reason for the failure was that ($\mathrm{in}==$ end) . [Example: For targets true: "a" and false: "abb", the input sequence "a" yields val == true and err == str.eofbit; the input sequence "abc" yields err = str.failbit, with $i n$ ending at the ' c ' element. For targets true: " 1 " and false: " 0 ", the input sequence "1" yields val == true and err == str.goodbit. For empty targets (" "), any input sequence yields err == str.failbit. -end example]

Returns: in.
22.2.2.2 Class template num_put
[locale.nm.put]

```
namespace std {
    template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
    class num_put : public locale::facet {
    public:
        typedef charT char_type;
        typedef OutputIterator iter_type;
        explicit num_put(size_t refs = 0);
        iter_type put(iter_type s, ios_base& f, char_type fill, bool v) const;
        iter_type put(iter_type s, ios_base& f, char_type fill, long v) const;
        iter_type put(iter_type s, ios_base& f, char_type fill, long long v) const;
        iter_type put(iter_type s, ios_base& f, char_type fill,
            unsigned long v) const;
        iter_type put(iter_type s, ios_base& f, char_type fill,
            unsigned long long v) const;
        iter_type put(iter_type s, ios_base& f, char_type fill,
            double v) const;
        iter_type put(iter_type s, ios_base& f, char_type fill,
            long double v) const;
        iter_type put(iter_type s, ios_base& f, char_type fill,
            const void* v) const;
        static locale::id id;
    protected:
        ~num_put(); // virtual
        virtual iter_type do_put(iter_type, ios_base&, char_type fill,
            bool v) const;
        virtual iter_type do_put(iter_type, ios_base&, char_type fill,
            long v) const;
        virtual iter_type do_put(iter_type, ios_base&, char_type fill,
            long long v) const;
        virtual iter_type do_put(iter_type, ios_base&, char_type fill,
            unsigned long) const;
        virtual iter_type do_put(iter_type, ios_base&, char_type fill,
            unsigned long long) const;
        virtual iter_type do_put(iter_type, ios_base&, char_type fill,
            double v) const;
        virtual iter_type do_put(iter_type, ios_base&, char_type fill,
            long double v) const;
        virtual iter_type do_put(iter_type, ios_base&, char_type fill,
            const void* v) const;
    };
}
```

Draft

1 The facet num_put is used to format numeric values to a character sequence such as an ostream.
22.2.2.2.1 num_put members
[facet.num.put.members]

```
iter_type put(iter_type out, ios_base& str, char_type fill,
    bool val) const;
iter_type put(iter_type out, ios_base& str, char_type fill,
    long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill,
    long long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill,
    unsigned long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill,
    unsigned long long val) const;
iter_type put(iter_type out, ios_base& str, char_type fill,
    double val) const;
iter_type put(iter_type out, ios_base& str, char_type fill,
    long double val) const;
iter_type put(iter_type out, ios_base& str, char_type fill,
    const void* val) const;
            Returns: do_put(out, str, fill, val).
```

1

22.2.2.2.2 num_put virtual functions

[facet.num.put.virtuals]

```
iter_type do_put(iter_type out, ios_base& str, char_type fill,
    long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill,
    long long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill,
    unsigned long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill,
    unsigned long long val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill,
    double val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill,
    long double val) const;
iter_type do_put(iter_type out, ios_base& str, char_type fill,
    const void* val) const;
```

Effects: Writes characters to the sequence out, formatting val as desired. In the following description, a local variable initialized with

```
locale loc = str.getloc();
```

2
The details of this operation occur in several stages:

- Stage 1: Determine a printf conversion specifier spec and determining the characters that would be printed by printf(27.8.2) given this conversion specifier for
printf(spec, val)
Draft
assuming that the current locale is the " C " locale.
- Stage 2: Adjust the representation by converting each char determined by stage 1 to a charT using a conversion and values returned by members of use_facet< numpunct<charT\gg(str.getloc())
- Stage 3: Determine where padding is required.
- Stage 4: Insert the sequence into the out.

Detailed descriptions of each stage follow.
Returns: out.

Stage 1: The first action of stage 1 is to determine a conversion specifier. The tables that describe this determination use the following local variables

```
fmtflags flags = str.flags() ;
fmtflags basefield = (flags & (ios_base::basefield));
fmtflags uppercase = (flags & (ios_base::uppercase));
fmtflags floatfield = (flags & (ios_base::floatfield));
fmtflags showpos = (flags & (ios_base::showpos));
fmtflags showbase = (flags & (ios_base::showbase));
```

All tables used in describing stage 1 are ordered. That is, the first line whose condition is true applies. A line without a condition is the default behavior when none of the earlier lines apply.

For conversion from an integral type other than a character type, the function determines the integral conversion specifier as indicated in Table 71.

Table 71: Integer Conversions

State	stdio equivalent
basefield $==$ ios_base: :oct	$\% \mathrm{o}$
(basefield == ios_base: :hex) \&\&	!uppercase
(basefield $==$ ios_base : :hex)	$\% \mathrm{x}$
for a signed integral type	$\% \mathrm{X}$
for an unsigned integral type	$\% \mathrm{~d}$

For conversion from a floating-point type, the function determines the floating-point conversion specifier as indicated in Table 72:

For conversions from an integral or floating type a length modifier is added to the conversion specifier as indicated in Table 73

The conversion specifier has the following optional additional qualifiers prepended as indicated in Table 74 For conversion from a floating-point type, str.precision() is specified in the conversion specification.

For conversion from void* the specifier is \%p.
The representations at the end of stage 1 consists of the char's that would be printed by a call of printf (s, $v a l$) where s is the conversion specifier determined above.

Table 72: Floating-point Conversions

State	
floatfield $==$ ios_base::fixed	stdio equivalent
floatfield $==$ ios_base::scientific \&\& !uppercase	$\% \mathrm{e}$
floatfield $==$ ios_base::scientific	$\% \mathrm{E}$
floatfield $==$ ios_base::fixed \| ios_base:: scientific \&\& !uppercase	$\%$ a
floatfield $==$ ios_base::fixed \|	ios_base: :scientific
!uppercase	$\% \mathrm{~A}$
otherwise	$\% \mathrm{~g}$

Table 73: Length Modifier

type	length modifier
long	l
long long	ll
unsigned long	1
unsigned long long	ll
long double	L
otherwise	none

Table 74: Numeric conversions

Type(s)		State		stdio equivalent
an integral type	flags \& showpos	+		
	flags \& showbase	$\#$		
a floating-point type	flags \& showpos	+		
	flags \& showpoint	$\#$		

Stage 2: Any character c other than a decimal point(.) is converted to a charT via use_facet<ctype<charT> >(loc).widen(c)

A local variable punct is initialized via

```
numpunct<charT> punct = use_facet< numpunct<charT> >(str.getloc())
```

For arithmetic types, punct .thousands_sep() characters are inserted into the sequence as determined by the value returned by punct.do_grouping() using the method described in 22.2.3.1.2

Decimal point characters(.) are replaced by punct.decimal_point()
Stage 3: A local variable is initialized as

```
fmtflags adjustfield= (flags & (ios_base::adjustfield));
```

The location of any padding ${ }^{240)}$ is determined according to Table 75

Table 75: Fill padding

State	Location
adjustfield $==$ ios_base: :left	pad after
adjustfield $==$ ios_base::right	pad before
adjustfield $==$ representation	internal and a sign occurs in the

If str. width() is nonzero and the number of charT's in the sequence after stage 2 is less than str. width (), then enough fill characters are added to the sequence at the position indicated for padding to bring the length of the sequence to str.width().
str. width(0) is called.
Stage 4: The sequence of charT's at the end of stage 3 are output via

```
        *out++ = c
iter_type do_put(iter_type out, ios_base& str, char_type fill,
            bool val) const;
```

Returns: If str.flags() \& ios_base::boolalpha) == Oreturns do_put(out, str, fill, (int)val), otherwise obtains a string s as if by

```
string_type s =
    val ? use_facet<ctype<charT> > (loc).truename()
        : use_facet<ctype<charT> >(loc).falsename();
```

and then inserts each character c of s into out via *out++ $=\mathrm{c}$ and returns out.

[^144]
22.2.3 The numeric punctuation facet

22.2.3.1 Class template numpunct

```
namespace std {
    template <class charT>
    class numpunct : public locale::facet {
    public:
            typedef charT char_type;
            typedef basic_string<charT> string_type;
            explicit numpunct(size_t refs = 0);
            char_type decimal_point() const;
            char_type thousands_sep() const;
            string grouping() const;
            string_type truename() const;
            string_type falsename() const;
            static locale::id id;
    protected:
            ~numpunct(); // virtual
            virtual char_type do_decimal_point() const;
            virtual char_type do_thousands_sep() const;
            virtual string do_grouping() const;
            virtual string_type do_truename() const; // for bool
            virtual string_type do_falsename() const; // for bool
    };
}
```

1 numpunct<> specifies numeric punctuation. The specializations required in Table 65 (22.1.1.1.1), namely numpunct< wchar_t> and numpunct<char>, provide classic "C" numeric formats, i.e. they contain information equivalent to that contained in the " C " locale or their wide character counterparts as if obtained by a call to widen.

2 The syntax for number formats is as follows, where digit represents the radix set specified by the fmtflags argument value, and thousands-sep and decimal-point are the results of corresponding numpunct<charT> members. Integer values have the format:

```
integer ::= [sign] units
sign ::= plusminus
plusminus ::= '+' | '_'
units ::= digits [thousands-sep units]
digits ::= digit [digits]
```

and floating-point values have:

```
floatval ::= [sign] units [decimal-point [digits]] [e [sign] digits] |
    [sign] decimal-point digits [e [sign] digits]
e ::= 'e' | 'E'
```

where the number of digits between thousands-seps is as specified by do_grouping(). For parsing, if the digits portion contains no thousands-separators, no grouping constraint is applied.
22.2.3.1.1 numpunct members
[facet.numpunct.members]

```
    char_type decimal_point() const;
    Returns: do_decimal_point()
    char_type thousands_sep() const;
    Returns: do_thousands_sep()
    string grouping() const;
    Returns: do_grouping()
    string_type truename() const;
    string_type falsename() const;
    Returns: do_truename() or do_falsename(), respectively.
```

22.2.3.1.2 numpunct virtual functions
[facet.numpunct.virtuals]
char_type do_decimal_point() const;

Returns: A character for use as the decimal radix separator. The required specializations return '. ' or L' . '.

```
char_type do_thousands_sep() const;
```

Returns: A character for use as the digit group separator. The required specializations return ', ' or L' , '.
string do_grouping() const;
Returns: A basic_string<char> vec used as a vector of integer values, in which each element vec [i] represents the number of digits ${ }^{241)}$ in the group at position i, starting with position 0 as the rightmost group. If vec. size () $<=i$, the number is the same as group $(i-1)$; if ($i<0$ || vec $[i]<=0 \|$ vec $[i]==$ CHAR_MAX), the size of the digit group is unlimited.
The required specializations return the empty string, indicating no grouping.

```
string_type do_truename() const;
string_type do_falsename() const;
```

Returns: A string representing the name of the boolean value true or false, respectively.
In the base class implementation these names are "true" and "false", or L"true" and L"false".

[^145]
22.2.3.2 Class template numpunct_byname

```
namespace std {
    template <class charT>
    class numpunct_byname : public numpunct<charT> {
// this class is specialized for char and wchar_t.
    public:
            typedef charT char_type;
            typedef basic_string<charT> string_type;
            explicit numpunct_byname(const char*, size_t refs = 0);
            explicit numpunct_byname(const string&, size_t refs = 0);
    protected:
            ~numpunct_byname(); // virtual
    };
}
```


22.2.4 The collate category

[category.collate]

22.2.4.1 Class template collate

[locale.collate]

```
namespace std {
    template <class charT>
    class collate : public locale::facet {
    public:
        typedef charT char_type;
        typedef basic_string<charT> string_type;
        explicit collate(size_t refs = 0);
        int compare(const charT* low1, const charT* high1,
                const charT* low2, const charT* high2) const;
        string_type transform(const charT* low, const charT* high) const;
        long hash(const charT* low, const charT* high) const;
        static locale::id id;
    protected:
    ~collate(); // virtual
        virtual int do_compare(const charT* low1, const charT* high1,
                            const charT* low2, const charT* high2) const;
        virtual string_type do_transform
                        (const charT* low, const charT* high) const;
        virtual long do_hash (const charT* low, const charT* high) const;
    };
}
```

1 The class collate<charT> provides features for use in the collation (comparison) and hashing of strings. A locale member function template, operator (), uses the collate facet to allow a locale to act directly as the predicate argument for standard algorithms (clause 25) and containers operating on strings. The specializations required in Table 65 (22.1.1.1.1), namely collate<char> and collate<wchar_t>, apply lexicographic ordering (25.3.8).

2 Each function compares a string of characters $* p$ in the range [low,high).

22.2.4.1.1 collate members

[locale.collate.members]

```
int compare(const charT* low1, const charT* high1,
    const charT* low2, const charT* high2) const;
```


22.2.4.1.2 collate virtual functions

[locale.collate.virtuals]
Returns: do_compare(low1, high1, low2, high2)
string_type transform(const charT* low, const charT* high) const;
Returns: do_transform(low, high)
long hash(const charT* low, const charT* high) const;
Returns: do_hash(low, high)

```
int do_compare(const charT* low1, const charT* high1,
```

 const charT* low2, const charT* high2) const;
    ```
```

```
    const charT* low2, const charT* high2) const;
```

```

Returns: 1 if the first string is greater than the second, -1 if less, zero otherwise. The specializations required in Table 65 (22.1.1.1.1), namely collate<char> and collate<wchar_t>, implement a lexicographical comparison (25.3.8).
string_type do_transform(const charT* low, const charT* high) const;
Returns: A basic_string<charT> value that, compared lexicographically with the result of calling transform() on another string, yields the same result as calling do_compare () on the same two strings. \({ }^{242 \text { ) }}\)
long do_hash(const charT* low, const charT* high) const;
Returns: An integer value equal to the result of calling hash() on any other string for which do_compare() returns 0 (equal) when passed the two strings. [Note: The probability that the result equals that for another string which does not compare equal should be very small, approaching (1.0/numeric_limits<unsigned long>: :max()). -end note]

\subsection*{22.2.4.2 Class template collate_byname}
[locale.collate.byname]
```

namespace std {
template <class charT>
class collate_byname : public collate<charT> {
public:
typedef basic_string<charT> string_type;
explicit collate_byname(const char*, size_t refs = 0);
explicit collate_byname(const string\&, size_t refs = 0);
protected:
~collate_byname(); // virtual

```

\footnotetext{
\({ }^{242)}\) This function is useful when one string is being compared to many other strings.
}
```

 };
    ```
\}

\subsection*{22.2.5 The time category}
[category.time]
1 Templates time_get<charT, InputIterator> and time_put<charT, OutputIterator> provide date and time formatting and parsing. All specifications of member functions for time_put and time_get in the subclauses of 22.2.5 only apply to the specializations required in Tables 65 and 66 (22.1.1.1.1). Their members use their ios_base\&, ios_base: :iostate\&, and fill arguments as described in (22.2), and the ctype<> facet, to determine formatting details.

\subsection*{22.2.5.1 Class template time_get}
[locale.time.get]
```

namespace std {
class time_base {
public:
enum dateorder { no_order, dmy, mdy, ymd, ydm };
};
template <class charT, class InputIterator = istreambuf_iterator<charT> >
class time_get : public locale::facet, public time_base {
public:
typedef charT char_type;
typedef InputIterator iter_type;
explicit time_get(size_t refs = 0);
dateorder date_order() const { return do_date_order(); }
iter_type get_time(iter_type s, iter_type end, ios_base\& f,
ios_base::iostate\& err, tm* t) const;
iter_type get_date(iter_type s, iter_type end, ios_base\& f,
ios_base::iostate\& err, tm* t) const;
iter_type get_weekday(iter_type s, iter_type end, ios_base\& f,
ios_base::iostate\& err, tm* t) const;
iter_type get_monthname(iter_type s, iter_type end, ios_base\& f,
ios_base::iostate\& err, tm* t) const;
iter_type get_year(iter_type s, iter_type end, ios_base\& f,
ios_base::iostate\& err, tm* t) const;
static locale::id id;
protected:
~time_get(); // virtual
virtual dateorder do_date_order() const;
virtual iter_type do_get_time(iter_type s, iter_type end, ios_base\&,
ios_base::iostate\& err, tm* t) const;
virtual iter_type do_get_date(iter_type s, iter_type end, ios_base\&,
ios_base::iostate\& err, tm* t) const;
virtual iter_type do_get_weekday(iter_type s, iter_type end, ios_base\&,
ios_base::iostate\& err, tm* t) const;
virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_base\&,

```
```

 ios_base::iostate& err, tm* t) const;
 virtual iter_type do_get_year(iter_type s, iter_type end, ios_base&,
 ios_base::iostate& err, tm* t) const;
 };
 }

```

1 time_get is used to parse a character sequence, extracting components of a time or date into a struct tm record. Each get member parses a format as produced by a corresponding format specifier to time_put<>: : put. If the sequence being parsed matches the correct format, the corresponding members of the struct tm argument are set to the values used to produce the sequence; otherwise either an error is reported or unspecified values are assigned. \({ }^{243)}\)

2 If the end iterator is reached during parsing by any of the get () member functions, the member sets ios_base: :eofbit in err.
22.2.5.1.1 time_get members
[locale.time.get.members]
dateorder date_order() const;
```

 iter_type get_weekday(iter_type s, iter_type end, ios_base& str,
 ios_base::iostate& err, tm* t) const;
 iter_type get_monthname(iter_type s, iter_type end, ios_base& str,
 ios_base::iostate& err, tm* t) const;
    ```
    Returns: do_get_weekday ( \(s\), end, str, err, \(t\) ) or do_get_monthname( \(s\), end, str, err, \(t\) )
iter_type get_year(iter_type s, iter_type end, ios_base\& str,
                        ios_base::iostate\& err, tm* \(t\) ) const;

Returns: do_get_year ( \(s\), end, str, err, \(t\) )

\subsection*{22.2.5.1.2 time_get virtual functions}
[locale.time.get.virtuals]
dateorder do_date_order() const;
Returns: An enumeration value indicating the preferred order of components for those date formats that are composed of day, month, and year. \({ }^{244)}\) Returns no_order if the date format specified by ' \(x\) ' contains other variable components (e.g. Julian day, week number, week day).

\footnotetext{
\({ }^{243)}\) In other words, user confirmation is required for reliable parsing of user-entered dates and times, but machine-generated formats can be parsed reliably. This allows parsers to be aggressive about interpreting user variations on standard formats.
\({ }^{244)}\) This function is intended as a convenience only, for common formats, and may return no_or der in valid locales.
}
iter_type do_get_time(iter_type s, iter_type end, ios_base\& str, ios_base::iostate\& err, tm* \(t\) ) const;

Effects: Reads characters starting at \(s\) until it has extracted those struct tm members, and remaining format characters, used by time_put<> : : put to produce the format specified by \(\% \mathrm{H}: \% \mathrm{M}: \% \mathrm{~S}\) ", or until it encounters an error or end of sequence.
Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a valid time.
iter_type do_get_date(iter_type s, iter_type end, ios_base\& str, ios_base::iostate\& err, tm* \(t\) ) const;

An implementation may also accept additional implementation-defined formats.
Returns: An iterator pointing immediately beyond the last character recognized as possibly part of a valid date.
```

iter_type do_get_weekday(iter_type s, iter_type end, ios_base\& str,
ios_base::iostate\& err, tm* t) const;
ios_base::iostate\& err, tm* t) const;
iter_type do_get_monthname(iter_type s, iter_type end, ios_base\& str,
iter_type do_get_monthname(iter_type s, iter_type end, ios_base\& str,
ios_base::iostate\& err, tm* t) const;

```
    ios_base::iostate& err, tm* t) const;
```

```
iter_type do_get_year(iter_type s, iter_type end, ios_base& str,
    ios_base::iostate& err, tm* t) const;
```

Effects: Reads characters starting at s until it has extracted an unambiguous year identifier. It is implementationdefined whether two-digit year numbers are accepted, and (if so) what century they are assumed to lie in. Sets the t->tm_year member accordingly.

Returns: An iterator pointing immediately beyond the last character recognized as part of a valid year identifier.
22.2.5.2 Class template time_get_byname
[locale.time.get.byname]

```
namespace std {
    template <class charT, class InputIterator = istreambuf_iterator<charT> >
    class time_get_byname : public time_get<charT, InputIterator> {
    public:
        typedef time_base::dateorder dateorder;
        typedef InputIterator iter_type;
        explicit time_get_byname(const char*, size_t refs = 0);
        explicit time_get_byname(const string&, size_t refs = 0);
    protected:
        ~time_get_byname(); // virtual
    };
}
```


22.2.5.3 Class template time_put

[locale.time.put]

```
namespace std {
    template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
    class time_put : public locale::facet {
    public:
        typedef charT char_type;
        typedef OutputIterator iter_type;
        explicit time_put(size_t refs = 0);
        // the following is implemented in terms of other member functions.
        iter_type put(iter_type s, ios_base& f, char_type fill, const tm* tmb,
                            const charT* pattern, const charT* pat_end) const;
        iter_type put(iter_type s, ios_base& f, char_type fill,
                            const tm* tmb, char format, char modifier = 0) const;
        static locale::id id;
    protected:
        ~time_put(); // virtual
        virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t,
                        char format, char modifier) const;
    };
}
```

22.2.5.3.1 time_put members
[locale.time.put.members]

```
iter_type put(iter_type s, ios_base& str, char_type fill, const tm* t,
    const charT* pattern, const charT* pat_end) const;
iter_type put(iter_type s, ios_base& str, char_type fill, const tm* t,
        char format, char modifier = 0) const;
```

Effects: The first form steps through the sequence from pattern to pat_end, identifying characters that are part of a format sequence. Each character that is not part of a format sequence is written to s immediately, and each format sequence, as it is identified, results in a call to do_put; thus, format elements and other characters are
interleaved in the output in the order in which they appear in the pattern. Format sequences are identified by converting each character c to a char value as if by $c t$. narrow $(c, 0)$, where $c t$ is a reference to ctype<charT> obtained from str.getloc(). The first character of each sequence is equal to ' $\%$ ', followed by an optional modifier character mod ${ }^{245)}$ and a format specifier character spec as defined for the function strftime. If no modifier character is present, mod is zero. For each valid format sequence identified, calls do_put (s, str, fill, t, spec, mod).

The second form calls do_put(s, str, fill, t, format, modifier).
[Note: The fill argument may be used in the implementation-defined formats, or by derivations. A space character is a reasonable default for this argument. - end note]

Returns: An iterator pointing immediately after the last character produced.

22.2.5.3.2 time_put virtual functions

[locale.time.put.virtuals]

```
iter_type do_put(iter_type s, ios_base&, char_type fill, const tm* t,
char format, char modifier) const;
```

Effects: Formats the contents of the parameter t into characters placed on the output sequence s. Formatting is controlled by the parameters format and modifier, interpreted identically as the format specifiers in the string argument to the standard library function strftime(). ${ }^{246)}$ except that the sequence of characters produced for those specifiers that are described as depending on the C locale are instead implementation-defined. ${ }^{247 \text {) }}$

Returns: An iterator pointing immediately after the last character produced. [Note: The fill argument may be used in the implementation-defined formats, or by derivations. A space character is a reasonable default for this argument. -end note]
22.2.5.4 Class template time_put_byname

```
namespace std {
    template <class charT, class OutputIterator = ostreambuf_iterator<charT> >
    class time_put_byname : public time_put<charT, OutputIterator>
    {
    public:
        typedef charT char_type;
        typedef OutputIterator iter_type;
        explicit time_put_byname(const char*, size_t refs = 0);
        explicit time_put_byname(const string&, size_t refs = 0);
    protected:
        ~time_put_byname(); // virtual
        };
}
```

[^146]
22.2.6 The monetary category

[category.monetary]
1 These templates handle monetary formats. A template parameter indicates whether local or international monetary formats are to be used.

2 All specifications of member functions for money_put and money_get in the subclauses of 22.2 .6 only apply to the specializations required in Tables 65 and 66 (22.1.1.1.1). Their members use their ios_base\&, ios_base : : iostate\&, and $f i l l$ arguments as described in (22.2), and the moneypunct<> and ctype<> facets, to determine formatting details.

22.2.6.1 Class template money_get

[locale.money.get]

```
namespace std {
    template <class charT,
                        class InputIterator = istreambuf_iterator<charT> >
    class money_get : public locale::facet {
    public:
        typedef charT char_type;
        typedef InputIterator iter_type;
        typedef basic_string<charT> string_type;
        explicit money_get(size_t refs = 0);
        iter_type get(iter_type s, iter_type end, bool intl,
                                    ios_base& f, ios_base::iostate& err,
                                    long double& units) const;
        iter_type get(iter_type s, iter_type end, bool intl,
                        ios_base& f, ios_base::iostate& err,
                        string_type& digits) const;
        static locale::id id;
    protected:
        ~money_get(); // virtual
        virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,
                                    ios_base::iostate& err, long double& units) const;
        virtual iter_type do_get(iter_type, iter_type, bool, ios_base&,
                        ios_base::iostate& err, string_type& digits) const;
    };
}
```

22.2.6.1.1 money_get members
[locale.money.get.members]

```
iter_type get(iter_type s, iter_type end, bool intl,
        ios_base& f, ios_base::iostate& err,
    long double& quant) const;
iter_type get(s, iter_type end, bool intl, ios_base&f,
    ios_base::iostate& err, string_type& quant) const;
1 Returns: do_get(s, end, intl, f, err, quant)
```

Draft
22.2.6.1.2 money_get virtual functions

```
iter_type do_get(iter_type s, iter_type end, bool intl,
    ios_base& str, ios_base::iostate& err,
    long double& units) const;
iter_type do_get(iter_type s, iter_type end, bool intl,
    ios_base& str, ios_base::iostate& err,
    string_type& digits) const;
```

Effects: Reads characters from s to parse and construct a monetary value according to the format specified by a moneypunct<charT, Intl> facet reference mp and the character mapping specified by a ctype<charT> facet reference $c t$ obtained from the locale returned by str.getloc(), and str.flags(). If a valid sequence is recognized, does not change err; otherwise, sets err to (err|str.failbit), or (err|str.failbit|str.eofbit) if no more characters are available, and does not change units or digits. Uses the pattern returned by mp. neg_format () to parse all values. The result is returned as an integral value stored in units or as a sequence of digits possibly preceded by a minus sign (as produced by ct.widen(c) where c is ' -' or in the range from ' 0 ' through ' 9 ', inclusive) stored in digits. [Example: The sequence $\$ 1,056.23$ in a common United States locale would yield, for units, 105623, or, for digits, "105623". - end example] If mp.grouping() indicates that no thousands separators are permitted, any such characters are not read, and parsing is terminated at the point where they first appear. Otherwise, thousands separators are optional; if present, they are checked for correct placement only after all format components have been read.

Where space or none appears in the format pattern, except at the end, optional white space (as recognized by ct.is) is consumed after any required space. If (str.flags () \& str.showbase) is false, the currency symbol is optional and is consumed only if other characters are needed to complete the format; otherwise, the currency symbol is required.

If the first character (if any) in the string pos returned by mp.positive_sign() or the string neg returned by mp.negative_sign() is recognized in the position indicated by sign in the format pattern, it is consumed and any remaining characters in the string are required after all the other format components. [Example: If showbase is off, then for a neg value of " () " and a currency symbol of "L", in " (100 L) " the "L" is consumed; but if neg is "-", the "L" in "-100 L" is not consumed. -end example] If pos or neg is empty, the sign component is optional, and if no sign is detected, the result is given the sign that corresponds to the source of the empty string. Otherwise, the character in the indicated position must match the first character of pos or neg, and the result is given the corresponding sign. If the first character of pos is equal to the first character of neg, or if both strings are empty, the result is given a positive sign.

Digits in the numeric monetary component are extracted and placed in digits, or into a character buffer buf1 for conversion to produce a value for units, in the order in which they appear, preceded by a minus sign if and only if the result is negative. The value units is produced as if by ${ }^{248)}$

```
for (int i = 0; i < n; ++i)
    buf2[i] = src[find(atoms, atoms+sizeof(src), buf1[i]) - atoms];
buf2[n] = 0;
sscanf(buf2, "%Lf", &units);
```

where n is the number of characters placed in buf 1 , buf 2 is a character buffer, and the values src and atoms are defined as if by

[^147]```
static const char src[] = "0123456789-";
charT atoms[sizeof(src)];
ct.widen(src, src + sizeof(src) - 1, atoms);
```


### 22.2.6.2 Class template money_put

[locale.money.put]

```
namespace std {
 template <class charT,
 class OutputIterator = ostreambuf_iterator<charT> >
 class money_put : public locale::facet {
 public:
 typedef charT char_type;
 typedef OutputIterator iter_type;
 typedef basic_string<charT> string_type;
 explicit money_put(size_t refs = 0);
 iter_type put(iter_type s, bool intl, ios_base& f,
 char_type fill, long double units) const;
 iter_type put(iter_type s, bool intl, ios_base& f,
 char_type fill, const string_type& digits) const;
 static locale::id id;
 protected:
 ~money_put(); // virtual
 virtual iter_type
 do_put(iter_type, bool, ios_base&, char_type fill,
 long double units) const;
 virtual iter_type
 do_put(iter_type, bool, ios_base&, char_type fill,
 const string_type& digits) const;
 };
}
```

22.2.6.2.1 money_put members

```
iter_type put(iter_type s, bool intl, ios_base& f, char_type fill,
 long double quant) const;
iter_type put(iter_type s, bool intl, ios_base& f, char_type fill,
 const string_type& quant) const;
 Returns: do_put(s, intl, f, loc, quant)
```

22.2.6.2.2 money_put virtual functions
[locale.money.put.virtuals]

```
iter_type do_put(iter_type s, bool intl, ios_base& str,
 char_type fill, long double units) const;
iter_type do_put(iter_type s, bool intl, ios_base& str,
 char_type fill, const string_type& digits) const;
```

1 Effects: Writes characters to saccording to the format specified by a moneypunct<charT, Intl> facet reference mp and the character mapping specified by a ctype<charT> facet reference ct obtained from the locale returned by str.getloc(), and str.flags(). The argument units is transformed into a sequence of wide characters as if by

```
ct.widen(buf1, buf1 + sprintf(buf1, "%.OLf", units), buf2)
```

for character buffers buf 1 and buf2. If the first character in digits or buf 2 is equal to ct.widen('-'), then the pattern used for formatting is the result of mp.neg_format () ; otherwise the pattern is the result of mp.pos_format(). Digit characters are written, interspersed with any thousands separators and decimal point specified by the format, in the order they appear (after the optional leading minus sign) in digits or buf2. In digits, only the optional leading minus sign and the immediately subsequent digit characters (as classified according to ct ) are used; any trailing characters (including digits appearing after a non-digit character) are ignored. Calls str.width(0).

Remarks: The currency symbol is generated if and only if (str.flags() \& str.showbase) is nonzero. If the number of characters generated for the specified format is less than the value returned by str.width() on entry to the function, then copies of fill are inserted as necessary to pad to the specified width. For the value af equal to (str.flags() \& str.adjustfield), if (af == str.internal) is true, the fill characters are placed where none or space appears in the formatting pattern; otherwise if (af $==s t r$.left) is true, they are placed after the other characters; otherwise, they are placed before the other characters. [Note: It is possible, with some combinations of format patterns and flag values, to produce output that cannot be parsed using num_get<> : : get. - end note]

Returns: An iterator pointing immediately after the last character produced.

### 22.2.6.3 Class template moneypunct

```
namespace std {
 class money_base {
 public:
 enum part { none, space, symbol, sign, value };
 struct pattern { char field[4]; };
 };
 template <class charT, bool International = false>
 class moneypunct : public locale::facet, public money_base {
 public:
 typedef charT char_type;
 typedef basic_string<charT> string_type;
 explicit moneypunct(size_t refs = 0);
 charT decimal_point() const;
```

```
 charT thousands_sep() const;
 string grouping() const;
 string_type curr_symbol() const;
 string_type positive_sign() const;
 string_type negative_sign() const;
 int frac_digits() const;
 pattern pos_format() const;
 pattern neg_format() const;
 static locale::id id;
 static const bool intl = International;
 protected:
 ~moneypunct(); // virtual
 virtual charT do_decimal_point() const;
 virtual charT do_thousands_sep() const;
 virtual string do_grouping() const;
 virtual string_type do_curr_symbol() const;
 virtual string_type do_positive_sign() const;
 virtual string_type do_negative_sign() const;
 virtual int do_frac_digits() const;
 virtual pattern do_pos_format() const;
 virtual pattern do_neg_format() const;
 };
}
```

1 The moneypunct<> facet defines monetary formatting parameters used by money_get<> and money_put<>. A monetary format is a sequence of four components, specified by a pattern value $p$, such that the part value static_cast<part> (p.field[i]) determines the ith component of the format ${ }^{249)}$ In the field member of a pattern object, each value symbol, sign, value, and either space or none appears exactly once. The value none, if present, is not first; the value space, if present, is neither first nor last.

2 Where none or space appears, white space is permitted in the format, except where none appears at the end, in which case no white space is permitted. The value space indicates that at least one space is required at that position. Where symbol appears, the sequence of characters returned by curr_symbol() is permitted, and can be required. Where sign appears, the first (if any) of the sequence of characters returned by positive_sign() or negative_sign() (respectively as the monetary value is non-negative or negative) is required. Any remaining characters of the sign sequence are required after all other format components. Where value appears, the absolute numeric monetary value is required.

3 The format of the numeric monetary value is a decimal number:

```
value ::= units [decimal-point [digits]] |
 decimal-point digits
```

if frac_digits() returns a positive value, or
value ::= units

[^148]otherwise. The symbol decimal-point indicates the character returned by decimal_point(). The other symbols are defined as follows:

```
units ::= digits [thousands-sep units]
digits ::= adigit [digits]
```

In the syntax specification, the symbol adigit is any of the values ct.widen(c) for cin the range ' 0 ' through ' 9 ', inclusive, and ct is a reference of type const ctype<charT>\& obtained as described in the definitions of money_get<> and money_put<>. The symbol thousands-sep is the character returned by thousands_sep(). The space character used is the value ct.widen(' '). White space characters are those characters c for which ci.is (space, c) returns true. The number of digits required after the decimal point (if any) is exactly the value returned by frac_digits().

4 The placement of thousands-separator characters (if any) is determined by the value returned by grouping(), defined identically as the member numpunct<>: :do_grouping().
22.2.6.3.1 moneypunct members
[locale.moneypunct.members]

charT	decimal_point() const;	
charT	thousands_sep()	const;
String	grouping()	const;
string_type	curr_symbol()	const;
string_type	positive_sign() const;	
string_type	negative_sign() const;	
int	frac_digits()	const;
pattern	pos_format()	const;
pattern	neg_format()	const;

1 Each of these functions F returns the result of calling the corresponding virtual member function do_F().
22.2.6.3.2 moneypunct virtual functions
[locale.moneypunct.virtuals]
charT do_decimal_point() const;
Returns: The radix separator to use in case do_frac_digits() is greater than zero. ${ }^{250}$ )
charT do_thousands_sep() const;
Returns: The digit group separator to use in case do_grouping () specifies a digit grouping pattern. ${ }^{251)}$
string do_grouping() const;
Returns: A pattern defined identically as, but not necessarily equal to, the result of numpunct<charT>: : do_grouping(). ${ }^{252)}$
string_type do_curr_symbol() const;
Returns: A string to use as the currency identifier symbol. ${ }^{253)}$

[^149]```
string_type do_positive_sign() const;
string_type do_negative_sign() const;
```

```
pattern do_pos_format() const;
pattern do_neg_format() const;
```

Returns: The specializations required in Table 66 (22.1.1.1.1), namely moneypunct<char>, moneypunct<wchar_$t>$, moneypunct<char, true>, and moneypunct<wchar_t, true>, return an object of type pattern initialized to \{ symbol, sign, none, value \}. ${ }^{256)}$

22.2.6.4 Class template moneypunct_byname

[locale.moneypunct.byname]

```
namespace std {
    template <class charT, bool Intl = false>
    class moneypunct_byname : public moneypunct<charT, Intl> {
    public:
        typedef money_base::pattern pattern;
        typedef basic_string<charT> string_type;
        explicit moneypunct_byname(const char*, size_t refs = 0);
        explicit moneypunct_byname(const string&, size_t refs = 0);
    protected:
        ~moneypunct_byname(); // virtual
    };
}
```


22.2.7 The message retrieval category

[category.messages]
1 Class messages<charT> implements retrieval of strings from message catalogs.

22.2.7.1 Class template messages

[locale.messages]

```
namespace std {
    class messages_base {
    public:
        typedef int catalog;
    };
    template <class charT>
    class messages : public locale::facet, public messages_base {
    public:
```

[^150]Draft

```
    typedef charT char_type;
    typedef basic_string<charT> string_type;
    explicit messages(size_t refs = 0);
    catalog open(const basic_string<char>& fn, const locale&) const;
    string_type get(catalog c, int set, int msgid,
                    const string_type& dfault) const;
    void close(catalog c) const;
    static locale::id id;
    protected:
    ~messages(); // virtual
        virtual catalog do_open(const basic_string<char>&, const locale&) const;
        virtual string_type do_get(catalog, int set, int msgid,
                                    const string_type& dfault) const;
        virtual void do_close(catalog) const;
    };
}
```

1 Values of type messages_base : :catalog usable as arguments to members get and close can be obtained only by calling member open.
22.2.7.1.1 messages members
[locale.messages.members]
catalog open(const basic_string<char>\& name, const locale\& loc) const;
Returns: do_open(name, loc).
string_type get(catalog cat, int set, int msgid,
const string_type\& dfault) const;
Returns: do_get(cat, set, msgid, dfault).
void close(catalog cat) const;
Effects: Calls do_close (cat).

22.2.7.1.2 messages virtual functions

[locale.messages.virtuals]

```
catalog do_open(const basic_string<char>& name,
    const locale& loc) const;
```

Returns: A value that may be passed to get () to retrieve a message, from the message catalog identified by the string name according to an implementation-defined mapping. The result can be used until it is passed to close().

Returns a value less than 0 if no such catalog can be opened.
Remarks: The locale argument loc is used for character set code conversion when retrieving messages, if needed.

```
string_type do_get(catalog cat, int set, int msgid,
```

 const string_type\& dfault) const;
 Requires: A catalog cat obtained from open() and not yet closed.
Returns: A message identified by arguments set, msgid, and dfault, according to an implementation-defined mapping. If no such message can be found, returns $d f a u l t$.

```
void do_close(catalog cat) const;
```

Requires: A catalog cat obtained from open() and not yet closed.
Effects: Releases unspecified resources associated with cat.
Remarks: The limit on such resources, if any, is implementation-defined.

22.2.7.2 Class template messages_byname

[locale.messages.byname]

```
namespace std {
    template <class charT>
    class messages_byname : public messages<charT> {
    public:
        typedef messages_base::catalog catalog;
        typedef basic_string<charT> string_type;
        explicit messages_byname(const char*, size_t refs = 0);
        explicit messages_byname(const string&, size_t refs = 0);
    protected:
        ~messages_byname(); // virtual
    };
}
```


22.2.8 Program-defined facets

[facets.examples]
1 A C++ program may define facets to be added to a locale and used identically as the built-in facets. To create a new facet interface, C++ programs simply derive from locale : :facet a class containing a static member: static locale::id id.

2 [Note: The locale member function templates verify its type and storage class. - end note]
3 [Note: This paragraph is intentionally empty. - end note]
4 [Example: Traditional global localization is still easy:

```
#include <iostream>
#include <locale>
int main(int argc, char** argv)
{
    using namespace std;
    locale::global(locale("")); // set the global locale
                            // imbue it on all the std streams
    cin.imbue(locale());
```

```
        cout.imbue(locale());
        cerr.imbue(locale());
        wcin.imbue(locale());
        wcout.imbue(locale());
        wcerr.imbue(locale());
    return MyObject(argc, argv).doit();
        }
_ end example ]
5 [Example: Greater flexibility is possible:
```

```
#include <iostream>
```

\#include <iostream>
\#include <locale>
\#include <locale>
int main()
int main()
{
{
using namespace std;
using namespace std;
cin.imbue(locale("")); // the user's preferred locale
cin.imbue(locale("")); // the user's preferred locale
cout.imbue(locale::classic());
cout.imbue(locale::classic());
double f;
double f;
while (cin >> f) cout << f << endl;
while (cin >> f) cout << f << endl;
return (cin.fail() != 0);
return (cin.fail() != 0);
}

```
}
```

In a European locale, with input 3.456,78, output is 3456.78 . - end example]
6 This can be important even for simple programs, which may need to write a data file in a fixed format, regardless of a user's preference.

7 [Example: Here is an example of the use of locales in a library interface.

```
// file: Date.h
#include <iosfwd>
#include <string>
#include <locale>
    ...
class Date {
    public:
    Date(unsigned day, unsigned month, unsigned year);
    std::string asString(const std::locale& = std::locale());
};
istream& operator>>(istream& s, Date& d);
ostream& operator<<(ostream& s, Date d);
...
```

8 This example illustrates two architectural uses of class locale.
9 The first is as a default argument in Date: :asString(), where the default is the global (presumably user-preferred) locale.

10 The second is in the operators << and >>, where a locale "hitchhikes" on another object, in this case a stream, to the point where it is needed.

```
// file: Date.C
#include "Date" // includes <ctime>
#include <sstream>
std::string Date::asString(const std::locale& l)
{
    using namespace std;
    ostringstream s; s.imbue(l);
    s << *this; return s.str();
}
std::istream& operator>>(std::istream& s, Date& d)
{
    using namespace std;
    istream::sentry cerberos(s);
    if (cerberos) {
        ios_base::iostate err = goodbit;
        struct tm t;
        use_facet< time_get<char> >(s.getloc()).get_date(s, 0, s, err, &t);
        if (!err) d = Date(t.tm_day, t.tm_mon + 1, t.tm_year + 1900);
        s.setstate(err);
    }
    return s;
}
_ end example ]
```

11 A locale object may be extended with a new facet simply by constructing it with an instance of a class derived from locale::facet. The only member a C++ program must define is the static member id, which identifies your class interface as a new facet.
[Example: Classifying Japanese characters:

```
// file: <jctype>
#include <locale>
namespace My {
    using namespace std;
    class JCtype : public locale::facet {
    public:
        static locale::id id; // required for use as a new locale facet
        bool is_kanji (wchar_t c) const;
        JCtype() {}
    protected:
        ~JCtype() {}
    };
}
// file: filt.C
#include <iostream>
```

```
#include <locale>
#include "jctype" // above
std::locale::id My::JCtype::id; // the static JCtype member declared above.
int main()
{
    using namespace std;
    typedef ctype<wchar_t> wctype;
    locale loc(locale(""), // the user's preferred locale ...
new My::JCtype); // and a new feature ...
    wchar_t c = use_facet<wctype>(loc).widen('!');
    if (!use_facet<My::JCtype>(loc).is_kanji(c))
            cout << "no it isn't!" << endl;
    return 0;
}
```

13 The new facet is used exactly like the built-in facets. - end example]
14 [Example: Replacing an existing facet is even easier. Here we do not define a member id because we are reusing the numpunct<charT> facet interface:

```
// file: my_bool.C
#include <iostream>
#include <locale>
#include <string>
namespace My {
    using namespace std;
    typedef numpunct_byname<char> cnumpunct;
    class BoolNames : public cnumpunct {
        protected:
            string do_truename() const { return "Oui Oui!"; }
            string do_falsename() const { return "Mais Non!"; }
            ~BoolNames() {}
    public:
        BoolNames(const char* name) : cnumpunct(name) {}
    };
}
int main(int argc, char** argv)
{
    using namespace std;
    // make the user's preferred locale, except for..
    locale loc(locale(""), new My::BoolNames(""));
    cout.imbue(loc);
    cout << boolalpha << "Any arguments today? " << (argc > 1) << endl;
    return 0;
}
```

- end example]
22.3 C Library Locales
[c.locales]
1 Header <clocale> (Table 77):

Table 77: Header <clocale> synopsis

| Type | | Name(s) | |
| :--- | :--- | :--- | :--- |
| Macros: | LC_ALL | LC_COLLATE | LC_CTYPE |
| | LC_MONETARY | LC_NUMERIC | LC_TIME |
| | NULL | | |
| Struct: | lconv | | |
| Functions: | localeconv | setlocale | |

2 The contents are the same as the Standard C library header <locale.h>.
See also: ISO C clause 7.4.

Chapter 23 Containers library

[containers]

1 This clause describes components that C++ programs may use to organize collections of information.
2 The following subclauses describe container requirements, and components for sequences and associative containers, as summarized in Table 78:

Table 78: Containers library summary

| Subclause | Header(s) |
| :--- | :--- |
| 23.1 Requirements | |
| 23.2 Sequences | <array> |
| | <deque> |
| | <list> |
| | <queue> |
| | <stack> |
| | <vector> |
| 23.3 Associative containers | <map> |
| | <set> |
| 23.3.5 bitset | <bitset> |
| 23.4 Unordered associative containers | <unordered_map> |
| | <unordered_set> |

23.1 Container requirements

[container.requirements]
1 Containers are objects that store other objects. They control allocation and deallocation of these objects through constructors, destructors, insert and erase operations.

2 All of the complexity requirements in this clause are stated solely in terms of the number of operations on the contained objects. [Example: the copy constructor of type vector <vector<int\gg has linear complexity, even though the complexity of copying each contained vector<int> is itself linear. - end example]

3 The type of objects stored in these components shall meet the requirements of CopyConstructible types (20.1.3).
4 Table 79 defines the Assignable requirement. Some containers require this property of the types to be stored in the container. T is the type used to instantiate the container, t is a value of T , and u is a value of (possibly const) T .

5 In Tables 80 and $81, \mathrm{X}$ denotes a container class containing objects of type T , a and b denote values of type X , u denotes an identifier and r denotes a value of $\mathrm{X} \&$.

Table 79: Assignable requirements

| expression | return type | post-condition |
| :--- | :---: | :---: |
| $\mathrm{t}=\mathrm{u}$ | $\mathrm{T} \&$ | t is equivalent to u |

Table 80: Container requirements

| expression | return type | operational semantics | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { X::value_- } \\ & \text { type } \end{aligned}$ | T | | T is CopyConstructible | compile time |
| X: :reference | lvalue of T | | | compile time |
| $\begin{aligned} & \text { X::const_- } \\ & \text { reference } \end{aligned}$ | const lvalue of T | | | compile time |
| X: :iterator | iterator type whose value type is T | | any iterator category except output iterator. convertible to X: :const_iterator. | compile time |
| $\begin{aligned} & \text { X:: const_- } \\ & \text { iterator } \end{aligned}$ | constant iterator type whose value type is T | | any iterator category except output iterator | compile time |
| $\begin{aligned} & \text { X::dif- } \\ & \text { ference_type } \end{aligned}$ | signed integral type | | is identical to the difference type of X: :iterator and X::const_iterator | compile time |
| X: :size_type | unsigned integral type | | size_type can represent any non-negative value of difference_type | compile time |
| X u; | | | post: u.size() == 0 | constant |
| X () ; | | | X ().size() == 0 | constant |
| X (a) ; | | | $\mathrm{a}==\mathrm{X}(\mathrm{a})$. | linear |
| $\begin{aligned} & X \quad u(a) ; \\ & X u=a ; \end{aligned}$ | | | post: $u==\mathrm{a}$
 Equivalent to: X u ; u = a; | linear |
| (\&a)->~X() ; | void | | note: the destructor is applied to every element of a; all the memory is deallocated. | linear |
| a.begin(); | iterator; const_iterator for constant a | | | constant |

| expression | return type | operational semantics | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: | :---: |
| a.end(); | iterator; const_iterator for constant a | | | constant |
| a.cbegin(); | $\begin{aligned} & \text { const_- } \\ & \text { iterator } \end{aligned}$ | $\begin{aligned} & \text { const_cast<X } \\ & \text { const\&>(a).begin(); } \end{aligned}$ | | constant |
| a.cend() ; | const_-
 iterator | ```const_cast<X const&>(a).end();``` | | constant |
| $\mathrm{a}=\mathrm{b}$ | convertible to bool | | ```== is an equivalence relation. a.size() == b.size() && equal(a.begin(), a.end(), b.begin()``` | linear |
| a ! = b | convertible to bool | | Equivalent to: ! (a == b) | linear |
| a.swap(b); | void | | swap (a,b) | (Note A) |
| $\mathrm{r}=\mathrm{a}$ | X\& | | post: $\mathrm{r}==\mathrm{a}$. | linear |
| a.size() | size_type | $\begin{aligned} & \hline \text { a.end() - } \\ & \text { a.begin() } \end{aligned}$ | | (Note A) |
| a.max_size() | size_type | size() of the largest possible container | | (Note A) |
| a.empty () | convertible to bool | a.size() == 0 | | constant |
| $\mathrm{a}<\mathrm{b}$ | convertible to bool | ```lexicographical_- compare(a.begin(), a.end(), b.begin(), b.end())``` | pre: < is defined for values of T. < is a total ordering relationship. | linear |
| $\mathrm{a}>\mathrm{b}$ | convertible to bool | b < a | | linear |
| $\mathrm{a}<=\mathrm{b}$ | convertible to bool | ! a > b) | | linear |
| a >= b | convertible to bool | ! $(\mathrm{a}<\mathrm{b})$ | | linear |

Notes: the algorithms swap(), equal() and lexicographical_compare() are defined in clause 25. Those entries marked "(Note A)" should have constant complexity.

6 The member function size() returns the number of elements in the container. Its semantics is defined by the rules of constructors, inserts, and erases.

7 begin() returns an iterator referring to the first element in the container. end() returns an iterator which is the past-the-end value for the container. If the container is empty, then begin() == end();

8 In the expressions

```
i == j
i != j
i < j
i <= j
i >= j
i > j
i - j
```

where i and j denote objects of a container's iterator type, either or both may be replaced by an object of the container's const_iterator type referring to the same element with no change in semantics.

9 Copy constructors for all container types defined in this clause copy an allocator argument from their respective first parameters. All other constructors for these container types take an Allocator\& argument (20.1.6), an allocator whose value type is the same as the container's value type. A copy of this argument is used for any memory allocation performed, by these constructors and by all member functions, during the lifetime of each container object. In all container types defined in this clause, the member get_allocator () returns a copy of the Allocator object used to construct the container. ${ }^{257)}$

10 If the iterator type of a container belongs to the bidirectional or random access iterator categories (24.1), the container is called reversible and satisfies the additional requirements in Table 81.

Table 81: Reversible container requirements

| expression | return type | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| X: :reverse_-
 iterator | iterator type pointing to T | reverse_iterator<iterator> | compile time |
| X: :const_-
 reverse_-
 iterator | iterator type pointing to const T | ```reverse_iterator<const_- iterator>``` | compile time |
| a.rbegin() | reverse_iterator;
 const_reverse_iterator for constant a | reverse_iterator(end()) | constant |
| ```a.rend() a.crbegin();``` | ```reverse_iterator; const_reverse_iterator for constant a const_reverse_iterator``` | ```reverse_iterator(begin()) const_cast<X const&>(a).rbegin();``` | constant
 constant |
| a.crend (); | const_reverse_iterator | $\begin{aligned} & \text { const_cast<X } \\ & \text { const\&> (a).rend(); } \end{aligned}$ | constant |

[^151]11 Unless otherwise specified (see 23.2.2.3 and 23.2.5.4) all container types defined in this clause meet the following additional requirements:

- if an exception is thrown by an insert () function while inserting a single element, that function has no effects.
- if an exception is thrown by a push_back () or push_front () function, that function has no effects.
- no erase(), pop_back() or pop_front() function throws an exception.
- no copy constructor or assignment operator of a returned iterator throws an exception.
- no swap() function throws an exception unless that exception is thrown by the copy constructor or assignment operator of the container's Compare object (if any; see 23.1.2).
- no swap() function invalidates any references, pointers, or iterators referring to the elements of the containers being swapped.

12 Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a container member function or passing a container as an argument to a library function shall not invalidate iterators to, or change the values of, objects within that container.

23.1.1 Sequences

[sequence.reqmts]
1 A sequence is a kind of container that organizes a finite set of objects, all of the same type, into a strictly linear arrangement. The library provides three basic kinds of sequence containers: vector, list, and deque. It also provides container adaptors that make it easy to construct abstract data types, such as stacks or queues, out of the basic sequence kinds (or out of other kinds of sequences that the user might define).

2 vector, list, and deque offer the programmer different complexity trade-offs and should be used accordingly. vector is the type of sequence that should be used by default. list should be used when there are frequent insertions and deletions from the middle of the sequence. deque is the data structure of choice when most insertions and deletions take place at the beginning or at the end of the sequence.

3 In Tables 82 and 83 , X denotes a sequence class, a denotes a value of X, i and j denote iterators satisfying input iterator requirements, $[i, j$) denotes a valid range, n denotes a value of $X::$ size_type, p denotes a valid iterator to a, q denotes a valid dereferenceable iterator to a, [q1, q2) denotes a valid range in a, and denotes a value of X: :value_type.

4 The complexities of the expressions are sequence dependent.
Table 82: Sequence requirements (in addition to container)

| expression | return type | assertion/note pre/post-condition |
| :---: | :---: | :---: |
| $\begin{aligned} & X(n, t) \\ & X a(n, t) \end{aligned}$ | | post: size() == n constructs a sequence with n copies of t |
| $\begin{aligned} & X(i, j) \\ & X a(i, j) \end{aligned}$ | | post: size() == distance between i and j constructs a sequence equal to the range $[i, j$) |
| a.insert (p,t) | iterator | inserts a copy of t before p |
| a.insert ($\mathrm{p}, \mathrm{n}, \mathrm{t}$) | void | inserts n copies of t before p |

| expression | return type | assertion/note pre/post-condition |
| :---: | :---: | :---: |
| a.insert (p,i,j) | void | pre: i and j are not iterators into a. inserts copies of elements in [i, j) before p |
| a.erase (q) | iterator | erases the element pointed to by q |
| a.erase (q1,q2) | iterator | erases the elements in the range [q1, q2). |
| a.clear () | void | $\begin{aligned} & \text { erase(begin(), end()) } \\ & \text { post: size() }==0 \end{aligned}$ |
| a.assign(i,j) | void | pre: i, j are not iterators into a.
 Replaces elements in a with a copy of [i, j). |
| a.assign (n,t) | void | pre: t is not a reference into a.
 Replaces elements in a with n copies of t. |

5 iterator and const_iterator types for sequences shall be at least of the forward iterator category.
6 The iterator returned from a.insert (p, t) points to the copy of t inserted into a.
7 The iterator returned from a. erase (q) points to the element immediately following q prior to the element being erased. If no such element exists, a.end() is returned.

8 The iterator returned by a.erase (q1,q2) points to the element pointed to by q2 prior to any elements being erased. If no such element exists, a.end() is returned.

9 For every sequence defined in this clause and in clause 21:

- If the constructor

```
template <class InputIterator>
X(InputIterator first, InputIterator last,
    const allocator_type& alloc = allocator_type())
```

is called with a type InputIterator that does not qualify as an input iterator, then the constructor will behave as if the overloaded constructor:

```
X(size_type, const value_type& = value_type(),
    const allocator_type& = allocator_type())
```

were called instead, with the arguments static_cast<size_type>(first), last and alloc, respectively.

- If the member functions of the forms:

```
template <class InputIterator> // such as insert()
rt fx1(iterator p, InputIterator first, InputIterator last);
template <class InputIterator> // such as append(), assign()
rt fx2(InputIterator first, InputIterator last);
template <class InputIterator> // such as replace()
rt fx3(iterator i1, iterator i2, InputIterator first, InputIterator last);
```

are called with a type InputIterator that does not qualify as an input iterator, then these functions will behave as if the overloaded member functions:

```
rt fx1(iterator, size_type, const value_type&);
rt fx2(size_type, const value_type&);
rt fx3(iterator, iterator, size_type, const value_type&);
```

were called instead, with the same arguments.
10 In the previous paragraph the alternative binding will fail if first is not implicitly convertible to X : : size_type or if last is not implicitly convertible to $\mathrm{X}:$: value_type.

11 The extent to which an implementation determines that a type cannot be an input iterator is unspecified, except that as a minimum integral types shall not qualify as input iterators.

12 Table 83 lists sequence operations that are provided for some types of sequential containers but not others. An implementation shall provide these operations for all container types shown in the "container" column, and shall implement them so as to take amortized constant time.

Table 83: Optional sequence operations

| expression | return type | assertion/note pre/post-condition | container |
| :---: | :---: | :---: | :---: |
| a.front () | reference; const_reference for constant a | *a.begin() | vector, list, deque |
| a.back() | reference; const_reference for constant a | ```{ iterator tmp = a.end(); --tmp; return *tmp; }``` | vector, list, deque |
| a.push_-
 front (x) | void | a.insert (a.begin (), x) | list, deque |
| $\begin{aligned} & \text { a.push_- } \\ & \text { back(x) } \end{aligned}$ | void | a.insert (a.end (), x) | vector, list, deque |
| $\begin{aligned} & \text { a.pop_- } \\ & \text { front() } \end{aligned}$ | void | a.erase(a.begin()) | list, deque |
| a.pop_back() | void | ```{ iterator tmp = a.end(); --tmp; a.erase(tmp); }``` | vector, list, deque |
| a [n] | reference; const_reference for constant a | *(a.begin() + n) | vector, deque |
| a.at (n) | reference; const_reference for constant a | *(a.begin() + n) | vector, deque |

13 The member function at () provides bounds-checked access to container elements. at () throws out_of_range if n >= a.size().

23.1.2 Associative containers

1 Associative containers provide an ability for fast retrieval of data based on keys. The library provides four basic kinds of associative containers: set, multiset, map and multimap.

2 Each associative container is parameterized on Key and an ordering relation Compare that induces a strict weak ordering (25.3) on elements of Key. In addition, map and multimap associate an arbitrary type T with the Key. The object of type Compare is called the comparison object of a container. This comparison object may be a pointer to function or an object of a type with an appropriate function call operator.

3 The phrase "equivalence of keys" means the equivalence relation imposed by the comparison and not the operator== on keys. That is, two keys k 1 and k 2 are considered to be equivalent if for the comparison object comp, comp (k 1 , k 2) $==\mathrm{false} \& \& \operatorname{comp}(k 2, k 1)==\mathrm{false}$. For any two keys $k 1$ and $k 2$ in the same container, calling comp (k1, k2) shall always return the same value.

4 An associative container supports unique keys if it may contain at most one element for each key. Otherwise, it supports equivalent keys. The set and map classes support unique keys; the multiset and multimap classes support equivalent keys. For multiset and multimap, insert and erase preserve the relative ordering of equivalent elements.

5 For set and multiset the value type is the same as the key type. For map and multimap it is equal to pair<const Key, $\mathrm{T}>$. Keys in an associative container are immutable.

6 iterator of an associative container is of the bidirectional iterator category. For associative containers where the value type is the same as the key type, both iterator and const_iterator are constant iterators. It is unspecified whether or not iterator and const_iterator are the same type.

7 In Table 84, X is an associative container class, a is a value of X , a_uniq is a value of X when X supports unique keys, and a_eq is a value of X when X supports multiple keys, i and j satisfy input iterator requirements and refer to elements of value_type, $[i, j$) is a valid range, p is a valid iterator to a, q is a valid dereferenceable iterator to a,
 X: :key_compare.

Table 84: Associative container requirements (in addition to container)

| expression | return type | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| X: :key_type | Key | Key is CopyConstructible and Assignable | compile time |
| X::key_- compare | Compare | defaults to less<key_type> | compile time |
| X::value_-
 compare | a binary predicate type | is the same as key_compare for set and multiset; is an ordering relation on pairs induced by the first component (i.e. Key) for map and multimap. | compile time |
| $\begin{aligned} & \mathrm{X}(\mathrm{c}) \\ & \mathrm{X} \quad \mathrm{a}(\mathrm{c}) ; \end{aligned}$ | | constructs an empty container uses c as a comparison object | constant |

| expression | return type | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{X}() \\ & \mathrm{Xa} \text {; } \end{aligned}$ | | constructs an empty container uses Compare () as a comparison object | constant |
| $\begin{aligned} & X(i, j, c) \\ & X a(i, j, c) ; \end{aligned}$ | | constructs an empty container and inserts elements from the range [i, j) into it; uses c as a comparison object. | $N \log N$ in general (N is the distance from i to j); linear if [i, j) is sorted with value_comp() |
| $\begin{aligned} & X(i, j) \\ & X a(i, j) ; \end{aligned}$ | | same as above, but uses Compare() as a comparison object | same as above |
| $\begin{aligned} & \text { a.key_- } \\ & \operatorname{comp}() \end{aligned}$ | X::key_compare | returns the comparison object out of which a was constructed. | constant |
| $\begin{aligned} & \text { a.value_- } \\ & \text { comp() } \end{aligned}$ | X::value_compare | returns an object of value_compare constructed out of the comparison object | constant |
| $\begin{aligned} & \text { a_uniq. } \\ & \text { insert (t) } \end{aligned}$ | ```pair<iterator, bool>``` | inserts t if and only if there is no element in the container with key equivalent to the key of t. The bool component of the returned pair is true if and only if the insertion takes place, and the iterator component of the pair points to the element with key equivalent to the key of t. | logarithmic |
| $\begin{aligned} & \text { a_eq. } \\ & \text { insert }(t) \end{aligned}$ | iterator | inserts t and returns the iterator pointing to the newly inserted element. | logarithmic |
| $\begin{aligned} & \text { a.insert (p, } \\ & \text { t) } \end{aligned}$ | iterator | inserts t if and only if there is no element with key equivalent to the key of t in containers with unique keys; always inserts t in containers with equivalent keys. always returns the iterator pointing to the element with key equivalent to the key of t. iterator p is a hint pointing to where the insert should start to search. | logarithmic in general, but amortized constant if t is inserted right after p. |

| expression | return type | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { a.insert(i, } \\ & \text { j) } \end{aligned}$ | void | pre: i, j are not iterators into a. inserts each element from the range $[i, j)$ if and only if there is no element with key equivalent to the key of that element in containers with unique keys; always inserts that element in containers with equivalent keys. | $N \log (\operatorname{size}()+N)(N$ is the distance from i to j) |
| a.erase(k) | size_type | erases all elements in the container with key equivalent to k . returns the number of erased elements. | $\log (\operatorname{size}())+\operatorname{count}(k)$ |
| a.erase(q) | iterator | erases the element pointed to by q . Returns an iterator pointing to the element immediately following q prior to the element being erased. If no such element exists, returns a.end(). | amortized constant |
| $\begin{aligned} & \text { a.erase(q1, } \\ & \text { q2) } \end{aligned}$ | iterator | erases all the elements in the range [q1, q2). Returns q2. | $\log (\operatorname{size}())+N$ where N is the distance from q1 to q2. |
| a.clear () | void | $\begin{aligned} & \text { erase(a.begin(), a.end()) } \\ & \text { post: size() == } \end{aligned}$ | linear in size(). |
| a.find (k) | iterator; const_iterator for constant a. | returns an iterator pointing to an element with the key equivalent to k , or a.end () if such an element is not found | logarithmic |
| a.count (k) | size_type | returns the number of elements with key equivalent to k | $\log (\operatorname{size}())+\operatorname{count}(k)$ |
| $\begin{aligned} & \text { a.lower_- } \\ & \text { bound(k) } \end{aligned}$ | iterator; const_iterator for constant a. | returns an iterator pointing to the first element with key not less than k , or a. end () if such an element is not found. | logarithmic |
| $\begin{aligned} & \text { a.upper_- } \\ & \text { bound (k) } \end{aligned}$ | iterator; const_iterator for constant a. | returns an iterator pointing to the first element with key greater than k , or a.end () if such an element is not found. | logarithmic |
| $\begin{aligned} & \text { a.equal_- } \\ & \text { range(k) } \end{aligned}$ | ```pair<iterator, iterator>; pair<const_- iterator, const_- iterator> for constant a.``` | $\begin{aligned} & \text { equivalent to make_- } \\ & \text { pair (a.lower_bound }(k) \text {, } \\ & \text { a.upper_bound }(k)) \text {. } \end{aligned}$ | logarithmic |

8 The insert members shall not affect the validity of iterators and references to the container, and the erase members shall invalidate only iterators and references to the erased elements.

9 The fundamental property of iterators of associative containers is that they iterate through the containers in the nondescending order of keys where non-descending is defined by the comparison that was used to construct them. For any two dereferenceable iterators i and j such that distance from i to j is positive,

```
value_comp(*j, *i) == false
```

10 For associative containers with unique keys the stronger condition holds,

```
value_comp(*i, *j) != false.
```

11 When an associative container is constructed by passing a comparison object the container shall not store a pointer or reference to the passed object, even if that object is passed by reference. When an associative container is copied, either through a copy constructor or an assignment operator, the target container shall then use the comparison object from the container being copied, as if that comparison object had been passed to the target container in its constructor.

23.1.3 Unordered associative containers

1 Unordered associative containers provide an ability for fast retrieval of data based on keys. The worst-case complexity for most operations is linear, but the average case is much faster. The library provides four unordered associative containers: unordered_set, unordered_map, unordered_multiset, and unordered_multimap.

2 Unordered associative containers conform to the requirements for Containers ([lib.container.requirements]), except that the expressions in table 85 are not required to be valid, where a and b denote values of a type X , and X is an unordered associative container class:

Table 85: Container requirements that are not required for unordered associative containers

| unsupported expressions |
| :--- |
| $\mathrm{a}==\mathrm{b}$ |
| $\mathrm{a}!=\mathrm{b}$ |
| $\mathrm{a}<\mathrm{b}$ |
| $\mathrm{a}>\mathrm{b}$ |
| $\mathrm{a}<=\mathrm{b}$ |
| $\mathrm{a}>=\mathrm{b}$ |

3 Each unordered associative container is parameterized by Key, by a function object Hash that acts as a hash function for values of type Key, and by a binary predicate Pred that induces an equivalence relation on values of type Key. Additionally, unordered_map and unordered_multimap associate an arbitrary mapped type T with the Key.

4 A hash function is a function object that takes a single argument of type Key and returns a value of type std: : size_t.
5 Two values k 1 and k 2 of type Key are considered equal if the container's equality function object returns true when passed those values. If k 1 and k 2 are equal, the hash function shall return the same value for both.

6 An unordered associative container supports unique keys if it may contain at most one element for each key. Otherwise, it supports equivalent keys. unordered_set and unordered_map support unique keys. unordered_multiset and
unordered_multimap support equivalent keys. In containers that support equivalent keys, elements with equivalent keys are adjacent to each other.

7 For unordered_set and unordered_multiset the value type is the same as the key type. For unordered_map and unordered_multimap it is std: :pair<const Key, T>.

8 The elements of an unordered associative container are organized into buckets. Keys with the same hash code appear in the same bucket. The number of buckets is automatically increased as elements are added to an unordered associative container, so that the average number of elements per bucket is kept below a bound. Rehashing invalidates iterators, changes ordering between elements, and changes which buckets elements appear in, but does not invalidate pointers or references to elements.

9 In table 86: X is an unordered associative container class, a is an object of type X, b is a possibly const object of type X, a_uniq is an object of type X when X supports unique keys, a_{-}eq is an object of type X when X supports equivalent keys, i and j are input iterators that refer to value_type, $[i, j$) is a valid range, p and $q 2$ are valid iterators to a, q and $q 1$ are valid dereferenceable iterators to a, [q1, q2) is a valid range in a, r and $r 1$ are valid dereferenceable const iterators to $a, r 2$ is a valid const iterator to $a,\left[r 1, r 2\right.$) is a valid range in a, t is a value of type $X:: v a l u e _t y p e, k$ is a value of type key_type, hf is a possibly const value of type hasher, eq is a possibly const value of type key_equal, n is a value of type size_type, and z is a value of type float.

Table 86: Unordered associative container requirements (in addition to container)

| expression | return type | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| X: :key_type | Key | Key shall be Assignable and CopyConstructible | compile time |
| X: :hasher | Hash | Hash shall be a unary function object type such that the expression hf (k) has type std: :size_t. | compile time |
| X: :key_equal | Pred | Pred shall be a binary predicate that takes two arguments of type Key. Pred is an equivalence relation. | compile time |
| X: :local_iterator | An iterator type whose category, value type, difference type, and pointer and reference types are the same as X::iterator's. | A local_iterator object may be used to iterate through a single bucket, but may not be used to iterate across buckets. | compile time |
| $\begin{aligned} & \text { X::const_local_- } \\ & \text { iterator } \end{aligned}$ | An iterator type whose category, value type, difference type, and pointer and reference types are the same as X: :const_iterator's | A const_local_iterator object may be used to iterate through a single bucket, but may not be used to iterate across buckets. | compile time |

| expression | return type | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{X}(\mathrm{n}, \mathrm{hf}, \mathrm{eq}) \\ & \mathrm{X} \text { a(n, hf, eq) } \end{aligned}$ | X | Constructs an empty container with at least n buckets, using hf as the hash function and eq as the key equality predicate. | $\mathscr{O}(\mathrm{n})$ |
| $\begin{aligned} & \mathrm{X}(\mathrm{n}, \mathrm{hf}) \\ & \mathrm{X} \mathrm{a}(\mathrm{n}, \mathrm{hf}) \end{aligned}$ | X | Constructs an empty container with at least n buckets, using hf as the hash function and key_equal () as the key equality predicate. | $\mathscr{O}(\mathrm{n})$ |
| $\begin{aligned} & \mathrm{X}(\mathrm{n}) \\ & \mathrm{X} \quad \mathrm{a}(\mathrm{n}) \end{aligned}$ | X | Constructs an empty container with at least n buckets, using hasher () as the hash function and key_equal() as the key equality predicate. | $\mathscr{O}(\mathrm{n})$ |
| $\begin{aligned} & \mathrm{X}() \\ & \mathrm{X} \text { a } \end{aligned}$ | X | Constructs an empty container with an unspecified number of buckets, using hasher () as the hash function and key_equal as the key equality predicate. | constant |
| $\begin{aligned} & X(i, j, n, h f, e q) \\ & X \text { a(i, j, n, hf, eq) } \end{aligned}$ | | Constructs an empty container with at least n buckets, using $h f$ as the hash function and eq as the key equality predicate, and inserts elements from [i, j) into it. | Average case $\mathscr{O}(N)(N$ is distance(i, j)), worst case $\mathscr{O}\left(N^{2}\right)$ |
| $\begin{aligned} & \mathrm{X}(\mathrm{i}, \mathrm{j}, \mathrm{n}, \mathrm{hf}) \\ & \mathrm{X} \text { a(i, j, } \mathrm{n}, \mathrm{hf}) \end{aligned}$ | | Constructs an empty container with at least n buckets, using hf as the hash function and key_equal () as the key equality predicate, and inserts elements from [i, j) into it. | Average case $\mathscr{O}(N)(N$ is distance(i, j)), worst case $\mathscr{O}\left(N^{2}\right)$ |
| $\begin{aligned} & \mathrm{X}(\mathrm{i}, \mathrm{j}, \mathrm{n}) \\ & \mathrm{X} \mathrm{a}(\mathrm{i}, \mathrm{j}, \mathrm{n}) \end{aligned}$ | | Constructs an empty container with at least n buckets, using hasher () as the hash function and key_equal() as the key equality predicate, and inserts elements from [i, j) into it. | Average case $\mathscr{O}(N)(N$ is distance(i, j)), worst case $\mathscr{O}\left(N^{2}\right)$ |
| $\begin{aligned} & X(i, j) \\ & X a(i, j) \end{aligned}$ | X | Constructs an empty container with an unspecified number of buckets, using hasher () as the hash function and key_equal as the key equality predicate, and inserts elements from [i, j) into it. | Average case $\mathscr{O}(N)(N$ is distance(i, j)), worst case $\mathscr{O}\left(N^{2}\right)$ |

Draft

| expression | return type | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline \mathrm{X}(\mathrm{~b}) \\ & \mathrm{X} \quad \mathrm{a}(\mathrm{~b}) \end{aligned}$ | X | Copy constructor. In addition to the contained elements, copies the hash function, predicate, and maximum load factor. | Average case linear in b.size(), worst case quadratic. |
| $\mathrm{a}=\mathrm{b}$ | X | Copy assignment operator. In addition to the contained elements, copies the hash function, predicate, and maximum load factor. | Average case linear in b.size(), worst case quadratic. |
| b.hash_function() | hasher | Returns b's hash function. | constant |
| b.key_eq() | key_equal | Returns b's key equality predicate. | constant |
| a_uniq.insert(t) | pair<iterator, bool> | Inserts t if and only if there is no element in the container with key equivalent to the key of t. The bool component of the returned pair indicates whether the insertion takes place, and the iterator component points to the element with key equivalent to the key of t. | Average case $\mathscr{O}(1)$, worst case \mathscr{O} (a_uniq .size()). |
| a_eq.insert(t) | iterator | Inserts t , and returns an iterator pointing to the newly inserted element. | Average case $\mathscr{O}(1)$, worst case $\mathscr{O}($ a_eq .size()). |
| a.insert (q, t) | iterator | Equivalent to a.insert(t). Return value is an iterator pointing to the element with the key equivalent to that of t. The iterator q is a hint pointing to where the search should start. Implementations are permitted to ignore the hint. | Average case $\mathscr{O}(1)$, worst case $\mathscr{O}(\mathrm{a}$. size() $)$. |
| a.insert (r, t) | const_iterator | Equivalent to a.insert(t). Return value is an iterator pointing to the element with the key equivalent to that of t. The iterator r is a hint pointing to where the search should start. Implementations are permitted to ignore the hint. | Average case $\mathscr{O}(1)$, worst case $\mathscr{O}(\mathrm{a}$. size() $)$. |
| a.insert (i, j) | void | Pre: i and j are not iterators in a. Equivalent to a.insert (t) for each element in $[i, j)$. | Average case $\mathscr{O}(N)$, where N is distance(i, j). Worst case $\mathscr{O}\left(\mathrm{N}^{*}\right.$
 a.size()). |

Draft

| expression | return type | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| a.erase(k) | size_type | Erases all elements with key equivalent to k. Returns the number of elements erased. | Average case $\mathscr{O}(\mathrm{a}$. count (k)).
 Worst case $\mathscr{O}($ a.size ()). |
| a.erase (q) | iterator | Erases the element pointed to by q. Return value is the iterator immediately following q prior to the erasure. | Average case $\mathscr{O}(1)$, worst case $\mathscr{O}(\mathrm{a} . \operatorname{size}())$. |
| a.erase (r) | const_iterator | Erases the element pointed to by r. Return value is the iterator immediately following r prior to the erasure. | Average case $\mathscr{O}(1)$, worst case $\mathscr{O}(\mathrm{a} . \operatorname{size}())$. |
| a.erase(q1, q2) | iterator | Erases all elements in the range [q1, q2). Return value is the iterator immediately following the erased elements prior to the erasure. | Average case linear in distance(q1, q2), worst case $\mathscr{O}(\mathrm{a}$. size ()). |
| a.erase(r1, r2) | const_iterator | Erases all elements in the range $[r 1, r 2)$. Return value is the iterator immediately following the erased elements prior to the erasure. | Average case linear in distance(r1, r2), worst case $\mathscr{O}($ a.size ()). |
| a.clear () | void | Erases all elements in the container.
 Post: a.size() == 0 | Linear. |
| b.find(k) | iterator; const_iterator for const b. | Returns an iterator pointing to an element with key equivalent to k , or b.end () if no such element exists. | Average case $\mathscr{O}(1)$, worst case \mathscr{O} (b.size()). |
| b.count (k) | size_type | Returns the number of elements with key equivalent to k . | Average case $\mathscr{O}(1)$, worst case \mathscr{O} (b.size ()). |
| b.equal_range(k) | pair<iterator,
 iterator>;
 pair<const_iterator, const_iterator> for const b. | Returns a range containing all elements with keys equivalent to k . Returns make_pair (b.end (), b.end()) if no such elements exist. | Average case $\mathscr{O}(\mathrm{b} . \operatorname{count}(\mathrm{k}))$.
 Worst case $\mathscr{O}(\mathrm{b} . \operatorname{size}())$. |
| b.bucket_count() | size_type | Returns the number of buckets that b contains. | Constant |
| b.max_bucket_count () | size_type | Returns an upper bound on the number of buckets that b might ever contain. | Constant |

Draft

| expression | return type | assertion/note pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| b.bucket (k) | size_type | Returns the index of the bucket in which elements with keys equivalent to k would be found, if any such element existed. Post: the return value shall be in the range [0, b.bucket_count()). | Constant |
| b.bucket_size(n) | size_type | Pre: n shall be in the range [0, b.bucket_count ()). Returns the number of elements in the $\mathrm{n}^{\text {th }}$ bucket. | $\begin{aligned} & \mathscr{O}(\text { b.bucket_- } \\ & \text { size }(\mathrm{n})) \end{aligned}$ |
| b.begin(n) | local_iterator; const_local_iterator for const b. | Pre: n shall be in the range [0, b.bucket_count()). Note: [b.begin(n), b.end(n)) is a valid range containing all of the elements in the $\mathrm{n}^{\text {th }}$ bucket. | Constant |
| b.end (n) | local_iterator; const_local_iterator for const b. | Pre: n shall be in the range [0, b.bucket_count()). | Constant |
| b.load_factor () | float | Returns the average number of elements per bucket. | Constant |
| b.max_load_factor() | float | Returns a positive number that the container attempts to keep the load factor less than or equal to. The container automatically increases the number of buckets as necessary to keep the load factor below this number. | Constant |
| a.max_load_factor (z) | void | Pre: z shall be positive. Changes the container's maximum load load factor, using z as a hint. | Constant |
| a.rehash (n) | void | Post: a.bucket_count() >
 a.size() /
 a.max_load_factor() and
 a.bucket_count() >= n. | Average case linear in a.size(), worst case quadratic. |

10 Unordered associative containers are not required to support the expressions a $==\mathrm{b}$ or $\mathrm{a}!=\mathrm{b}$. [Note: This is because the container requirements define operator equality in terms of equality of ranges. Since the elements of an unordered associative container appear in an arbitrary order, range equality is not a useful operation. - end note]

11 The iterator types iterator and const_iterator of an unordered associative container are of at least the forward iterator category. For unordered associative containers where the key type and value type are the same, both iterator and const_iterator are const iterators.

12 The insert members shall not affect the validity of references to container elements, but may invalidate all iterators to the container. The erase members shall invalidate only iterators and references to the erased elements.

13 The insert members shall not affect the validity of iterators if $(N+n)<z * B$, where N is the number of elements in the container prior to the insert operation, n is the number of elements inserted, B is the container's bucket count, and z is the container's maximum load factor.

23.1.3.1 Exception safety guarantees

[unord.req.except]

1 For unordered associative containers, no clear() function throws an exception. No erase() function throws an exception unless that exception is thrown by the container's Hash or Pred object (if any).

2 For unordered associative containers, if an exception is thrown by any operation other than the container's hash function from within an insert () function inserting a single element, the insert () function has no effect.
3 For unordered associative containers, no swap function throws an exception unless that exception is thrown by the copy constructor or copy assignment operator of the container's Hash or Pred object (if any).

4 For unordered associative containers, if an exception is thrown from within a rehash() function other than by the container's hash function or comparison function, the rehash() function has no effect.

23.2 Sequences

[sequences]
1 Headers <array>, <deque>, <list>, <queue>, <stack>, and <vector>.

Header <array> synopsis

```
namespace std {
    template <class T, size_t N > struct array;
    template <class T, size_t N>
        bool operator==
            (const array<T,N>& x, const array<T,N>& y);
    template <class T, size_t N>
        bool operator!=
            (const array<T,N>& x, const array<T,N>& y);
    template <class T, size_t N>
        bool operator<
            (const array<T,N>& x, const array<T,N>& y);
    template <class T, size_t N>
        bool operator>
            (const array<T,N>& x, const array<T,N>& y);
    template <class T, size_t N>
        bool operator<=
            (const array<T,N>& x, const array<T,N>& y);
    template <class T, size_t N>
        bool operator>=
            (const array<T,N>& x, const array<T,N>& y);
    template <class T, size_t N >
        void swap(array<T,N>& x, array<T,N>& y);
    template <class T> class tuple_size; // forward declaration
    template <int I, class T> class tuple_element; // forward declaration
    template <class T, size_t N>
        struct tuple_size<array<T, N> >;
    template <int I, class T, size_t N>
```

```
    struct tuple_element<I, array<T, N> >;
template <int I, class T, size_t N>
    T& get(array<T, N>&);
    template <int I, class T, size_t N>
    const T& get(const array<T, N>&);
} // namespace std
```


Header <deque> synopsis

```
namespace std {
    template <class T, class Allocator = allocator<T> > class deque;
    template <class T, class Allocator>
        bool operator==
            (const deque<T,Allocator>& x, const deque<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator<
            (const deque<T,Allocator>& x, const deque<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator!=
            (const deque<T,Allocator>& x, const deque<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator>
            (const deque<T,Allocator>& x, const deque<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator>=
            (const deque<T,Allocator>& x, const deque<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator<=
            (const deque<T,Allocator>& x, const deque<T,Allocator>& y);
    template <class T, class Allocator>
        void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);
}
```


Header <list> synopsis

```
namespace std {
    template <class T, class Allocator = allocator<T> > class list;
    template <class T, class Allocator>
        bool operator==(const list<T,Allocator>& x, const list<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator< (const list<T,Allocator>& x, const list<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator!=(const list<T,Allocator>& x, const list<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator> (const list<T,Allocator>& x, const list<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator>=(const list<T,Allocator>& x, const list<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator<=(const list<T,Allocator>& x, const list<T,Allocator>& y);
    template <class T, class Allocator>
        void swap(list<T,Allocator>& x, list<T,Allocator>& y);
```

\}

Header <queue> synopsis

```
namespace std {
    template <class T, class Container = deque<T> > class queue;
    template <class T, class Container>
        bool operator==(const queue<T, Container>& x,
                        const queue<T, Container>& y);
    template <class T, class Container>
        bool operator< (const queue<T, Container>& x,
                const queue<T, Container>& y);
    template <class T, class Container>
        bool operator!=(const queue<T, Container>& x,
                        const queue<T, Container>& y);
    template <class T, class Container>
        bool operator> (const queue<T, Container>& x,
                        const queue<T, Container>& y);
    template <class T, class Container>
        bool operator>=(const queue<T, Container>& x,
                                const queue<T, Container>& y);
    template <class T, class Container>
        bool operator<=(const queue<T, Container>& x,
                const queue<T, Container>& y);
    template <class T, class Container = vector<T>,
            class Compare = less<typename Container::value_type> >
    class priority_queue;
}
```


Header <stack> synopsis

```
namespace std {
    template <class T, class Container = deque<T> > class stack;
    template <class T, class Container>
        bool operator==(const stack<T, Container>& x,
                const stack<T, Container>& y);
    template <class T, class Container>
        bool operator< (const stack<T, Container>& x,
                        const stack<T, Container>& y);
    template <class T, class Container>
        bool operator!=(const stack<T, Container>& x,
                        const stack<T, Container>& y);
    template <class T, class Container>
        bool operator> (const stack<T, Container>& x,
                const stack<T, Container>& y);
    template <class T, class Container>
        bool operator>=(const stack<T, Container>& x,
                const stack<T, Container>& y);
    template <class T, class Container>
        bool operator<=(const stack<T, Container>& x,
```

```
    const stack<T, Container>& y);
}
```


Header <vector> synopsis

```
namespace std {
    template <class T, class Allocator = allocator<T> > class vector;
    template <class T, class Allocator>
        bool operator==(const vector<T,Allocator>& x,
                            const vector<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator< (const vector<T,Allocator>& x,
                const vector<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator!=(const vector<T,Allocator>& x,
                        const vector<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator> (const vector<T,Allocator>& x,
                        const vector<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator>=(const vector<T,Allocator>& x,
                const vector<T,Allocator>& y);
    template <class T, class Allocator>
        bool operator<=(const vector<T,Allocator>& x,
                const vector<T,Allocator>& y);
    template <class T, class Allocator>
        void swap(vector<T,Allocator>& x, vector<T,Allocator>& y);
    template <class Allocator> class vector<bool,Allocator>;
    template <class Allocator>
        bool operator==(const vector<bool,Allocator>& x,
                const vector<bool,Allocator>& y);
    template <class Allocator>
        bool operator< (const vector<bool,Allocator>& x,
                        const vector<bool,Allocator>& y);
    template <class Allocator>
        bool operator!=(const vector<bool,Allocator>& x,
                                    const vector<bool,Allocator>& y);
    template <class Allocator>
        bool operator> (const vector<bool,Allocator>& x,
                        const vector<bool,Allocator>& y);
    template <class Allocator>
        bool operator>=(const vector<bool,Allocator>& x,
                        const vector<bool,Allocator>& y);
    template <class Allocator>
        bool operator<=(const vector<bool,Allocator>& x,
                        const vector<bool,Allocator>& y);
    template <class Allocator>
        void swap(vector<bool,Allocator>& x, vector<bool,Allocator>& y);
}
```


23.2.1 Class template array

1 The header <array> defines a class template for storing fixed-size sequences of objects. An array supports random access iterators. An instance of array<T, $\mathrm{N}>$ stores N elements of type T , so that size() $==\mathrm{N}$ is an invariant. The elements of an array are stored contiguously, meaning that if a is an array<T, $\mathrm{N}>$ then it obeys the identity \&a[n] == \&a[0] + n for all $0<=\mathrm{n}<\mathrm{N}$.

2 An array is an aggregate (8.5.1) that can be initialized with the syntax

```
array a = { initializer-list };
```

where initializer-list is a comma separated list of up to N elements whose types are convertible to T .
3 Unless otherwise specified, all array operations are as described in 23.1. Descriptions are provided here only for operations on array that are not described in that clause or for operations where there is additional semantic information.

4 The effect of calling front () or back() for a zero-sized array is implementation defined.

```
namespace std {
    template <class T, size_t N >
    struct array {
        // types:
        typedef T & lleference;
        typedef T & ll
        typedef implementation defined
        typedef implementation defined const_iterator;
        typedef size_t
        typedef ptrdiff_t difference_type;
        typedef T value_type;
        typedef std::reverse_iterator<iterator> reverse_iterator;
        iterator;
        size_type;
        typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
        T elems[N]; // Exposition only
        // No explicit construct/copy/destroy for aggregate type
        void assign(const T& u);
        void swap( array<T, N> &);
        // iterators:
        iterator begin();
        const_iterator begin() const;
        iterator end();
        const_iterator end() const;
        reverse_iterator rbegin();
        const_reverse_iterator rbegin() const;
        reverse_iterator rend();
        const_reverse_iterator rend() const;
    const_iterator cbegin() const;
```

Draft

```
        const_iterator cend() const;
        const_reverse_iterator crbegin() const;
        const_reverse_iterator crend() const;
        // capacity:
        size_type size() const;
        size_type max_size() const;
        bool empty() const;
        // element access:
        reference operator[](size_type n);
        const_reference operator[](size_type n) const;
        const_reference at(size_type n) const;
        reference at(size_type n);
        reference front();
        const_reference front() const;
        reference back();
        const_reference back() const;
        T * data();
        const T * data() const;
    };
}
```

5 [Note: The member variable elems is shown for exposition only, to empahasize that array is a class aggregate. The name elems is not part of array's interface. - end note]

23.2.1.1 array constructors, copy, and assignment

1 The conditions for an aggregate (8.5.1) shall be met. Class array relies. $\rho \mathfrak{f}$. 挨 9 impligitly-declared special member functions (12.1, 12.4, and 12.8

23.2.1.5 Zero sized arrays

array shall provide support for the special case $\mathrm{N}==0$.
In the case that $N==0, \operatorname{begin}()==\operatorname{end}()==$ unique value. The return value of data() is unspecified.
23.2.1.6 Tuple interface to class template array
[array.tuple]

```
tuple_size<array<T, N> >::value
```

Return type: integral constant expression.
Value: N
tuple_element<I, array<T, N\gg::type
Requires: $0<=\mathrm{I}<\mathrm{N}$. The program is ill-formed if I is out of bounds.
value: The type T.
template <int I, class T, size_t N> T\& get(array<T, N>\& a);
Requires: $0<=\mathrm{I}<\mathrm{N}$. The program is ill-formed if I is out of bounds.
Returns: A reference to the Ith element of a, where indexing is zero-based.
template <int I, class T, size_t $N>$ const $T \&$ get (const array<T, N>\& a);
Requires: $0<=\mathrm{I}$ < N. The program is ill-formed if I is out of bounds.
Return type: const T\&.
Returns: A const reference to the Ith element of a, where indexing is zero-based.

23.2.2 Class template deque

[deque]
1 A deque is a kind of sequence that, like a vector (23.2.5), supports random access iterators. In addition, it supports constant time insert and erase operations at the beginning or the end; insert and erase in the middle take linear time. That is, a deque is especially optimized for pushing and popping elements at the beginning and end. As with vectors, storage management is handled automatically.

2 A deque satisfies all of the requirements of a container and of a reversible container (given in tables in 23.1) and of a sequence, including the optional sequence requirements (23.1.1). In addition to the requirements on the stored object described in 23.1, the stored object shall meet the requirements of Assignable. Descriptions are provided here only for operations on deque that are not described in one of these tables or for operations where there is additional semantic information.

```
namespace std {
    template <class T, class Allocator = allocator<T> >
    class deque {
    public:
```

```
// types:
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
typedef T
typedef Allocator
typedef typename Allocator::pointer
typedef typename Allocator::const_pointer
typedef std::reverse_iterator<iterator>
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
// 23.2.2.1 construct/copy/destroy:
explicit deque(const Allocator& = Allocator());
explicit deque(size_type n, const T& value = T(),
    const Allocator& = Allocator());
template <class InputIterator>
    deque(InputIterator first, InputIterator last,
                const Allocator& = Allocator());
deque(const deque<T,Allocator>& x);
~ deque();
deque<T,Allocator>& operator=(const deque<T,Allocator>& x);
template <class InputIterator>
    void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
allocator_type get_allocator() const;
// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
// 23.2.2.2 capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());
bool empty() const;
```

```
    // element access:
    reference operator[](size_type n);
    const_reference operator[](size_type n) const;
    reference at(size_type n);
    const_reference at(size_type n) const;
    reference front();
    const_reference front() const;
    reference back();
    const_reference back() const;
    // 23.2.2.3 modifiers:
    void push_front(const T& x);
    void push_back(const T& x);
    iterator insert(iterator position, const T& x);
    void insert(iterator position, size_type n, const T& x);
    template <class InputIterator>
        void insert (iterator position,
            InputIterator first, InputIterator last);
    void pop_front();
    void pop_back();
    iterator erase(iterator position);
    iterator erase(iterator first, iterator last);
    void swap(deque<T,Allocator>&);
    void clear();
};
template <class T, class Allocator>
    bool operator==(const deque<T,Allocator>& x,
                const deque<T,Allocator>& y);
template <class T, class Allocator>
    bool operator< (const deque<T,Allocator>& x,
                const deque<T,Allocator>& y);
template <class T, class Allocator>
    bool operator!=(const deque<T,Allocator>& x,
                const deque<T,Allocator>& y);
template <class T, class Allocator>
    bool operator> (const deque<T,Allocator>& x,
                const deque<T,Allocator>& y);
template <class T, class Allocator>
    bool operator>=(const deque<T,Allocator>& x,
                const deque<T,Allocator>& y);
template <class T, class Allocator>
    bool operator<=(const deque<T,Allocator>& x,
                const deque<T,Allocator>& y);
// specialized algorithms:
template <class T, class Allocator>
```

```
void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);
```

\}

23.2.2.1 deque constructors, copy, and assignment

[deque.cons]

23.2.2.2 deque capacity

void resize(size_type sz, T c $=\mathrm{T}())$;

Effects:

```
if (sz > size())
    insert(end(), sz-size(), c);
else if (sz < size())
    erase(begin()+sz, end());
```

[^152]else
;
// do nothing

23.2.2.3 deque modifiers

[deque.modifiers]

```
iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>
    void insert(iterator position,
                InputIterator first, InputIterator last);
```

1 Effects: An insert in the middle of the deque invalidates all the iterators and references to elements of the deque. An insert at either end of the deque invalidates all the iterators to the deque, but has no effect on the validity of references to elements of the deque.
iterator erase(iterator position);
iterator erase(iterator first, iterator last);

Effects: An erase in the middle of the deque invalidates all the iterators and references to elements of the deque. An erase at either end of the deque invalidates only the iterators and the references to the erased elements.

Complexity: The number of calls to the destructor is the same as the number of elements erased, but the number of the calls to the assignment operator is at most equal to the minimum of the number of elements before the erased elements and the number of elements after the erased elements.

Throws: Nothing unless an exception is thrown by the copy constructor or assignment operator of T.

23.2.2.4 deque specialized algorithms

```
template <class T, class Allocator>
    void swap(deque<T,Allocator>& x, deque<T,Allocator>& y);
```

Effects:
x.swap(y);

23.2.3 Class template list

1 A list is a kind of sequence that supports bidirectional iterators and allows constant time insert and erase operations anywhere within the sequence, with storage management handled automatically. Unlike vectors (23.2.5) and deques (23.2.2), fast random access to list elements is not supported, but many algorithms only need sequential access anyway.

2 A list satisfies all of the requirements of a container and of a reversible container (given in two tables in 23.1) and of a sequence, including most of the the optional sequence requirements (23.1.1). The exceptions are the operator [] and at member functions, which are not provided. ${ }^{259)}$ list does not require the stored type T to be Assignable unless the following methods are instantiated: ${ }^{260)}$

```
list<T,Allocator>& operator=(const list<T,Allocator>& x);
template <class InputIterator>
    void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& t);
```

Descriptions are provided here only for operations on list that are not described in one of these tables or for operations where there is additional semantic information.

```
namespace std {
    template <class T, class Allocator = allocator<T> >
    class list {
    public:
        // types:
        typedef typename Allocator::reference reference;
        typedef typename Allocator::const_reference const_reference;
        typedef implementation-defined iterator; // See 23.1
        typedef implementation-defined const_iterator; // See 23.1
        typedef implementation-defined size_type; // See 23.1
        typedef implementation-defined difference_type;// See 23.1
        typedef T
        typedef Allocator
        typedef typename Allocator::pointer pointer;
        typedef typename Allocator::const_pointer const_pointer;
        typedef std::reverse_iterator<iterator> reverse_iterator;
        typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
        // 23.2.3.1 construct/copy/destroy:
        explicit list(const Allocator& = Allocator());
        explicit list(size_type n, const T& value = T(),
            const Allocator& = Allocator());
        template <class InputIterator>
            list(InputIterator first, InputIterator last,
                const Allocator& = Allocator());
        list(const list<T,Allocator>& x);
    ~list();
        list<T,Allocator>& operator=(const list<T,Allocator>& x);
        template <class InputIterator>
            void assign(InputIterator first, InputIterator last);
        void assign(size_type n, const T& t);
        allocator_type get_allocator() const;
        // iterators:
        iterator begin();
```

[^153]```
const_iterator begin() const;
iterator
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
// 23.2.3.2 capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());
// element access:
reference front();
const_reference front() const;
reference back();
const_reference back() const;
// 23.2.3.3 modifiers.
void push_front(const T& x);
void pop_front();
void push_back(const T& x);
void pop_back();
iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>
 void insert(iterator position, InputIterator first,
 InputIterator last);
iterator erase(iterator position);
iterator erase(iterator position, iterator last);
void swap(list<T,Allocator>&);
void clear();
// 23.2.3.4 list operations.
void splice(iterator position, list<T,Allocator>& x);
void splice(iterator position, list<T,Allocator>& x, iterator i);
void splice(iterator position, list<T,Allocator>& x, iterator first,
 iterator last);
void remove(const T& value);
template <class Predicate> void remove_if(Predicate pred);
```


### 23.2.3.2 list capacity

[list.capacity]

```
void resize(size_type sz, T c = T());
```

Effects:

```
if (sz > size())
 insert(end(), sz-size(), c);
else if (sz < size()) {
 iterator i = begin();
 advance(i, sz);
 erase(i, end());
}
else
 ; // do nothing
```


### 23.2.3.3 list modifiers

[list.modifiers]

```
iterator insert(iterator position, const T& x);
void insert(iterator position, size_type n, const T& x);
template <class InputIterator>
 void insert(iterator position, InputIterator first,
 InputIterator last);
void push_front(const T& x);
void push_back(const T& x);
```

Remarks: Does not affect the validity of iterators and references. If an exception is thrown there are no effects.
Complexity: Insertion of a single element into a list takes constant time and exactly one call to the copy constructor of T. Insertion of multiple elements into a list is linear in the number of elements inserted, and the number of calls to the copy constructor of $T$ is exactly equal to the number of elements inserted.

```
iterator erase(iterator position);
iterator erase(iterator first, iterator last);
void pop_front();
void pop_back();
void clear();
```

Draft

Effects: Invalidates only the iterators and references to the erased elements.
Throws: Nothing.
Complexity: Erasing a single element is a constant time operation with a single call to the destructor of T. Erasing a range in a list is linear time in the size of the range and the number of calls to the destructor of type T is exactly equal to the size of the range.

### 23.2.3.4 list operations

Since lists allow fast insertion and erasing from the middle of a list, certain operations are provided specifically for them. ${ }^{261)}$
list provides three splice operations that destructively move elements from one list to another.
void splice(iterator position, list<T,Allocator>\& $x$ );
Requires: $\& x$ != this.
Effects: Inserts the contents of x before position and x becomes empty. Pointers and references to the moved elements of $x$ now refer to those same elements but as members of $*$ this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into $*$ this, not into x .

Throws: Nothing
Complexity: Constant time.
void splice(iterator position, list<T,Allocator>\& $x$, iterator $i$ );
Effects: Inserts an element pointed to by i from list x before position and removes the element from x . The result is unchanged if position $==i$ or position $==++i$. Pointers and references to $* i$ continue to refer to this same element but as a member of $*$ this. Iterators to $* i$ (including i itself) continue to refer to the same element, but now behave as iterators into $*$ this, not into x .

Throws: Nothing
Requires: i is a valid dereferenceable iterator of x .
Complexity: Constant time.
void splice(iterator position, list<T,Allocator>\& $x$, iterator first,
iterator last);
Effects: Inserts elements in the range [first, last) before position and removes the elements from x .
Requires: [first, last) is a valid range in x . The result is undefined if position is an iterator in the range [first,last). Pointers and references to the moved elements of $x$ now refer to those same elements but as members of *this. Iterators referring to the moved elements will continue to refer to their elements, but they now behave as iterators into *this, not into x .

Throws: Nothing

[^154]Complexity: Constant time if $\& x==$ this; otherwise, linear time.
void remove(const T\& value);
template <class Predicate> void remove_if(Predicate pred);
Effects: Erases all the elements in the list referred by a list iterator i for which the following conditions hold: *i
== value, pred(*i) != false.
Throws: Nothing unless an exception is thrown by $* \mathrm{i}==$ value or $p r e d(* \mathrm{i}) \quad!=$ false.
Remarks: Stable.
Complexity: Exactly size() applications of the corresponding predicate.

```
 void unique();
```

template <class BinaryPredicate> void unique (BinaryPredicate binary_pred);
Effects: Eliminates all but the first element from every consecutive group of equal elements referred to by the iterator $i$ in the range $[f i r s t+1, l a s t)$ for which $* i==*(i-1)$ (for the version of unique with no arguments) or $\operatorname{pred}\left(*_{\mathrm{i}}, *(\mathrm{i}-1)\right)$ (for the version of unique with a predicate argument) holds.

Throws: Nothing unless an exception in thrown by $* \mathrm{i}==*(\mathrm{i}-1)$ or $\operatorname{pred}(* \mathrm{i}, *(\mathrm{i}-1))$
Complexity: If the range [first, last) is not empty, exactly (last - first) - 1 applications of the corresponding predicate, otherwise no applications of the predicate.

```
void merge(list<T,Allocator>& x);
template <class Compare> void merge(list<T,Allocator>& x, Compare comp);
```

Requires: comp defines a strict weak ordering (25.3), and the list and the argument list are both sorted according to this ordering.

Effects: If (\&x == this) does nothing; otherwise, merges the two sorted ranges [begin(), end()) and [x. begin(), x.end()). The result is a range in which the elements will be sorted in non-decreasing order according to the ordering defined by comp; that is, for every iterator $i$, in the range other than the first, the condition comp (*i, *(i - 1) will be false.

Remarks: Stable. If (\&x $!=$ this) the range [x.begin(), x. end()) is empty after the merge.
Complexity: At most size() + x.size() - 1 applications of comp if ( $\& x$ != this) ; otherwise, no applications of comp are performed. If an exception is thrown other than by a comparison there are no effects.
void reverse();
Effects: Reverses the order of the elements in the list.
Throws: Nothing.
Complexity: Linear time.
void sort();
template <class Compare> void sort (Compare comp);
Requires: operator< (for the first version) or comp (for the second version) defines a strict weak ordering (25.3).
Effects: Sorts the list according to the operator< or a Compare function object.

Remarks: Stable.
Complexity: Approximately $N \log (N)$ comparisons, where $N==\operatorname{size}()$.

### 23.2.3.5 list specialized algorithms

[list.special]

```
template <class T, class Allocator>
 void swap(list<T,Allocator>& x, list<T,Allocator>& y);
```

Effects:
x.swap(y);

### 23.2.4 Container adaptors

## [container.adaptors]

1 The container adaptors each take a Container template parameter, and each constructor takes a Container reference argument. This container is copied into the Container member of each adaptor.

### 23.2.4.1 Class template queue

1 Any sequence supporting operations front(), back(), push_back() and pop_front() can be used to instantiate queue. In particular, list (23.2.3) and deque (23.2.2) can be used.
23.2.4.1.1 queue definition

```
namespace std {
 template <class T, class Container = deque<T> >
 class queue {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::reference reference;
 typedef typename Container::const_reference const_reference;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
 protected:
 Container c;
 public:
 explicit queue(const Container& = Container());
 bool empty() const {return c.empty(); }
 size_type size() const { return c.size(); }
 reference front() { return c.front(); }
 const_reference front() const { return c.front(); }
 reference back() { return c.back(); }
 const_reference back() const { return c.back(); }
 void push(const value_type& x) { c.push_back(x); }
 void pop() { c.pop_front(); }
 };
```

```
 template <class T, class Container>
 bool operator==(const queue<T, Container>& x,
 const queue<T, Container>& y);
 template <class T, class Container>
 bool operator< (const queue<T, Container>& x,
 const queue<T, Container>& y);
template <class T, class Container>
 bool operator!=(const queue<T, Container>& x,
 const queue<T, Container>& y);
template <class T, class Container>
 bool operator> (const queue<T, Container>& x,
 const queue<T, Container>& y);
 template <class T, class Container>
 bool operator>=(const queue<T, Container>& x,
 const queue<T, Container>& y);
template <class T, class Container>
 bool operator<=(const queue<T, Container>& x,
 const queue<T, Container>& y);
```

\}

### 23.2.4.1.2 queue operators

[queue.ops]
template <class T, class Container>
bool operator==(const queue<T, Container>\& x, const queue<T, Container>\& y);

1 Returns: х.c == у.c.

```
template <class T, class Container>
```

    bool operator!=(const queue<T, Container>\& x,
                const queue<T, Container>\& y);
    2
Returns: x.c ! = y.c.

```
template <class T, class Container>
```

    bool operator< (const queue<T, Container>\& x, const queue<T, Container>\& y);
    3 Returns: х.с < у.c.

```
 template <class T, class Container>
```

    bool operator<=(const queue<T, Container>\& \(x\),
                const queue<T, Container>\& y);
    4 Returns: х.с <= у.с.
template <class T, class Container>
bool operator> (const queue<T, Container>\& x,
const queue<T, Container>\& y);

5
Returns: x.c > y.c.

```
template <class T, class Container>
 bool operator>=(const queue<T, Container>& x,
 const queue<T, Container>& y);
```

6
Returns: x.c >= y.c.

### 23.2.4.2 Class template priority_queue

## [priority.queue]

1 Any sequence with random access iterator and supporting operations front(), push_back() and pop_back() can be used to instantiate priority_queue. In particular, vector (23.2.5) and deque (23.2.2) can be used. Instantiating priority_queue also involves supplying a function or function object for making priority comparisons; the library assumes that the function or function object defines a strict weak ordering (25.3).

```
namespace std {
 template <class T, class Container = vector<T>,
 class Compare = less<typename Container::value_type> >
 class priority_queue {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::reference reference;
 typedef typename Container::const_reference const_reference;
 typedef typename Container::size_type size_type;
 typedef Container container_type;
 protected:
 Container c;
 Compare comp;
 public:
 explicit priority_queue(const Compare& x = Compare(),
 const Container& = Container());
 template <class InputIterator>
 priority_queue(InputIterator first, InputIterator last,
 const Compare& x = Compare(),
 const Container& = Container());
 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 const_reference top() const { return c.front(); }
 void push(const value_type& x);
 void pop();
 };
 // no equality is provided
}
```

23.2.4.2.1 priority_queue constructors
[priqueue.cons]

```
priority_queue(const Compare& x = Compare(),
 const Container& y = Container());
```

1 Requires: $x$ defines a strict weak ordering (25.3).

Draft

Effects:

```
pop_heap(c.begin(), c.end(), comp);
```

c.pop_back();

### 23.2.4.3 Class template stack

1 Any sequence supporting operations back(), push_back() and pop_back() can be used to instantiate stack. In particular, vector (23.2.5), list (23.2.3) and deque (23.2.2) can be used.

### 23.2.4.3.1 stack definition

```
namespace std {
 template <class T, class Container = deque<T> >
 class stack {
 public:
 typedef typename Container::value_type value_type;
 typedef typename Container::reference
 typedef typename Container::const_reference
 typedef typename Container::size_type
 typedef Container
 protected:
 Container c;
 public:
 explicit stack(const Container& = Container());
```

```
 bool empty() const { return c.empty(); }
 size_type size() const { return c.size(); }
 reference top() { return c.back(); }
 const_reference top() const { return c.back(); }
 void push(const value_type& x) { c.push_back(x); }
 void pop() { c.pop_back(); }
 };
 template <class T, class Container>
 bool operator==(const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator< (const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator!=(const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator> (const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator>=(const stack<T, Container>& x,
 const stack<T, Container>& y);
 template <class T, class Container>
 bool operator<=(const stack<T, Container>& x,
 const stack<T, Container>& y);
```

\}

### 23.2.4.3.2 stack operators

[stack.ops]
template <class T, class Container>
bool operator $=$ (const stack<T, Container>\& x, const stack<T, Container>\& y);

1 Returns: х.c == у.c.

```
template <class T, class Container>
```

    bool operator!=(const stack<T, Container>\& x,
                const stack<T, Container>\& y);
    Returns: x.c ! = у.c.

```
template <class T, class Container>
 bool operator< (const stack<T, Container>& x,
 const stack<T, Container>& y);
```

3 Returns: x.c < y.c.
template <class T, class Container>
bool operator<=(const stack<T, Container>\& x,
const stack<T, Container>\& y);

Returns: х.с $<=$ у.c.

```
 template <class T, class Container>
 bool operator> (const stack<T, Container>& x,
```

        const stack<T, Container>\& y);
    Returns: x.c > y.c.
template <class T, class Container>
bool operator>=(const stack<T, Container>\& x,
const stack<T, Container>\& y);

Returns: x.c >= у.c.

### 23.2.5 Class template vector

[vector]
1 A vector is a kind of sequence that supports random access iterators. In addition, it supports (amortized) constant time insert and erase operations at the end; insert and erase in the middle take linear time. Storage management is handled automatically, though hints can be given to improve efficiency. The elements of a vector are stored contiguously, meaning that if v is a vector $<\mathrm{T}$, Allocator $>$ where T is some type other than bool, then it obeys the identity \&v [ n ] $==\& v[0]+\mathrm{n}$ for all $0<=\mathrm{n}<\mathrm{v} . \operatorname{size}()$.

2 A vector satisfies all of the requirements of a container and of a reversible container (given in two tables in 23.1) and of a sequence, including most of the optional sequence requirements (23.1.1). The exceptions are the push_front and pop_front member functions, which are not provided. In addition to the requirements on the stored object described in 23.1, the stored object shall meet the requirements of Assignable. Descriptions are provided here only for operations on vector that are not described in one of these tables or for operations where there is additional semantic information.

```
namespace std {
 template <class T, class Allocator = allocator<T> >
 class vector {
 public:
 // types:
 typedef typename Allocator::reference reference;
 typedef typename Allocator::const_reference const_reference;
 typedef implementation-defined
 typedef implementation-defined
 iterator; // See 23.1
 const_iterator; // See 23.1
 typedef implementation-defined
 typedef implementation-defined
 typedef T
 typedef Allocator
 typedef typename Allocator::pointer
 typedef typename Allocator::const_pointer
 typedef std::reverse_iterator<iterator> reverse_iterator;
 const_pointer;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 // 23.2.5.1 construct/copy/destroy:
 explicit vector(const Allocator& = Allocator());
 explicit vector(size_type n, const T& value = T(),
 const Allocator& = Allocator());
```

```
template <class InputIterator>
 vector(InputIterator first, InputIterator last,
 const Allocator& = Allocator());
vector(const vector<T,Allocator>& x);
~vector();
vector<T,Allocator>& operator=(const vector<T,Allocator>& x);
template <class InputIterator>
 void assign(InputIterator first, InputIterator last);
void assign(size_type n, const T& u);
allocator_type get_allocator() const;
// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
// 23.2.5.2 capacity:
size_type size() const;
size_type max_size() const;
void resize(size_type sz, T c = T());
size_type capacity() const;
bool empty() const;
void reserve(size_type n);
// element access:
reference operator[](size_type n);
const_reference operator[](size_type n) const;
const_reference at(size_type n) const;
reference at(size_type n);
reference front();
const_reference front() const;
reference back();
const_reference back() const;
// 23.2.5.3 data access
pointer data();
const_pointer data() const;
// 23.2.5.4 modifiers:
void push_back(const T& x);
```

Draft

```
 template <class InputIterator>
 void assign(InputIterator first, InputIterator last);
Effects:
erase(begin(), end());
 insert(begin(), first, last);
void assign(size_type n, const T& t);
Effects:
```

```
erase(begin(), end());
```

erase(begin(), end());
insert(begin(), n, t);

```
insert(begin(), n, t);
```


### 23.2.5.2 vector capacity

[vector.capacity]
size_type capacity() const;
Returns: The total number of elements that the vector can hold without requiring reallocation.
void reserve(size_type n);
Effects: A directive that informs a vector of a planned change in size, so that it can manage the storage allocation accordingly. After reserve(), capacity() is greater or equal to the argument of reserve if reallocation happens; and equal to the previous value of capacity () otherwise. Reallocation happens at this point if and only if the current capacity is less than the argument of reserve().

Complexity: It does not change the size of the sequence and takes at most linear time in the size of the sequence.
Throws: length_error if $n>$ max_size(). ${ }^{262)}$
Remarks: Reallocation invalidates all the references, pointers, and iterators referring to the elements in the sequence. It is guaranteed that no reallocation takes place during insertions that happen after a call to reserve() until the time when an insertion would make the size of the vector greater than the value of capacity().

```
void swap(vector<T,Allocator>& x);
```

Effects: Exchanges the contents and capacity() of *this with that of x.
Complexity: Constant time.

```
void resize(size_type sz, T c = T());
```

Effects:

```
if (sz > size())
 insert(end(), sz-size(), c);
else if (sz < size())
 erase(begin()+sz, end());
else
 ; // do nothing
```

[^155]Draft

### 23.2.5.3 vector data

[vector.data]
pointer data();
const_pointer data() const;

### 23.2.5.4 vector modifiers

iterator insert(iterator position, const T\& x);
void insert(iterator position, size_type $n$, const $T \& x$ );
template <class InputIterator>
void insert(iterator position, InputIterator first, InputIterator last);
Remarks: Causes reallocation if the new size is greater than the old capacity. If no reallocation happens, all the iterators and references before the insertion point remain valid. If an exception is thrown other than by the copy constructor or assignment operator of T or by any InputIterator operation there are no effects.

Complexity: The complexity is linear in the number of elements inserted plus the distance to the end of the vector.
iterator erase(iterator position);
iterator erase(iterator first, iterator last);
Effects: Invalidates iterators and references at or after the point of the erase.
Complexity: The destructor of T is called the number of times equal to the number of the elements erased, but the assignment operator of T is called the number of times equal to the number of elements in the vector after the erased elements.

Throws: Nothing unless an exception is thrown by the copy constructor or assignment operator of T.

### 23.2.5.5 vector specialized algorithms

template <class T, class Allocator>
void swap(vector<T,Allocator>\& $x$, vector<T,Allocator>\& y);
Effects:
x.swap(y);
23.2.6 Class vector<bool>

1 To optimize space allocation, a specialization of vector for bool elements is provided:

```
namespace std {
 template <class Allocator> class vector<bool, Allocator> {
 public:
 // types:
 typedef bool
 typedef implementation-defined
 typedef implementation-defined
 typedef implementation-defined
 typedef implementation-defined
 typedef bool
 typedef Allocator
 typedef implementation-defined
 typedef implementation-defined
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 // bit reference:
 class reference {
 friend class vector;
 reference();
 public:
 ~reference();
 operator bool() const;
 reference& operator=(const bool x);
 reference& operator=(const reference& x);
 void flip(); // flips the bit
 };
 // construct/copy/destroy:
 explicit vector(const Allocator& = Allocator());
 explicit vector(size_type n, const bool& value = bool(),
 const Allocator& = Allocator());
 template <class InputIterator>
 vector(InputIterator first, InputIterator last,
 const Allocator& = Allocator());
 vector(const vector<bool,Allocator>& x);
 ~vector();
 vector<bool,Allocator>& operator=(const vector<bool,Allocator>& x);
 template <class InputIterator>
 void assign(InputIterator first, InputIterator last);
 void assign(size_type n, const bool& t);
 allocator_type get_allocator() const;
 // iterators:
 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 reverse_iterator rbegin();
 const_reverse_iterator rbegin() const;
```

```
 reverse_iterator rend();
 const_reverse_iterator rend() const;
 const_iterator cbegin() const;
 const_iterator cend() const;
 const_reverse_iterator crbegin() const;
 const_reverse_iterator crend() const;
 // capacity:
 size_type size() const;
 size_type max_size() const;
 void resize(size_type sz, bool c = false);
 size_type capacity() const;
 bool empty() const;
 void reserve(size_type n);
 // element access:
 reference operator[](size_type n);
 const_reference operator[](size_type n) const;
 const_reference at(size_type n) const;
 reference at(size_type n);
 reference front();
 const_reference front() const;
 reference back();
 const_reference back() const;
 // modifiers:
 void push_back(const bool& x);
 void pop_back();
 iterator insert(iterator position, const bool& x);
 void insert (iterator position, size_type n, const bool& x);
 template <class InputIterator>
 void insert(iterator position,
 InputIterator first, InputIterator last);
 iterator erase(iterator position);
 iterator erase(iterator first, iterator last);
 void swap(vector<bool,Allocator>&);
 static void swap(reference x, reference y);
 void flip(); // flips all bits
 void clear();
};
 // specialized algorithms:
template <class Allocator>
 void swap(vector<bool,Allocator>& x, vector<bool,Allocator>& y);
}
```

2 reference is a class that simulates the behavior of references of a single bit in vector<bool>.

### 23.3 Associative containers

1 Headers <map> and <set>:

## Header <map> synopsis

```
namespace std {
 template <class Key, class T, class Compare = less<Key>,
 class Allocator = allocator<pair<const Key, T> > >
 class map;
 template <class Key, class T, class Compare, class Allocator>
 bool operator==(const map<Key,T,Compare,Allocator>& x,
 const map<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 bool operator< (const map<Key,T,Compare,Allocator>& x,
 const map<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 bool operator!=(const map<Key,T,Compare,Allocator>& x,
 const map<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 bool operator> (const map<Key,T,Compare,Allocator>& x,
 const map<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 bool operator>=(const map<Key,T,Compare,Allocator>& x,
 const map<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 bool operator<=(const map<Key,T,Compare,Allocator>& x,
 const map<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 void swap(map<Key,T,Compare,Allocator>& x,
 map<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare = less<Key>,
 class Allocator = allocator<pair<const Key, T> > >
 class multimap;
 template <class Key, class T, class Compare, class Allocator>
 bool operator==(const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 bool operator< (const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 bool operator!=(const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 bool operator> (const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 bool operator>=(const multimap<Key,T,Compare,Allocator>& x,
```

```
 const multimap<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 bool operator<=(const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
 template <class Key, class T, class Compare, class Allocator>
 void swap(multimap<Key,T,Compare,Allocator>& x,
 multimap<Key,T,Compare,Allocator>& y);
}
```


## Header <set> synopsis

```
namespace std {
 template <class Key, class Compare = less<Key>,
 class Allocator = allocator<Key> >
 class set;
 template <class Key, class Compare, class Allocator>
 bool operator==(const set<Key,Compare,Allocator>& x,
 const set<Key,Compare,Allocator>& y);
 template <class Key, class Compare, class Allocator>
 bool operator< (const set<Key,Compare,Allocator>& x,
 const set<Key,Compare,Allocator>& y);
 template <class Key, class Compare, class Allocator>
 bool operator!=(const set<Key,Compare,Allocator>& x,
 const set<Key,Compare,Allocator>& y);
 template <class Key, class Compare, class Allocator>
 bool operator> (const set<Key,Compare,Allocator>& x,
 const set<Key,Compare,Allocator>& y);
 template <class Key, class Compare, class Allocator>
 bool operator>=(const set<Key,Compare,Allocator>& x,
 const set<Key,Compare,Allocator>& y);
 template <class Key, class Compare, class Allocator>
 bool operator<=(const set<Key,Compare,Allocator>& x,
 const set<Key,Compare,Allocator>& y);
 template <class Key, class Compare, class Allocator>
 void swap(set<Key,Compare,Allocator>& x,
 set<Key,Compare,Allocator>& y);
 template <class Key, class Compare = less<Key>,
 class Allocator = allocator<Key> >
 class multiset;
 template <class Key, class Compare, class Allocator>
 bool operator==(const multiset<Key,Compare,Allocator>& x,
 const multiset<Key,Compare,Allocator>& y);
 template <class Key, class Compare, class Allocator>
 bool operator< (const multiset<Key,Compare,Allocator>& x,
 const multiset<Key,Compare,Allocator>& y);
 template <class Key, class Compare, class Allocator>
 bool operator!=(const multiset<Key,Compare,Allocator>& x,
 const multiset<Key,Compare,Allocator>& y);
 template <class Key, class Compare, class Allocator>
```

```
 bool operator> (const multiset<Key,Compare,Allocator>& x,
 const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
 bool operator>=(const multiset<Key,Compare,Allocator>& x,
 const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
 bool operator<=(const multiset<Key,Compare,Allocator>& x,
 const multiset<Key,Compare,Allocator>& y);
template <class Key, class Compare, class Allocator>
 void swap(multiset<Key,Compare,Allocator>& x,
 multiset<Key,Compare,Allocator>& y);
}
```


### 23.3.1 Class template map

[map]
1 A map is a kind of associative container that supports unique keys (contains at most one of each key value) and provides for fast retrieval of values of another type T based on the keys. The map class supports bidirectional iterators.

2 A map satisfies all of the requirements of a container and of a reversible container (23.1) and of an associative container (23.1.2). A map also provides most operations described in (23.1.2) for unique keys. This means that a map supports the a_uniq operations in (23.1.2) but not the a_eq operations. For a map<Key, T> the key_type is Key and the value_type is pair<const Key, $\mathrm{T}>$. Descriptions are provided here only for operations on map that are not described in one of those tables or for operations where there is additional semantic information.

```
namespace std {
 template <class Key, class T, class Compare = less<Key>,
 class Allocator = allocator<pair<const Key, T> > >
 class map {
 public:
 // types:
 typedef Key key_type;
 typedef T mapped_type;
 typedef pair<const Key, T> value_type;
 typedef Compare key_compare;
 typedef Allocator allocator_type;
 typedef typename Allocator::reference reference;
 typedef typename Allocator::const_reference const_reference;
 typedef implementation-defined iterator; // See 23.1
 typedef implementation-defined const_iterator; // See 23.1
 typedef implementation-defined size_type; // See 23.1
 typedef implementation-defined difference_type;// See 23.1
 typedef typename Allocator::pointer pointer;
 typedef typename Allocator::const_pointer const_pointer;
 typedef std::reverse_iterator<iterator> reverse_iterator;
 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 class value_compare
 : public binary_function<value_type,value_type,bool> {
 friend class map;
 protected:
```

```
 Compare comp;
 value_compare(Compare c) : comp(c) {}
public:
 bool operator()(const value_type& x, const value_type& y) const {
 return comp(x.first, y.first);
 }
};
// 23.3.1.1 construct/copy/destroy:
explicit map(const Compare& comp = Compare(),
 const Allocator& = Allocator());
template <class InputIterator>
 map(InputIterator first, InputIterator last,
 const Compare& comp = Compare(), const Allocator& = Allocator());
map(const map<Key,T,Compare,Allocator>& x);
~map();
map<Key,T,Compare,Allocator>&
 operator=(const map<Key,T,Compare,Allocator>& x);
allocator_type get_allocator() const;
// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;
// 23.3.1.2 element access:
T& operator[] (const key_type& x);
T& at(const key_type& x);
const T& at(const key_type& x) const;
// modifiers:
pair<iterator, bool> insert(const value_type& x);
iterator insert(iterator position, const value_type& x);
template <class InputIterator>
```

Draft

```
map<Key,T,Compare,Allocator>& y);
```

\}

### 23.3.1.1 map constructors, copy, and assignment

[map.cons]

```
explicit map(const Compare& comp = Compare(),
 const Allocator& = Allocator());
```


### 23.3.1.2 map element access

[map.access]
T\& operator [] (const key_type\& x );
Effects: If there is no key equivalent to x in the map, inserts value_type ( $\mathrm{x}, \mathrm{T}())$ into the map.
Returns: A reference to the mapped_type corresponding to x in *this.
Complexity: logarithmic.
T\& at (const key_type\& x);
const T\& at(const key_type\& x) const;
Returns: A reference to the element whose key is equivalent to x .
Throws: An exception object of type out_of_range if no such element is present.

### 23.3.1.3 map operations

[map.ops]

```
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type &x) const;
pair<iterator, iterator>
```

```
 equal_range(const key_type &x);
pair<const_iterator, const_iterator>
 equal_range(const key_type& x) const;
```

1 The find, lower_bound, upper_bound and equal_range member functions each have two versions, one const and the other non-const. In each case the behavior of the two functions is identical except that the const version returns a const_iterator and the non-const version an iterator (23.1.2).

### 23.3.1.4 map specialized algorithms

[map.special]

```
template <class Key, class T, class Compare, class Allocator>
 void swap(map<Key,T,Compare,Allocator>& x,
 map<Key,T,Compare,Allocator>& y);
```

1 Effects:
x.swap(y);

### 23.3.2 Class template multimap

## [multimap]

1 A multimap is a kind of associative container that supports equivalent keys (possibly containing multiple copies of the same key value) and provides for fast retrieval of values of another type $T$ based on the keys. The multimap class supports bidirectional iterators.

2 A multimap satisfies all of the requirements of a container and of a reversible container (23.1) and of an associative container (23.1.2). A multimap also provides most operations described in (23.1.2) for equal keys. This means that a multimap supports the a_eq operations in (23.1.2) but not the a_uniq operations. For a multimap<Key, T> the key_type is Key and the value_type is pair<const Key, T . Descriptions are provided here only for operations on multimap that are not described in one of those tables or for operations where there is additional semantic information.

```
namespace std {
 template <class Key, class T, class Compare = less<Key>,
 class Allocator = allocator<pair<const Key, T> > >
 class multimap {
 public:
 // types:
 typedef Key key_type;
 typedef T
 typedef pair<const Key,T> value_type;
 typedef Compare
 typedef Allocator
 typedef typename Allocator::reference
 typedef typename Allocator::const_reference
 typedef implementation-defined
 typedef implementation-defined
 typedef implementation-defined
 typedef implementation-defined
 typedef typename Allocator::pointer
 typedef typename Allocator::const_pointer
 key_compare;
 allocator_type;
 const_reference;
 iterator; // See 23.1
 const_iterator; // See 23.1
 size_type; // See 23.1
 difference_type;// See 23.1
 pointer;
 const_pointer;
```

```
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
class value_compare
 : public binary_function<value_type,value_type,bool> {
friend class multimap;
protected:
 Compare comp;
 value_compare(Compare c) : comp(c) {}
public:
 bool operator()(const value_type& x, const value_type& y) const {
 return comp(x.first, y.first);
 }
};
// construct/copy/destroy:
explicit multimap(const Compare& comp = Compare(),
 const Allocator& = Allocator());
template <class InputIterator>
 multimap(InputIterator first, InputIterator last,
 const Compare& comp = Compare(),
 const Allocator& = Allocator());
multimap(const multimap<Key,T,Compare,Allocator>& x);
~multimap();
multimap<Key,T,Compare,Allocator>&
 operator=(const multimap<Key,T,Compare,Allocator>& x);
allocator_type get_allocator() const;
// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;
// modifiers:
```

Draft

```
 iterator insert(const value_type& x);
 iterator insert(iterator position, const value_type& x);
 template <class InputIterator>
 void insert(InputIterator first, InputIterator last);
 iterator erase(iterator position);
 size_type erase(const key_type& x);
 iterator erase(iterator first, iterator last);
 void swap(multimap<Key,T,Compare,Allocator>&);
 void clear();
 // observers:
 key_compare key_comp() const;
 value_compare value_comp() const;
 // map operations.
 iterator find(const key_type& x);
 const_iterator find(const key_type& x) const;
 size_type count(const key_type& x) const;
 iterator lower_bound(const key_type& x);
 const_iterator lower_bound(const key_type& x) const;
 iterator upper_bound(const key_type& x);
 const_iterator upper_bound(const key_type& x) const;
 pair<iterator,iterator>
 equal_range(const key_type& x);
 pair<const_iterator,const_iterator>
 equal_range(const key_type& x) const;
};
template <class Key, class T, class Compare, class Allocator>
 bool operator==(const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
 bool operator< (const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
 bool operator!=(const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
 bool operator> (const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
 bool operator>=(const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
template <class Key, class T, class Compare, class Allocator>
 bool operator<=(const multimap<Key,T,Compare,Allocator>& x,
 const multimap<Key,T,Compare,Allocator>& y);
```

```
 // specialized algorithms:
 template <class Key, class T, class Compare, class Allocator>
 void swap(multimap<Key,T,Compare,Allocator>& x,
 multimap<Key,T,Compare,Allocator>& y);
```

\}
23.3.2.1 multimap constructors
[multimap.cons]
explicit multimap (const Compare\& comp = Compare(),
const Allocator\& = Allocator());

### 23.3.2.2 multimap operations

[multimap.ops]

```
iterator find(const key_type &x);
iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
pair<iterator, iterator>
 equal_range(const key_type& x);
pair<const_iterator, const_iterator>
 equal_range(const key_type& x) const;
```

```
const_iterator find(const key_type& x) const;
```

```
const_iterator find(const key_type& x) const;
```

The find, lower_bound, upper_bound, and equal_range member functions each have two versions, one const
and one non-const. In each case the behavior of the two versions is identical except that the const version returns
The find, lower_bound, upper_bound, and equal_range member functions each have two versions, one const
and one non-const. In each case the behavior of the two versions is identical except that the const version returns a const_iterator and the non-const version an iterator (23.1.2).

### 23.3.2.3 multimap specialized algorithms

[multimap.special]

```
template <class Key, class T, class Compare, class Allocator>
```

    void swap(multimap<Key,T,Compare,Allocator>& x,
    ```
 void swap(multimap<Key,T,Compare,Allocator>& x,
 multimap<Key,T,Compare,Allocator>& y);
```

```
 multimap<Key,T,Compare,Allocator>& y);
```

```

Effects: Constructs an empty multimap using the specified comparison object and allocator.
```

template <class InputIterator>
multimap(InputIterator first, InputIterator last,
const Compare\& comp = Compare(),
const Allocator\& = Allocator());

```

Effects: Constructs an empty multimap using the specified comparison object and allocator, and inserts elements from the range [first, last).

Complexity: Linear in \(N\) if the range [first, last) is already sorted using comp and otherwise \(N \log N\), where \(N\) is last - first.
 Effects:
```

x.swap(y);

```
23.3.3 Class template set

1 A set is a kind of associative container that supports unique keys (contains at most one of each key value) and provides for fast retrieval of the keys themselves. Class set supports bidirectional iterators.

2 A set satisfies all of the requirements of a container and of a reversible container (23.1), and of an associative container (23.1.2). A set also provides most operations described in (23.1.2) for unique keys. This means that a set supports the a_uniq operations in (23.1.2) but not the a_eq operations. For a set<Key> both the key_type and value_type are Key. Descriptions are provided here only for operations on set that are not described in one of these tables and for operations where there is additional semantic information.
```

namespace std {
template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >
class set {
public:
// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
typedef typename Allocator::pointer
typedef typename Allocator::const_pointer
typedef std::reverse_iterator<iterator> reverse_iterator;
const_pointer;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
// 23.3.3.1 construct/copy/destroy:
explicit set(const Compare\& comp = Compare(),
const Allocator\& = Allocator());
template <class InputIterator>
set(InputIterator first, InputIterator last,
const Compare\& comp = Compare(), const Allocator\& = Allocator());
set(const set<Key,Compare,Allocator>\& x);
~set();
set<Key,Compare,Allocator>\& operator=
(const set<Key,Compare,Allocator>\& x);
allocator_type get_allocator() const;
// iterators:
iterator
begin();

```
```

const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;
// modifiers:
pair<iterator,bool> insert(const value_type\& x);
iterator insert(iterator position, const value_type\& x);
template <class InputIterator>
void insert(InputIterator first, InputIterator last);
iterator erase(iterator position);
size_type erase(const key_type\& x);
iterator erase(iterator first, iterator last);
void swap(set<Key,Compare,Allocator>\&);
void clear();
// observers:
key_compare key_comp() const;
value_compare value_comp() const;
// set operations:
iterator find(const key_type\& x);
const_iterator find(const key_type\& x) const;
size_type count(const key_type\& x) const;
iterator lower_bound(const key_type\& x);
const_iterator lower_bound(const key_type\& x) const;
iterator upper_bound(const key_type\& x);
const_iterator upper_bound(const key_type\& x) const;
pair<iterator,iterator> equal_range(const key_type\& x);
pair<const_iterator,const_iterator> equal_range(const key_type\& x) const;
};

```
```

    template <class Key, class Compare, class Allocator>
    bool operator==(const set<Key,Compare,Allocator>& x,
                            const set<Key,Compare,Allocator>& y);
    template <class Key, class Compare, class Allocator>
bool operator< (const set<Key,Compare,Allocator>\& x,
const set<Key,Compare,Allocator>\& y);
template <class Key, class Compare, class Allocator>
bool operator!=(const set<Key,Compare,Allocator>\& x,
const set<Key,Compare,Allocator>\& y);
template <class Key, class Compare, class Allocator>
bool operator> (const set<Key,Compare,Allocator>\& x,
const set<Key,Compare,Allocator>\& y);
template <class Key, class Compare, class Allocator>
bool operator>=(const set<Key,Compare,Allocator>\& x,
const set<Key,Compare,Allocator>\& y);
template <class Key, class Compare, class Allocator>
bool operator<=(const set<Key,Compare,Allocator>\& x,
const set<Key,Compare,Allocator>\& y);
// specialized algorithms:
template <class Key, class Compare, class Allocator>
void swap(set<Key,Compare,Allocator>\& x,
set<Key,Compare,Allocator>\& y);

```
\}
23.3.3.1 set constructors, copy, and assignment
[set.cons]
explicit set(const Compare\& comp = Compare(),
const Allocator\& = Allocator ());
Effects: Constructs an empty set using the specified comparison objects and allocator.
Complexity: Constant.
```

template <class InputIterator>

```
template <class InputIterator>
 set(InputIterator first, InputIterator last,
 set(InputIterator first, InputIterator last,
 const Compare& comp = Compare(), const Allocator& = Allocator());
```

        const Compare& comp = Compare(), const Allocator& = Allocator());
    ```

Effects: Constructs an empty set using the specified comparison object and allocator, and inserts elements from the range [first, last).
Complexity: Linear in \(N\) if the range [first, last) is already sorted using comp and otherwise \(N \log N\), where \(N\) is last - first.

\subsection*{23.3.3.2 set specialized algorithms}
[set.special]
```

template <class Key, class Compare, class Allocator>
void swap(set<Key,Compare,Allocator>\& x,
set<Key,Compare,Allocator>\& y);

```

1 Effects:
x.swap (y) ;

\subsection*{23.3.4 Class template multiset}
[multiset]
1 A multiset is a kind of associative container that supports equivalent keys (possibly contains multiple copies of the same key value) and provides for fast retrieval of the keys themselves. Class multiset supports bidirectional iterators.

2 A multiset satisfies all of the requirements of a container and of a reversible container (23.1), and of an associative container (23.1.2). multiset also provides most operations described in (23.1.2) for duplicate keys. This means that a multiset supports the a_eq operations in (23.1.2) but not the a_uniq operations. For a multiset<Key> both the key_type and value_type are Key. Descriptions are provided here only for operations on multiset that are not described in one of these tables and for operations where there is additional semantic information.
```

namespace std {
template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >
class multiset {
public:
// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator
typedef typename Allocator::reference
typedef typename Allocator::const_reference
typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
typedef typename Allocator::pointer
typedef typename Allocator::const_pointer
typedef std::reverse_iterator<iterator>
reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
// construct/copy/destroy:
explicit multiset(const Compare\& comp = Compare(),
const Allocator\& = Allocator());
template <class InputIterator>
multiset(InputIterator first, InputIterator last,
const Compare\& comp = Compare(),
const Allocator\& = Allocator());
multiset(const multiset<Key,Compare,Allocator>\& x);
~multiset();
multiset<Key,Compare,Allocator>\&
operator=(const multiset<Key,Compare,Allocator>\& x);
allocator_type get_allocator() const;

```
```

// iterators:
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
reverse_iterator rend();
const_reverse_iterator rend() const;
const_iterator cbegin() const;
const_iterator cend() const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend() const;
// capacity:
bool empty() const;
size_type size() const;
size_type max_size() const;
// modifiers:
iterator insert(const value_type\& x);
iterator insert(iterator position, const value_type\& x);
template <class InputIterator>
void insert(InputIterator first, InputIterator last);
iterator erase(iterator position);
size_type erase(const key_type\& x);
iterator erase(iterator first, iterator last);
void swap(multiset<Key,Compare,Allocator>\&);
void clear();
// observers:
key_compare key_comp() const;
value_compare value_comp() const;
// set operations:
iterator find(const key_type\& x);
const_iterator find(const key_type\& x) const;
size_type count(const key_type\& x) const;
iterator lower_bound(const key_type\& x);
const_iterator lower_bound(const key_type\& x) const;
iterator upper_bound(const key_type\& x);
const_iterator upper_bound(const key_type\& x) const;

```

Draft
```

    pair<iterator,iterator> equal_range(const key_type& x);
    pair<const_iterator,const_iterator> equal_range(const key_type& x) const;
    };
    template <class Key, class Compare, class Allocator>
    bool operator==(const multiset<Key,Compare,Allocator>& x,
    const multiset<Key,Compare,Allocator>& y);
    template <class Key, class Compare, class Allocator>
    bool operator< (const multiset<Key,Compare,Allocator>& x,
                const multiset<Key,Compare,Allocator>& y);
    template <class Key, class Compare, class Allocator>
    bool operator!=(const multiset<Key,Compare,Allocator>& x,
                const multiset<Key,Compare,Allocator>& y);
    template <class Key, class Compare, class Allocator>
    bool operator> (const multiset<Key,Compare,Allocator>& x,
                const multiset<Key,Compare,Allocator>& y);
    template <class Key, class Compare, class Allocator>
    bool operator>=(const multiset<Key,Compare,Allocator>& x,
                const multiset<Key,Compare,Allocator>& y);
    template <class Key, class Compare, class Allocator>
    bool operator<=(const multiset<Key,Compare,Allocator>& x,
                        const multiset<Key,Compare,Allocator>& y);
    // specialized algorithms:
    template <class Key, class Compare, class Allocator>
    void swap(multiset<Key,Compare,Allocator>& x,
                multiset<Key,Compare,Allocator>& y);
    ```
\}

\subsection*{23.3.4.1 multiset constructors}
[multiset.cons]
```

explicit multiset(const Compare\& comp = Compare(),
const Allocator\& = Allocator());

```

1 Effects: Constructs an empty set using the specified comparison object and allocator.
2 Complexity: Constant.
```

template <class InputIterator>
multiset(InputIterator first, last,
const Compare\& comp = Compare(), const Allocator\& = Allocator());

```

Effects: Constructs an empty multiset using the specified comparison object and allocator, and inserts elements from the range [first, last).

4 Complexity: Linear in \(N\) if the range [first, last) is already sorted using comp and otherwise \(N \log N\), where \(N\) is last - first.
```

template <class Key, class Compare, class Allocator>
void swap(multiset<Key,Compare,Allocator>\& x,
multiset<Key,Compare,Allocator>\& y);

```

Effects:
```

x.swap(y);

```
23.3.5 Class template bitset
[template.bitset]

\section*{Header <bitset> synopsis}
```

\#include <cstddef> // for size_t
\#include <string>
\#include <stdexcept> // for invalid_argument,
// out_of_range, overflow_error
\#include <iosfwd> // for istream, ostream
namespace std {
template <size_t N> class bitset;
// 23.3.5.3 bitset operations:
template <size_t N>
bitset<N> operator\&(const bitset<N>\&, const bitset<N>\&);
template <size_t N>
bitset<N> operator|(const bitset<N>\&, const bitset<N>\&);
template <size_t N>
bitset<N> operator^(const bitset<N>\&, const bitset<N>\&);
template <class charT, class traits, size_t N>
basic_istream<charT, traits>\&
operator>>(basic_istream<charT, traits>\& is, bitset<N>\& x);
template <class charT, class traits, size_t N>
basic_ostream<charT, traits>\&
operator<<(basic_ostream<charT, traits>\& os, const bitset<N>\& x);
}

```

1 The header <bitset> defines a class template and several related functions for representing and manipulating fixed-size sequences of bits.
```

namespace std {
template<size_t N> class bitset {
public:
// bit reference:
class reference {
friend class bitset;
reference();
public:
~reference();
reference\& operator=(bool x); //for b[i] = x;
reference\& operator=(const reference\&); // forb[i] = b[j];
bool operator~() const; // flips the bit

```
 Draft
```

    operator bool() const; // for x = b[i];
    reference& flip();
    };
    // 23.3.5.1 constructors:
    bitset();
    bitset(unsigned long val);
    template<class charT, class traits, class Allocator>
        explicit bitset(
            const basic_string<charT,traits,Allocator>& str,
            typename basic_string<charT,traits,Allocator>::size_type pos = 0,
            typename basic_string<charT,traits,Allocator>::size_type n =
            basic_string<charT,traits,Allocator>: :npos);
    ```

\section*{// 23.3.5.2 bitset operations:}
```

bitset<N>\& operator\&=(const bitset<N>\& rhs);
bitset<N>\& operator|=(const bitset<N>\& rhs);
bitset<N>\& operator^=(const bitset<N>\& rhs);
bitset<N>\& operator<<=(size_t pos);
bitset<N>\& operator>>=(size_t pos);
bitset<N>\& set();
bitset<N>\& set(size_t pos, bool val = true);
bitset<N>\& reset();
bitset<N>\& reset(size_t pos);
bitset<N> operator~() const;
bitset<N>\& flip();
bitset<N>\& flip(size_t pos);
// element access:
bool operator[](size_t pos) const; // for b[i];
reference operator[](size_t pos); // forb[i];
unsigned long to_ulong() const;
template <class charT, class traits, class Allocator>
basic_string<charT, traits, Allocator> to_string() const;
template <class charT, class traits>
basic_string<charT, traits, allocator<charT> > to_string() const;
template <class charT>
basic_string<charT, char_traits<charT>, allocator<charT> > to_string() const;
basic_string<char, char_traits<char>, allocator<char> > to_string() const;
size_t count() const;
size_t size() const;
bool operator==(const bitset<N>\& rhs) const;
bool operator!=(const bitset<N>\& rhs) const;
bool test(size_t pos) const;
bool any() const;
bool none() const;
bitset<N> operator<<(size_t pos) const;
bitset<N> operator>>(size_t pos) const;
};

```

Draft
\}
- an invalid-argument error is associated with exceptions of type invalid_argument (19.1.3);
— an out-of-range error is associated with exceptions of type out_of_range (19.1.5);
- an overflow error is associated with exceptions of type overflow_error (19.1.8).
23.3.5.1 bitset constructors
[bitset.cons]
bitset();
Effects: Constructs an object of class bitset<N>, initializing all bits to zero.
```

bitset(unsigned long val);

```

Effects: Constructs an object of class bitset<N>, initializing the first \(M\) bit positions to the corresponding bit values in \(v a l . M\) is the smaller of \(N\) and the number of bits in the value representation (section 3.9) of unsigned long. If \(M<N\), the remaining bit positions are initialized to zero.
```

template <class charT, class traits, class Allocator>
explicit
bitset(const basic_string<charT, traits, Allocator>\& str,
typename basic_string<charT, traits, Allocator>::size_type pos = 0,
typename basic_string<charT, traits, Allocator>::size_type n =
basic_string<charT, traits, Allocator>::npos);
Requires: pos <= str.size().
Throws: out_of_range if pos > str.size().

```

Effects: Determines the effective length \(r l e n\) of the initializing string as the smaller of \(n\) and str.size() pos.

The function then throws invalid_argument if any of the \(r l e n\) characters in \(s t r\) beginning at position \(p o s\) is other than 0 or 1.

Otherwise, the function constructs an object of class bitset<N>, initializing the first \(M\) bit positions to values determined from the corresponding characters in the string str. \(M\) is the smaller of \(N\) and \(r l e n\).
An element of the constructed string has value zero if the corresponding character in \(s t r\), beginning at position pos, is 0 . Otherwise, the element has the value one. Character position pos \(+M-1\) corresponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit positions.

If \(M<N\), remaining bit positions are initialized to zero.
23.3.5.2 bitset members
[bitset.members]
bitset<N>\& operator\&=(const bitset<N>\& rhs);
Effects: Clears each bit in *this for which the corresponding bit in rhs is clear, and leaves all other bits unchanged.
Returns: *this.
bitset<N>\& operator|=(const bitset<N>\& rhs);
Effects: Sets each bit in *this for which the corresponding bit in \(r h s\) is set, and leaves all other bits unchanged.
Returns: *this.
bitset<N>\& operator \({ }^{\wedge}=(\) const bitset<N>\& rhs);
Effects: Toggles each bit in *this for which the corresponding bit in rhs is set, and leaves all other bits unchanged.

Returns: *this.
bitset<N>\& operator<<=(size_t pos);
Effects: Replaces each bit at position \(I\) in *this with a value determined as follows:
- If \(I\) < pos, the new value is zero;
- If \(I>=\) pos, the new value is the previous value of the bit at position \(I\) - pos.

Returns: *this.
bitset<N>\& operator>>=(size_t pos);
Effects: Replaces each bit at position \(I\) in \(*\) this with a value determined as follows:
- If \(\operatorname{pos}>=\mathrm{N}-\mathrm{I}\), the new value is zero;
- If pos < N - I, the new value is the previous value of the bit at position \(I+p o s\).

Returns: *this.
bitset<N>\& set();
Effects: Sets all bits in *this.
Returns: *this.
bitset<N>\& set(size_t pos, bool val = true);
Requires: pos is valid
Throws: out_of_range if pos does not correspond to a valid bit position.

Effects: Stores a new value in the bit at position pos in *this. If val is nonzero, the stored value is one, otherwise it is zero.

Returns: *this.
bitset<N>\& reset();
Effects: Resets all bits in *this.
Returns: *this.
bitset<N>\& reset(size_t pos);
Requires: pos is valid
Throws: out_of_range if pos does not correspond to a valid bit position.
Effects: Resets the bit at position pos in *this.
Returns: *this.
bitset<N> operator~() const;
Effects: Constructs an object \(x\) of class bitset<N> and initializes it with *this.
Returns: \(x . f l i p()\).
bitset<N>\& flip();
Effects: Toggles all bits in *this.
Returns: *this.
bitset<N>\& flip(size_t pos);
Requires: pos is valid
Throws: out_of_range if pos does not correspond to a valid bit position.
Effects: Toggles the bit at position pos in *this.
Returns: *this.
unsigned long to_ulong() const;
Throws: overflow_error if the integral value \(x\) corresponding to the bits in \(*\) this cannot be represented as type unsigned long.

Returns: \(x\).
template <class charT, class traits, class Allocator>
basic_string<charT, traits, Allocator> to_string() const;
Effects: Constructs a string object of the appropriate type and initializes it to a string of length \(N\) characters. Each character is determined by the value of its corresponding bit position in *this. Character position \(N-1\) corresponds to bit position zero. Subsequent decreasing character positions correspond to increasing bit positions. Bit value zero becomes the character 0 , bit value one becomes the character 1 .

Returns: The created object.
template <class charT, class traits>
basic_string<charT, traits, allocator<charT\gg to_string() const;
Returns: to_string<charT, traits, allocator<charT\gg().
template <class charT>
basic_string<charT, char_traits<charT>, allocator<charT\gg to_string() const;
Returns: to_string<charT, char_traits<charT>, allocator<charT\gg().
basic_string<char, char_traits<char>, allocator<char\gg to_string() const;
Returns: to_string<char, char_traits<char>, allocator<char\gg().
size_t count() const;
Returns: A count of the number of bits set in *this.
size_t size() const;
Returns: N.
bool operator==(const bitset<N>\& rhs) const;
Returns: A nonzero value if the value of each bit in *this equals the value of the corresponding bit in \(r\).
bool operator!=(const bitset<N>\& rhs) const;
Returns: A nonzero qraldmedik.0Td!(=)1(()[(*)1(t)1(h)1(i)1(1)-521(=)1(n)]TJ/F1259.963T57.4.9250Td[(r)1(h)1(s)]TJ/F549.963Tf1
```

template <class charT, class traits, size_t N>
basic_istream<charT, traits>\&
operator>>(basic_istream<charT, traits>\& is, bitset<N>\& x);

```

A formatted input function (27.6.1.2).
Effects: Extracts up to \(N\) characters from is. Stores these characters in a temporary object str of type basic_string<charT, traits>, then evaluates the expression \(x=\) bitset< \(\mathbb{N}>(s t r)\). Characters are extracted and stored until any of the following occurs:
- \(N\) characters have been extracted and stored;
- end-of-file occurs on the input sequence;
- the next input character is neither is.widen('0') nor is.widen('1') (in which case the input character is not extracted).

If no characters are stored in \(s t r\), calls \(i s\).setstate(ios::failbit) (which may throw ios_base: :failure (27.4.4.3)).

Returns: is.
template <class charT, class traits, size_t N>
basic_ostream<charT, traits>\&
operator<<(basic_ostream<charT, traits>\& os, const bitset<N>\& \(x\));

Draft

8

\subsection*{23.4 Unordered associative containers}

1 Headers <unordered_map> and <unordered_set>:
Header <unordered_map> synopsis
```

namespace std {
// 23.4.1, class template unordered_map:
template <class Key,
class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >
class unordered_map;
// 23.4.2, class template unordered_multimap:
template <class Key,
class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >
class unordered_multimap;
template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_map<Key, T, Hash, Pred, Alloc>\& x,
unordered_map<Key, T, Hash, Pred, Alloc>\& y);
template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>\& x,
unordered_multimap<Key, T, Hash, Pred, Alloc>\& y);
} // namespace std

```

Header <unordered_set> synopsis
```

namespace std {
// 23.4.3, class template unordered_set:
template <class Value,
class Hash = hash<Value>,
class Pred = std::equal_to<Value>,
class Alloc = std::allocator<Value> >
class unordered_set;
// 23.4.4, class template unordered_multiset:
template <class Value,
class Hash = hash<Value>,
class Pred = std::equal_to<Value>,
class Alloc = std::allocator<Value> >
class unordered_multiset;

```
```

    template <class Value, class Hash, class Pred, class Alloc>
    void swap(unordered_set<Value, Hash, Pred, Alloc>& x,
                            unordered_set<Value, Hash, Pred, Alloc>& y);
    template <class Value, class Hash, class Pred, class Alloc>
void swap(unordered_multiset<Value, Hash, Pred, Alloc>\& x,
unordered_multiset<Value, Hash, Pred, Alloc>\& y);
} // namespace std

```

\subsection*{23.4.1 Class template unordered_map}
[unord.map]
1 An unordered_map is an unordered associative container that supports unique keys (an unordered_map contains at most one of each key value) and that associates values of another type mapped_type with the keys.

2 An unordered_map satisfies all of the requirements of a container and of an unordered associative container. It provides the operations described in the preceding requirements table for unique keys; that is, an unordered_map supports the a_uniq operations in that table, not the a_eq operations. For an unordered_map<Key, \(T>\) the key type is Key, the mapped type is T , and the value type is std: : pair<const Key, T >.

3 This section only describes operations on unordered_map that are not described in one of the requirement tables, or for which there is additional semantic information.
```

template <class Key,
class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >
class unordered_map
{
public:
// types
typedef Key key_type;
typedef std::pair<const Key, T> value_type;
typedef T mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;
typedef implementation-defined iterator;
typedef implementation-defined const_iterator;
typedef implementation-defined local_iterator;
typedef implementation-defined const_local_iterator;
// construct/destroy/copy
explicit unordered_map(size_type n = implementation-defined,

```

Draft
```

const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());
template <class InputIterator>
unordered_map(InputIterator f, InputIterator l,
size_type n = implementation-defined,
const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());
unordered_map(const unordered_map\&);
~unordered_map();
unordered_map\& operator=(const unordered_map\&);
allocator_type get_allocator() const;
// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;
// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;
// modifiers
std::pair<iterator, bool> insert(const value_type\& obj);
iterator insert(iterator hint, const value_type\& obj);
const_iterator insert(const_iterator hint, const value_type\& obj);
template <class InputIterator> void insert(InputIterator first, InputIterator last);
iterator erase(iterator position);
const_iterator erase(const_iterator position);
size_type erase(const key_type\& k);
iterator erase(iterator first, iterator last);
const_iterator erase(const_iterator first, const_iterator last);
void clear();
void swap(unordered_map\&);
// observers
hasher hash_function() const;
key_equal key_eq() const;
// lookup
iterator find(const key_type\& k);
const_iterator find(const key_type\& k) const;
size_type count(const key_type\& k) const;

```

Draft
```

    std::pair<iterator, iterator> equal_range(const key_type& k);
    std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
    mapped_type& operator[](const key_type& k);
    // bucket interface
    size_type bucket_count() const;
    size_type max_bucket_count() const;
    size_type bucket_size(size_type n);
    size_type bucket(const key_type& k) const;
    local_iterator begin(size_type n) const;
    const_local_iterator begin(size_type n) const;
    local_iterator end(size_type n);
    const_local_iterator end(size_type n) const;
    // hash policy
    float load_factor() const;
    float max_load_factor() const;
    void max_load_factor(float z);
    void rehash(size_type n);
    };
template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_map<Key, T, Hash, Pred, Alloc>\& x,
unordered_map<Key, T, Hash, Pred, Alloc>\& y);

```
23.4.1.1 unordered_map constructors
[unord.map.enstr]
```

explicit unordered_map(size_type n = implementation-defined,
const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());

```
template <class InputIterator>
 unordered_map(InputIterator f, InputIterator l,
 size_type \(\mathrm{n}=\) implementation-defined,
 const hasher\& hf = hasher(),
 const key_equal\& eql = key_equal(),
 const allocator_type\& \(\mathrm{a}=\) allocator_type()); inserts elements from the range [\(f, l\)). max_load_factor () returns 1.0.

Complexity: Average case linear, worst case quadratic.

Effects: Constructs an empty unordered_map using the specified hash function, key equality function, and allocator, and using at least \(n\) buckets. (If \(n\) is not provided, the number of buckets is implementation defined.) Then

\subsection*{23.4.1.2 unordered_map element access}
[unord.map.elem]
mapped_type\& operator [] (const key_type\& k);
23.4.1.3 unordered_map swap
```

template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_map<Key, T, Hash, Pred, Alloc>\& x,
unordered_map<Key, T, Hash, Pred, Alloc>\& y);

```

1
Effects: x. swap (y).
23.4.2 Class template unordered_multimap
[unord.multimap]
1 An unordered_multimap is an unordered associative container that supports equivalent keys (an unordered_multimap may contain multiple copies of each key value) and that associates values of another type mapped_type with the keys.

2 An unordered_multimap satisfies all of the requirements of a container and of an unordered associative container. It provides the operations described in the preceding requirements table for equivalent keys; that is, an unordered_multimap supports the a_eq operations in that table, not the a_uniq operations. For an unordered_multimap<Key, \(\mathrm{T}>\) the key type is Key, the mapped type is T , and the value type is std: : pair<const Key, T >.

3 This section only describes operations on unordered_multimap that are not described in one of the requirement tables, or for which there is additional semantic information.
```

template <class Key,
class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >
class unordered_multimap
{
public:
// types
typedef Key key_type;
typedef std::pair<const Key, T> value_type;
typedef T mapped_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef implementation-defined size_type;

```
Draft
```

typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
// construct/destroy/copy
explicit unordered_multimap(size_type n = implementation-defined,
const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());
template <class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,
size_type n = implementation-defined,
const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());
unordered_multimap(const unordered_multimap\&);
~unordered_multimap();
unordered_multimap\& operator=(const unordered_multimap\&);
allocator_type get_allocator() const;
// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;
// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;
// modifiers
iterator insert(const value_type\& obj);
iterator insert(iterator hint, const value_type\& obj);
const_iterator insert(const_iterator hint, const value_type\& obj);
template <class InputIterator> void insert(InputIterator first, InputIterator last);
iterator erase(iterator position);
const_iterator erase(const_iterator position);
size_type erase(const key_type\& k);
iterator erase(iterator first, iterator last);
const_iterator erase(const_iterator first, const_iterator last);
void clear();
void swap(unordered_multimap\&);

```
```

    // observers
    hasher hash_function() const;
    key_equal key_eq() const;
    // lookup
    iterator find(const key_type& k);
    const_iterator find(const key_type& k) const;
    size_type count(const key_type& k) const;
    std::pair<iterator, iterator> equal_range(const key_type& k);
    std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
    // bucket interface
    size_type bucket_count() const;
    size_type max_bucket_count() const;
    size_type bucket_size(size_type n);
    size_type bucket(const key_type& k) const;
    local_iterator begin(size_type n) const;
    const_local_iterator begin(size_type n) const;
    local_iterator end(size_type n);
    const_local_iterator end(size_type n) const;
    // hash policy
    float load_factor() const;
    float max_load_factor() const;
    void max_load_factor(float z);
    void rehash(size_type n);
    };
template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>\& x,
unordered_multimap<Key, T, Hash, Pred, Alloc>\& y);

```
23.4.2.1 unordered_multimap constructors
[unord.multimap.enstr]
```

explicit unordered_multimap(size_type n = implementation-defined,
const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());

```

Effects: Constructs an empty unordered_multimap using the specified hash function, key equality function, and allocator, and using at least \(n\) buckets. If \(n\) is not provided, the number of buckets is implementation defined. max_load_factor() returns 1.0.
```

template <class InputIterator>
unordered_multimap(InputIterator f, InputIterator l,
size_type n = implementation-defined,
const hasher\& hf = hasher(),

```
```

const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());

```

\subsection*{23.4.2.2 unordered_multimap swap}
```

template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>\& x,
unordered_multimap<Key, T, Hash, Pred, Alloc>\& y);

```
 Effects: x.swap (y).

\subsection*{23.4.3 Class template unordered_set}

1 An unordered_set is an unordered associative container that supports unique keys (an unordered_set contains at most one of each key value) and in which the elements' keys are the elements themselves.

2 An unordered_set satisfies all of the requirements of a container and of an unordered associative container. It provides the operations described in the preceding requirements table for unique keys; that is, an unordered_set supports the a_uniq operations in that table, not the a_eq operations. For an unordered_set<Value> the key type and the value type are both Value. The iterator and const_iterator types are both const iterator types. It is unspecified whether they are the same type.

3 This section only describes operations on unordered_set that are not described in one of the requirement tables, or for which there is additional semantic information.
```

template <class Value,
class Hash = hash<Value>,
class Pred = std::equal_to<Value>,
class Alloc = std::allocator<Value> >
class unordered_set
{
public:
// types
typedef Value key_type;
typedef Value value_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;

```
```

typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
// construct/destroy/copy
explicit unordered_set(size_type n = implementation-defined,
const hasher\& hf = hasher(),
const key_equal\& eql = key_equal()
const allocator_type\& a = allocator_type());
template <class InputIterator>
unordered_set(InputIterator f, InputIterator l,
size_type n = implementation-defined,
const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());
unordered_set(const unordered_set\&);
~unordered_set();
unordered_set\& operator=(const unordered_set\&);
allocator_type get_allocator() const;
// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;
// iterators
iterator begin();
const_iterator begin() const;
iterator end()
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;
// modifiers
std::pair<iterator, bool> insert(const value_type\& obj);
iterator insert(iterator hint, const value_type\& obj);
const_iterator insert(const_iterator hint, const value_type\& obj);
template <class InputIterator> void insert(InputIterator first, InputIterator last);
iterator erase(iterator position);
const_iterator erase(const_iterator position);
size_type erase(const key_type\& k);
iterator erase(iterator first, iterator last);
const_iterator erase(const_iterator first, const_iterator last);
void clear();
void swap(unordered_set\&);

```
```

    // observers
    hasher hash_function() const;
    key_equal key_eq() const;
    // lookup
    iterator find(const key_type& k);
    const_iterator find(const key_type& k) const;
    size_type count(const key_type& k) const;
    std::pair<iterator, iterator> equal_range(const key_type& k);
    std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
    // bucket interface
    size_type bucket_count() const;
    size_type max_bucket_count() const;
    size_type bucket_size(size_type n) const;
    size_type bucket(const key_type& k) const;
    local_iterator begin(size_type n);
    const_local_iterator begin(size_type n) const;
    local_iterator end(size_type n);
    const_local_iterator end(size_type n) const;
    // hash policy
    float load_factor() const;
    float max_load_factor() const;
    void max_load_factor(float z);
    void rehash(size_type n);
    };
template <class Value, class Hash, class Pred, class Alloc>
void swap(unordered_set<Value, Hash, Pred, Alloc>\& x,
unordered_set<Value, Hash, Pred, Alloc>\& y);

```
23.4.3.1 unordered_set constructors
[unord.set.cnstr]
```

explicit unordered_set(size_type n = implementation-defined,
const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());

```

Effects: Constructs an empty unordered_set using the specified hash function, key equality function, and allocator, and using at least \(n\) buckets. If \(n\) is not provided, the number of buckets is implementation defined. max_load_factor() returns 1.0.

Complexity: Constant.
```

template <class InputIterator>
unordered_set(InputIterator f, InputIterator l,
size_type n = implementation-defined,
const hasher\& hf = hasher(),

```
```

const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());

```

\subsection*{23.4.3.2 unordered_set swap}
template <class Value, class Hash, class Pred, class Alloc>
void swap(unordered_set<Value, Hash, Pred, Alloc>\& x, unordered_set<Value, Hash, Pred, Alloc>\& y);
Effects: Constructs an empty unordered_set using the specified hash function, key equality function, and allocator, and using at least \(n\) buckets. (If \(n\) is not provided, the number of buckets is implementation defined.) Then inserts elements from the range \([f, l\)). max_load_factor () returns 1.0.
Complexity: Average case linear, worst case quadratic.

1 Effects: x. \(\operatorname{swap}(\mathrm{y})\).

\subsection*{23.4.4 Class template unordered_multiset}
[unord.multiset]
1 An unordered_multiset is an unordered associative container that supports equivalent keys (an unordered_multiset may contain multiple copies of the same key value) and in which each element's key is the element itself.
2 An unordered_multiset satisfies all of the requirements of a container and of an unordered associative container. It provides the operations described in the preceding requirements table for equivalent keys; that is, an unordered_multiset supports the a_eq operations in that table, not the a_uniq operations. For an unordered_multiset<Value> the key type and the value type are both Value. The iterator and const_iterator types are both const iterator types. It is unspecified whether they are the same type.

3 This section only describes operations on unordered_multiset that are not described in one of the requirement tables, or for which there is additional semantic information.
```

template <class Value,
class Hash = hash<Value>,
class Pred = std::equal_to<Value>,
class Alloc = std::allocator<Value> >
class unordered_multiset
{
public:
// types
typedef Value key_type;
typedef Value value_type;
typedef Hash hasher;
typedef Pred key_equal;
typedef Alloc allocator_type;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef implementation-defined size_type;
typedef implementation-defined difference_type;

```
Draft
```

typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
typedef implementation-defined
// construct/destroy/copy
explicit unordered_multiset(size_type n = implementation-defined,
const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());
template <class InputIterator>
unordered_multiset(InputIterator f, InputIterator l,
size_type n = implementation-defined,
const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());
unordered_multiset(const unordered_multiset\&);
~unordered_multiset();
unordered_multiset\& operator=(const unordered_multiset\&);
allocator_type get_allocator() const;
// size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;
// iterators
iterator begin();
const_iterator begin() const;
iterator end();
const_iterator end() const;
const_iterator cbegin() const;
const_iterator cend() const;
// modifiers
iterator insert(const value_type\& obj);
iterator insert(iterator hint, const value_type\& obj);
const_iterator insert(const_iterator hint, const value_type\& obj);
template <class InputIterator> void insert(InputIterator first, InputIterator last);
iterator erase(iterator position);
const_iterator erase(const_iterator position);
size_type erase(const key_type\& k);
iterator erase(iterator first, iterator last);
const_iterator erase(const_iterator first, const_iterator last);
void clear();
void swap(unordered_multiset\&);

```
```

    // observers
    hasher hash_function() const;
    key_equal key_eq() const;
    // lookup
    iterator find(const key_type& k);
    const_iterator find(const key_type& k) const;
    size_type count(const key_type& k) const;
    std::pair<iterator, iterator> equal_range(const key_type& k);
    std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
    // bucket interface
    size_type bucket_count() const;
    size_type max_bucket_count() const;
    size_type bucket_size(size_type n);
    size_type bucket(const key_type& k) const;
    local_iterator begin(size_type n) const;
    const_local_iterator begin(size_type n) const;
    local_iterator end(size_type n);
    const_local_iterator end(size_type n) const;
    // hash policy
    float load_factor() const;
    float max_load_factor() const;
    void max_load_factor(float z);
    void rehash(size_type n);
    };
template <class Value, class Hash, class Pred, class Alloc>
void swap(unordered_multiset<Value, Hash, Pred, Alloc>\& x,
unordered_multiset<Value, Hash, Pred, Alloc>\& y);
}

```
23.4.4.1 unordered_multiset constructors
[unord.multiset.cnstr]
explicit unordered_multiset(size_type \(\mathrm{n}=\) implementation-defined,
 const hasher\& hf = hasher(),
 const key_equal\& eql = key_equal(),
 const allocator_type\& a = allocator_type());

2

Effects: Constructs an empty unordered_multiset using the specified hash function, key equality function, and allocator, and using at least \(n\) buckets. If \(n\) is not provided, the number of buckets is implementation defined. max_load_factor() returns 1.0.
```

            Complexity: Constant.
    template <class InputIterator>
unordered_multiset(InputIterator f, InputIterator l,
size_type n = implementation-defined,

```
```

const hasher\& hf = hasher(),
const key_equal\& eql = key_equal(),
const allocator_type\& a = allocator_type());

```

\subsection*{23.4.4.2 unordered_multiset swap}
[unord.multiset.swap]
template <class Value, class Hash, class Pred, class Alloc> void swap(unordered_multiset<Value, Hash, Pred, Alloc>\& x, unordered_multiset<Value, Hash, Pred, Alloc>\& y);

Effects: x.swap(y);

\section*{Chapter 24 Iterators library}

1 This clause describes components that C++ programs may use to perform iterations over containers (clause 23), streams (27.6), and stream buffers (27.5).

2 The following subclauses describe iterator requirements, and components for iterator primitives, predefined iterators, and stream iterators, as summarized in Table 87.

Table 87: Iterators library summary
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Subclause } & Header(s) \\
\hline \hline 24.1 Requirements & \\
\hline 24.3 Iterator primitives & <iterator> \\
24.4 Predefined iterators & \\
24.5 Stream iterators & \\
\hline
\end{tabular}

\subsection*{24.1 Iterator requirements}
[iterator.requirements]
1 Iterators are a generalization of pointers that allow a C++ program to work with different data structures (containers) in a uniform manner. To be able to construct template algorithms that work correctly and efficiently on different types of data structures, the library formalizes not just the interfaces but also the semantics and complexity assumptions of iterators. All input iterators i support the expression \(* i\), resulting in a value of some class, enumeration, or built-in type T , called the value type of the iterator. All output iterators support the expression \(* \mathrm{i}=\mathrm{o}\) where o is a value of some type that is in the set of types that are writable to the particular iterator type of i. All iterators i for which the expression \((* i) . m\) is well-defined, support the expression \(i->m\) with the same semantics as \((* i) . m\). For every iterator type \(X\) for which equality is defined, there is a corresponding signed integral type called the difference type of the iterator.

2 Since iterators are an abstraction of pointers, their semantics is a generalization of most of the semantics of pointers in \(\mathrm{C}++\). This ensures that every function template that takes iterators works as well with regular pointers. This International Standard defines five categories of iterators, according to the operations defined on them: input iterators, output iterators, forward iterators, bidirectional iterators and random access iterators, as shown in Table 88.

Table 88: Relations among iterator categories
\begin{tabular}{|lll|}
Random Access \(\rightarrow\) Bidirectional & \(\rightarrow\) Forward & \(\rightarrow\) Input \\
& \(\rightarrow\) Output \\
\hline
\end{tabular}

3 Forward iterators satisfy all the requirements of the input and output iterators and can be used whenever either kind is specified; Bidirectional iterators also satisfy all the requirements of the forward iterators and can be used whenever a
forward iterator is specified; Random access iterators also satisfy all the requirements of bidirectional iterators and can be used whenever a bidirectional iterator is specified.

4 Besides its category, a forward, bidirectional, or random access iterator can also be mutable or constant depending on whether the result of the expression \(* i\) behaves as a reference or as a reference to a constant. Constant iterators do not satisfy the requirements for output iterators, and the result of the expression \(* i\) (for constant iterator i) cannot be used in an expression where an lvalue is required.

5 Just as a regular pointer to an array guarantees that there is a pointer value pointing past the last element of the array, so for any iterator type there is an iterator value that points past the last element of a corresponding container. These values are called past-the-end values. Values of an iterator i for which the expression \(* \mathrm{i}\) is defined are called dereferenceable. The library never assumes that past-the-end values are dereferenceable. Iterators can also have singular values that are not associated with any container. [Example: After the declaration of an uninitialized pointer x (as with int* x ;), x must always be assumed to have a singular value of a pointer. - end example] Results of most expressions are undefined for singular values; the only exceptions are destroying an iterator that holds a singular value and the assignment of a non-singular value to an iterator that holds a singular value. In this case the singular value is overwritten the same way as any other value. Dereferenceable values are always non-singular.

6 An iterator \(j\) is called reachable from an iterator \(i\) if and only if there is a finite sequence of applications of the expression \(++i\) that makes \(i==j\). If \(j\) is reachable from \(i\), they refer to the same container.

7 Most of the library's algorithmic templates that operate on data structures have interfaces that use ranges. A range is a pair of iterators that designate the beginning and end of the computation. A range [\(i\), \(i\)) is an empty range; in general, a range \([i, j)\) refers to the elements in the data structure starting with the one pointed to by \(i\) and up to but not including the one pointed to by \(j\). Range \([i, j)\) is valid if and only if \(j\) is reachable from \(i\). The result of the application of functions in the library to invalid ranges is undefined.

8 All the categories of iterators require only those functions that are realizable for a given category in constant time (amortized). Therefore, requirement tables for the iterators do not have a complexity column.

9 Destruction of an iterator may invalidate pointers and references previously obtained from that iterator.
10 An invalid iterator is an iterator that may be singular. \({ }^{263)}\)
11 In the following sections, \(a\) and \(b\) denote values of type \(X\) or const \(X, n\) denotes a value of the difference type Distance, \(u\), tmp, and \(m\) denote identifiers, \(r\) denotes a value of \(X \&\), \(t\) denotes a value of value type \(T\), o denotes a value of some type that is writable to the output iterator.

\subsection*{24.1.1 Input iterators}
[input.iterators]
1 A class or a built-in type X satisfies the requirements of an input iterator for the value type T if the following expressions are valid, as shown in Table 89.

2 In Table 89, the term the domain of \(==\) is used in the ordinary mathematical sense to denote the set of values over which \(==\) is (required to be) defined. This set can change over time. Each algorithm places additional requirements on the domain of \(==\) for the iterator values it uses. These requirements can be inferred from the uses that algorithm makes of \(==\) and \(!=\). [Example:the call find \((\mathrm{a}, \mathrm{b}, \mathrm{x})\) is defined only if the value of a has the property \(p\) defined as follows: b has property \(p\) and a value i has property \(p\) if \(\left(*_{\mathrm{i}}==\mathrm{x}\right)\) or if (\(*_{\mathrm{i}}!=\mathrm{x}\) and ++i has property p). - end example]

\footnotetext{
\({ }^{263)}\) This definition applies to pointers, since pointers are iterators. The effect of dereferencing an iterator that has been invalidated is undefined.
}

Table 89: Input iterator requirements
\begin{tabular}{|c|c|c|}
\hline operation & type & semantics, pre/post-conditions \\
\hline X u(a) ; & X & post: \(u\) is a copy of a A destructor is assumed to be present and accessible. \\
\hline u = a; & X\& & \begin{tabular}{l}
result: u \\
post: \(u\) is a copy of a
\end{tabular} \\
\hline \(\mathrm{a}=\mathrm{b}\) & convertible to bool & \(==\) is an equivalence relation over its domain. \\
\hline \(\mathrm{a}!=\mathrm{b}\) & convertible to bool & bool (\(\mathrm{a}==\mathrm{b}\)) ! \(=\) bool (a != b) over the domain of \(==\) \\
\hline *a & convertible to T & \begin{tabular}{l}
pre: a is dereferenceable. \\
If \(\mathrm{a}==\mathrm{b}\) and \((\mathrm{a}, \mathrm{b})\) is in the domain of \(==\) then \(* \mathrm{a}\) is equivalent to \(* \mathrm{~b}\).
\end{tabular} \\
\hline a->m & & \begin{tabular}{l}
pre: (*a).m is well-defined. \\
Equivalent to (*a).m.
\end{tabular} \\
\hline ++r & X\& & \begin{tabular}{l}
pre: \(r\) is dereferenceable. \\
post: \(r\) is dereferenceable or \(r\) is past-the-end. \\
post: any copies of the previous value of \(r\) are no longer required either to be dereferenceable or to be in the domain of \(==\).
\end{tabular} \\
\hline (void)r++ & & equivalent to (void) \(++r\) \\
\hline *r++ & convertible to T & \{ T tmp = *r; ++r; return tmp; \} \\
\hline
\end{tabular}

3 [Note: For input iterators, \(\mathrm{a}==\mathrm{b}\) does not imply \(++\mathrm{a}==++\mathrm{b}\). (Equality does not guarantee the substitution property or referential transparency.) Algorithms on input iterators should never attempt to pass through the same iterator twice. They should be single pass algorithms. Value type \(T\) is not required to be an Assignable type (23.1). These algorithms can be used with istreams as the source of the input data through the istream_iterator class. - end note]

\subsection*{24.1.2 Output iterators}

1 A class or a built-in type X satisfies the requirements of an output iterator if X is a CopyConstructible (20.1.3) and Assignable type (23.1) and also the following expressions are valid, as shown in Table 90.

Table 90: Output iterator requirements
\begin{tabular}{|c|c|c|c|}
\hline expression & return type & operational semantics & assertion/note pre/post-condition \\
\hline X (a) & & & \begin{tabular}{l}
\(\mathrm{a}=\mathrm{t}\) is equivalent to \(\mathrm{X}(\mathrm{a})=\) t. \\
note: a destructor is assumed.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { X u(a) ; } \\
& \text { X u }=a ;
\end{aligned}
\] & & & \\
\hline *r \(=0\) & result is not used & & \\
\hline ++r & X\& & & \&r == \& + r . \\
\hline
\end{tabular}

Draft
\begin{tabular}{|llll|}
\hline expression & return type & \multicolumn{1}{c|}{\begin{tabular}{c}
operational \\
semantics
\end{tabular}} & \begin{tabular}{c}
assertion/note \\
pre/post-condition
\end{tabular} \\
\hline \hline \(\mathrm{r}++\) & convertible to & \begin{tabular}{l}
\(\{\mathrm{X} \operatorname{tmp}=\mathrm{r} ;\) \\
\(++\mathrm{r} ;\)
\end{tabular} \\
& const \(\mathrm{X} \&\) & \begin{tabular}{l}
return tmp; \(\}\)
\end{tabular} & \\
\hline\(* \mathrm{r}++=0\) & result is not used & & \\
\hline
\end{tabular}

2 [Note: The only valid use of an operator* is on the left side of the assignment statement. Assignment through the same value of the iterator happens only once. Algorithms on output iterators should never attempt to pass through the same iterator twice. They should be single pass algorithms. Equality and inequality might not be defined. Algorithms that take output iterators can be used with ostreams as the destination for placing data through the ostream_iterator class as well as with insert iterators and insert pointers. - end note]

\subsection*{24.1.3 Forward iterators}

\section*{[forward.iterators]}

1 A class or a built-in type \(X\) satisfies the requirements of a forward iterator if the following expressions are valid, as shown in Table 91.

Table 91: Forward iterator requirements
\begin{tabular}{|c|c|c|c|}
\hline expression & return type & operational semantics & assertion/note pre/post-condition \\
\hline X u; & & & \begin{tabular}{l}
note: u might have a singular value. \\
note: a destructor is assumed.
\end{tabular} \\
\hline X () & & & note: X () might be singular. \\
\hline X (a) & & & \(\mathrm{a}=\) = \(\mathrm{X}(\mathrm{a})\) \\
\hline \[
\begin{aligned}
& X \quad u(a) ; \\
& X \quad u=a ;
\end{aligned}
\] & & \[
\mathrm{X} u ; \mathrm{u}=\mathrm{a} \text {; }
\] & post: \(u==\mathrm{a}\). \\
\hline \(\mathrm{a}==\mathrm{b}\) & convertible to bool & & \(==\) is an equivalence relation. \\
\hline a ! = b & convertible to bool & \[
!(\mathrm{a}==\mathrm{b})
\] & \\
\hline \(\mathrm{r}=\mathrm{a}\) & X\& & & post: \(\mathrm{r}==\mathrm{a}\) \\
\hline *a & T\& if \(X\) is mutable, otherwise const T\& & & \begin{tabular}{l}
pre: a is dereferenceable. \\
\(\mathrm{a}==\mathrm{b}\) implies \(* \mathrm{a}==* \mathrm{~b}\). \\
If X is mutable, \(* \mathrm{a}=\mathrm{t}\) is valid.
\end{tabular} \\
\hline a->m & U\& if \(X\) is mutable, otherwise const U\& & \[
(* a) \cdot m
\] & pre: \((* a) . m\) is well-defined. \\
\hline
\end{tabular}

Draft
\begin{tabular}{|c|c|c|c|}
\hline expression & return type & operational semantics & assertion/note pre/post-condition \\
\hline ++r & X\& & & \begin{tabular}{l}
pre: \(r\) is dereferenceable. \\
post: \(r\) is dereferenceable or \(r\) is past-the-end. \\
\(r=s\) and \(r\) is dereferenceable implies \(++r\)
\[
\begin{aligned}
& ==++s . \\
& \& r==\&++r .
\end{aligned}
\]
\end{tabular} \\
\hline r++ & convertible to const X\& & \[
\begin{aligned}
& \{\mathrm{X} \operatorname{tmp}=\mathrm{r} ; \\
& ++\mathrm{r} ; \\
& \text { return tmp; \}}
\end{aligned}
\] & \\
\hline *r++ & T\& if \(X\) is mutable, otherwise const T\& & & \\
\hline
\end{tabular}
- If a and b are equal, then either a and b are both dereferenceable or else neither is dereferenceable.
- If a and b are both dereferenceable, then \(\mathrm{a}==\mathrm{b}\) if and only if \(* \mathrm{a}\) and \(* \mathrm{~b}\) are the same object.

2 [Note: The condition that \(\mathrm{a}==\mathrm{b}\) implies \(++\mathrm{a}==++\mathrm{b}\) (which is not true for input and output iterators) and the removal of the restrictions on the number of the assignments through the iterator (which applies to output iterators) allows the use of multi-pass one-directional algorithms with forward iterators. - end note]

\subsection*{24.1.4 Bidirectional iterators}
[bidirectional.iterators]
1 A class or a built-in type \(X\) satisfies the requirements of a bidirectional iterator if, in addition to satisfying the requirements for forward iterators, the following expressions are valid as shown in Table 92.

Table 92: Bidirectional iterator requirements (in addition to forward iterator)
\begin{tabular}{|c|c|c|c|}
\hline expression & return type & operational semantics & assertion/note pre/post-condition \\
\hline --r & X\& & & \begin{tabular}{l}
pre: there exists s such that \(r\) \(=++s\). \\
post: \(r\) is dereferenceable. \\
\(--(++r)==r\). \\
\(--r==--s\) implies \(r==s\). \\
\&r \(==\) \&--r.
\end{tabular} \\
\hline r-- & convertible to const X\& & \[
\begin{aligned}
& \{X \operatorname{tmp}=r ; \\
& --r ; \\
& \text { return tmp; }\}
\end{aligned}
\] & \\
\hline *r-- & convertible to T & & \\
\hline
\end{tabular}

2 [Note: Bidirectional iterators allow algorithms to move iterators backward as well as forward. -end note]

\subsection*{24.1.5 Random access iterators}

1 A class or a built-in type \(X\) satisfies the requirements of a random access iterator if, in addition to satisfying the requirements for bidirectional iterators, the following expressions are valid as shown in Table 93.

Table 93: Random access iterator requirements (in addition to bidirectional iterator)
\begin{tabular}{|c|c|c|c|}
\hline expression & return type & operational semantics & assertion/note pre/post-condition \\
\hline \(\mathrm{r}+\) = n & X\& & ```
{ Distance m = n;
if (m >= 0)
while (m--)
++r;
else
while (m++)
--r;
return r; }
``` & \\
\hline \[
\begin{aligned}
& a+n \\
& n+a
\end{aligned}
\] & & ```
{ X tmp = a;
return tmp += n; }
``` & \[
\mathrm{a}+\mathrm{n}=\mathrm{n}+\mathrm{a} .
\] \\
\hline \(\mathrm{r}-\mathrm{n}\) & X\& & return r += -n; & \\
\hline \(\mathrm{a}-\mathrm{n}\) & X & \[
\begin{aligned}
& \{\mathrm{X} \operatorname{tmp}=\mathrm{a} ; \\
& \text { return tmp }-=\mathrm{n} ;\}
\end{aligned}
\] & \\
\hline \(\mathrm{b}-\mathrm{a}\) & Distance & ```
(a<b) ? distance(a,b) :
-distance(b,a)
``` & pre: there exists a value \(n\) of Distance such that a \(+\mathrm{n}=\) b.
\[
\mathrm{b}==\mathrm{a}+(\mathrm{b}-\mathrm{a}) .
\] \\
\hline a [n] & convertible to const T \& & * \(\mathrm{a}+\mathrm{n}\) ) & \\
\hline \(\mathrm{a}<\mathrm{b}\) & convertible to bool & \(\mathrm{b}-\mathrm{a}>0\) & < is a total ordering relation \\
\hline \(\mathrm{a}>\mathrm{b}\) & convertible to bool & b < a & \(>\) is a total ordering relation opposite to \(<\). \\
\hline \(\mathrm{a}>=\mathrm{b}\) & convertible to bool & ! \(\mathrm{a}<\mathrm{b}\) ) & \\
\hline a < \(=\mathrm{b}\) & convertible to bool & ! a > b) & \\
\hline
\end{tabular}

\subsection*{24.2 Header <iterator> synopsis}
namespace std \{
// 24.3, primitives:
template<class Iterator> struct iterator_traits;
template<class T> struct iterator_traits<T*>;

Draft
```

template<class Category, class T, class Distance = ptrdiff_t,
class Pointer = T*, class Reference = T\&> struct iterator;
struct input_iterator_tag {};
struct output_iterator_tag {};
struct forward_iterator_tag: public input_iterator_tag {};
struct bidirectional_iterator_tag: public forward_iterator_tag {};
struct random_access_iterator_tag: public bidirectional_iterator_tag {};
// 24.3.4, iterator operations:
template <class InputIterator, class Distance>
void advance(InputIterator\& i, Distance n);
template <class InputIterator>
typename iterator_traits<InputIterator>::difference_type
distance(InputIterator first, InputIterator last);
// 24.4, predefined iterators:
template <class Iterator> class reverse_iterator;
template <class Iterator>
bool operator==(
const reverse_iterator<Iterator>\& x,
const reverse_iterator<Iterator>\& y);
template <class Iterator>
bool operator<(
const reverse_iterator<Iterator>\& x,
const reverse_iterator<Iterator>\& y);
template <class Iterator>
bool operator!=(
const reverse_iterator<Iterator>\& x,
const reverse_iterator<Iterator>\& y);
template <class Iterator>
bool operator>(
const reverse_iterator<Iterator>\& x,
const reverse_iterator<Iterator>\& y);
template <class Iterator>
bool operator>=(
const reverse_iterator<Iterator>\& x,
const reverse_iterator<Iterator>\& y);
template <class Iterator>
bool operator<=(
const reverse_iterator<Iterator>\& x,
const reverse_iterator<Iterator>\& y);
template <class Iterator>
typename reverse_iterator<Iterator>::difference_type operator-(
const reverse_iterator<Iterator>\& x,
const reverse_iterator<Iterator>\& y);
template <class Iterator>

```

Draft
```

 reverse_iterator<Iterator>
 operator+(
 typename reverse_iterator<Iterator>::difference_type n,
 const reverse_iterator<Iterator>& x);
 template <class Container> class back_insert_iterator;
template <class Container>
back_insert_iterator<Container> back_inserter(Container\& x);
template <class Container> class front_insert_iterator;
template <class Container>
front_insert_iterator<Container> front_inserter(Container\& x);
template <class Container> class insert_iterator;
template <class Container, class Iterator>
insert_iterator<Container> inserter(Container\& x, Iterator i);
// 24.5, stream iterators:
template <class T, class charT = char, class traits = char_traits<charT>,
class Distance = ptrdiff_t>
class istream_iterator;
template <class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance>\& x,
const istream_iterator<T,charT,traits,Distance>\& y);
template <class T, class charT, class traits, class Distance>
bool operator!=(const istream_iterator<T,charT,traits,Distance>\& x,
const istream_iterator<T,charT,traits,Distance>\& y);
template <class T, class charT = char, class traits = char_traits<charT> >
class ostream_iterator;
template<class charT, class traits = char_traits<charT> >
class istreambuf_iterator;
template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>\& a,
const istreambuf_iterator<charT,traits>\& b);
template <class charT, class traits>
bool operator!=(const istreambuf_iterator<charT,traits>\& a,
const istreambuf_iterator<charT,traits>\& b);
template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator;

```
\}

\subsection*{24.3 Iterator primitives}

1 To simplify the task of defining iterators, the library provides several classes and functions:

\subsection*{24.3.1 Iterator traits}
[iterator.traits]
1 To implement algorithms only in terms of iterators, it is often necessary to determine the value and difference types that correspond to a particular iterator type. Accordingly, it is required that if Iterator is the type of an iterator, the types
```

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type
iterator_traits<Iterator>::iterator_category

```
be defined as the iterator's difference type, value type and iterator category, respectively. In addition, the types
```

iterator_traits<Iterator>::reference
iterator_traits<Iterator>::pointer

```
shall be defined as the iterator's reference and pointer types, that is, for an iterator object a, the same type as the type of *a and \(a->\), respectively. In the case of an output iterator, the types
```

iterator_traits<Iterator>::difference_type
iterator_traits<Iterator>::value_type
iterator_traits<Iterator>::reference
iterator_traits<Iterator>::pointer

```
may be defined as void.
2 The template iterator_traits<Iterator> is defined as
```

namespace std {
template<class Iterator> struct iterator_traits {
typedef typename Iterator::difference_type difference_type;
typedef typename Iterator::value_type value_type;
typedef typename Iterator::pointer pointer;
typedef typename Iterator::reference reference;
typedef typename Iterator::iterator_category iterator_category;
};
}

```

3 It is specialized for pointers as
```

namespace std {
template<class T> struct iterator_traits<T*> {
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef T\& reference;
typedef random_access_iterator_tag iterator_category;
};
}

```
and for pointers to const as
```

namespace std {
template<class T> struct iterator_traits<const T*> {
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef const T* pointer;
typedef const T\& reference;
typedef random_access_iterator_tag iterator_category;
};
}

```

4 [ Note: If there is an additional pointer type _ _ far such that the difference of two _ _ far is of type long, an implementation may define
```

template<class T> struct iterator_traits<T _ _far*> {
typedef long difference_type;
typedef T value_type;
typedef T __far* pointer;
typedef T __far\& reference;
typedef random_access_iterator_tag iterator_category;
};

```
-end note]

5 [ Example: To implement a generic reverse function, a \(\mathrm{C}++\) program can do the following:
```

template <class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last) {
typename iterator_traits<BidirectionalIterator>::difference_type n =
distance(first, last);
--n;
while(n > 0) {
typename iterator_traits<BidirectionalIterator>::value_type
tmp = *first;
*first++ = *--last;
*last = tmp;
n -= 2;
}
}
_ end example]

```

\subsection*{24.3.2 Basic iterator}

The iterator template may be used as a base class to ease the definition of required types for new iterators.
```

namespace std {
template<class Category, class T, class Distance = ptrdiff_t,
class Pointer = T*, class Reference = T\&>
struct iterator {
typedef T value_type;
typedef Distance difference_type;
typedef Pointer pointer;

```

Draft
```

 typedef Reference reference;
 typedef Category iterator_category;
 };
 }

```

\subsection*{24.3.3 Standard iterator tags}
[std.iterator.tags]
1 It is often desirable for a function template specialization to find out what is the most specific category of its iterator argument, so that the function can select the most efficient algorithm at compile time. To facilitate this, the library introduces category tag classes which are used as compile time tags for algorithm selection. They are: input_iterator_tag, output_iterator_tag, forward_iterator_tag, bidirectional_iterator_tag and random_access_iterator_tag. For every iterator of type Iterator, iterator_traits<Iterator>: iterator_category shall be defined to be the most specific category tag that describes the iterator's behavior.
```

namespace std {
struct input_iterator_tag {};
struct output_iterator_tag {};
struct forward_iterator_tag: public input_iterator_tag {};
struct bidirectional_iterator_tag: public forward_iterator_tag {};
struct random_access_iterator_tag: public bidirectional_iterator_tag {};
}

```

2 [ Example: For a program-defined iterator BinaryTreeIterator, it could be included into the bidirectional iterator category by specializing the iterator_traits template:
```

template<class T> struct iterator_traits<BinaryTreeIterator<T> > {
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef T\& reference;
typedef bidirectional_iterator_tag iterator_category;
};

```

Typically, however, it would be easier to derive BinaryTreeIterator<T> from iterator<bidirectional_iterator_tag, \(\mathrm{T}, \mathrm{ptrdiff}\) _t, \(\mathrm{T} *, \mathrm{~T} \&>\). - end example ]

3 [Example: If evolve() is well defined for bidirectional iterators, but can be implemented more efficiently for random access iterators, then the implementation is as follows:
```

template <class BidirectionalIterator>
inline void
evolve(BidirectionalIterator first, BidirectionalIterator last) {
evolve(first, last,
typename iterator_traits<BidirectionalIterator>::iterator_category());
}
template <class BidirectionalIterator>
void evolve(BidirectionalIterator first, BidirectionalIterator last,
bidirectional_iterator_tag) {
// ... more generic, but less efficient algorithm
}

```
```

 template <class RandomAccessIterator>
 void evolve(RandomAccessIterator first, RandomAccessIterator last,
 random_access_iterator_tag) {
 // ... more efficient, but less generic algorithm
 }
 - end example]

```

4 [Example: If a C++ program wants to define a bidirectional iterator for some data structure containing double and such that it works on a large memory model of the implementation, it can do so with:
```

class MyIterator :
public iterator<bidirectional_iterator_tag, double, long, T*, T\&> {
// code implementing ++, etc.
};

```

5 Then there is no need to specialize the iterator_traits template. -end example ]

\subsection*{24.3.4 Iterator operations}
[iterator.operations]
1 Since only random access iterators provide + and - operators, the library provides two function templates advance and distance. These function templates use + and - for random access iterators (and are, therefore, constant time for them); for input, forward and bidirectional iterators they use ++ to provide linear time implementations.
```

template <class InputIterator, class Distance>
void advance(InputIterator\& i, Distance n);

```

Requires: n may be negative only for random access and bidirectional iterators.
Effects: Increments (or decrements for negative n ) iterator reference i by n .
```

 template<class InputIterator>
 typename iterator_traits<InputIterator>::difference_type
 distance(InputIterator first, InputIterator last);
    ```

Effects: Returns the number of increments or decrements needed to get from first to last.
Requires: last shall be reachable from first.

\subsection*{24.4 Predefined iterators}

\section*{[predef.iterators]}

\subsection*{24.4.1 Reverse iterators}

1 Bidirectional and random access iterators have corresponding reverse iterator adaptors that iterate through the data structure in the opposite direction. They have the same signatures as the corresponding iterators. The fundamental relation between a reverse iterator and its corresponding iterator \(i\) is established by the identity: \&*(reverse_iterator(i)) \(==\& *(i-1)\).

2 This mapping is dictated by the fact that while there is always a pointer past the end of an array, there might not be a valid pointer before the beginning of an array.
24.4.1.1 Class template reverse_iterator
```

namespace std {
template <class Iterator>
class reverse_iterator : public
iterator<typename iterator_traits<Iterator>::iterator_category,
typename iterator_traits<Iterator>::value_type,
typename iterator_traits<Iterator>::difference_type,
typename iterator_traits<Iterator>::pointer,
typename iterator_traits<Iterator>::reference> {
protected:
Iterator current;
public:
typedef Iterator
iterator_type;
typedef typename iterator_traits<Iterator>::difference_type
difference_type;
typedef typename iterator_traits<Iterator>::reference
reference;
typedef typename iterator_traits<Iterator>::pointer
pointer;
reverse_iterator();
explicit reverse_iterator(Iterator x);
template <class U> reverse_iterator(const reverse_iterator<U>\& u);
template <class U> reverse_iterator operator=(const reverse_iterator<U>\& u);
Iterator base() const; // explicit
reference operator*() const;
pointer operator->() const;
reverse_iterator\& operator++();
reverse_iterator operator++(int);
reverse_iterator\& operator--();
reverse_iterator operator--(int);
reverse_iterator operator+ (difference_type n) const;
reverse_iterator\& operator+=(difference_type n);
reverse_iterator operator- (difference_type n) const;
reverse_iterator\& operator-=(difference_type n);
unspecified operator[](difference_type n) const;
};
template <class Iterator1, class Iterator2>
bool operator==(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);
template <class Iterator1, class Iterator2>
bool operator<(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);

```

Draft
```

template <class Iterator1, class Iterator2>
bool operator!=(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);
template <class Iterator1, class Iterator2>
bool operator>(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);
template <class Iterator1, class Iterator2>
bool operator>=(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);
template <class Iterator1, class Iterator2>
bool operator<=(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);
template <class Iterator1, class Iterator2>
typename reverse_iterator<Iterator>::difference_type operator-(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);
template <class Iterator>
reverse_iterator<Iterator> operator+(
typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>\& x);
}

```

\subsection*{24.4.1.2 reverse_iterator requirements}
[reverse.iter.requirements]
1 The template parameter Iterator shall meet all the requirements of a Bidirectional Iterator (24.1.4).
2 Additionally, Iterator shall meet the requirements of a Random Access Iterator (24.1.5) if any of the members operator+ (24.4.1.3.8), operator- (24.4.1.3.10), operator+= (24.4.1.3.9), operator \(=\) (24.4.1.3.11), operator [] (24.4.1.3.12), or the global operators operator< (24.4.1.3.14), operator> (24.4.1.3.16), operator <= (24.4.1.3.18), operator \(>=\) (24.4.1.3.17), operator- (24.4.1.3.19) or operator + (24.4.1.3.20). is referenced in a way that requires instantiation (14.7.1).
24.4.1.3 reverse_iterator operations
[reverse.iter.ops]
24.4.1.3.1 reverse_iterator constructor
```

reverse_iterator();

```

Effects: Default initializes current. Iterator operations applied to the resulting iterator have defined behavior if and only if the corresponding operations are defined on a default constructed iterator of type Iterator.
```

explicit reverse_iterator(Iterator x);
Effects: Initializes current with x.
template <class U> reverse_iterator(const reverse_iterator<U> \&u);
Effects: Initializes current with u.current.

```
```

24.4.1.3.2 reverse_iterator::operator=
[reverse.iter.op=]
template <class U>
reverse_iterator\&
operator=(const reverse_iterator<U>\& u);
Effects: Assigns u.base() to current.
Returns: *this.

```

\subsection*{24.4.1.3.3 Conversion}

Iterator base() const; // explicit
Returns: current.
```

24.4.1.3.4 operator*
reference operator*() const;
Effects:
this->tmp = current;
--this->tmp;
return *this->tmp;

```
                                    [reverse.iter.op.star]
[ Note: This operation must use an auxiliary member variable, rather than a temporary variable, to avoid returning a reference that persists beyond the lifetime of its associated iterator. (See 24.1.) The name of this member variable is shown for exposition only. -end note ]
pointer operator->() const;

Effects:
return \& (operator*());
```

 24.4.1.3.6 operator++
 reverse_iterator& operator++();
    ```
                                    [reverse.iter.op++]
1
2
3
1
2
3
1
```

24.4.1.3.9 operator+=
reverse_iterator\&
operator+=(typename reverse_iterator<Iterator>::difference_type n);
Effects: current -= n;
Returns:*this.

```

\subsection*{24.4.1.3.10 operator-}
reverse_iterator
operator-(typename reverse_iterator<Iterator>: :difference_type n) const;
Returns: reverse_iterator (current+n).

\subsection*{24.4.1.3.11 operator-=}
[reverse.iter.op-=]
```

reverse_iterator\&
operator-=(typename reverse_iterator<Iterator>::difference_type n);
Effects: current += n;
Returns: *this.

```
24.4.1.3.12 operator []
```

unspecified
operator[](typename reverse_iterator<Iterator>::difference_type n) const;
Returns: current [-n-1].

```

\subsection*{24.4.1.3.13 operator==}
[reverse.iter.op==]
```

template <class Iterator1, class Iterator2>
bool operator==(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);
Returns: x.current == y.current.

```
24.4.1.3.14 operator<
    [reverse.iter.op<]
template <class Iterator1, class Iterator2>
    bool operator<(
        const reverse_iterator<Iterator \(1>\& \mathrm{x}\),
        const reverse_iterator<Iterator2>\& y);
            Returns: x.current > y.current.

\subsection*{24.4.1.3.15 operator!=}
```

template <class Iterator1, class Iterator2>
bool operator!=(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);

```
```

Returns: x.current != y.current.

```

\subsection*{24.4.1.3.16 operator>}
[reverse.iter.op>]
```

template <class Iterator1, class Iterator2>
bool operator>(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);

```
            Returns: x.current < y.current.

\subsection*{24.4.1.3.17 operator>=}
```

template <class Iterator1, class Iterator2>
bool operator>=(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);

```
1
            Returns: x.current <= y.current.

\subsection*{24.4.1.3.18 operator<=}
```

template <class Iterator1, class Iterator2>
bool operator<=(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);
Returns: x.current >= y.current.

```
24.4.1.3.19 operator-
```

template <class Iterator1, class Iterator2>
typename reverse_iterator<Iterator>::difference_type operator-(
const reverse_iterator<Iterator1>\& x,
const reverse_iterator<Iterator2>\& y);

```
            Returns: y.current - x.current.
24.4.1.3.20 operator+
[reverse.iter.opsum]
```

template <class Iterator>
reverse_iterator<Iterator> operator+(
typename reverse_iterator<Iterator>::difference_type n,
const reverse_iterator<Iterator>\& x);

```
            Returns: reverse_iterator<Iterator> (x.current - n).

\subsection*{24.4.2 Insert iterators}
[insert.iterators]
1 To make it possible to deal with insertion in the same way as writing into an array, a special kind of iterator adaptors, called insert iterators, are provided in the library. With regular iterator classes,
```

while (first != last) *result++ = *first++;

```
causes a range [first, last) to be copied into a range starting with result. The same code with result being an insert iterator will insert corresponding elements into the container. This device allows all of the copying algorithms in the library to work in the insert mode instead of the regular overwrite mode.

2 An insert iterator is constructed from a container and possibly one of its iterators pointing to where insertion takes place if it is neither at the beginning nor at the end of the container. Insert iterators satisfy the requirements of output iterators. operator* returns the insert iterator itself. The assignment operator= (const T\& \(x\) ) is defined on insert iterators to allow writing into them, it inserts x right before where the insert iterator is pointing. In other words, an insert iterator is like a cursor pointing into the container where the insertion takes place. back_insert_iterator inserts elements at the end of a container, front_insert_iterator inserts elements at the beginning of a container, and insert_iterator inserts elements where the iterator points to in a container. back_inserter, front_inserter, and inserter are three functions making the insert iterators out of a container.

\subsection*{24.4.2.1 Class template back_insert_iterator}
[back.insert.iterator]
```

namespace std {
template <class Container>
class back_insert_iterator :
public iterator<output_iterator_tag,void,void,void,void> {
protected:
Container* container;
public:
typedef Container container_type;
explicit back_insert_iterator(Container\& x);
back_insert_iterator<Container>\&
operator=(typename Container::const_reference value);
back_insert_iterator<Container>\& operator*();
back_insert_iterator<Container>\& operator++();
back_insert_iterator<Container> operator++(int);
};
template <class Container>
back_insert_iterator<Container> back_inserter(Container\& x);
}

```
24.4.2.2 back_insert_iterator operations
[back.insert.iter.ops]
24.4.2.2.1 back_insert_iterator constructor
[back.insert.iter.cons]
explicit back_insert_iterator (Container\& x);
1 Effects: Initializes container with \& \(x\).
```

24.4.2.2.2 back_insert_iterator::operator=
back_insert_iterator<Container>\&
operator=(typename Container::const_reference value);

```
```

24.4.2.2.3 back_insert_iterator::operator*

```
24.4.2.2.3 back_insert_iterator::operator*
back_insert_iterator<Container>& operator*();
back_insert_iterator<Container>& operator*();
    Returns: *this.
```

 Returns: *this.
    ```
    24.4.2.2.4 back_insert_iterator : :operator++
    back_insert_iterator<Container>\& operator++();
    back_insert_iterator<Container> operator++(int);
        Returns: *this.

\subsection*{24.4.2.2.5 back_inserter}
```

 template <class Container>
    ```
    back_insert_iterator<Container> back_inserter (Container\& x);
    Returns: back_insert_iterator<Container>(x).
24.4.2.3 Class template front_insert_iterator
[front.insert.iterator]
```

namespace std {
template <class Container>
class front_insert_iterator :
public iterator<output_iterator_tag,void,void,void,void> {
protected:
Container* container;
public:
typedef Container container_type;
explicit front_insert_iterator(Container\& x);
front_insert_iterator<Container>\&
operator=(typename Container::const_reference value);
front_insert_iterator<Container>\& operator*();
front_insert_iterator<Container>\& operator++();
front_insert_iterator<Container> operator++(int);
};

```
```

 template <class Container>
 front_insert_iterator<Container> front_inserter(Container& x);
    ```
\}
24.4.2.4 front_insert_iterator operations
24.4.2.4.1 front_insert_iterator constructor [front.insert.iter.cons]
explicit front_insert_iterator (Container\& x);
Effects: Initializes container with \(\& x\).

\subsection*{24.4.2.4.2 front_insert_iterator: :operator=}
[front.insert.iter.op=]
```

 front_insert_iterator<Container>&
 operator=(typename Container::const_reference value);
 Effects: container->push_front(value);
 Returns:*this.
    ```
```

 24.4.2.4.3 front_insert_iterator::operator*
 front_insert_iterator<Container>& operator*();
 Returns: *this.
 24.4.2.4.4 front_insert_iterator: :operator++
    ```
[front.insert.iter.op++]
24.4.2.4.5 front_inserter
    [front.inserter]
template <class Container>
    front_insert_iterator<Container> front_inserter (Container\& x) ;
        Returns: front_insert_iterator<Container>(x).

\subsection*{24.4.2.5 Class template insert_iterator}
[insert.iterator]
```

namespace std {
template <class Container>
class insert_iterator :
public iterator<output_iterator_tag,void,void,void,void> {

```
```

protected:
Container* container;
typename Container::iterator iter;
public:
typedef Container container_type;
insert_iterator(Container\& x, typename Container::iterator i);
insert_iterator<Container>\&
operator=(typename Container::const_reference value);
insert_iterator<Container>\& operator*();
insert_iterator<Container>\& operator++();
insert_iterator<Container>\& operator++(int);
};
template <class Container, class Iterator>
insert_iterator<Container> inserter(Container\& x, Iterator i);
}

```

\subsection*{24.4.2.6 insert_iterator operations}

\subsection*{24.4.2.6.1 insert_iterator constructor}
insert_iterator (Container\& x, typename Container::iterator i);
1

\subsection*{24.4.2.6.2 insert_iterator: :operator=}

\section*{insert_iterator<Container>\&} operator=(typename Container::const_reference value);

Effects:
```

iter = container->insert(iter, value);
++iter;

```

Returns: *this.

\subsection*{24.4.2.6.3 insert_iterator: :operator*}
insert_iterator<Container>\& operator*();
Returns: *this.
24.4.2.6.4 insert_iterator: :operator++
insert_iterator<Container>\& operator++();
insert_iterator<Container>\& operator++(int);

Draft

1 Returns: *this.
```

24.4.2.6.5 inserter
template <class Container, class Inserter>
insert_iterator<Container> inserter(Container\& x, Inserter i);

```

1
Returns: insert_iterator<Container>(x,typename Container::iterator(i)).

\subsection*{24.5 Stream iterators}
[stream.iterators]
1 To make it possible for algorithmic templates to work directly with input/output streams, appropriate iterator-like class templates are provided.

\section*{[Example:}
```

partial_sum_copy(istream_iterator<double, char>(cin),
istream_iterator<double, char>(),
ostream_iterator<double, char>(cout, "\n"));

```
reads a file containing floating point numbers from cin, and prints the partial sums onto cout. - end example]

\subsection*{24.5.1 Class template istream_iterator}

1 istream_iterator reads (using operator>>) successive elements from the input stream for which it was constructed. After it is constructed, and every time ++ is used, the iterator reads and stores a value of \(T\). If the end of stream is reached ( operator void*() on the stream returns false), the iterator becomes equal to the end-of-stream iterator value. The constructor with no arguments istream_iterator() always constructs an end of stream input iterator object, which is the only legitimate iterator to be used for the end condition. The result of operator* on an end of stream is not defined. For any other iterator value a const T\& is returned. The result of operator-> on an end of stream is not defined. For any other iterator value a const \(T *\) is returned. It is impossible to store things into istream iterators. The main peculiarity of the istream iterators is the fact that ++ operators are not equality preserving, that is, \(i==j\) does not guarantee at all that \(++i==++j\). Every time ++ is used a new value is read.

2 The practical consequence of this fact is that istream iterators can be used only for one-pass algorithms, which actually makes perfect sense, since for multi-pass algorithms it is always more appropriate to use in-memory data structures.

3 Two end-of-stream iterators are always equal. An end-of-stream iterator is not equal to a non-end-of-stream iterator. Two non-end-of-stream iterators are equal when they are constructed from the same stream.
```

namespace std {
template <class T, class charT = char, class traits = char_traits<charT>,
class Distance = ptrdiff_t>
class istream_iterator:
public iterator<input_iterator_tag, T, Distance, const T*, const T\&> {
public:
typedef charT char_type;
typedef traits traits_type;
typedef basic_istream<charT,traits> istream_type;
istream_iterator();

```

\section*{template <class T, class charT, class traits, class Distance>}
bool operator!=(const istream_iterator<T, charT,traits,Distance> \& , const istream_iterator<T,charT,traits,Distance> \&y);
```

template <class T, class charT, class traits, class Distance>
bool operator==(const istream_iterator<T,charT,traits,Distance> \&x,
const istream_iterator<T,charT,traits,Distance> \& y);

```
            Returns: (x.in_stream == y.in_stream).
                const istream_iterator<T, charT,traits,Distance> \& \(y\) ) ;
            Returns: ! ( \(\mathrm{x}==\mathrm{y}\) )

\subsection*{24.5.2 Class template ostream_iterator}
[ostream.iterator]

1 ostream_iterator writes (using operator<<) successive elements onto the output stream from which it was constructed. If it was constructed with char* as a constructor argument, this string, called a delimiter string, is written to the stream after every T is written. It is not possible to get a value out of the output iterator. Its only use is as an output iterator in situations like
```

while (first != last) *result++ = *first++;
ostream_iterator is defined as:
namespace std {
template <class T, class charT = char, class traits = char_traits<charT> >
class ostream_iterator:
public iterator<output_iterator_tag, void, void, void, void> {
public:
typedef charT char_type;
typedef traits traits_type;
typedef basic_ostream<charT,traits> ostream_type;
ostream_iterator(ostream_type\& s);
ostream_iterator(ostream_type\& s, const charT* delimiter);
ostream_iterator(const ostream_iterator<T,charT,traits>\& x);
~ostream_iterator();
ostream_iterator<T,charT,traits>\& operator=(const T\& value);
ostream_iterator<T,charT,traits>\& operator*();
ostream_iterator<T,charT,traits>\& operator++();
ostream_iterator<T,charT,traits>\& operator++(int);
private:

```
// basic_ostream<charT,traits>* out_stream; // const charT* delim;
\};
\}
24.5.2.1 ostream_iterator constructors and destructor
[ostream.iterator.cons.des]
ostream_iterator (ostream_type\& s);
Effects: Initializes out_stream with \(s\) and delim with null.
```

ostream_iterator(ostream_type\& s, const charT* delimiter);

```

Effects: Initializes out_stream with \(s\) and delim with delimiter.
    ostream_iterator (const ostream_iterator\& \(x\) );

Effects: Constructs a copy of \(x\).
```

 ~ostream_iterator();
    ```

Effects: The iterator is destroyed.
```

 24.5.2.2 ostream_iterator operations
 ostream_iterator& operator=(const T& value);
 Effects:
 *out_stream << value;
 if(delim != 0) *out_stream << delim;
 return (*this);
 ostream_iterator& operator*();
 Returns: *this.
 ostream_iterator& operator++();
 ostream_iterator& operator++(int);
 Returns:*this.
    ```
24.5.3 Class template istreambuf_iterator
[istreambuf.iterator]
```

namespace std {
template<class charT, class traits = char_traits<charT> >
class istreambuf_iterator
: public iterator<input_iterator_tag, charT,
typename traits::off_type, charT*, charT> {
public:
typedef charT
typedef traits traits_type;
Draft

```
```

 typedef typename traits::int_type int_type;
 typedef basic_streambuf<charT,traits> streambuf_type;
 typedef basic_istream<charT,traits> istream_type;
 class proxy;
 public:
 istreambuf_iterator() throw();
 istreambuf_iterator(istream_type& s) throw();
 istreambuf_iterator(streambuf_type* s) throw();
 istreambuf_iterator(const proxy& p) throw();
 charT operator*() const;
 istreambuf_iterator<charT,traits>& operator++();
 proxy operator++(int);
 bool equal(istreambuf_iterator& b) const;
 private:
 streambuf_type* sbuf_; // exposition only
 };
template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>\& a,
const istreambuf_iterator<charT,traits>\& b);
template <class charT, class traits>
bool operator!=(const istreambuf_iterator<charT,traits>\& a,
const istreambuf_iterator<charT,traits>\& b);

```
\}

1 The class template istreambuf_iterator reads successive characters from the streambuf for which it was constructed. operator* provides access to the current input character, if any. Each time operator++ is evaluated, the iterator advances to the next input character. If the end of stream is reached (streambuf_type::sgetc() returns traits : : eof ()), the iterator becomes equal to the end of stream iterator value. The default constructor istreambuf_iterator () and the constructor istreambuf_iterator ( 0 ) both construct an end of stream iterator object suitable for use as an end-of-range.

2 The result of operator* () on an end of stream is undefined. For any other iterator value a char_type value is returned. It is impossible to assign a character via an input iterator.

3 Note that in the input iterators, ++ operators are not equality preserving, that is, \(i==j\) does not guarantee at all that \(++i==++j\). Every time ++ is evaluated a new value is used.

4 The practical consequence of this fact is that an istreambuf_iterator object can be used only for one-pass algorithms. Two end of stream iterators are always equal. An end of stream iterator is not equal to a non-end of stream iterator.
24.5.3.1 Class template istreambuf_iterator: :proxy
[istreambuf.iterator::proxy]
```

namespace std {
template <class charT, class traits = char_traits<charT> >
class istreambuf_iterator<charT, traits>::proxy {
charT keep_;

```
```

 basic_streambuf<charT,traits>* sbuf_;
 proxy(charT c,
 basic_streambuf<charT,traits>* sbuf);
 : keep_(c), sbuf_(sbuf) {}
 public:
 charT operator*() { return keep_; }
 };
 }

```

1 Class istreambuf_iterator<charT,traits>: :proxy is for exposition only. An implementation is permitted to provide equivalent functionality without providing a class with this name. Class istreambuf_iterator<charT, traits>: : proxy provides a temporary placeholder as the return value of the post-increment operator (operator++). It keeps the character pointed to by the previous value of the iterator for some possible future access to get the character.
24.5.3.2 istreambuf_iterator constructors
[istreambuf.iterator.cons]
istreambuf_iterator() throw();
```

 istreambuf_iterator(basic_istream<charT,traits>& s) throw();
 istreambuf_iterator(basic_streambuf<charT,traits>* s) throw();

```

Effects: Constructs an istreambuf_iterator<> that uses the basic_streambuf<> object * (s.rdbuf ()), or \(* s\), respectively. Constructs an end-of-stream iterator if \(s . \operatorname{rdbuf}()\) is null.
istreambuf_iterator (const proxy\& \(p\) ) throw();
Effects: Constructs a istreambuf_iterator<> that uses the basic_streambuf<> object pointed to by the proxy object's constructor argument \(p\).
24.5.3.3 istreambuf_iterator: :operator*
[istreambuf.iterator::op*]
charT operator*() const
Returns: The character obtained via the streambuf member sbuf_->sgetc().
24.5.3.4 istreambuf_iterator: :operator++
[istreambuf.iterator::op++]
istreambuf_iterator<charT,traits>\&
istreambuf_iterator<charT,traits>: :operator++();
Effects: sbuf_->sbumpc().
Returns: *this.
proxy istreambuf_iterator<charT,traits>::operator++(int);
Returns: proxy(sbuf_->sbumpc(), sbuf_).
24.5.3.5 istreambuf_iterator: :equal
bool equal(istreambuf_iterator<charT,traits>\& b) const;
Returns: true if and only if both iterators are at end-of-stream, or neither is at end-of-stream, regardless of what streambuf object they use.

\subsection*{24.5.3.6 operator==}
[istreambuf.iterator::op==]
template <class charT, class traits>
bool operator==(const istreambuf_iterator<charT,traits>\& \(a\), const istreambuf_iterator<charT,traits>\& b);

Returns: a .equal(b).
24.5.3.7 operator! \(=\)
[istreambuf.iterator::op!=]
template <class charT, class traits>
bool operator!=(const istreambuf_iterator<charT,traits>\& \(a\), const istreambuf_iterator<charT,traits>\& b);

Returns: ! a .equal (b).

\subsection*{24.5.4 Class template ostreambuf_iterator}
[ostreambuf.iterator]
```

namespace std {
template <class charT, class traits = char_traits<charT> >
class ostreambuf_iterator:
public iterator<output_iterator_tag, void, void, void, void> {
public:
typedef charT char_type;
typedef traits traits_type;
typedef basic_streambuf<charT,traits> streambuf_type;
typedef basic_ostream<charT,traits> ostream_type;
public:
ostreambuf_iterator(ostream_type\& s) throw();
ostreambuf_iterator(streambuf_type* s) throw();
ostreambuf_iterator\& operator=(charT c);
ostreambuf_iterator\& operator*();
ostreambuf_iterator\& operator++();
ostreambuf_iterator\& operator++(int);
bool failed() const throw();
private:
// streambuf_type* sbuf_;

```
    exposition only
```

 };
    ```
\}

1 The class template ostreambuf_iterator writes successive characters onto the output stream from which it was constructed. It is not possible to get a character value out of the output iterator.

\subsection*{24.5.4.1 ostreambuf_iterator constructors}
    ostreambuf_iterator (ostream_type\& s) throw();

\subsection*{24.5.4.2 ostreambuf_iterator operations}
```

 ostreambuf_iterator<charT,traits>&
    ```
    operator=(charT c);
            Effects: If failed () yields false, calls sbuf_->sputc (c); otherwise has no effect.
            Returns: *this.
    ostreambuf_iterator<charT,traits>\& operator*();
        Returns: *this.
    ostreambuf_iterator<charT,traits>\& operator++();
    ostreambuf_iterator<charT,traits>\& operator++(int);
        Returns: *this.
    bool failed() const throw();
    Returns: true if in any prior use of member operator=, the call to sbuf_->sputc() returned traits: :eof();
        or false otherwise.

\section*{Chapter 25 Algorithms library}

\section*{[algorithms]}

1 This clause describes components that C++ programs may use to perform algorithmic operations on containers (clause 23) and other sequences.

2 The following subclauses describe components for non-modifying sequence operation, modifying sequence operations, sorting and related operations, and algorithms from the ISO C library, as summarized in Table 94.

Table 94: Algorithms library summary
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Subclause } & Header(s) \\
\hline \hline 25.1 Non-modifying sequence operations & \\
25.2 Mutating sequence operations & <algorithm> \\
25.3 Sorting and related operations & \\
\hline 25.4 C library algorithms & <cstdlib> \\
\hline
\end{tabular}

\section*{Header <algorithm> synopsis}
```

namespace std {
// 25.1, non-modifying sequence operations:
template<class InputIterator, class Function>
Function for_each(InputIterator first, InputIterator last, Function f);
template<class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last,
const T\& value);
template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first, InputIterator last,
Predicate pred);
template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);
template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1

```
```

 find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,
 ForwardIterator2 first2, ForwardIterator2 last2);
 template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
ForwardIterator1
find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);
template<class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first,
ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>
ForwardIterator adjacent_find(ForwardIterator first,
ForwardIterator last, BinaryPredicate pred);
template<class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type
count(InputIterator first, InputIterator last, const T\& value);
template<class InputIterator, class Predicate>
typename iterator_traits<InputIterator>::difference_type
count_if(InputIterator first, InputIterator last, Predicate pred);
template<class InputIterator1, class InputIterator2>
pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);
template
<class InputIterator1, class InputIterator2, class BinaryPredicate>
pair<InputIterator1, InputIterator2>
mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);
template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);
template
<class InputIterator1, class InputIterator2, class BinaryPredicate>
bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);
template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1 search
(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
ForwardIterator1 search
(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,

```
```

 BinaryPredicate pred);
 template<class ForwardIterator, class Size, class T>
ForwardIterator search_n(ForwardIterator first, ForwardIterator last,
Size count, const T\& value);
template
<class ForwardIterator, class Size, class T, class BinaryPredicate>
ForwardIterator1 search_n(ForwardIterator first, ForwardIterator last,
Size count, const T\& value,
BinaryPredicate pred);

```
// 25.2, modifying sequence operations:
// 25.2.1, copy:
template<class InputIterator, class OutputIterator>
    OutputIterator copy(InputIterator first, InputIterator last,
                            OutputIterator result);
template<class BidirectionalIterator1, class BidirectionalIterator2>
    BidirectionalIterator2
        copy_backward
                (BidirectionalIterator1 first, BidirectionalIterator1 last,
                    BidirectionalIterator2 result);
// 25.2.2, swap:
template<class T> void swap(T\& a, T\& b);
template<class ForwardIterator1, class ForwardIterator2>
    ForwardIterator2 swap_ranges(ForwardIterator1 first1,
            ForwardIterator1 last1, ForwardIterator2 first2);
template<class ForwardIterator1, class ForwardIterator2>
    void iter_swap(ForwardIterator1 a, ForwardIterator2 b);
template<class InputIterator, class OutputIterator, class UnaryOperation>
    OutputIterator transform(InputIterator first, InputIterator last,
                                    OutputIterator result, UnaryOperation op);
template<class InputIterator1, class InputIterator2, class OutputIterator,
            class BinaryOperation>
    OutputIterator transform(InputIterator1 first1, InputIterator1 last1,
                                    InputIterator2 first2, OutputIterator result,
                                    BinaryOperation binary_op);
template<class ForwardIterator, class T>
    void replace(ForwardIterator first, ForwardIterator last,
                    const T\& old_value, const T\& new_value);
template<class ForwardIterator, class Predicate, class T>
    void replace_if(ForwardIterator first, ForwardIterator last,
                Predicate pred, const T\& new_value);
template<class InputIterator, class OutputIterator, class T>
    OutputIterator replace_copy(InputIterator first, InputIterator last,
                                    OutputIterator result,
                                    const T\& old_value, const T\& new_value);
template<class InputIterator, class OutputIterator, class Predicate, class T>
    OutputIterator replace_copy_if(InputIterator first, InputIterator last,

Draft
```

OutputIterator result,
Predicate pred, const T\& new_value);
template<class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T\& value);
template<class OutputIterator, class Size, class T>
void fill_n(OutputIterator first, Size n, const T\& value);
template<class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last,
Generator gen);
template<class OutputIterator, class Size, class Generator>
void generate_n(OutputIterator first, Size n, Generator gen);
template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,
const T\& value);
template<class ForwardIterator, class Predicate>
ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
Predicate pred);
template<class InputIterator, class OutputIterator, class T>
OutputIterator remove_copy(InputIterator first, InputIterator last,
OutputIterator result, const T\& value);
template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);
template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);
template<class InputIterator, class OutputIterator>
OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator result);
template<class InputIterator, class OutputIterator, class BinaryPredicate>
OutputIterator unique_copy(InputIterator first, InputIterator last,
OutputIterator result, BinaryPredicate pred);
template<class BidirectionalIterator>
void reverse(BidirectionalIterator first, BidirectionalIterator last);
template<class BidirectionalIterator, class OutputIterator>
OutputIterator reverse_copy(BidirectionalIterator first,
BidirectionalIterator last,
OutputIterator result);
template<class ForwardIterator>
void rotate(ForwardIterator first, ForwardIterator middle,
ForwardIterator last);
template<class ForwardIterator, class OutputIterator>

```
```

 OutputIterator rotate_copy
 (ForwardIterator first, ForwardIterator middle,
 ForwardIterator last, OutputIterator result);
 template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last);
template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last,
RandomNumberGenerator\& rand);
template<class RandomAccessIterator, class UniformRandomNumberGenerator>
void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last,
UniformRandomNumberGenerator\& rand);
// 25.2.12, partitions:
template<class BidirectionalIterator, class Predicate>
BidirectionalIterator partition(BidirectionalIterator first,
BidirectionalIterator last,
Predicate pred);
template<class BidirectionalIterator, class Predicate>
BidirectionalIterator stable_partition(BidirectionalIterator first,
BidirectionalIterator last,
Predicate pred);

```
// 25.3, sorting and related operations:
// 25.3.1, sorting:
template<class RandomAccessIterator>
    void sort(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
    void sort(RandomAccessIterator first, RandomAccessIterator last,
            Compare comp);
template<class RandomAccessIterator>
    void stable_sort(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
    void stable_sort(RandomAccessIterator first, RandomAccessIterator last,
                        Compare comp);
template<class RandomAccessIterator>
    void partial_sort (RandomAccessIterator first,
                                    RandomAccessIterator middle,
                                    RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
    void partial_sort (RandomAccessIterator first,
                                    RandomAccessIterator middle,
                                    RandomAccessIterator last, Compare comp);
template<class InputIterator, class RandomAccessIterator>
    RandomAccessIterator
```

 partial_sort_copy(InputIterator first, InputIterator last,
 RandomAccessIterator result_first,
 RandomAccessIterator result_last);
 template<class InputIterator, class RandomAccessIterator, class Compare>
RandomAccessIterator
partial_sort_copy(InputIterator first, InputIterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);
template<class RandomAccessIterator>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);
// 25.3.3, binary search:
template<class ForwardIterator, class T>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const T\& value);
template<class ForwardIterator, class T, class Compare>
ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,
const T\& value, Compare comp);
template<class ForwardIterator, class T>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
const T\& value);
template<class ForwardIterator, class T, class Compare>
ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,
const T\& value, Compare comp);
template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last,
const T\& value);
template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first, ForwardIterator last,
const T\& value, Compare comp);
template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,
const T\& value);
template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last,
const T\& value, Compare comp);
// 25.3.4, merge:
template<class InputIterator1, class InputIterator2, class OutputIterator>

```
```

 OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator result);
 template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);
template<class BidirectionalIterator>
void inplace_merge(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

```
// 25.3.5, set operations:
template<class InputIterator1, class InputIterator2>
    bool includes(InputIterator1 first1, InputIterator1 last1,
            InputIterator2 first2, InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>
    bool includes
        (InputIterator1 first1, InputIterator1 last1,
            InputIterator2 first2, InputIterator2 last2, Compare comp);
template<class InputIterator1, class InputIterator2, class OutputIterator>
    OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
                                    InputIterator2 first2, InputIterator2 last2,
                                    OutputIterator result);
template<class InputIterator1, class InputIterator2, class OutputIterator,
            class Compare>
    OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,
                InputIterator2 first2, InputIterator2 last2,
                                OutputIterator result, Compare comp);
template<class InputIterator1, class InputIterator2, class OutputIterator>
    OutputIterator set_intersection
            (InputIterator1 first1, InputIterator1 last1,
                InputIterator2 first2, InputIterator2 last2,
                OutputIterator result);
template<class InputIterator1, class InputIterator2, class OutputIterator,
                class Compare>
    OutputIterator set_intersection
            (InputIterator1 first1, InputIterator1 last1,
                InputIterator2 first2, InputIterator2 last2,
                OutputIterator result, Compare comp);
template<class InputIterator1, class InputIterator2, class OutputIterator>
```

 OutputIterator set_difference
 (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator result);
 template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator set_difference
(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);
template<class InputIterator1, class InputIterator2, class OutputIterator>
OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);
template<class InputIterator1, class InputIterator2, class OutputIterator,
class Compare>
OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

```
// 25.3.6, heap operations:
template<class RandomAccessIterator>
    void push_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
    void push_heap(RandomAccessIterator first, RandomAccessIterator last,
                                    Compare comp);
template<class RandomAccessIterator>
    void pop_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
    void pop_heap(RandomAccessIterator first, RandomAccessIterator last,
                                    Compare comp);
template<class RandomAccessIterator>
    void make_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
    void make_heap(RandomAccessIterator first, RandomAccessIterator last,
                                    Compare comp);
template<class RandomAccessIterator>
    void sort_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
    void sort_heap(RandomAccessIterator first, RandomAccessIterator last,
                Compare comp);
// 25.3.7, minimum and maximum:
template<class \(T>\) const \(T \&\) min(const \(T \& a\), const \(T \& b\) );
```

template<class T, class Compare>
const T\& min(const T\& a, const T\& b, Compare comp);
template<class T> const T\& max(const T\& a, const T\& b);
template<class T, class Compare>
const T\& max(const T\& a, const T\& b, Compare comp);
template<class T> pair<const T\&, const T\&> minmax(const T\& a, const T\& b);
template<class T, class Compare>
pair<const T\&, const T\&> minmax(const T\& a, const T\& b, Compare comp);
template<class ForwardIterator>
ForwardIterator min_element
(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
ForwardIterator min_element(ForwardIterator first, ForwardIterator last,
Compare comp);
template<class ForwardIterator>
ForwardIterator max_element
(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last,
Compare comp);
template<class ForwardIterator>
pair<ForwardIterator, ForwardIterator>
minmax_element(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
pair<ForwardIterator, ForwardIterator>
minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);
template<class InputIterator1, class InputIterator2>
bool lexicographical_compare
(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>
bool lexicographical_compare
(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp);
// 25.3.9, permutations:
template<class BidirectionalIterator>
bool next_permutation(BidirectionalIterator first,
BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
bool next_permutation(BidirectionalIterator first,
BidirectionalIterator last, Compare comp);
template<class BidirectionalIterator>
bool prev_permutation(BidirectionalIterator first,
BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first,

```

\section*{\}}

3 All of the algorithms are separated from the particular implementations of data structures and are parameterized by iterator types. Because of this, they can work with program-defined data structures, as long as these data structures have iterator types satisfying the assumptions on the algorithms.
4 Throughout this clause, the names of template parameters are used to express type requirements. If an algorithm's template parameter is InputIterator, InputIterator1

10 When the description of an algorithm gives an expression such as \(*\) first \(==\) value for a condition, the expression shall evaluate to either true or false in boolean contexts.

11 In the description of the algorithms operators + and - are used for some of the iterator categories for which they do not have to be defined. In these cases the semantics of \(a+n\) is the same as that of
```

{ X tmp = a;
advance(tmp, n);
return tmp;
}

```
and that of \(b-a\) is the same as of
```

return distance(a, b);

```

\subsection*{25.1 Non-modifying sequence operations}
[alg.nonmodifying]

\subsection*{25.1.1 For each}
[alg.foreach]
template<class InputIterator, class Function>
Function for_each(InputIterator first, InputIterator last, Function f);

\subsection*{25.1.2 Find}
[alg.find]
```

template<class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last,
const T\& value);
template<class InputIterator, class Predicate>
InputIterator find_if(InputIterator first, InputIterator last,
Predicate pred);

```

Returns: The first iterator i in the range [first, last) for which the following corresponding conditions hold: \(*_{i}==\) value, \(\operatorname{pred}(* \mathrm{i})\) != false. Returns last if no such iterator is found.

Complexity: At most last - first applications of the corresponding predicate.
25.1.3 Find End
[alg.find.end]
```

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
ForwardIterator1
find_end(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

```

Effects: Finds a subsequence of equal values in a sequence.
Returns: The last iterator i in the range [first1, last1 - (last2 - first2)) such that for any nonnegative integer \(\mathrm{n}<\) (last2 - first2), the following corresponding conditions hold: \(*(\mathrm{i}+\mathrm{n})==*(\) first2 +n\(), \operatorname{pred}(*(\mathrm{i}+\mathrm{n}), *(\) first2 +n\())!=\mathrm{false}\). Returns last1 if no such iterator is found.

Complexity: At most (last2 - first2) * (last1 - first1 - (last2 - first2) + 1) applications of the corresponding predicate.

\subsection*{25.1.4 Find First}
[alg.find.first.of]
```

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1
find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
ForwardIterator1
find_first_of(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

```

Effects: Finds an element that matches one of a set of values.
2 Returns: The first iterator \(i\) in the range [first1, last1) such that for some iterator \(j\) in the range [first2, last2) the following conditions hold: \(* \mathrm{i}==* j\), \(\operatorname{pred}(* i, * j)\) != false. Returns last1 if no such iterator is found.

3 Complexity: At most (last1-first1) * (last2-first2) applications of the corresponding predicate.

\subsection*{25.1.5 Adjacent find}
[alg.adjacent.find]
```

template<class ForwardIterator>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>
ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last,

```

Draft
```

BinaryPredicate pred);

```

\subsection*{25.1.6 Count}
[alg.count]
```

```
template<class InputIterator, class T>
```

```
template<class InputIterator, class T>
    typename iterator_traits<InputIterator>::difference_type
    typename iterator_traits<InputIterator>::difference_type
        count(InputIterator first, InputIterator last, const T& value);
        count(InputIterator first, InputIterator last, const T& value);
template<class InputIterator, class Predicate>
template<class InputIterator, class Predicate>
    typename iterator_traits<InputIterator>::difference_type
    typename iterator_traits<InputIterator>::difference_type
        count_if(InputIterator first, InputIterator last, Predicate pred);
```

```
        count_if(InputIterator first, InputIterator last, Predicate pred);
```

```

Effects: Returns the number of iterators i in the range [first, last) for which the following corresponding conditions hold: \(* i==\) value, pred (*i) != false.

Complexity: Exactly last - first applications of the corresponding predicate.

\subsection*{25.1.7 Mismatch}
[mismatch]
```

```
template<class InputIterator1, class InputIterator2>
```

```
template<class InputIterator1, class InputIterator2>
    pair<InputIterator1, InputIterator2>
    pair<InputIterator1, InputIterator2>
            mismatch(InputIterator1 first1, InputIterator1 last1,
            mismatch(InputIterator1 first1, InputIterator1 last1,
                InputIterator2 first2);
                InputIterator2 first2);
template<class InputIterator1, class InputIterator2,
template<class InputIterator1, class InputIterator2,
            class BinaryPredicate>
            class BinaryPredicate>
    pair<InputIterator1, InputIterator2>
    pair<InputIterator1, InputIterator2>
            mismatch(InputIterator1 first1, InputIterator1 last1,
            mismatch(InputIterator1 first1, InputIterator1 last1,
                    InputIterator2 first2, BinaryPredicate pred);
```

```
                    InputIterator2 first2, BinaryPredicate pred);
```

```

Returns: The first iterator i such that both i and i +1 are in the range [first, last) for which the following corresponding conditions hold: \(* i==*(i+1)\), pred \((* i, *(i+1))!=\) false. Returns last if no such iterator is found.

Complexity: For a nonempty range, exactly \(\min ((i-f i r s t)+1\), (last - first) -1\()\) applications of the corresponding predicate, where \(i\) is adjacent_find's return value.

Returns: A pair of iterators \(i\) and \(j\) such that \(j==\) first2 \(+(i-f i r s t 1)\) and \(i\) is the first iterator in the range [first1, last1) for which the following corresponding conditions hold:
```

!(*i == *(first2 + (i - first1)))
pred(*i, *(first2 + (i - first1))) == false

```

Returns the pair last1 and first2 + (last1 - first1) if such an iterator i is not found.
25.1.8 Equal
[alg.equal]
```

template<class InputIterator1, class InputIterator2>
bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2);
template<class InputIterator1, class InputIterator2,
class BinaryPredicate>
bool equal(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred);

```

\subsection*{25.1.9 Search}

\section*{[alg.search]}
```

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2);
template<class ForwardIterator1, class ForwardIterator2,
class BinaryPredicate>
ForwardIterator1
search(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2, ForwardIterator2 last2,
BinaryPredicate pred);

```

Effects: Finds a subsequence of equal values in a sequence.
Returns: The first iterator \(i\) in the range [first1, last1 - (last2-first2)) such that for any non-negative integer n less than last2 - first2 the following corresponding conditions hold: \(*(\mathrm{i}+\mathrm{n})==*(f i r s t 2+\) \(\mathrm{n}), \operatorname{pred}(*(\mathrm{i}+\mathrm{n}), *(\) first2 +n\())!=\) false. Returns last1 if no such iterator is found.

3
```

template<class ForwardIterator, class Size, class T>
ForwardIterator
search_n(ForwardIterator first, ForwardIterator last, Size count,
const T\& value);
template<class ForwardIterator, class Size, class T,
class BinaryPredicate>
ForwardIterator
search_n(ForwardIterator first, ForwardIterator last, Size count,
const T\& value, BinaryPredicate pred);

```

Requires: The type Size is convertible to integral type (4.7, 12.3).
Effects: Finds a subsequence of equal values in a sequence.

Draft

\subsection*{25.2.2 Swap}
template<class \(T>\) void \(\operatorname{swap}(T \& a, T \& b)\);
1 Requires: Type T is CopyConstructible (20.1.3) and Assignable (23.1).
2 Effects: Exchanges values stored in two locations.

\footnotetext{
\({ }^{265)}\) copy_backnard should be used instead of copy when last is in the range [result - (last - first), result).
}
```

template<class ForwardIterator1, class ForwardIterator2>
ForwardIterator2
swap_ranges(ForwardIterator1 first1, ForwardIterator1 last1,
ForwardIterator2 first2);

```
3 Effects: For each non-negative integer n < (last1 - first1) performs: swap (* (first1 +n\()\), *(first2
            + n)).
            Requires: The two ranges [first1,last1) and [first2,first2 + (last1 - first1)) shall not over-
            lap. The type of \(*\) first1 shall be the same as the type of \(* f i r s t 2\) and that type shall satisfy the Swappable
            requirements (20.1.4).

\subsection*{25.2.3 Transform}
[alg.transform]
```

template<class InputIterator, class OutputIterator,
class UnaryOperation>
OutputIterator
transform(InputIterator first, InputIterator last,
OutputIterator result, UnaryOperation op);
template<class InputIterator1, class InputIterator2,
class OutputIterator, class BinaryOperation>
OutputIterator
transform(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, OutputIterator result,
BinaryOperation binary_op);

```

Effects: Assigns through every iterator i in the range [result, result + (last1 - first1)) a new corresponding value equal to op \((*(f i r s t 1+(i-r e s u l t))\) or binary_op \((*(f i r s t 1+(i-r e s u l t))\), *(first2 + (i - result))).

Requires: op and binary_op shall not invalidate iterators or subranges, or modify elements in the ranges [ first1,last1],[first2,first2 + (last1 - first1)], and [result, result + (last1 - first1) ]. \({ }^{266)}\)

3 Returns: result + (last1 - first1).
4 Complexity: Exactly last1 - first1 applications of op or binary_op.

\footnotetext{
\({ }^{266)}\) The use of fully closed ranges is intentional.
}

Draft

\subsection*{25.2.4 Replace}
[alg.replace]
```

template<class ForwardIterator, class T>
void replace(ForwardIterator first, ForwardIterator last,
const T\& old_value, const T\& new_value);
template<class ForwardIterator, class Predicate, class T>
void replace_if(ForwardIterator first, ForwardIterator last,
Predicate pred, const T\& new_value);

```
            Requires: The expression \(*\) first \(=\) new_value must be valid.
            Effects: Substitutes elements referred by the iterator i in the range [first, last) with new_value, when the
            following corresponding conditions hold: \(* i==o l d \_v a l u e, p r e d(* i) ~!=~ f a l s e . ~\)
            Complexity: Exactly last - first applications of the corresponding predicate.
template<class InputIterator, class OutputIterator, class T>
    OutputIterator
        replace_copy(InputIterator first, InputIterator last,
                        OutputIterator result,
                        const T\& old_value, const T\& new_value);
template<class InputIterator, class OutputIterator, class Predicate, class T>
    OutputIterator
        replace_copy_if(InputIterator first, InputIterator last,
                        OutputIterator result,
                        Predicate pred, const T\& new_value);

Requires: The results of the expressions *first and new_value shall be writable to the result output iterator. The ranges [first,last) and [result, result + (last - first)) shall not overlap.

Effects: Assigns to every iterator i in the range [result, result + (last - first)) either new_value or * (first + (i - result)) depending on whether the following corresponding conditions hold:
```

*(first + (i - result)) == old_value
pred(*(first + (i - result))) != false

```
6 Returns: result + (last - first).
```

template<class ForwardIterator, class T>
void fill(ForwardIterator first, ForwardIterator last, const T\& value);

```
```

template<class OutputIterator, class Size, class T>
void fill_n(OutputIterator first, Size n, const T\& value);

```

\subsection*{25.2.6 Generate}
[alg.generate]
```

template<class ForwardIterator, class Generator>
void generate(ForwardIterator first, ForwardIterator last,
Generator gen);
template<class OutputIterator, class Size, class Generator>
void generate_n(OutputIterator first, Size n, Generator gen);

```

\subsection*{25.2.7 Remove}
[alg.remove]
```

template<class ForwardIterator, class T>
ForwardIterator remove(ForwardIterator first, ForwardIterator last,
const T\& value);
template<class ForwardIterator, class Predicate>
ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,
Predicate pred);

```

Requires: The type of \(*\) first shall satisfy the Assignable requirements (23.1).
Effects: Eliminates all the elements referred to by iterator i in the range [first, last) for which the following corresponding conditions hold: *i == value, pred (*i) != false.

Returns: The end of the resulting range.
Remarks: Stable.
Complexity: Exactly last - first applications of the corresponding predicate.
```

template<class InputIterator, class OutputIterator, class T>
OutputIterator
remove_copy(InputIterator first, InputIterator last,
OutputIterator result, const T\& value);
template<class InputIterator, class OutputIterator, class Predicate>
OutputIterator
remove_copy_if(InputIterator first, InputIterator last,
OutputIterator result, Predicate pred);

```

\subsection*{25.2.8 Unique}
[alg.unique]
```

template<class ForwardIterator>
ForwardIterator unique(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class BinaryPredicate>
ForwardIterator unique(ForwardIterator first, ForwardIterator last,
BinaryPredicate pred);

```

Effects: For a nonempty range, eliminates all but the first element from every consecutive group of equivalent elements referred to by the iterator \(i\) in the range \([\) first \(+1, l a s t\) ) for which the following conditions hold: \(*(i-1)==* i\) or \(\operatorname{pred}(*(i-1), * i) \quad!=f a l s e\).

2 Requires: The comparison function shall be an equivalence relation.
3 Returns: The end of the resulting range.
4
```

template<class InputIterator, class OutputIterator>
OutputIterator
unique_copy(InputIterator first, InputIterator last,
OutputIterator result);
template<class InputIterator, class OutputIterator,
class BinaryPredicate>
OutputIterator
unique_copy(InputIterator first, InputIterator last,
OutputIterator result, BinaryPredicate pred);

```

\subsection*{25.2.11 Random shuffle}
```

template<class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last);
template<class RandomAccessIterator, class RandomNumberGenerator>
void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last,
RandomNumberGenerator\& rand);
template<class RandomAccessIterator, class UniformRandomNumberGenerator>
void random_shuffle(RandomAccessIterator first,
RandomAccessIterator last,
UniformRandomNumberGenerator\& rand);

```

Effects: Shuffles the elements in the range [first, last) with uniform distribution.
Requires: The type of \(*\) first shall satisfy the Swappable requirements (20.1.4).
Complexity: Exactly (last - first) - 1 swaps.
Remarks: The underlying source of random numbers for the first form of the function is implementation-defined. An implementation may use the rand function from the standard C library. The second form of the function takes a random number generating function object rand such that if n is an argument for rand, with a positive value, that has type iterator_traits<RandomAccessIterator>: : difference_type, then rand ( \(n\) ) returns a randomly chosen value, which lies in the interval \([0, n)\), and which has a type that is convertible to iterator_traits<RandomAccessIterator>: :difference_type. The third form of the function takes an object meeting the requirements of uniform random number generator (26.4.1.2).

\subsection*{25.2.12 Partitions}
[alg.partitions]
```

template<class BidirectionalIterator, class Predicate>
BidirectionalIterator
partition(BidirectionalIterator first,
BidirectionalIterator last, Predicate pred);

```

\subsection*{25.3 Sorting and related operations}
[alg.sorting]
1 All the operations in 25.3 have two versions: one that takes a function object of type Compare and one that uses an operator<.

2 Compare is used as a function object which returns true if the first argument is less than the second, and false otherwise. Compare comp is used throughout for algorithms assuming an ordering relation. It is assumed that comp will not apply any non-constant function through the dereferenced iterator.

3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp ( \(* \mathrm{i}, * \mathrm{j}\) ) != false defaults to \(* i<* j!=\) false. For algorithms other than those described in 25.3.3 to work correctly, comp has to induce a strict weak ordering on the values.

4 The term strict refers to the requirement of an irreflexive relation (! \(\operatorname{comp}(\mathrm{x}, \mathrm{x}\) ) for all x ), and the term weak to requirements that are not as strong as those for a total ordering, but stronger than those for a partial ordering. If we define equiv ( \(\mathrm{a}, \mathrm{b}\) ) as \(!\operatorname{comp}(\mathrm{a}, \mathrm{b}) \& \&!\operatorname{comp}(\mathrm{b}, \mathrm{a})\), then the requirements are that \(\operatorname{comp}\) and equiv both be transitive relations:
- comp ( \(\mathrm{a}, \mathrm{b}\) ) \&\& comp (b, c) implies comp ( \(\mathrm{a}, \mathrm{c}\) )
- equiv (a, b) \&\& equiv (b, c) implies equiv (a, c) [Note: Under these conditions, it can be shown that
- equiv is an equivalence relation
- comp induces a well-defined relation on the equivalence classes determined by equiv
- The induced relation is a strict total ordering. - end note ]

5 A sequence is sorted with respect to a comparator comp if for any iterator i pointing to the sequence and any nonnegative integer n such that \(\mathrm{i}+\mathrm{n}\) is a valid iterator pointing to an element of the sequence, \(\operatorname{comp}(*(\mathrm{i}+\mathrm{n}), * \mathrm{i})\) == false.

6 A sequence [start, finish) is partitioned with respect to an expression \(f(e)\) if there exists an integer \(n\) such that for all 0 <= \(i<d i s t a n c e(s t a r t, ~ f i n i s h), f(*(b e g i n+i))\) is true if and only if \(i<n\).

7 In the descriptions of the functions that deal with ordering relationships we frequently use a notion of equivalence to describe concepts such as stability. The equivalence to which we refer is not necessarily an operator==, but an equivalence relation induced by the strict weak ordering. That is, two elements \(a\) and \(b\) are considered equivalent if and only if ! \((\mathrm{a}<\mathrm{b}) \& \&!(\mathrm{b}<\mathrm{a})\).

\subsection*{25.3.1 Sorting}
[alg.sort]
25.3.1.1 sort
[sort]
template<class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp);

Effects: Sorts the elements in the range [first, last).
Requires: The type of \(*\) first shall satisfy the Swappable requirements (20.1.4).
Complexity: Approximately \(N \log (N)\) (where \(N==\) last - first) comparisons on the average. \({ }^{267}\) )
25.3.1.2 stable_sort
[stable.sort]
```

template<class RandomAccessIterator>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void stable_sort(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

```

\footnotetext{
\({ }^{267)}\) If the worst case behavior is important stabl e_sort() (25.3.1.2) or parti al _sort () (25.3.1.3) should be used.
}

\subsection*{25.3.1.3 partial_sort}
[partial.sort]
```

template<class RandomAccessIterator>
void partial_sort(RandomAccessIterator first,
RandomAccessIterator middle,
RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void partial_sort(RandomAccessIterator first,
RandomAccessIterator middle,
RandomAccessIterator last,
Compare comp);

```

Effects: Places the first middle - first sorted elements from the range [first,last) into the range [ first, middle). The rest of the elements in the range [middle, last) are placed in an unspecified order.

Requires: The type of \(*\) first shall satisfy the Swappable requirements (20.1.4).
Complexity: It takes approximately (last - first) * log(middle - first) comparisons.
25.3.1.4 partial_sort_copy
template<class InputIterator, class RandomAccessIterator>
RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last);
template<class InputIterator, class RandomAccessIterator, class Compare>
RandomAccessIterator partial_sort_copy(InputIterator first, InputIterator last, RandomAccessIterator result_first, RandomAccessIterator result_last, Compare comp);

Effects: Places the firstmin(last - first, result_last - result_first) sorted elements into the range [result_first,result_first + min(last - first, result_last - result_first)).

Returns: The smaller of: result_last or result_first + (last - first).

\subsection*{25.3.2 Nth element}
[alg.nth.element]
Requires: The type of *result_first shall satisfy the Swappable requirements (20.1.4).
Complexity: Approximately (last - first) * log(min(last - first, result_last - result_first)) comparisons.
```

template<class RandomAccessIterator>

```
    void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
```

 void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
 RandomAccessIterator last);
 RandomAccessIterator last);
 template<class RandomAccessIterator, class Compare>
template<class RandomAccessIterator, class Compare>
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
void nth_element(RandomAccessIterator first, RandomAccessIterator nth,
RandomAccessIterator last, Compare comp);

```
```

 RandomAccessIterator last, Compare comp);
    ```
```

After nth_element the element in the position pointed to by $n t h$ is the element that would be in that position if the whole range were sorted. Also for any iterator i in the range [first, n th) and any iterator j in the range [nth, last) it holds that: ! ($* \mathrm{i}>* \mathrm{j}$) or $\operatorname{comp}(* \mathrm{j}, * \mathrm{i})==\mathrm{false}$.
Requires: The type of $*$ first shall satisfy the Swappable requirements (20.1.4).
Complexity: Linear on average.

25.3.3 Binary search

[alg.binary.search]
1 All of the algorithms in this section are versions of binary search and assume that the sequence being searched is partitioned with respect to an expression formed by binding the search key to an argument of the implied or explicit comparison function. They work on non-random access iterators minimizing the number of comparisons, which will be logarithmic for all types of iterators. They are especially appropriate for random access iterators, because these algorithms do a logarithmic number of steps through the data structure. For non-random access iterators they execute a linear number of steps.

```
25.3.3.1 lower_bound
template<class ForwardIterator, class T>
    ForwardIterator
        lower_bound(ForwardIterator first, ForwardIterator last,
                const T& value);
template<class ForwardIterator, class T, class Compare>
    ForwardIterator
        lower_bound(ForwardIterator first, ForwardIterator last,
                const T& value, Compare comp);
```

 [lower.bound]
 Requires: The elements e of [first, last) are partitioned with respect to the expression $\mathrm{e}<$ value or comp (e, value).

Returns: The furthermost iterator i in the range [first, $l a s t$] such that for any iterator j in the range [first, i) the following corresponding conditions hold: $* \mathrm{j}$ < value or comp ($* \mathrm{j}$, value) ! $=$ false.
25.3.3.2 upper_bound

```
```

template<class ForwardIterator, class T>

```
```

template<class ForwardIterator, class T>
ForwardIterator
ForwardIterator
upper_bound(ForwardIterator first, ForwardIterator last,
upper_bound(ForwardIterator first, ForwardIterator last,
const T\& value);
const T\& value);
template<class ForwardIterator, class T, class Compare>
template<class ForwardIterator, class T, class Compare>
ForwardIterator
ForwardIterator
upper_bound(ForwardIterator first, ForwardIterator last,
upper_bound(ForwardIterator first, ForwardIterator last,
const T\& value, Compare comp);

```
```

 const T& value, Compare comp);
    ```
```

25.3.3.3 equal_range

```
template<class ForwardIterator, class T>
```

template<class ForwardIterator, class T>
pair<ForwardIterator, ForwardIterator>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first,
equal_range(ForwardIterator first,
ForwardIterator last, const T\& value);
ForwardIterator last, const T\& value);
template<class ForwardIterator, class T, class Compare>
template<class ForwardIterator, class T, class Compare>
pair<ForwardIterator, ForwardIterator>
pair<ForwardIterator, ForwardIterator>
equal_range(ForwardIterator first,
equal_range(ForwardIterator first,
ForwardIterator last, const T\& value,
ForwardIterator last, const T\& value,
ForwardIterator last, const T\& value,
Compare comp);

```
                        Compare comp);
```

 Compare comp);
    ```

Complexity: At most \(\log _{2}(\) last - first \()+\mathscr{O}(1)\) comparisons.
[upper.bound]

1 Requires: The elements e of [first,last) are partitioned with respect to the expression ! (value < e) or ! comp (value, e).

Returns: The furthermost iterator \(i\) in the range [first, \(l a s t\) ) such that for any iterator \(j\) in the range [first, i) the following corresponding conditions hold: ! (value \(<* j\) ) or comp (value, *j) == false.

Complexity: At most \(\log _{2}(\) last - first \()+\mathscr{O}(1)\) comparisons.
[equal.range]

Returns.
```

make_pair(lower_bound(first, last, value),
upper_bound(first, last, value))

```
or
```

make_pair(lower_bound(first, last, value, comp)
upper_bound(first, last, value, comp))

```

Complexity: At most \(2 * \log _{2}(\) last - first \()+\mathscr{O}(1)\) comparisons.
25.3.3.4 binary_search
```

template<class ForwardIterator, class T>
bool binary_search(ForwardIterator first, ForwardIterator last,
const T\& value);
template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first, ForwardIterator last,
const T\& value, Compare comp);

```

\subsection*{25.3.4 Merge}
[alg.merge]
```

template<class InputIterator1, class InputIterator2,
class OutputIterator>
OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);
template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>
OutputIterator
merge(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

```

Effects: Merges two sorted ranges [first1, last1) and [first2, last2) into the range [result, result + (last1 - first1) + (last2 - first2)).

The resulting range shall not overlap with either of the original ranges. The list will be sorted in non-decreasing order according to the ordering defined by comp ; that is, for every iterator i in [first, last) other than first, the condition \(* \mathrm{i}<*(\mathrm{i}-1)\) or \(\operatorname{comp}\left(*_{\mathrm{i}}, *(\mathrm{i}-1)\right)\) will be false.
Returns: result + (last1 - first1) + (last2 - first2).
Complexity: At most (last1 - first1) + (last2 - first2) - 1 comparisons.
Remarks: Stable.
template<class BidirectionalIterator> void inplace_merge(BidirectionalIterator first,
```

 BidirectionalIterator middle,
 BidirectionalIterator last);
 template<class BidirectionalIterator, class Compare>
void inplace_merge(BidirectionalIterator first,
BidirectionalIterator middle,
BidirectionalIterator last, Compare comp);

```

\subsection*{25.3.5 Set operations on sorted structures}

\section*{[alg.set.operations]}

1 This section defines all the basic set operations on sorted structures. They also work with multisets (23.3.4) containing multiple copies of equivalent elements. The semantics of the set operations are generalized to multisets in a standard way by defining set_union() to contain the maximum number of occurrences of every element, set_intersection() to contain the minimum, and so on.
25.3.5.1 includes
[includes]
```

template<class InputIterator1, class InputIterator2>
bool includes(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>
bool includes(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp)

```

Returns: true if every element in the range [first2,last2) is contained in the range [first1,last1). Returns false otherwise.

Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
25.3.5.2 set_union
[set.union]
```

template<class InputIterator1, class InputIterator2,
class OutputIterator>
OutputIterator
set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,

```
```

 OutputIterator result);
 template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>
OutputIterator
set_union(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

```

Effects: Constructs a sorted union of the elements from the two ranges; that is, the set of elements that are present in one or both of the ranges.

Requires: The resulting range shall not overlap with either of the original ranges.
Returns: The end of the constructed range.
Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
Remarks: If [first1,last1) contains \(m\) elements that are equivalent to each other and [first2,last2) contains \(n\) elements that are equivalent to them, then all \(m\) elements from the first range shall be copied to the output range, in order, and then \(\max (n-m, 0)\) elements from the second range shall be copied to the output range, in order.
25.3.5.3 set_intersection
[set.intersection]
```

template<class InputIterator1, class InputIterator2,
class OutputIterator>
OutputIterator
set_intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);
template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>
OutputIterator
set_intersection(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

```

Effects: Constructs a sorted intersection of the elements from the two ranges; that is, the set of elements that are present in both of the ranges.

Requires: The resulting range shall not overlap with either of the original ranges.
Returns: The end of the constructed range.
Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
Remarks: If [first1, last1) contains \(m\) elements that are equivalent to each other and [first2,last2) contains \(n\) elements that are equivalent to them, the first \(\min (m, n)\) elements shall be copied from the first range to the output range, in order.
25.3.5.4 set_difference
[set.difference]
```

template<class InputIterator1, class InputIterator2,
class OutputIterator>
OutputIterator
set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);
template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>
OutputIterator
set_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

```

Effects: Copies the elements of the range [first1, last1) which are not present in the range [first2, last2 ) to the range beginning at result. The elements in the constructed range are sorted.

Requires: The resulting range shall not overlap with either of the original ranges.
Returns: The end of the constructed range.
Complexity: At most 2 * ((last1 - first1) + (last2 - first2)) - 1 comparisons.
Remarks: If [first1,last1) contains \(m\) elements that are equivalent to each other and [first2,last2) contains \(n\) elements that are equivalent to them, the last \(\max (m-n, 0)\) elements from [first1,last1) shall be copied to the output range.
25.3.5.5 set_symmetric_difference
[set.symmetric.difference]
```

template<class InputIterator1, class InputIterator2,
class OutputIterator>
OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result);
template<class InputIterator1, class InputIterator2,
class OutputIterator, class Compare>
OutputIterator
set_symmetric_difference(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
OutputIterator result, Compare comp);

```

Effects: Copies the elements of the range [first1, last1) which are not present in the range [first2, last2 ), and the elements of the range [first2,last2) which are not present in the range [first1, last1) to the range beginning at result. The elements in the constructed range are sorted.

Requires: The resulting range shall not overlap with either of the original ranges.

\subsection*{25.3.6 Heap operations}
[alg.heap.operations]
1 A heap is a particular organization of elements in a range between two random access iterators [a,b). Its two key properties are:
(1) There is no element greater than *a in the range and
(2) *a may be removed by pop_heap(), or a new element added by push_heap (), in \(\mathscr{O}(\log (N))\) time.

2 These properties make heaps useful as priority queues.
3 make_heap() converts a range into a heap and sort_heap() turns a heap into a sorted sequence.

\subsection*{25.3.6.1 push_heap}
[push.heap]
```

template<class RandomAccessIterator>
void push_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void push_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

```

Effects: Places the value in the location last - 1 into the resulting heap [first, last).
Requires: The range [first, last - 1) shall be a valid heap.
Complexity: At most log(last - first) comparisons.
25.3.6.2 pop_heap
[pop.heap]
```

template<class RandomAccessIterator>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void pop_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

```

Effects: Swaps the value in the location first with the value in the location last - 1 and makes [first, last - 1) into a heap.

Requires: The range [first, last) shall be a valid heap. The type of \(*\) first shall satisfy the Swappable requirements (20.1.4).

Draft

\subsection*{25.3.6.3 make_heap}
```

template<class RandomAccessIterator>
void make_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

```
            Effects: Constructs a heap out of the range [first, last).
            Complexity: At most 3 * (last - first) comparisons.
25.3.6.4 sort_heap
```

template<class RandomAccessIterator>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last);
template<class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first, RandomAccessIterator last,
Compare comp);

```
            Effects: Sorts elements in the heap [first, last).
            Requires: The type of \(*\) first shall satisfy the Swappable requirements (20.1.4).
            Complexity: At most \(N \log (N)\) comparisons (where \(N==\) last - first).

\subsection*{25.3.7 Minimum and maximum}
[alg.min.max]
```

template<class T> const T\& min(const T\& a, const T\& b);
template<class T, class Compare>
const T\& min(const T\& a, const T\& b, Compare comp);

```
            Requires: Type T is LessThanComparable (20.1.2).
            Returns: The smaller value.
            Remarks: Returns the first argument when the arguments are equivalent.
```

template<class T> const T\& max(const T\& a, const T\& b);
template<class T, class Compare>
const T\& max(const T\& a, const T\& b, Compare comp);

```

Requires: Type T is LessThanComparable (20.1.2).
Returns: The larger value.
Remarks: Returns the first argument when the arguments are equivalent.
```

template<class T> pair<const T\&, const T\&> minmax(const T\& a, const T\& b);
template<class T, class Compare>
pair<const T\&, const T\&> minmax(const T\& a, const T\& b, Compare comp);
Requires: Type T shall be LessThanComparable (20.1.2).
Returns: pair<const T\&, const $T \&>(b, a)$ if b is smaller than a, and pair<const $T \&$, const $T \&>(a, b)$ otherwise.
Remarks: Returns <pair<const T\&, const $\mathrm{T} \&>(\mathrm{a}, \mathrm{b})$ when the arguments are equivalent.
Complexity: Exactly one comparison.

```
```

template<class ForwardIterator>

```
template<class ForwardIterator>
    ForwardIterator min_element(ForwardIterator first, ForwardIterator last);
    ForwardIterator min_element(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
template<class ForwardIterator, class Compare>
    ForwardIterator min_element(ForwardIterator first, ForwardIterator last,
    ForwardIterator min_element(ForwardIterator first, ForwardIterator last,
                            Compare comp);
```

 Compare comp);
    ```

Returns: The first iterator i in the range [first, last) such that for any iterator j in the range [first, last ) the following corresponding conditions hold: ! \((* j<* i)\) or \(\operatorname{comp}(* j, * i)==\) false. Returns last if first \(==\) last.
Complexity: Exactly \(\max ((l a s t-f i r s t)-1,0)\) applications of the corresponding comparisons.
```

template<class ForwardIterator>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
ForwardIterator max_element(ForwardIterator first, ForwardIterator last,
Compare comp);

```

Returns: The first iterator i in the range [first, last) such that for any iterator j in the range [first, last ) the following corresponding conditions hold: ! \((* \mathrm{i}<* \mathrm{j})\) or \(\operatorname{comp}(* \mathrm{i}, * \mathrm{j})==\) false. Returns last if first \(==\) last.

Complexity: Exactly \(\max ((l a s t-f i r s t)-1,0)\) applications of the corresponding comparisons.
```

template<class ForwardIterator>
pair<ForwardIterator, ForwardIterator>
minmax_element(ForwardIterator first, ForwardIterator last);
template<class ForwardIterator, class Compare>
pair<ForwardIterator, ForwardIterator>
minmax_element(ForwardIterator first, ForwardIterator last, Compare comp);

```

Returns: make_pair (m, M), wheremismin_element (first, last) ormin_element (first, last, comp) and \(M\) is max_element (first, last) or max_element (first, last, comp).

Complexity: At most max \((2 *\) (last - first \()-2,0)\) applications of the corresponding comparisons.
25.3.8 Lexicographical comparison
[alg.lex.comparison]
```

template<class InputIterator1, class InputIterator2>
bool
lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2);
template<class InputIterator1, class InputIterator2, class Compare>
bool
lexicographical_compare(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, InputIterator2 last2,
Compare comp);

```

\subsection*{25.3.9 Permutation generators}
```

```
template<class BidirectionalIterator>
```

```
template<class BidirectionalIterator>
    bool next_permutation(BidirectionalIterator first,
    bool next_permutation(BidirectionalIterator first,
            BidirectionalIterator last);
            BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
template<class BidirectionalIterator, class Compare>
    bool next_permutation(BidirectionalIterator first,
    bool next_permutation(BidirectionalIterator first,
                        BidirectionalIterator last, Compare comp);
```

```
                        BidirectionalIterator last, Compare comp);
```

```

Returns: true if the sequence of elements defined by the range [first1, last1) is lexicographically less than the sequence of elements defined by the range [first2,last2).
Returns false otherwise.
Complexity: At most \(2 * \min ((l a s t 1-f i r s t 1)\), (last2 - first2)) applications of the corresponding comparison.

Remarks: If two sequences have the same number of elements and their corresponding elements are equivalent, then neither sequence is lexicographically less than the other. If one sequence is a prefix of the other, then the shorter sequence is lexicographically less than the longer sequence. Otherwise, the lexicographical comparison of the sequences yields the same result as the comparison of the first corresponding pair of elements that are not equivalent.
```

for (; first1 != last1 \&\& first2 != last2 ; ++first1, ++first2) {
if (*first1 < *first2) return true;
if (*first2 < *first1) return false;
}
return first1 == last1 \&\& first2 != last2;

```

\section*{[alg.permutation.generators]}

Effects: Takes a sequence defined by the range [first, last) and transforms it into the next permutation. The next permutation is found by assuming that the set of all permutations is lexicographically sorted with respect to operator< or comp. If such a permutation exists, it returns true. Otherwise, it transforms the sequence into the smallest permutation, that is, the ascendingly sorted one, and returns false.

Requires: The type of \(*\) first shall satisfy the Swappable requirements (20.1.4).
Complexity: At most (last - first)/2 swaps.

Draft
```

template<class BidirectionalIterator>
bool prev_permutation(BidirectionalIterator first,
BidirectionalIterator last);
template<class BidirectionalIterator, class Compare>
bool prev_permutation(BidirectionalIterator first,
BidirectionalIterator last, Compare comp);

```

\subsection*{25.4 C library algorithms}
[alg.c.library]
Effects: Takes a sequence defined by the range [first, last) and transforms it into the previous permutation. The previous permutation is found by assuming that the set of all permutations is lexicographically sorted with respect to operator< or comp.

Returns: true if such a permutation exists. Otherwise, it transforms the sequence into the largest permutation, that is, the descendingly sorted one, and returns false.

Requires: The type of \(*\) first shall satisfy the Swappable requirements (20.1.4).
Complexity: At most (last - first)/2 swaps.

1 Header <cstdlib> (partial, Table 95).

Table 95: Header <cstdlib> synopsis
\begin{tabular}{|lll|}
\hline \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Name(s) } \\
\hline \hline Type: & size_t & \\
\hline Functions: & bsearch & qsort \\
\hline
\end{tabular}

2 The contents are the same as the Standard C library header <stdlib.h> with the following exceptions:
The function signature:
```

bsearch(const void *, const void *, size_t, size_t,
int (*)(const void *, const void *));

```
is replaced by the two declarations:
```

extern "C" void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *, const void *));
extern "C++" void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

```
both of which have the same behavior as the original declaration.
4 The function signature:
```

qsort(void *, size_t, size_t,
int (*)(const void *, const void *));

```

Draft
is replaced by the two declarations:
```

extern "C" void qsort(void* base, size_t nmemb, size_t size,
int (*compar)(const void*, const void*));
extern "C++" void qsort(void* base, size_t nmemb, size_t size,
int (*compar)(const void*, const void*));

```
both of which have the same behavior as the original declaration. The behavior is undefined unless the objects in the array pointed to by base are of POD type.
[Note: Because the function argument compar() may throw an exception, bsearch() and qsort () are allowed to propagate the exception (17.4.4.8). - end note ]
SEE ALSO: ISO C subclause 7.10.5.

\section*{Chapter 26 Numerics library}

1 This clause describes components that C++ programs may use to perform seminumerical operations.
2 The following subclauses describe components for complex number types, random number generation, numeric ( \(n\)-at-atime) arrays, generalized numeric algorithms, and facilities included from the ISO C library, as summarized in Table 96.

Table 96: Numerics library summary
\begin{tabular}{|c|c|}
\hline Subclause & Header(s) \\
\hline \multicolumn{2}{|l|}{26.1 Requirements} \\
\hline 26.3 Complex Numbers & <complex> \\
\hline 26.4 Random number generation & <random> \\
\hline 26.5 Numeric arrays & <valarray> \\
\hline 26.6 Generalized numeric operations & <numeric> \\
\hline \multirow[t]{4}{*}{26.7 C library} & <cmath> \\
\hline & <ctgmath> \\
\hline & \begin{tabular}{l}
<tgmath.h> \\
<cstdlib>
\end{tabular} \\
\hline & <cstdlib> \\
\hline
\end{tabular}

\subsection*{26.1 Numeric type requirements}
[numeric.requirements]
1 The complex and valarray components are parameterized by the type of information they contain and manipulate. A \(\mathrm{C}++\) program shall instantiate these components only with a type T that satisfies the following requirements: \({ }^{268)}\)
- \(T\) is not an abstract class (it has no pure virtual member functions);
- \(T\) is not a reference type;
- \(T\) is not cv-qualified;
- If \(T\) is a class, it has a public default constructor;
— If \(T\) is a class, it has a public copy constructor with the signature \(T:: T\) (const \(T \&\) )
- If \(T\) is a class, it has a public destructor;
- If \(T\) is a class, it has a public assignment operator whose signature is either \(T \& T:\) :operator=(const \(T \&\) ) or T\& T: :operator=( \(T\) )

\footnotetext{
\({ }^{268)}\) In other words, value types. These include built-in arithmetic types, pointers, the library class compl ex, and instantiations of val array for value types.
}
- If \(T\) is a class, its assignment operator, copy and default constructors, and destructor shall correspond to each other in the following sense: Initialization of raw storage using the default constructor, followed by assignment, is semantically equivalent to initialization of raw storage using the copy constructor. Destruction of an object, followed by initialization of its raw storage using the copy constructor, is semantically equivalent to assignment to the original object.
[ Note: This rule states that there shall not be any subtle differences in the semantics of initialization versus assignment. This gives an implementation considerable flexibility in how arrays are initialized.
[Example: An implementation is allowed to initialize a valarray by allocating storage using the new operator (which implies a call to the default constructor for each element) and then assigning each element its value. Or the implementation can allocate raw storage and use the copy constructor to initialize each element. -end example ]

If the distinction between initialization and assignment is important for a class, or if it fails to satisfy any of the other conditions listed above, the programmer should use vector (23.2.5) instead of valarray for that class; - end note]
- If \(T\) is a class, it does not overload unary operator\&.

2 If any operation on \(T\) throws an exception the effects are undefined.
3 In addition, many member and related functions of valarray<T> can be successfully instantiated and will exhibit welldefined behavior if and only if \(T\) satisfies additional requirements specified for each such member or related function.

4 [Example: It is valid to instantiate valarray<complex>, but operator>() will not be successfully instantiated for valarray<complex>operands, since complex does not have any ordering operators. - end example ]

\subsection*{26.2 The floating-point environment}

\subsection*{26.2.1 Header <cfenv> synopsis}
[cfenv.syn]
```

namespace std {
// types
typedef object type fenv_t;
typedef integer type fexcept_t;
// functions
int feclearexcept(int except);
int fegetexceptflag(fexcept_t *pflag, int except);
int feraiseexcept(int except);
int fesetexceptflag(const fexcept_t *pflag, int except);
int fetestexcept(int except);
int fegetround(void);
int fesetround(int mode);
int fegetenv(fenv_t *penv);
int feholdexcept(fenv_t *penv);
int fesetenv(const fenv_t *penv);
int feupdateenv(const fenv_t *penv);
} // namespace std

```

1 The header also defines the macros:
FE_ALL_EXCEPT
FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW
FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD
FE_DFL_ENV

2 The header defines all functions, types, and macros the same as C99 subclause 7.6.
26.2.2 Header <fenv. \(h\) >
[fenv]
1 The header behaves as if it includes the header <cfenv>, and provides sufficient using declarations to declare in the global namespace all function and type names declared or defined in the header <cfenv>.

\subsection*{26.3 Complex numbers}
[complex.numbers]
1 The header <complex> defines a class template, and numerous functions for representing and manipulating complex numbers.

2 The effect of instantiating the template complex for any type other than float, double or long double is unspecified.
3 If the result of a function is not mathematically defined or not in the range of representable values for its type, the behavior is undefined.

\subsection*{26.3.1 Header <complex> synopsis}
[complex.synopsis]
```

namespace std {
template<class T> class complex;
template<> class complex<float>;
template<> class complex<double>;
template<> class complex<long double>;
// 26.3.6 operators:
template<class T>
complex<T> operator+(const complex<T>\&, const complex<T>\&);
template<class T> complex<T> operator+(const complex<T>\&, const T\&);
template<class T> complex<T> operator+(const T\&, const complex<T>\&);
template<class T> complex<T> operator-
(const complex<T>\&, const complex<T>\&);
template<class T> complex<T> operator-(const complex<T>\&, const T\&);
template<class T> complex<T> operator-(const T\&, const complex<T>\&);

```
```

template<class T> complex<T> operator*
(const complex<T>\&, const complex<T>\&);
template<class T> complex<T> operator*(const complex<T>\&, const T\&);
template<class T> complex<T> operator*(const T\&, const complex<T>\&);
template<class T> complex<T> operator/
(const complex<T>\&, const complex<T>\&);
template<class T> complex<T> operator/(const complex<T>\&, const T\&);
template<class T> complex<T> operator/(const T\&, const complex<T>\&);
template<class T> complex<T> operator+(const complex<T>\&);
template<class T> complex<T> operator-(const complex<T>\&);
template<class T> bool operator==
(const complex<T>\&, const complex<T>\&);
template<class T> bool operator==(const complex<T>\&, const T\&);
template<class T> bool operator==(const T\&, const complex<T>\&);
template<class T> bool operator!=(const complex<T>\&, const complex<T>\&);
template<class T> bool operator!=(const complex<T>\&, const T\&);
template<class T> bool operator!=(const T\&, const complex<T>\&);
template<class T, class charT, class traits>
basic_istream<charT, traits>\&
operator>>(basic_istream<charT, traits>\&, complex<T>\&);
template<class T, class charT, class traits>
basic_ostream<charT, traits>\&
operator<<(basic_ostream<charT, traits>\&, const complex<T>\&);
// 26.3.7 values:
template<class T> T real(const complex<T>\&);
template<class T> T imag(const complex<T>\&);
template<class T> T abs(const complex<T>\&);
template<class T> T arg(const complex<T>\&);
template<class T> T norm(const complex<T>\&);
template<class T> complex<T> conj(const complex<T>\&);
template<class T> complex<T> fabs(const complex<T>\&);
template<class T> complex<T> polar(const T\&, const T\& = 0);
// 26.3.8 transcendentals:
template<class T> complex<T> acos(const complex<T>\&);
template<class T> complex<T> asin(const complex<T>\&);
template<class T> complex<T> atan(const complex<T>\&);
template<class T> complex<T> acosh(const complex<T>\&);
template<class T> complex<T> asinh(const complex<T>\&);
template<class T> complex<T> atanh(const complex<T>\&);

```
```

template<class T> complex<T> cos (const complex<T>\&);
template<class T> complex<T> cosh (const complex<T>\&);
template<class T> complex<T> exp (const complex<T>\&);
template<class T> complex<T> log (const complex<T>\&);
template<class T> complex<T> log10(const complex<T>\&);
template<class T> complex<T> pow(const complex<T>\&, int);
template<class T> complex<T> pow(const complex<T>\&, const T\&);
template<class T> complex<T> pow(const complex<T>\&, const complex<T>\&);
template<class T> complex<T> pow(const T\&, const complex<T>\&);
template<class T> complex<T> sin (const complex<T>\&);
template<class T> complex<T> sinh (const complex<T>\&);
template<class T> complex<T> sqrt (const complex<T>\&);
template<class T> complex<T> tan (const complex<T>\&);
template<class T> complex<T> tanh (const complex<T>\&);
}

```
26.3.2 Class template complex
[complex]
```

namespace std {
template<class T>
class complex {
public:
typedef T value_type;
complex(const T\& re = T(), const T\& im = T());
complex(const complex\&);
template<class X> complex(const complex<X>\&);
T real() const;
T imag() const;
complex<T>\& operator= (const T\&);
complex<T>\& operator+=(const T\&);
complex<T>\& operator-=(const T\&);
complex<T>\& operator*=(const T\&);
complex<T>\& operator/=(const T\&);
complex\& operator=(const complex\&);
template<class X> complex<T>\& operator= (const complex<X>\&);
template<class X> complex<T>\& operator+=(const complex<X>\&);
template<class X> complex<T>\& operator-=(const complex<X>\&);
template<class X> complex<T>\& operator*=(const complex<X>\&);
template<class X> complex<T>\& operator/=(const complex<X>\&);
};
}

```

1 The class complex describes an object that can store the Cartesian components, real() and imag(), of a complex number.
26.3.3 complex specializations
```

template<> class complex<float> {
public:
typedef float value_type;
complex(float re = 0.0f, float im = 0.0f);
explicit complex(const complex<double>\&);
explicit complex(const complex<long double>\&);
float real() const;
float imag() const;
complex<float>\& operator= (float);
complex<float>\& operator+=(float);
complex<float>\& operator-=(float);
complex<float>\& operator*=(float);
complex<float>\& operator/=(float);
complex<float>\& operator=(const complex<float>\&);
template<class X> complex<float>\& operator= (const complex<X>\&);
template<class X> complex<float>\& operator+=(const complex<X>\&);
template<class X> complex<float>\& operator-=(const complex<X>\&);
template<class X> complex<float>\& operator*=(const complex<X>\&);
template<class X> complex<float>\& operator/=(const complex<X>\&);
};
template<> class complex<double> {
public:
typedef double value_type;
complex(double re = 0.0, double im = 0.0);
complex(const complex<float>\&);
explicit complex(const complex<long double>\&);
double real() const;
double imag() const;
complex<double>\& operator= (double);
complex<double>\& operator+=(double);
complex<double>\& operator-=(double);
complex<double>\& operator*=(double);
complex<double>\& operator/=(double);
complex<double>\& operator=(const complex<double>\&);
template<class X> complex<double>\& operator= (const complex<X>\&);
template<class X> complex<double>\& operator+=(const complex<X>\&);

```
```

 template<class X> complex<double>& operator-=(const complex<X>&);
 template<class X> complex<double>& operator*=(const complex<X>&);
 template<class X> complex<double>& operator/=(const complex<X>&);
 };
template<> class complex<long double> {
public:
typedef long double value_type;
complex(long double re = 0.0L, long double im = 0.0L);
complex(const complex<float>\&);
complex(const complex<double>\&);
long double real() const;
long double imag() const;
complex<long double>\& operator=(const complex<long double>\&);
complex<long double>\& operator= (long double);
complex<long double>\& operator+=(long double);
complex<long double>\& operator-=(long double);
complex<long double>\& operator*=(long double);
complex<long double>\& operator/=(long double);
template<class X> complex<long double>\& operator= (const complex<X>\&);
template<class X> complex<long double>\& operator+=(const complex<X>\&);
template<class X> complex<long double>\& operator-=(const complex<X>\&);
template<class X> complex<long double>\& operator*=(const complex<X>\&);
template<class X> complex<long double>\& operator/=(const complex<X>\&);
};

```
26.3.4 complex member functions

\section*{[complex.members]}
template<class \(\mathrm{T}>\) complex (const \(\mathrm{T} \& ~ r e=\mathrm{T}()\), const \(\mathrm{T} \& i m=\mathrm{T}())\);

Effects: Constructs an object of class complex.

\subsection*{26.3.5 complex member operators}
```

template <class T> complex<T>\& operator+=(const T\& rhs);

```

Effects: Adds the scalar value rhs to the real part of the complex value *this and stores the result in the real part of *this, leaving the imaginary part unchanged.

Returns: *this.
template <class \(\mathrm{T}>\) complex<T>\& operator-=(const \(T \& ~ r h s)\);
Effects: Subtracts the scalar value rhs from the real part of the complex value \(*\) this and stores the result in the real part of \(*\) this, leaving the imaginary part unchanged.

Returns: *this.
template <class T> complex<T>\& operator*=(const T\& rhs);

Effects: Multiplies the scalar value rhs by the complex value *this and stores the result in *this.
Returns: *this.
template <class T> complex<T>\& operator/=(const T\& rhs);

Effects: Divides the scalar value rhs into the complex value \(*\) this and stores the result in \(*\) this.
Returns: *this.
template<class \(T>\) complex<T>\& operator+=(const complex<T>\& rhs);
Effects: Adds the complex value rhs to the complex value \(*\) this and stores the sum in \(*\) this.
Returns: *this.
template<class \(T>\) complex<T>\& operator-=(const complex<T>\& rhs);
Effects: Subtracts the complex value rhs from the complex value \(*\) this and stores the difference in \(*\) this.
Returns: *this.
template<class \(T>\) complex<T>\& operator*=(const complex<T>\& rhs);
Effects: Multiplies the complex value rhs by the complex value \(*\) this and stores the product in \(*\) this.
Returns: *this.
template<class \(T>\) complex<T>\& operator/=(const complex<T>\& rhs);
Effects: Divides the complex value rhs into the complex value \(*\) this and stores the quotient in \(*\) this.
Returns: *this.
26.3.6 complex non-member operations
```

template<class T> complex<T> operator+(const complex<T>\& lhs);

```

Remarks: unary operator.
Returns: complex<T>(lhs).
    template<class T>
    complex<T> operator+(const complex<T>\& lhs, const complex<T>\& rhs);
    template<class T> complex<T> operator+(const complex<T>\& lhs, const T\& rhs);
    template<class \(T>\) complex<T> operator+(const T\& lhs, const complex<T>\& rhs);
    Returns: complex<T>(lhs) += rhs.
template<class T> complex<T> operator-(const complex<T>\& lhs);

Remarks: unary operator.
Returns: complex<T>(-lhs.real(),-lhs.imag()).
template<class T>
complex<T> operator-(const complex<T>\& lhs, const complex<T>\& rhs);
template<class T> complex<T> operator-(const complex<T>\& lhs, const T\& rhs);

Returns: complex<T>(lhs) -= rhs.
```

template<class T>

```
    complex<T> operator*(const complex<T>\& lhs, const complex<T>\& rhs);
template<class \(T>\) complex<T> operator* (const complex<T>\& lhs, const T\& rhs);
template<class T> complex<T> operator*(const T\& lhs, const complex<T>\& rhs);

Returns: complex<T>(lhs) *= rhs.
template<class T>
    complex<T> operator/(const complex<T>\& lhs, const complex<T>\& rhs);
template<class \(T>\) complex<T> operator/(const complex<T>\& lhs, const T\& rhs);


Returns: complex<T>(lhs) /= rhs.
```

template<class T>
bool operator==(const complex<T>\& lhs, const complex<T>\& rhs);
template<class T> bool operator==(const complex<T>\& lhs, const T\& rhs);
template<class T> bool operator==(const T\& lhs, const complex<T>\& rhs);
Returns: lhs.real() == rhs.real() \&\& lhs.imag() == rhs.imag().
Remarks: The imaginary part is assumed to be T() , or 0.0 , for the T arguments.

```
```

template<class T>

```
template<class T>
    bool operator!=(const complex<T>& lhs, const complex<T>& rhs);
    template<class T> bool operator!=(const complex<T>& lhs, const T& rhs);
template<class T> bool operator!=(const T& lhs, const complex<T>& rhs);
    Returns:rhs.real() != lhs.real() || rhs.imag() != lhs.imag().
template<class T, class charT, class traits>
basic_istream<charT, traits>&
operator>>(basic_istream<charT, traits>& is, complex<T>& x);
```

Effects: Extracts a complex number x of the form: u, (u), or ($u, v)$, where u is the real part and v is the imaginary part (27.6.1.2).

Requires: The input values be convertible to T .
If bad input is encountered, calls $i s$.setstate(ios: :failbit) (which may throw ios: :failure (27.4.4.3).
Returns: is.

Draft

26.3.7 complex value operations

template<class T> T real(const complex<T>\& x);
Returns: x.real().
template<class $\mathrm{T}>\mathrm{T}$ imag(const complex<T>\& x);
Returns: x.imag ().
template<class $\mathrm{T}>\mathrm{T}$ abs (const complex<T>\& x);
Returns: the magnitude of x.
template<class T> T arg(const complex<T>\& x);
Returns: the phase angle of x, or $\operatorname{atan} 2(i m a g(x), \operatorname{real}(x))$.
template<class $\mathrm{T}>\mathrm{T}$ norm (const complex<T>\& x);
Returns: the squared magnitude of x.
template<class $\mathrm{T}>$ complex<T> conj(const complex<T>\& x);
Returns: the complex conjugate of x.

```
template<class T> complex<T> fabs(const complex<T>& x);
```

Effects: Behaves the same as C99 function cabs, defined in subclause 7.3.8.1.

```
template<class T> complex<T> polar(const T& rho, const T& theta = 0);
```

Returns: the complex value corresponding to a complex number whose magnitude is rho and whose phase angle is theta.

26.3.8 complex transcendentals

[complex.transcendentals]

template<class T> complex<T> acos(const complex<T>\& x);

Effects: Behaves the same as C 99 function cacos, defined in subclause 7.3.5.1.

```
template<class T> complex<T> asin(const complex<T>& x);
```

Effects: Behaves the same as C 99 function casin, defined in subclause 7.3.5.2.

```
template<class T> complex<T> atan(const complex<T>& x);
```

Effects: Behaves the same as C 99 function catan, defined in subclause 7.3.5.3.
template<class $\mathrm{T}>$ complex<T> acosh(const complex<T>\& x);

Effects: Behaves the same as C 99 function cacosh, defined in subclause 7.3.6.1.
template<class $\mathrm{T}>$ complex<T> asinh (const complex<T>\& x);

Effects: Behaves the same as C 99 function casinh, defined in subclause 7.3.6.2.
template<class $\mathrm{T}>$ complex<T> atanh (const complex<T>\& x);
Effects: Behaves the same as C 99 function catanh, defined in subclause 7.3.6.3.
template<class $\mathrm{T}>$ complex<T> cos(const complex<T>\& x);
Returns: the complex cosine of x.
template<class T> complex<T> cosh(const complex<T>\& x);
Returns: the complex hyperbolic cosine of x.

```
template<class T> complex<T> exp(const complex<T>& x);
```

Returns: the complex base e exponential of x.

```
template<class T> complex<T> log(const complex<T>& x);
```

Remarks: the branch cuts are along the negative real axis.
Returns: the complex natural (base e) logarithm of x, in the range of a strip mathematically unbounded along the real axis and in the interval [-i times pi,i times pi] along the imaginary axis. When x is a negative real number, $\operatorname{imag}(\log (x))$ is pi.

```
template<class T> complex<T> log10(const complex<T>& x);
```

Remarks: the branch cuts are along the negative real axis.
Returns: the complex common (base 10) logarithm of x, defined as $\log (x) / \log (10)$.

```
template<class T> complex<T> pow(const complex<T>& x, int y);
template<class T>
    complex<T> pow(const complex<T>& x, const complex<T>& y);
template<class T> complex<T> pow (const complex<T>& x, const T& y);
template<class T> complex<T> pow (const T& x, const complex<T>& y);
```


26.3.9 Additional Overloads

The following function templates shall have additional overloads:

| arg | norm |
| :--- | :--- |
| conj | polar |
| imag | real |

2 The additional overloads shall be sufficient to ensure:

1. If the argument has type long double, then it is effectively cast to complex<long double>.
2. Otherwise, if the argument has type double or an integer type, then it is effectively cast to complex<double>.
3. Otherwise, if the argument has type float, then it is effectively cast to complex<float>.

3 Function template pow shall have additional overloads sufficient to ensure, for a call with at least one argument of type complex<T>:

1. If either argument has type complex<long double> or type long double, then both arguments are effectively cast to complex<long double>.
2. Otherwise, if either argument has type complex<double>, double, or an integer type, then both arguments are effectively cast to complex<double>.
3. Otherwise, if either argument has type complex<float> or float, then both arguments are effectively cast to complex<float>.

26.3.10 Header <ccomplex>

1 The header behaves as if it simply includes the header <complex>.
26.3.11 Header <complex.h>

1 The header behaves as if it includes the header <ccomplex>, and provides sufficient using declarations to declare in the global namespace all function and type names declared or defined in the header <complex>.

26.4 Random number generation

[rand]
1 This subclause defines a facility for generating (pseudo-)random numbers.
2 In addition to a few utilities, four categories of entities are described: uniform random number generators, random number engines, random number engine adaptors, and random number distributions. These categorizations are applicable to types that satisfy the corresponding requirements, to objects instantiated from such types, and to templates producing such types when instantiated. [Note:These entities are specified in such a way as to permit the binding of any uniform random number generator object e as the argument to any random number distribution object d, thus producing a zero-argument function object such as given by bind (d, e). - end note]

3 Each of the entities specified via this subclause has an associated arithmetic type (3.9.1) identified as result_type. With T as the result_type thus associated with such an entity, that entity is characterized
a) as boolean or equivalently as boolean-valued, if T is bool;
b) otherwise as integral or equivalently as integer-valued, if numeric_limits<T> : :is_integer is true;
c) otherwise as floating or equivalently as real-valued.

If integer-valued, an entity may optionally be further characterized as signed or unsigned, according to T .
4 Unless otherwise specified, all descriptions of calculations in this subclause use mathematical real numbers.
5 Throughout this subclause, the operators bitand, bitor, and xor denote the respective conventional bitwise operations. Further,
a) the operator rshift denotes a bitwise right shift with zero-valued bits appearing in the high bits of the result, and
b) the operator Ishift ${ }_{w}$ denotes a bitwise left shift with zero-valued bits appearing in the low bits of the result, and whose result is always taken modulo 2^{w}.

26.4.1 Requirements

26.4.1.1 General requirements

[rand.req.genl]
1 Throughout this subclause 26.4, the effect of instantiating a template
a) that has a template type parameter named UniformRandomNumberGenerator is undefined unless the corresponding template argument is cv-unqualified and satisfies the requirements of uniform random number generator (26.4.1.2).
b) that has a template type parameter named Engine is undefined unless the corresponding template argument is cv -unqualified and satisfies the requirements of random number engine (26.4.1.3).
c) that has a template type parameter named RealType is undefined unless the corresponding template argument is cv-unqualified and is one of float, double, or long double.
d) that has a template type parameter named IntType is undefined unless the corresponding template argument is cv-unqualified and is one of short, int, long, long long, unsigned short, unsigned int, unsigned long, or unsigned long long.
e) that has a template type parameter named UIntType is undefined unless the corresponding template argument is cv-unqualified and is one of unsigned short, unsigned int, unsigned long, or unsigned long long.

2 All members declared static const in any of the following classes or class templates shall be defined in such a way that they are usable as integral constant expressions.

26.4.1.2 Uniform random number generator requirements

[rand.req.urng]
1 A class X satisfies the requirements of a uniform random number generator if the expressions shown in table 97 are valid and have the indicated semantics. In that table,
a) T is the type named by X's associated result_type, and
b) u is a value of X.

Table 97: Uniform random number generator requirements

| expression | | return type | pre/post-condition | complexity |
| :---: | :---: | :---: | :---: | :---: |
| X: :result_type | T | | T is an unsigned integer type (3.9.1). | compile-time |
| u() | T | | Returns a value in the closed interval [X: :min, X: :max]. | amortized constant |
| X: $:$ min | T | | Denotes the least value potentially returned by operator (). | compile-time |
| X: :max | T | | Denotes the greatest value potentially returned by operator(). | compile-time |

26.4.1.3 Random number engine requirements

[rand.req.eng]
1 A class X that satisfies the requirements of a uniform random number generator (26.4.1.2) also satisfies the requirements of a random number engine if the expressions shown in table 98 are valid and have the indicated semantics, and if X also satisfies all other requirements of this section 26.4.1.3. In that table and throughout this section 26.4.1.3,
a) T is the type named by X 's associated result_type;
b) u is a value of X, v is an lvalue of X, x and y are (possibly const) values of X;
c) s is a value of arithmetic type (3.9.1);
d) q is an lvalue of type seed_seq (26.4.7.1);
e) z is a value of type unsigned long long;
f) os is an lvalue of the type of some class template specialization basic_ostream<charT, traits>; and
g) is is an lvalue of the type of some class template specialization basic_istream<charT, traits>;
where charT and traits are constrained according to 21 and 27.
2 A random number engine object x has at any given time a state x_{i} for some integer $i \geq 0$. Upon construction, a random number engine x has an initial state x_{0}. An engine's state may be established by invoking a constructor, seed member function, operator $=$, or a suitable operator>>.

3 The specification of each random number engine defines the size of its state in multiples of the size of its result_type, given as an integral constant expression. The specification of each random number engine also defines
a) the transition algorithm TA by which the engine's state x_{i} is advanced to its successor state x_{i+1}, and
b) the generation algorithm GA by which an engine's state is mapped to a value of type result_type.

Table 98: Random number engine requirements

| expression | return type | pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| X () | - | Creates an engine with the same initial state as all other default-constructed engines of type X. | $\mathscr{O}($ sizeofstate $)$ |
| X (x) | - | Creates an engine that compares equal to x . | $\mathscr{O}($ sizeofstate $)$ |
| X (s) | - | Creates an engine with initial state determined by static_cast<X::result_type>(s). | $\mathscr{O}($ sizeof state $)$ |
| $\mathrm{X}(\mathrm{q})^{269)}$ | - | With $n=\mathrm{q} \cdot$ size(), creates an engine u with initial state determined as follows: If n is $0, u$ $=\mathrm{X}()$; otherwise, the initial state depends on a sequence produced by one call to q. randomize. | $\begin{aligned} & \mathscr{O}(\max (n, \text { size of } \\ & \text { state })) \end{aligned}$ |
| u.seed() | void | post: $\mathrm{u}==\mathrm{X}$ () | same as X () |
| u.seed (s) | void | post: $\mathrm{u}==\mathrm{X}(\mathrm{s})$ | same as X (s) |
| u.seed (q) | void | post: $\mathrm{u}==\mathrm{X}$ (q). | same as X (q) |

[^156]| expression | return type | pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| u() | T | Sets the state to $\mathrm{u}_{i+1}=\mathrm{TA}\left(\mathrm{u}_{i}\right)$ and returns $\mathrm{GA}\left(\mathrm{u}_{i}\right)$. | amortized constant |
| u.discard(z) ${ }^{270)}$ | void | post: The state of u is identical to that produced by z consecutive calls to $u()$. | no worse than the complexity of z consecutive calls to $u()$ |
| $\mathrm{x}=\mathrm{y}$ | bool | With S_{x} and S_{y} as the infinite sequences of values that would be generated by repeated future calls to x() and y() , respectively, returns true if $S_{x}=S_{y}$; returns false otherwise. | $\mathscr{O}($ sizeofstate $)$ |
| x ! = y | bool | ! ($\mathrm{x}=\mathrm{=} \mathrm{y}$) | \mathscr{O} (sizeofstate) |
| os << x | reference to the type of os | With os.fmtflags set to ios_base::dec\|ios_base:: fixed|ios_base::left and the fill character set to the space character, writes to os the textual representation of x's current state. In the output, adjacent numbers are separated by one or more space characters. post: The os.fmtflags and fill character are unchanged. | \mathscr{O} (sizeofstate) |
| is >> v | reference to the type of is | Sets v's state as determined by reading its textual representation from is. If bad input is encountered, ensures that v's state is unchanged by the operation and calls
 is.setstate(ios::failbit) (which may throw ios::failure (27.4.4.3)).
 pre: The textual representation was previously written using an os whose imbued locale and whose type's template specialization arguments charT and traits were the same as those of is.
 post: The is.fmtflags are unchanged. | $\mathscr{O}($ sizeofstate $)$ |

[^157]4 X shall satisfy the requirements of uniform random number generator (26.4.1.2) as well as of CopyConstructible (20.1.3) and of Assignable (23.1). Copy construction and assignment shall each be of complexity \mathscr{O} (sizeofstate).

5 If a textual representation written via os << x was subsequently read via is >> v , then $\mathrm{x}==\mathrm{v}$ provided that there have been no intervening invocations of x or of v.

26.4.1.4 Random number engine adaptor requirements

[rand.req.adapt]
1 A random number engine adaptor is a random number engine that takes values produced by some other random number engine or engines, and applies an algorithm to those values in order to deliver a sequence of values with different randomness properties. Engines adapted in this way are termed base engines in this context. The terms unary, binary, and so on, may be used to characterize an adaptor depending on the number n of base engines that adaptor utilizes.

2 A class X satisfies the requirements of a random number engine adaptor if the expressions shown in table 99 are valid and have the indicated semantics, and if X and its associated types also satisfies all other requirements of this section 26.4.1.4. In that table and throughout this section,
a) B_{i} is the type of the $i^{\text {th }}$ of X 's base engines, $1 \leq i \leq n$; and
b) b_{i} is a value of B_{i}.

If X is unary, i is omitted and understood to be 1 .
Table 99: Random number engine adaptor requirements

| expression | return type | | pre/post-condition | complexity |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{X}::$ base $i_{\text {_type }}$ | B_{i} | - | | compile time |
| $\mathrm{X}::$ base $i()$ | const $\mathrm{B}_{i} \&$ | Returns a reference to b_{i}. | constant | |

$3 X$ shall satisfy the requirements of random number engine (26.4.1.3), subject to the following:
a) The base engines of X are arranged in an arbitrary but fixed order, and that order is consistently used whenever functions are applied to those base engines in turn.
b) The complexity of each function is at most the sum of the complexities of the corresponding functions applied to each base engine.
c) The state of X includes the state of each of its base engines. The size of X 's state is no less than the sum of the base engine sizes. Copying X's state (e.g., during copy construction or copy assignment), includes copying, in turn, each base engine of X.
d) The textual representation of X includes, in turn, the textual representation of each of its base engines.
e) When $X:: X$ is invoked with no arguments, each of X 's base engines is constructed, in turn, as if by its respective default constructor. When $\mathrm{X}:: \mathrm{X}$ is invoked with an $\mathrm{X}:$:result_type value s, each of X 's base engines is constructed, in turn, with the next available value from the list $s+0, s+1, \ldots$. When $\mathrm{X}:: \mathrm{X}$ is invoked with an argument of type seed_seq, each of X 's base engines is constructed, in turn, with that object as argument.

4 X shall have one additional constructor with n or more parameters such that the type of parameter $i, 1 \leq i \leq n$, is const $B_{i} \&$ and such that all remaining parameters, if any, have default values. The constructor shall construct X , initializing
each of its base engines, in turn, with a copy of the value of the corresponding argument.

26.4.1.5 Random number distribution requirements

1 A class X satisfies the requirements of a random number distribution if the expressions shown in table 100 are valid and have the indicated semantics, and if X and its associated types also satisfies all other requirements of this section 26.4.1.5. In that table and throughout this section,
a) T is the type named by X 's associated result_type;
b) P is the type named by X 's associated param_type;
c) u is a value of X and x is a (possibly const) value of X;
d) glb and lub are values of T respectively corresponding to the greatest lower bound and the least upper bound on the values potentially returned by u's operator(), as determined by the current values of u's parameters;
e) p is a value of P;
f) e is an lvalue of an arbitrary type that satisfies the requirements of a uniform random number generator (26.4.1.2);
g) os is an lvalue of the type of some class template specialization basic_ostream<charT, traits>; and
h) is is an lvalue of the type of some class template specialization basic_istream<charT, traits>;
where charT and traits are constrained according to 21 and 27.
2 The specification of each random number distribution identifies an associated mathematical probability density function $p(z)$ or an associated discrete probability function $P\left(z_{i}\right)$. Such functions are typically expressed using certain externally-supplied quantities known as the parameters of the distribution. Such distribution parameters are identified in this context by writing, for example, $p(z \mid a, b)$ or $P\left(z_{i} \mid a, b\right)$, to name specific parameters, or by writing, for example, $p(z \mid\{\mathrm{p}\})$ or $P\left(z_{i} \mid\{\mathrm{p}\}\right)$, to denote a distribution's parameters p taken as a whole.

Table 100: Random number distribution requirements

| expression | | return type | pre/post-condition | complexity |
| :---: | :---: | :---: | :---: | :---: |
| X: :result_type | T | | T is an arithmetic type. | compile-time |
| X::param_type | P | | - | compile-time |
| X (p) | - | | Creates a distribution whose behavior is indistinguishable from that of a distribution newly constructed directly from the values used to construct p. | |

| expression | return type | pre/post-condition | complexity |
| :---: | :---: | :---: | :---: |
| u.param (p) | void | post: u.param() == p. | no worse than the complexity of X (p) |
| u (e) | T | With $p=u . \operatorname{param}()$, the sequence of numbers returned by successive invocations with the same object e is randomly distributed according to the associated $p(z \mid\{p\})$ or $P\left(z_{i} \mid\{\mathrm{p}\}\right)$ function. | amortized constant number of invocations of e |
| $u(e, p)$ | T | The sequence of numbers returned by successive invocations with the same objects e and p is randomly distributed according to the associated $p(z \mid\{\mathrm{p}\})$ or $P\left(z_{i} \mid\{\mathrm{p}\}\right)$ function. | - |
| x.min() | T | Returns glb. | constant |
| $\mathrm{x} \cdot \mathrm{max}()$ | T | Returns lub. | constant |
| os << x | reference to the type of os | Writes to os a textual representation for the parameters and the additional internal data of x .
 post: The os.fmtflags and fill character are unchanged. | - |
| is >> u | reference to the type of is | Restores from is the parameters and additional internal data of u. If bad input is encountered, ensures that u is unchanged by the operation and calls is.setstate(ios::failbit) (which may throw ios: :failure (27.4.4.3)).
 pre: is provides a textual representation that was previously written using an os whose imbued locale and whose type's template specialization arguments charT and traits were the same as those of is.
 post: The is.fmtflags are unchanged. | - |

3 X shall satisfy the requirements of CopyConstructible (20.1.3) and Assignable (23.1).

Draft

4 The sequence of numbers produced by repeated invocations of $x(e)$ shall be independent of any invocation of os << x or of any const member function of X between any of the invocations $x(e)$.

5 If a textual representation is written using os $\ll \mathrm{x}$ and that representation is restored into the same or a different object y of the same type using is $\gg y$, repeated invocations of $y(e)$ shall produce the same sequence of numbers as would repeated invocations of $x(e)$.

6 It is unspecified whether X::param_type is declared as a (nested) class or via a typedef. In this subclause 26.4, declarations of X : : param_type are in the form of typedefs only for convenience of exposition.

7 P shall satisfy the requirements of CopyConstructible, Assignable, and EqualityComparable (20.1.1).
8 For each of the constructors of X taking arguments corresponding to parameters of the distribution, P shall have a corresponding constructor subject to the same requirements and taking arguments identical in number, type, and default values. Moreover, for each of the member functions of X that return values corresponding to parameters of the distribution, P shall have a corresponding member function with the identical name, type, and semantics.
$9 \quad \mathrm{P}$ shall have a declaration of the form

```
typedef X distribution_type;
```


26.4.2 Header <random> synopsis

```
namespace std {
    // 26.4.3.1 Class template linear_congruential_engine
    template <class UIntType, UIntType a, UIntType c, UIntType m>
            class linear_congruential_engine;
    // 26.4.3.2 Class template mersenne_twister_engine
    template <class UIntType, size_t w, size_t n, size_t m, size_t r,
                UIntType a, size_t u, size_t s,
                UIntType b, size_t t,
                UIntType c, size_t l>
        class mersenne_twister_engine;
    // 26.4.3.3 Class template subtract_with_carry_engine
    template <class UIntType, size_t w}, size_t s, size_t r>
        class subtract_with_carry_engine;
    // 26.4.4.1 Class template discard_block_engine
    template <class Engine, size_t p, size_t r>
        class discard_block_engine;
    // 26.4.4.2 Class template independent_bits_engine
    template <class Engine, size_t w, class UIntType>
        class independent_bits_engine;
    // 26.4.4.3 Class template shuffle_order_engine
    template <class Engine, size_t k>
        class shuffle_order_engine;
```

```
// 26.4.4.4 Class template xor_combine_engine
template <class Engine1, size_t s1, class Engine2, size_t s2=0u>
    class xor_combine_engine;
// 26.4.5 Engines and engine adaptors with predefined parameters
typedef see below minstd_rand0;
typedef see below minstd_rand;
typedef see below mt19937;
typedef see below ranlux24_base;
typedef see below ranlux48_base;
typedef see below ranlux24;
typedef see below ranlux48;
typedef see below knuth_b;
// 26.4.6 Class random_device
class random_device;
// 26.4.7.1 Class seed_seq
class seed_seq;
// 26.4.7.2 Function template generate_canonical
template<class RealType, class UniformRandomNumberGenerator, size_t bits>
    result_type generate_canonical(UniformRandomNumberGenerator& g);
// 26.4.8.1.1 Class template uniform_int_distribution
template <class IntType = int>
    class uniform_int_distribution;
// 26.4.8.1.2 Class template uniform_real_distribution
template <class RealType = double>
    class uniform_real_distribution;
// 26.4.8.2.1 Class bernoulli_distribution
class bernoulli_distribution;
// 26.4.8.2.2 Class template binomial_distribution
template <class IntType = int>
    class binomial_distribution;
// 26.4.8.2.3 Class template geometric_distribution
template <class IntType = int>
    class geometric_distribution;
// 26.4.8.2.4 Class template negative_binomial_distribution
template <class IntType = int>
    class negative_binomial_distribution;
// 26.4.8.3.1 Class template poisson_distribution
template <class IntType = int>
```

```
    class poisson_distribution;
// 26.4.8.3.2 Class template exponential_distribution
template <class RealType = double>
    class exponential_distribution;
// 26.4.8.3.3 Class template gamma_distribution
template <class RealType = double>
    class gamma_distribution;
// 26.4.8.3.4 Class template weibull_distribution
template <class RealType = double>
    class weibull_distribution;
// 26.4.8.3.5 Class template extreme_value_distribution
template <class RealType = double>
    class extreme_value_distribution;
// 26.4.8.4.1 Class template normal_distribution
template <class RealType = double>
    class normal_distribution;
// 26.4.8.4.2 Class template lognormal_distribution
template <class RealType = double>
    class lognormal_distbution;
// 26.4.8.4.3 Class template chi_squared_distribution
template <class RealType = double>
    class chi_squared_distribution;
// 26.4.8.4.4 Class template cauchy_distribution
template <class RealType = double>
    class cauchy_distribution;
// 26.4.8.4.5 Class template fisher_f_distribution
template <class RealType = double>
    class fisher_f_distribution;
// 26.4.8.4.6 Class template student_t_distribution
template <class RealType = double>
    class student_t_distribution;
// 26.4.8.5.1 Class template discrete_distribution
template <class IntType = int>
    class discrete_distribution;
// 26.4.8.5.2 Class template piecewise_constant_distribution
template <class RealType = double>
    class piecewise_constant_distribution;
```

```
    // 26.4.8.5.3 Class template general_pdf_distribution
    template <class RealType = double>
    class general_pdf_distribution;
} // namespace std
```


26.4.3 Random number engine class templates

1 Except where specified otherwise, the complexity of all functions specified in the following sections is constant.
Except as required by table 98, no function described in this section 26.4.3 throws an exception.
The class templates specified in this section 26.4.3 satisfy the requirements of random number engine (26.4.1.3). Descriptions are provided here only for operations on the engines that are not described in those requirements or for operations where there is additional semantic information. Declarations for copy constructors, for copy assignment operators, and for equality and inequality operators are not shown in the synopses.

26.4.3.1 Class template linear_congruential_engine

[rand.eng.lcong]
1 A linear_congruential_engine random number engine produces unsigned integer random numbers. The state x_{i} of a linear_congruential_engine object x is of size 1 and consists of a single integer. The transition algorithm is a modular linear function of the form $\mathrm{TA}\left(\mathrm{x}_{i}\right)=\left(a \cdot \mathrm{x}_{i}+c\right) \bmod m$; the generation algorithm is $\mathrm{GA}\left(\mathrm{x}_{i}\right)=\mathrm{x}_{i+1}$.

```
template <class UIntType, UIntType a, UIntType c, UIntType m>
class linear_congruential_engine
{
public:
    // types
    typedef UIntType result_type;
    // engine characteristics
    static const result_type multiplier = a;
    static const result_type increment = c;
    static const result_type modulus = m;
    static const result_type min = c == 0u ? 1u: 0u;
    static const result_type max = m - 1u ;
    static const result_type default_seed = 1u;
    // constructors and seeding functions
    explicit linear_congruential_engine(result_type s = default_seed);
    explicit linear_congruential_engine(seed_seq& q);
    void seed(result_type s = default_seed);
    void seed(seed_seq& q);
    // generating functions
    result_type operator()();
    void discard(unsigned long long z);
};
```

2 The template parameter UIntType shall denote an unsigned integral type large enough to store values as large as $m-1$. If the template parameterm is 0 , the modulus m used throughout this section 26.4.3.1 is numeric_limits<result_type>
: :max () plus 1. [Note:The result need not be representable as a value of type result_type. -end note]Otherwise, the following relations shall hold: $\mathrm{a}<\mathrm{m}$ and $\mathrm{c}<\mathrm{m}$.

```
explicit linear_congruential_engine(seed_seq& q);
```

Effects:Constructs a linear_congruential_engine object. With $k=\left\lceil\frac{\log _{2} m}{32}\right\rceil$ and a an array (or equivalent) of length $k+3$, invokes q.randomize $(a+0, a+k+3)$ and then computes $S=\left(\sum_{j=0}^{k-1} a_{j+3} \cdot 2^{32 j}\right) \bmod m$. If $c \bmod m$ is 0 and S is 0 , sets the engine's state to 1 , else sets the engine's state to S.
26.4.3.2 Class template mersenne_twister_engine
[rand.eng.mers]
1 A mersenne_twister_engine random number engine ${ }^{271)}$ produces unsigned integer random numbers in the closed interval $\left[0,2^{w}-1\right]$. The state x_{i} of a mersenne_twister_engine object x is of size n and consists of a sequence X of n values of the type delivered by x ; all subscripts applied to X are to be taken modulo n.
2 The transition algorithm employs a twisted generalized feedback shift register defined by shift values n and m, a twist value r, and a conditional xor-mask a. To improve the uniformity of the result, the bits of the raw shift register are additionally tempered (i.e., scrambled) according to a bit-scrambling matrix defined by values u, s, b, t, c, and ℓ.
The state transition is performed as follows:
a) Concatenate the upper $w-r$ bits of X_{i-n} with the lower r bits of X_{i+1-n} to obtain an unsigned integer value Y.
b) With $\alpha=a \cdot(Y$ bitand 1$)$, set X_{i} to X_{i+m-n} xor (Y rshift 1$)$ xor α.

3 The generation algorithm determines the unsigned integer values $z_{1}, z_{2}, z_{3}, z_{4}$ as follows, then delivers z_{4} as its result:
a) Let $z_{1}=X_{i} \operatorname{xor}\left(X_{i} \operatorname{rshift} u\right)$.
b) Let $z_{2}=z_{1}$ xor $\left(\left(z_{1} \operatorname{lshift}{ }_{w} s\right)\right.$ bitand $\left.b\right)$.
c) Let $z_{3}=z_{2} \times \operatorname{or}\left(\left(z_{2} \operatorname{lshift}_{w} t\right)\right.$ bitand $\left.c\right)$.
d) Let $z_{4}=z_{3} \operatorname{xor}\left(z_{3} \mathrm{rshift} \ell\right)$.

```
template <class UIntType, size_t w, size_t n, size_t m, size_t r,
                UIntType a, size_t u, size_t s,
                UIntType b, size_t t,
            UIntType c, size_t l>
class mersenne_twister_engine
{
public:
    // types
```

${ }^{271)}$ The name of this engine refers, in part, to a property of its period: For properly-selected values of the parameters, the period is closely related to a large Mersenne prime number.

```
typedef UIntType result_type;
// engine characteristics
static const size_t word_size = w;
static const size_t state_size = n;
static const size_t shift_size = m;
static const size_t mask_bits = r;
static const UIntType xor_mask = a;
static const size_t tempering_u = u;
static const size_t tempering_s = s;
static const UIntType tempering_b = b;
static const size_t tempering_t = t;
static const UIntType tempering_c = c;
static const size_t tempering_l = l;
static const result_type min = 0;
static const result_type max = 2w
static const result_type default_seed = 5489u;
// constructors and seeding functions
explicit mersenne_twister_engine(result_type value = default_seed);
explicit mersenne_twister_engine(seed_seq& q);
void seed(result_type value = default_seed);
void seed(seed_seq& q);
// generating functions
result_type operator()();
void discard(unsigned long long z);
};
```

4 The following relations shall hold: $1 \leq \mathrm{m} \leq \mathrm{n} ; 0 \leq \mathrm{r}, \mathrm{u}, \mathrm{s}, \mathrm{t}, \mathrm{l} \leq \mathrm{w} \leq$ numeric_limits<result_type>: :digits; $0 \leq \mathrm{a}, \mathrm{b}, \mathrm{c} \leq 2^{\mathrm{w}}-1$.

5 The textual representation of x_{i} consists of the values of X_{i-n}, \ldots, X_{i-1}, in that order.

```
explicit mersenne_twister_engine(result_type value = default_seed);
```

Effects:Constructs a mersenne_twister_engine object. Sets X_{-n} to value $\bmod 2^{w}$. Then, iteratively for $i=$ $1-n, \ldots,-1$, sets X_{i} to
$\left[1812433253 \cdot\left(X_{i-1} \operatorname{xor}\left(X_{i-1} \operatorname{rshift}(w-2)\right)\right)+i \bmod n\right] \bmod 2^{w}$.
Complexity: $\mathscr{O}(n)$.
explicit mersenne_twister_engine(seed_seq\& q);
Effects:Constructs a mersenne_twister_engine object. With $k=\lceil w / 32\rceil$ and a an array (or equivalent) of length $n \cdot k$, invokes q. randomize $(a+0, a+n \cdot k)$ and then, iteratively for $i=-n, \ldots,-1$, sets X_{i} to $\left(\sum_{j=0}^{k-1} a_{k(i+n)+j} \cdot 2^{32 j}\right) \bmod 2^{w}$. Finally, if the most significant $w-r$ bits of X_{-n} are zero, and if each of the other resulting X_{i} is 0 , changes X_{-n} to 2^{w-1}.
26.4.3.3 Class template subtract_with_carry_engine

1 A subtract_with_carry_engine random number engine produces unsigned integer random numbers.
2 The state x_{i} of a subtract_with_carry_engine object x is of size $\mathscr{O}(r)$, and consists of a sequence X of r integer values $0 \leq X_{i}<m=2^{w}$; all subscripts applied to X are to be taken modulo r. The state x_{i} additionally consists of an integer c (known as the carry) whose value is either 0 or 1 .

3 The state transition is performed as follows:
a) Let $Y=X_{i-s}-X_{i-r}-c$.
b) Set X_{i} to $y=Y \bmod m$. Set c to 1 if $Y<0$, otherwise set c to 0 .
[Note:This algorithm corresponds to a modular linear function of the form $\operatorname{TA}\left(\mathrm{x}_{i}\right)=\left(a \cdot \mathrm{x}_{i}\right) \bmod b$, where b is of the form $m^{r}-m^{s}+1$ and $a=b-(b-1) / m$. -end note]
4 The generation algorithm is given by $\mathrm{GA}\left(\mathrm{x}_{i}\right)=y$, where y is the value produced as a result of advancing the engine's state as described above.

```
template <class UIntType, size_t w, size_t s, size_t r>
class subtract_with_carry_engine
{
public:
    // types
    typedef UIntType result_type;
    // engine characteristics
    static const size_t word_size = w;
    static const size_t short_lag = s;
    static const size_t long_lag = r;
    static const result_type min = 0;
    static const result_type max = m-1;
    static const result_type default_seed = 19780503u;
    // constructors and seeding functions
    explicit subtract_with_carry_engine(result_type value = default_seed);
    explicit subtract_with_carry_engine(seed_seq& q);
    void seed(result_type value = default_seed);
    void seed(seed_seq& q);
    // generating functions
    result_type operator()();
    void discard(unsigned long long z);
};
```

5 The following relations shall hold: $0<\mathrm{s}<\mathrm{r}$, and $0<\mathrm{w} \leq$ numeric_limits<result_type>: : digits.
6 The textual representation consists of the values of X_{i-r}, \ldots, X_{i-1}, in that order, followed by c.

```
explicit subtract_with_carry_engine(result_type value = default_seed);
```

```
explicit subtract_with_carry_engine(seed_seq& q);
```

Effects:Constructs a subtract_with_carry_engine object. With $k=\lceil w / 32\rceil$ and a an array (or equivalent) of length $r \cdot k$, invokes q. randomize $(a+0, a+r \cdot k)$ and then, iteratively for $i=-r, \ldots,-1$, sets X_{i} to $\left(\sum_{j=0}^{k-1} a_{k(i+r)+j} \cdot 2^{32 j}\right) \bmod m$. If X_{-1} is then 0 , sets c to 1 ; otherwise sets c to 0 .

26.4.4 Random number engine adaptor class templates

[rand.adapt]
1 Except where specified otherwise, the complexity of all functions specified in the following sections is constant.
2 Except as required by table 98, no function described in this section 26.4.4 throws an exception.
3 The class templates specified in this section 26.4 . 4 satisfy the requirements of random number engine adaptor (26.4.1.4). Descriptions are provided here only for operations on the engine adaptors that are not described in those requirements or for operations where there is additional semantic information. Declarations for copy constructors, for copy assignment operators, and for equality and inequality operators are not shown in the synopses.
26.4.4.1 Class template discard_block_engine

1 A discard_block_engine random number engine adaptor produces random numbers selected from those produced by some base engine e. The state x_{i} of a discard_block_engine engine adaptor object x consists of the state e_{i} of its base engine e and an additional integer n. The size of the state is the size of e 's state plus 1 .

2 The transition algorithm discards all but $r>0$ values from each block of $p \geq r$ values delivered by e. The state transition is performed as follows: If $n \geq r$, advance the state of e from e_{i} to e_{i+p-r} and set n to 0 . In any case, then increment n and advance e's then-current state e_{j} to e_{j+1}.
3 The generation algorithm yields the value returned by the last invocation of e() while advancing e's state as described above.

```
template <class Engine, size_t p, size_t r>
class discard_block_engine
{
public:
    // types
    typedef Engine base_type;
    typedef typename base_type::result_type result_type;
```

```
    // engine characteristics
    static const size_t block_size = p;
    static const size_t used_block = r;
    static const result_type min = base_type::min;
    static const result_type max = base_type::max;
    // constructors and seeding functions
    discard_block_engine();
    explicit discard_block_engine(const base_type& urng);
    explicit discard_block_engine(result_type s);
    explicit discard_block_engine(seed_seq& q);
    void seed();
    void seed(result_type s);
    void seed(seed_seq& q);
    // generating functions
    result_type operator()();
    void discard(unsigned long long z);
    // property functions
    const base_type& base() const;
private:
    base_type e; // exposition only
    int n; // exposition only
};
```

4 The following relations shall hold: $1 \leq \mathrm{r} \leq \mathrm{p}$.
5 The textual representation consists of the textual representation of e followed by the value of n.
6 In addition to its behavior pursuant to section 26.4.1.4, each constructor that is not a copy constructor sets n to 0 .
26.4.4.2 Class template independent_bits_engine
[rand.adapt.ibits]
1 An independent_bits_engine random number engine adaptor combines random numbers that are produced by some base engine e, so as to produce random numbers with a specified number of bits w. The state x_{i} of an independent_bits_engine engine adaptor object x consists of the state e_{i} of its base engine e ; the size of the state is the size of e 's state.

2 The transition and generation algorithms are described in terms of the following integral constants:
a) Let $R=\mathrm{e} . \max -\mathrm{e} . \mathrm{min}+1$ and $m=\left\lfloor\log _{2} R\right\rfloor$.
b) With n as determined below, let $w_{0}=\lfloor w / n\rfloor, n_{0}=n-w \bmod n, y_{0}=2^{w_{0}}\left\lfloor R / 2^{w_{0}}\right\rfloor$, and $y_{1}=2^{w_{0}+1}\left\lfloor R / 2^{w_{0}+1}\right\rfloor$.
c) Let $n=\lceil w / m\rceil$ if and only if the relation $R-y_{0} \leq\left\lfloor y_{0} / n\right\rfloor$ holds as a result. Otherwise let $n=1+\lceil w / m\rceil$.
[Note:The relation $w=n_{0} w_{0}+\left(n-n_{0}\right)\left(w_{0}+1\right)$ always holds. -end note]
3 The transition algorithm is carried out by invoking e() as often as needed to obtain n_{0} values less than $y_{0}+\mathrm{e} . \mathrm{min}$ and $n-n_{0}$ values less than $y_{1}+e . \min$.

4 The generation algorithm uses the values produced while advancing the state as described above to yield a quantity S obtained as if by the following algorithm:

```
S = 0;
for (k=0;k\not=\mp@subsup{n}{0}{};k+= 1) {
    do }u=\textrm{e}()-\textrm{e.min}; while ( u\geq\mp@subsup{y}{0}{})
    S = 2 wow
}
for (k=n ( 
    do u=e() - e.min; while ( }u\geq\mp@subsup{y}{1}{})\mathrm{ ;
    S = 2 2 wol
}
template <class Engine, size_t w, class UIntType>
class independent_bits_engine
{
public:
    // types
    typedef Engine base_type;
    typedef UIntType result_type;
    // engine characteristics
    static const result_type min = 0;
    static const result_type max = 2w}-1\mathrm{ ;
    // constructors and seeding functions
    independent_bits_engine();
    explicit independent_bits_engine(const base_type& urng);
    explicit independent_bits_engine(result_type s);
    explicit independent_bits_engine(seed_seq& q);
    void seed();
    void seed(result_type s);
    void seed(seed_seq& q);
    // generating functions
    result_type operator()();
    void discard(unsigned long long z);
    // property functions
    const base_type& base() const;
private:
    base_type e; // exposition only
};
```

5 The following relations shall hold: $0<w \leq$ numeric_limits<result_type>: :digits.
6 The textual representation consists of the textual representation of e.

26.4.4.3 Class template shuffle_order_engine

1 A shuffle_order_engine random number engine adaptor produces the same random numbers that are produced by some base engine e, but delivers them in a different sequence. The state x_{i} of a shuffle_order_engine engine adaptor object x consists of the state e_{i} of its base engine e, an additional value Y of the type delivered by e, and an additional sequence V of k values also of the type delivered by e. The size of the state is the size of e 's state plus $k+1$.

2 The transition algorithm permutes the values produced by e. The state transition is performed as follows:
a) Calculate an integer j as $\left\lfloor\frac{k \cdot\left(Y-b_{\min }\right)}{b_{\max }-b_{\min }+1}\right\rfloor$.
b) Set Y to V_{j} and then set V_{j} to b() .

3 The generation algorithm yields the last value of Y produced while advancing e's state as described above.

```
template <class Engine, size_t k>
class shuffle_order_engine
{
public:
    // types
    typedef Engine base_type;
    typedef typename base_type::result_type result_type;
    // engine characteristics
    static const size_t table_size = k;
    static const result_type min = base_type::min;
    static const result_type max = base_type::max;
    // constructors and seeding functions
    shuffle_order_engine();
    explicit shuffle_order_engine(const base_type& urng);
    explicit shuffle_order_engine(result_type s);
    explicit shuffle_order_engine(seed_seq& q);
    void seed();
    void seed(result_type s);
    void seed(seed_seq& q);
    // generating functions
    result_type operator()();
    void discard(unsigned long long z);
    // property functions
    const base_type& base() const;
private:
    base_type e; // exposition only
    result_type Y; // exposition only
    result_type V[k]; // exposition only
};
```

4 The following relation shall hold: $1 \leq \mathrm{k}$.

Draft

5 The textual representation consists of the textual representation of e, followed by the k values of V, followed by the value of Y.

6 In addition to its behavior pursuant to section 26.4.1.4, each constructor that is not a copy constructor initializes $\mathrm{V}[0], \ldots, \mathrm{V}[\mathrm{k}-1]$ and Y, in that order, with values returned by successive invocations of e().

26.4.4.4 Class template xor_combine_engine

[rand.adapt.xor]
1 An xor_combine_engine random number engine adaptor produces random numbers from two integer-valued base engines e1 and e2 by merging their left-shifted random values via bitwise exclusive-or. The state x_{i} of an xor_combine_engine engine adaptor object x consists of the states $\mathrm{e} 1_{i}$ and $\mathrm{e} 2_{i}$ of its base engines. The size of the state is the size of the state of e1 plus the size of the state of e2.

2 The transition algorithm advances, in turn, the state of each base engine.
3 The generation algorithm is $\mathrm{GA}\left(\mathrm{x}_{i}\right)=\left(v_{1}\right.$ lshift $\left._{w} \mathrm{~s} 1\right)$ xor $\left(v_{2} \operatorname{lshift}_{w} \mathrm{~s} 2\right)$, where w denotes the value of numeric_limits<result_type>: : digits and v_{1} and v_{2}, respectively, denote the values of (e1()-e1.min) and (e2()-e2.min).

```
template <class Engine1, size_t s1, class Engine2, size_t s2=0u>
class xor_combine_engine
{
public:
    // types
    typedef Engine1 base1_type;
    typedef Engine2 base2_type;
    typedef see below result_type;
    // engine characteristics
    static const size_t shift1 = s1;
    static const size_t shift2 = s2;
    static const result_type min = 0;
    static const result_type max = see below;
    // constructors and seed functions
    xor_combine_engine();
    xor_combine_engine(const base1_type & urng1, const base2_type & urng2);
    xor_combine_engine(result_type s);
    explicit xor_combine_engine(seed_seq& q);
    void seed();
    void seed(result_type s);
    void seed(seed_seq& q);
    // generating functions
    result_type operator()();
    void discard(unsigned long long z);
    // property functions
    const base1_type& base1() const;
    const base2_type& base2() const;
```

```
private:
    base1_type e1; // exposition only
    base2_type e2; // exposition only
};
```

4 The following relations shall hold: $s 1 \geq s 2 \geq 0$.
5 [Note:An xor_combine_engine engine adaptor that fails to observe the following recommendations may have significantly worse uniformity properties than either of the base engines it is based on:
a) While two shift values (template parameters s1 and s2) are provided for simplicity of interface, it is advisable that $s 2$ be zero. (If $s 2$ is non-zero then the low bits will always be 0 .)
b) It is also advisable for e2's max to be $2^{n}-1-\min$ for some non-negative integer n, and for the shift value $s 1$ to be no greater than that n.

- end note]

6 Both Engine1::result_type and Engine2: :result_type shall denote (possibly different) unsigned integral types. The member result_type shall denote either the type Engine1: :result_type or the type Engine 2 : :result_type, whichever provides the most storage according to clause 3.9.1.

7 With
a) $m_{1}=\min \left(\right.$ Engine1: $: \max -$ Engine1: : min, $\left.2^{w-s 1}-1\right)$,
b) $m_{2}=\min \left(\right.$ Engine $2:: \max -$ Engine $\left.2:: \min , 2^{w-s 2}-1\right)$, and
c) $s=s 1-\mathrm{s} 2$,
the value of the member max is $M\left(m_{1}, m_{2}, s\right)$ Ishift $_{w} s 2$, where $M(a, b, d)$ is defined as follows:
If $a=0$ or $b<2^{d}$, define $M(a, b, d)$ as $a \cdot 2^{d}+b$.
Otherwise, let t and u denote the greater and the lesser, respectively, of $a \cdot 2^{d}$ and b. With $p=\left\lfloor\log _{2} u\right\rfloor$, if $k=\left\lfloor t / 2^{p}\right\rfloor$ is odd, define $M(a, b, d)$ as $(k+1) \cdot 2^{p}-1$.
Otherwise, if $a \cdot 2^{d} \geq b$, define $M(a, b, d)$ as $(k+1) \cdot 2^{p}+M\left(\left(t \bmod 2^{p}\right) / 2^{d}, u \bmod 2^{p}, d\right)$.
Otherwise, define $M(a, b, d)$ as $(k+1) \cdot 2^{p}+M\left(\left(u \bmod 2^{p}\right) / 2^{d}, t \bmod 2^{p}, d\right)$.
8 The textual representation consists of the textual representation of e1 followed by the textual representation of e2.

26.4.5 Engines and engine adaptors with predefined parameters

typedef linear_congruential_engine<uint_fast32_t, 16807, 0, 2147483647> minstd_rand0;

1 Required behavior:The $10000^{\text {th }}$ consecutive invocation of a default-constructed object of type minstd_rando shall produce the value 1043618065 .

```
typedef linear_congruential_engine<uint_fast32_t, 48271, 0, 2147483647>
    minstd_rand;
```

26.4.6 Class random_device
[rand.device]
1 A random_device uniform random number generator produces non-deterministic random numbers. It satisfies the requirements of uniform random number generator (26.4.1.2).

2 If implementation limitations prevent generating non-deterministic random numbers, the implementation may employ a random number engine.

```
class random_device
{
public:
    // types
```

```
    typedef unsigned int result_type;
    // generator characteristics
    static const result_type min = see below;
    static const result_type max = see below;
    // constructors
    explicit random_device(const string& token = implementation-defined);
    // generating functions
    result_type operator()();
    // property functions
    double entropy() const;
private:
    random_device(const random_device& );
    void operator=(const random_device& );
};
```

3 The values of the min and max members are identical to the values returned by numeric_limits<result_type>: : $\min ()$ and numeric_limits<result_type>: : $\max ()$, respectively.
explicit random_device(const string\& token = implementation-defined);
double entropy() const;

Returns:If the implementation employs a random number engine, returns 0.0 . Otherwise, returns an entropy estimate ${ }^{273)}$ for the random numbers returned by operator (), in the range min to $\log _{2}(\max +1)$.

Throws:Nothing.
result_type operator()();
Returns: A non-deterministic random value, uniformly distributed between min and max, inclusive. It is implementationdefined how these values are generated.

Throws:A value of an implementation-defined type derived from exception if a random number could not be obtained.

[^158]
26.4.7 Utilities

[rand.util]

26.4.7.1 Class seed_seq

1 An object of type seed_seq consumes a sequence of integer-valued data and produces a fixed number of unsigned integer values, $0 \leq i<2^{32}$, based on the consumed data. [Note: Such an object provides a mechanism to avoid replication of streams of random variates. This can be useful in applications requiring large numbers of random number engines. - end note]

2 In addition to the requirements set forth below, instances of seed_seq shall meet the requirements of CopyConstructible (20.1.3) and of Assignable (23.1).

```
class seed_seq
{
public:
            // types
            typedef uint_least32_t result_type;
        // constructors and reset functions
        seed_seq();
        template<class InputIterator> seed_seq(InputIterator begin, InputIterator end);
        // generating functions
        template<class RandomAccessIterator>
            void randomize(RandomAccessIterator begin, RandomAccessIterator end) const;
        // property functions
        size_t size() const;
        template<class OutputIterator> void get_seeds(OutputIterator dest) const;
private:
    vector<result_type> v; // exposition only
};
explicit seed_seq();
```

Effects:Constructs a seed_seq object as if by default-constructing its member v.

Throws:Nothing.

```
template<class InputIterator> seed_seq(InputIterator begin, InputIterator end);
```

Requires:InputIterator shall satisfy the requirements of an input iterator (24.1.1) such that iterator_traits<InputIterator>: : value_type shall denote an integral type.
Effects:Constructs a seed_seq object by rearranging the bits of the supplied sequence [begin, end) into 32-bit units, as if by first concatenating all the n bits that make up the supplied sequence to initialize a single (possibly very large) unsigned binary number, b, and then carrying out the following algorithm:

```
for( v.clear(); n > 0; n -= 32 )
    v.push_back(b\operatorname{mod}\mp@subsup{2}{}{32}),b/= 2 32}\mathrm{ ;
```

Draft

```
template<class RandomAccessIterator>
void randomize(RandomAccessIterator begin, RandomAccessIterator end) const;
```

Requires:RandomAccessIterator shall meet the requirements of a random access iterator (24.1.5) such that iterator_traits<RandomAccessIterator>: :value_type shall denote an unsigned integral type capable of accommodating 32-bit quantities.

Effects:With $s=\mathrm{v}$.size () and $n=$ end - begin, fills the supplied range [begin, end) according to the following algorithm in which each operation is to be carried out modulo 2^{32}, each indexing operator applied to begin is to be taken modulo n, each indexing operator applied to v is to be taken modulo s, and $T(x)$ is defined as x xor (x rshift 30):
a) Set begin [0] to $5489+s$. Then, iteratively for $k=1, \ldots, n-1$, set begin [k] to

$$
1812433253 \cdot T(\operatorname{begin}[\mathrm{k}-1])+k .
$$

b) With m as the larger of s and n, transform each element of the range (possibly more than once): iteratively for $k=0, \ldots, m-1$, set begin [k] to

$$
(\operatorname{begin}[\mathrm{k}] \text { xor }(1664525 \cdot T(\operatorname{begin}[\mathrm{k}-1])))+\mathrm{v}[\mathrm{k}]+(k \bmod s) .
$$

c) Transform each element of the range one last time, beginning where the previous step ended: iteratively for $k=m \bmod n, \ldots, n-1,0, \ldots,(m-1) \bmod n$, set begin $[k]$ to

$$
(\operatorname{begin}[\mathrm{k}] \text { xor }(1566083941 \cdot T(\operatorname{begin}[\mathrm{k}-1])))-k
$$

Throws:Nothing.
size_t size() const;
Returns:The number of 32-bit units the object can deliver, as if by returning the result of v.size().
template<class OutputIterator> void get_seeds(OutputIterator dest) const;
Requires:OutputIterator shall satisfy the requirements of an output iterator (24.1.2) such that iterator_traits<OutputIterator>: :value_type shall be assignable from result_type.

Effects:Copies the sequence of prepared 32-bit units to the given destination, as if by executing the following statement:

```
copy(v.begin(), v.end(), dest);
```


26.4.7.2 Function template generate_canonical

[rand.util.canonical]
1 Each function instantiated from the template described in this section 26.4.7.2 maps the result of one or more invocations of a supplied uniform random number generator g to one member of the specified RealType such that, if the values g_{i} produced by g are uniformly distributed, the instantiation's results $t_{j}, 0 \leq t_{j}<1$, are distributed as uniformly as possible as specified below.

2 [Note:Obtaining a value in this way can be a useful step in the process of transforming a value generated by a uniform random number generator into a value that can be delivered by a random number distribution. -end note]

```
template<class RealType, class UniformRandomNumberGenerator, size_t bits>
RealType generate_canonical(UniformRandomNumberGenerator& g);
```

Complexity: Exactly $k=\max \left(1,\left\lceil b / \log _{2} R\right\rceil\right)$ invocations of g , where $b^{274)}$ is the lesser of numeric_limits< RealType>: :digits and bits, and R is the value of g.max $-\mathrm{g} . \mathrm{min}+1$.
Required behavior:Invokes g()k times to obtain values g_{0}, \ldots, g_{k-1}, respectively. Calculates a quantity

$$
S=\sum_{i=0}^{k-1}\left(g_{i}-\mathrm{g} \cdot \min \right) \cdot R^{i}
$$

using arithmetic of type RealType.
Returns: S / R^{k}.
Throws: What and when g throws.

26.4.8 Random number distribution class templates

[rand.dist]
1 The classes and class templates specified in this section 26.4.8 satisfy all the requirements of random number distribution (26.4.1.5). Descriptions are provided here only for operations on the distributions that are not described in those requirements or for operations where there is additional semantic information. Declarations for copy constructors, for copy assignment operators, and for equality and inequality operators are not shown in the synopses.

2 The algorithms for producing each of the specified distributions are implementation-defined.
3 The value of each probability density function $p(z)$ and of each discrete probability function $P\left(z_{i}\right)$ specified in this section is 0 everywhere outside its stated domain.

26.4.8.1 Uniform distributions

26.4.8.1.1 Class template uniform_int_distribution
[rand.dist.uni.int]
1 A uniform_int_distribution random number distribution produces random integers $i, a \leq i \leq b$, distributed according to the constant discrete probability function

$$
P(i \mid a, b)=1 /(b-a+1) .
$$

```
template <class IntType = int>
class uniform_int_distribution
{
public:
    // types
    typedef IntType result_type;
    typedef unspecified param_type;
    // constructors and reset functions
    explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits<IntType>::max());
    explicit uniform_int_distribution(const param_type& parm);
```

[^159]```
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 result_type a() const;
 result_type b() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
 };
 explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits<IntType>::max());
 Requires: }\textrm{a}\leq\textrm{b}
```

        Effects:Constructs a uniform_int_distribution object; a and b correspond to the respective parameters of
        the distribution.
    result_type \(a()\) const;
        Returns:The value of the a parameter with which the object was constructed.
    result_type b() const;
        Returns:The value of the b parameter with which the object was constructed.
            26.4.8.1.2 Class template uniform_real_distribution
                                    [rand.dist.uni.real]
    1 A uniform_real_distribution random number distribution produces random numbers $x, a \leq x<b$, distributed
according to the constant probability density function
$p(x \mid a, b)=1 /(b-a)$.

```
template <class RealType = double>
class uniform_real_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructors and reset functions
 explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);
 explicit uniform_real_distribution(const param_type& parm);
```

Draft

```
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 result_type a() const;
 result_type b() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
 };
 explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);
 Requires: }\textrm{a}\leq\textrm{b}\mathrm{ and }\textrm{b}-\textrm{a}\leq\mathrm{ numeric_limits<RealType> : :max().
 Effects:Constructs a uniform_real_distribution object; a and b correspond to the respective parameters of
 the distribution.
 result_type a() const;
 Returns:The value of the a parameter with which the object was constructed.
 result_type b() const;
 Returns:The value of the b parameter with which the object was constructed.
```


### 26.4.8.2 Bernoulli distributions

[rand.dist.bern]
26.4.8.2.1 Class bernoulli_distribution
[rand.dist.bern.bernoulli]
1 A bernoulli_distribution random number distribution produces bool values $b$ distributed according to the discrete probability function

$$
P(b \mid p)=\left\{\begin{array}{lll}
p & \text { if } & b=\text { true } \\
1-p & \text { if } & b=\text { false }
\end{array} .\right.
$$

```
class bernoulli_distribution
{
public:
 // types
 typedef bool result_type;
 typedef unspecified param_type;
 // constructors and reset functions
 explicit bernoulli_distribution(double p = 0.5);
```

```
 explicit bernoulli_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator() (UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 double p() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
};
explicit bernoulli_distribution(double p = 0.5);
 Requires:0}\leq\textrm{p}\leq1
Effects:Constructs a bernoulli_distribution object; p corresponds to the parameter of the distribution.
double p() const;
```

Returns:The value of the p parameter with which the object was constructed.

### 26.4.8.2.2 Class template binomial_distribution

[rand.dist.bern.bin]
1 A binomial_distribution random number distribution produces integer values $i \geq 0$ distributed according to the discrete probability function

$$
P(i \mid t, p)=\binom{t}{i} \cdot p^{i} \cdot(1-p)^{t-i}
$$

```
template <class IntType = int>
class binomial_distribution
{
public:
 // types
 typedef IntType result_type;
 typedef unspecified param_type;
 // constructors and reset functions
 explicit binomial_distribution(IntType t = 1, double p = 0.5);
 explicit binomial_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator() (UniformRandomNumberGenerator& urng);
```

Draft

```
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 IntType t() const;
 double p() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
 };
 explicit binomial_distribution(IntType t = 1, double p = 0.5);
 Requires:0}\leq\textrm{p}\leq1\mathrm{ and 0
```

        Effects:Constructs a binomial_distribution object; t and p correspond to the respective parameters of the
        distribution.
    IntType t() const;

Returns:The value of the $t$ parameter with which the object was constructed.

```
double p() const;
```

Returns:The value of the p parameter with which the object was constructed.

### 26.4.8.2.3 Class template geometric_distribution

[rand.dist.bern.geo]
1 A geometric_distribution random number distribution produces integer values $i \geq 0$ distributed according to the discrete probability function

$$
P(i \mid p)=p \cdot(1-p)^{i}
$$

```
template <class IntType = int>
class geometric_distribution
{
public:
 // types
 typedef IntType result_type;
 typedef unspecified param_type;
 // constructors and reset functions
 explicit geometric_distribution(double p = 0.5);
 explicit geometric_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
```

Draft

```
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 double p() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
 };
explicit geometric_distribution(double p = 0.5);
 Requires:0<p<1.
 Effects:Constructs a geometric_distribution object; p corresponds to the parameter of the distribution.
double p() const;
```

Returns:The value of the p parameter with which the object was constructed.
26.4.8.2.4 Class template negative_binomial_distribution
[rand.dist.bern.negbin]
1 A negative_binomial_distribution random number distribution produces random integers $i \geq 0$ distributed according to the discrete probability function

$$
P(i \mid k, p)=\binom{k+i-1}{i} \cdot p^{k} \cdot(1-p)^{i}
$$

```
template <class IntType = int>
class negative_binomial_distribution
{
public:
 // types
 typedef IntType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);
 explicit negative_binomial_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 IntType k() const;
```

Draft

```
 double p() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
 };
 explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);
 Requires:0< p \leq 1 and 0<k.
 Effects:Constructs a negative_binomial_distribution object; k and p correspond to the respective parame-
 ters of the distribution.
 IntType k() const;
 Returns:The value of the k parameter with which the object was constructed.
double p() const;
Returns:The value of the p parameter with which the object was constructed.
```


### 26.4.8.3 Poisson distributions

[rand.dist.pois]
26.4.8.3.1 Class template poisson_distribution

1 A poisson_distribution random number distribution produces integer values $i \geq 0$ distributed according to the discrete probability function

$$
P(i \mid \mu)=\frac{e^{-\mu} \mu^{i}}{i!}
$$

The distribution parameter $\mu$ is also known as this distribution's mean.

```
template <class IntType = int>
class poisson_distribution
{
public:
 // types
 typedef IntType result_type;
 typedef unspecified param_type;
 // constructors and reset functions
 explicit poisson_distribution(double mean = 1.0);
 explicit poisson_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
```

```
 // property functions
 double mean() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
 };
 explicit poisson_distribution(double mean = 1.0);
 Requires:0<mean.
 Effects:Constructs a poisson_distribution object; mean corresponds to the parameter of the distribution.
double mean() const;
```

Returns:The value of the mean parameter with which the object was constructed.

### 26.4.8.3.2 Class template exponential_distribution

[rand.dist.pois.exp]
1 An exponential_distribution random number distribution produces random numbers $x>0$ distributed according to the probability density function

$$
p(x \mid \lambda)=\lambda e^{-\lambda x}
$$

```
template <class RealType = double>
class exponential_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructors and reset functions
 explicit exponential_distribution(RealType lambda = 1.0);
 explicit exponential_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 RealType lambda() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
```


## \};

explicit exponential_distribution(RealType lambda = 1.0);
Requires: $0<1$ ambda.
Effects:Constructs a exponential_distribution object; lambda corresponds to the parameter of the distribution.

RealType lambda() const;
Returns:The value of the lambda parameter with which the object was constructed.
26.4.8.3.3 Class template gamma_distribution
[rand.dist.pois.gamma]
1 A gamma_distribution random number distribution produces random numbers $x>0$ distributed according to the probability density function

$$
p(x \mid \alpha, \beta)=\frac{e^{-x / \beta}}{\beta^{\alpha} \cdot \Gamma(\alpha)} \cdot x^{\alpha-1}
$$

```
template <class RealType = double>
class gamma_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructors and reset functions
 explicit gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0);
 explicit gamma_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 RealType alpha() const;
 RealType beta() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
};
explicit gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0);
```

Draft

Requires: $0<$ alpha and $0<$ beta.
Effects:Constructs a gamma_distribution object; alpha and beta correspond to the parameters of the distribution.

RealType alpha() const;
Returns:The value of the alpha parameter with which the object was constructed.
RealType beta() const;
Returns: The value of the beta parameter with which the object was constructed.
26.4.8.3.4 Class template weibull_distribution
[rand.dist.pois.weibull]
1 A weibull_distribution random number distribution produces random numbers $x \geq 0$ distributed according to the probability density function

$$
p(x \mid a, b)=\frac{a}{b} \cdot\left(\frac{x}{b}\right)^{a-1} \cdot \exp \left(-\left(\frac{x}{b}\right)^{a}\right) .
$$

```
template <class RealType = double>
class weibull_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0)
 explicit weibull_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 RealType a() const;
 RealType b() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
};
explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0);
```

```
RealType b() const;
```

Returns:The value of the b parameter with which the object was constructed.
26.4.8.3.5 Class template extreme_value_distribution
[rand.dist.pois.extreme]
1 An extreme_value_distribution random number distribution produces random numbers $x$ distributed according to the probability density function ${ }^{275)}$

$$
p(x \mid a, b)=\frac{1}{b} \cdot \exp \left(\frac{a-x}{b}-\exp \left(\frac{a-x}{b}\right)\right)
$$

```
template <class RealType = double>
class extreme_value_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0);
 explicit extreme_value_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 RealType a() const;
 RealType b() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
};
```

${ }^{275)}$ The distribution corresponding to this probability density function is also known (with a possible change of variable) as the Gumbel Type I, the
log-Weibull, or the Fisher-Tippett Type I distribution.

Draft

```
 explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0);
 Requires:0<b.
```

    Effects:Constructs an extreme_value_distribution object; a and b correspond to the respective parameters of the distribution.
    ```
RealType a() const;
```

Returns:The value of the a parameter with which the object was constructed.

```
RealType b() const;
```

Returns:The value of the b parameter with which the object was constructed.

### 26.4.8.4 Normal distributions

## [rand.dist.norm]

### 26.4.8.4.1 Class template normal_distribution

## [rand.dist.norm.normal]

1 A normal_distribution random number distribution produces random numbers $x$ distributed according to the probability density function

$$
p(x \mid \mu, \sigma) p(x)=\frac{1}{\sigma \sqrt{2 \pi}} \cdot \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

The distribution parameters $\mu$ and $\sigma$ are also known as this distribution's mean and standard deviation.

```
template <class RealType = double>
class normal_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructors and reset functions
 explicit normal_distribution(RealType mean = 0.0, RealType stddev = 1.0);
 explicit normal_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 RealType mean() const;
 RealType stddev() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
```

Draft
\};
explicit normal_distribution(RealType mean $=0.0$, RealType stddev $=1.0$ );
Requires: $0<$ stddev.
Effects:Constructs a normal_distribution object; mean and stddev correspond to the respective parameters of the distribution.

```
RealType mean() const;
```

Returns: The value of the mean parameter with which the object was constructed.

```
RealType stddev() const;
```

Returns:The value of the stddev parameter with which the object was constructed.

### 26.4.8.4.2 Class template lognormal_distribution

[rand.dist.norm.lognormal]
1 A lognormal_distribution random number distribution produces random numbers $x>0$ distributed according to the probability density function

$$
p(x \mid m, s)=\frac{1}{s x \sqrt{2 \pi}} \cdot \exp \left(-\frac{(\ln x-m)^{2}}{2 s^{2}}\right) .
$$

```
template <class RealType = double>
class lognormal_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
 explicit lognormal_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 RealType m() const;
 RealType s() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
```


## \};

```
explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
```

Requires: $0<\mathrm{s}$.
Effects:Constructs a lognormal_distribution object; m and s correspond to the respective parameters of the distribution.

```
RealType m() const;
```

Returns:The value of the m parameter with which the object was constructed.

```
RealType s() const;
```

Returns:The value of the s parameter with which the object was constructed.
26.4.8.4.3 Class template chi_squared_distribution
[rand.dist.norm.chisq]
1 A chi_squared_distribution random number distribution produces random numbers $x>0$ distributed according to the probability density function

$$
p(x \mid n)=\frac{x^{(n / 2)-1} \cdot e^{-x / 2}}{\Gamma(n / 2) \cdot 2^{n / 2}},
$$

where $n$ is a positive integer.

```
template <class RealType = double>
class chi_squared_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 explicit chi_squared_distribution(int n = 1);
 explicit chi_squared_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 int n() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
```


## \};

```
explicit chi_squared_distribution(int n = 1);
```

Requires: $0<\mathrm{n}$.
Effects:Constructs a chi_squared_distribution object; n corresponds to the parameter of the distribution.

```
int n() const;
```

Returns:The value of the n parameter with which the object was constructed.
26.4.8.4.4 Class template cauchy_distribution
[rand.dist.norm.cauchy]
1 A cauchy_distribution random number distribution produces random numbers $x$ distributed according to the probability density function

$$
p(x \mid a, b)=\left(\pi b\left(1+\left(\frac{x-a}{b}\right)^{2}\right)\right)^{-1} .
$$

```
template <class RealType = double>
class cauchy_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
 explicit cauchy_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 RealType a() const;
 RealType b() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
};
explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
```

Requires: $0<\mathrm{b}$.
Effects:Constructs a cauchy_distribution object; a and b correspond to the respective parameters of the distribution.

```
RealType a() const;
```

Returns:The value of the a parameter with which the object was constructed.
RealType b() const;
Returns:The value of the b parameter with which the object was constructed.
26.4.8.4.5 Class template fisher_f_distribution
[rand.dist.norm.f]
1 A fisher_f_distribution random number distribution produces random numbers $x \geq 0$ distributed according to the probability density function

$$
p(x \mid m, n)=\frac{\Gamma((m+n) / 2)}{\Gamma(m / 2) \Gamma(n / 2)} \cdot\left(\frac{m}{n}\right)^{m / 2} \cdot x^{(m / 2)-1} \cdot\left(1+\frac{m x}{n}\right)^{-(m+n) / 2},
$$

where $m$ and $n$ are positive integers.

```
template <class RealType = double>
class fisher_f_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 explicit fisher_f_distribution(int m = 1, int n = 1);
 explicit fisher_f_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 int m() const;
 int n() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
};
```

Draft

```
 explicit fisher_f_distribution(int m = 1, int n = 1);
 Requires:0<m}\mathrm{ and 0<n.
```

    Effects:Constructs a fisher_f_distribution object; m and n correspond to the respective parameters of the
    distribution.
    int m() const;

Returns:The value of the $m$ parameter with which the object was constructed.
int n() const;

Returns:The value of the n parameter with which the object was constructed.
26.4.8.4.6 Class template student_t_distribution

1 A student_t_distribution random number distribution produces random numbers $x$ distributed according to the probability density function

$$
p(x \mid n)=\frac{1}{\sqrt{n \pi}} \cdot \frac{\Gamma((n+1) / 2)}{\Gamma(n / 2)} \cdot\left(1+\frac{x^{2}}{n}\right)^{-(n+1) / 2}
$$

where $n$ is a positive integer.

```
template <class RealType = double>
class student_t_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 explicit student_t_distribution(int n = 1);
 explicit student_t_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 int n() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
};
```

Draft

```
explicit student_t_distribution(int n = 1);
 Requires:0<n.
```

Effects:Constructs a student_t_distribution object; $n$ and $n$ correspond to the respective parameters of the distribution.

```
int n() const;
```

Returns:The value of the n parameter with which the object was constructed.

### 26.4.8.5 Sampling distributions

[rand.dist.samp]
26.4.8.5.1 Class template discrete_distribution

1 A discrete_distribution random number distribution produces random integers $i, 0 \leq i<n$, distributed according to the discrete probability function

$$
P\left(i \mid p_{0}, \ldots, p_{n-1}\right)=p_{i}
$$

```
template <class IntType = int>
class discrete_distribution
{
 public:
 // types
 typedef IntType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 discrete_distribution();
 template <class InputIterator>
 discrete_distribution(InputIterator firstW, InputIterator lastW);
 explicit discrete_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 vector<double> probabilities() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
};
discrete_distribution();
```


## vector<double> probabilities() const;

Returns:A vector<double> whose size member returns $n$ and whose operator [] member returns $p_{k}$ when invoked with argument $k$ for $k=0, \ldots, n-1$.

### 26.4.8.5.2 Class template piecewise_constant_distribution

[rand.dist.samp.pconst]
1 A piecewise_constant_distribution random number distribution produces random numbers $x, b_{0} \leq x<b_{n}$, uniformly distributed over each subinterval $\left[b_{i}, b_{i+1}\right)$ according to the probability density function

$$
p\left(x \mid b_{0}, \ldots, b_{n}, \rho_{0}, \ldots, \rho_{n-1}\right)=\rho_{i}, \text { for } b_{i} \leq x<b_{i+1}
$$

The $n+1$ distribution parameters $b_{i}$ are also known as this distribution's interval boundaries.

```
template <class RealType = double>
class piecewise_constant_distribution
{
public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 piecewise_constant_distribution();
 template <class InputIteratorB, class InputIteratorW>
 piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,
 InputIteratorW firstW);
 explicit piecewise_constant_distribution(const param_type& parm);
 void reset();
```

```
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator() (UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 vector<RealType> intervals() const;
 vector<double> densities() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
};
piecewise_constant_distribution();
```

Effects:Constructs a piecewise_constant_distribution object with $n=1, \rho_{0}=1, b_{0}=0$, and $b_{1}=1$.
template <class InputIteratorB, class InputIteratorW>
piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB, InputIteratorW firstW);
Requires:
a) InputIteratorB shall satisfy the requirements of an input iterator (24.1.1), as shall InputIteratorW.
b) If firstB == lastB,
(a) let the sequence $w$ have length $n=1$ and consist of the single value $w_{0}=1$, and
(b) let the sequence $b$ have length $n+1$ with $b_{0}=0$ and $b_{1}=1$.

Otherwise,
(c) [firstB, lastB) shall form a sequence $b$ of length $n+1$ whose leading element $b_{0}$ shall be convertible to result_type, and
(d) the length of the sequence $w$ starting from firstW shall be at least $n$, $* f$ irst $W$ shall return a value $w_{0}$ that is convertible to double, and any $w_{k}$ for $k \geq n$ shall be ignored by the distribution.
[Note:The values $w_{k}$ are commonly known as the weights. -end note]
c) The following relations shall hold for $k=0, \ldots, n-1: b_{k}<b_{k+1}$ and $0 \leq w_{k}$. Also, $0<S=w_{0}+\cdots+w_{n-1}$.

Effects:Constructs a piecewise_constant_distribution object with probability densities

$$
\rho_{k}=\frac{w_{k}}{S \cdot\left(b_{k+1}-b_{k}\right)} \text { for } k=0, \ldots, n-1
$$

vector<result_type> intervals() const;
Returns:A vector<result_type> whose size member returns $n+1$ and whose operator [] member returns $b_{k}$ when invoked with argument $k$ for $k=0, \ldots, n$.

Draft

```
vector<double> densities() const;
```

6
Returns:A vector<result_type> whose size member returns $n$ and whose operator [] member returns $\rho_{k}$ when invoked with argument $k$ for $k=0, \ldots, n-1$.
26.4.8.5.3 Class template general_pdf_distribution

## [rand.dist.samp.genpdf]

1 A general_pdf_distribution random number distribution produces random numbers $x, x_{\min } \leq x<x_{\max }$, distributed according to the probability density function

$$
p\left(x \mid x_{\min }, x_{\max }, \rho\right)=\rho(x), \text { for } x_{\min } \leq x<x_{\min }
$$

```
 template <class RealType = double>
 class general_pdf_distribution
 {
 public:
 // types
 typedef RealType result_type;
 typedef unspecified param_type;
 // constructor and reset functions
 general_pdf_distribution();
 template <class Func>
 general_pdf_distribution(result_type xmin, result_type xmax, Func pdf);
 explicit general_pdf_distribution(const param_type& parm);
 void reset();
 // generating functions
 template <class UniformRandomNumberGenerator>
 result_type operator() (UniformRandomNumberGenerator& urng);
 template <class UniformRandomNumberGenerator>
 result_type operator()(UniformRandomNumberGenerator& urng, const param_type& parm);
 // property functions
 result_type xmin() const;
 result_type xmax() const;
 param_type param() const;
 void param(const param_type& parm);
 result_type min() const;
 result_type max() const;
};
general_pdf_distribution();
```

Effects:Constructs a general_pdf_distribution object with $x_{\min }=0$ and $x_{\max }=1$ such that $p(x)=1$ for all $x_{\text {min }} \leq x<x_{\text {max }}$.
template <class Func>
general_pdf_distribution(result_type xmin, result_type xmax, Func pdf);

Draft

## Requires:

a) pdf shall be callable with one argument of type result_type, and shall return values of a type convertible to double;
b) $x_{\min }<x_{\max }$, and for all $x_{\min } \leq x<x_{\max }, \operatorname{pdf}(x)$ shall return a value that is non-negative, non-NaN, and non-infinity; and
c) the following relations shall hold:

$$
0<z=\int_{x_{\min }}^{x_{\max }} f(x) d x<\infty,
$$

where $f$ is the mathematical function corresponding to the supplied pdf. [Note:This implies that the usersupplied pdf need not be normalized. - end note ]

Effects:Constructs a general_pdf_distribution object; xmin and xmax correspond to the respective parameters of the distribution and the corresponding probability density function is given by $\rho(x)=f(x) / z$.

```
result_type xmin() const;
```

Returns:The value of the xmin parameter with which the object was constructed.

```
result_type xmax() const;
```

Returns:The value of the xmax parameter with which the object was constructed.

### 26.5 Numeric arrays

### 26.5.1 Header <valarray> synopsis

```
namespace std {
 template<class T> class valarray; // An array of type T
 class slice; // a BLAS-like slice out of an array
 template<class T> class slice_array;
```



```
 template<class T> class gslice_array;
 template<class T> class mask_array; // a masked array
 template<class T> class indirect_array; // an indirected array
 template<class T> valarray<T> operator*
 (const valarray<T>&, const valarray<T>&);
 template<class T> valarray<T> operator* (const valarray<T>&, const T&);
 template<class T> valarray<T> operator* (const T&, const valarray<T>&);
 template<class T> valarray<T> operator/
 (const valarray<T>&, const valarray<T>&);
 template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
 template<class T> valarray<T> operator/ (const T&, const valarray<T>&);
 template<class T> valarray<T> operator%
 (const valarray<T>&, const valarray<T>&);
 template<class T> valarray<T> operator% (const valarray<T>&, const T&);
```

```
template<class T> valarray<T> operator% (const T&, const valarray<T>&);
template<class T> valarray<T> operator+
 (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);
template<class T> valarray<T> operator-
 (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);
template<class T> valarray<T> operator^
 (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
template<class T> valarray<T> operator^ (const T&, const valarray<T>&);
template<class T> valarray<T> operator&
 (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);
template<class T> valarray<T> operator|
 (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);
template<class T> valarray<T> operator<<
 (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);
template<class T> valarray<T> operator>>
 (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);
template<class T> valarray<bool> operator&&
 (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&, const T&);
template<class T> valarray<bool> operator&&(const T&, const valarray<T>&);
template<class T> valarray<bool> operator||
 (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&, const T&);
template<class T> valarray<bool> operator||(const T&, const valarray<T>&);
template<class T>
 valarray<bool> operator==(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
```

```
template<class T> valarray<bool> operator==(const T&, const valarray<T>&)
template<class T>
 valarray<bool> operator!=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);
template<class T>
 valarray<bool> operator< (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
template<class T>
 valarray<bool> operator> (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
template<class T>
 valarray<bool> operator<=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
template<class T>
 valarray<bool> operator>=(const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);
template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);
template<class T> valarray<T> atan2
 (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);
template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);
template<class T> valarray<T> pow(const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow(const valarray<T>&, const T&);
template<class T> valarray<T> pow(const T&, const valarray<T>&);
template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);
```

\}

1 The header <valarray> defines five class templates (valarray, slice_array, gslice_array, mask_array, and indirect_array), two classes (slice and gslice), and a series of related function templates for representing and manipulating arrays of values.

2 The valarray array classes are defined to be free of certain forms of aliasing, thus allowing operations on these classes to be optimized.

3 Any function returning a valarray<T> is permitted to return an object of another type, provided all the const member functions of valarray<T> are also applicable to this type. This return type shall not add more than two levels of template nesting over the most deeply nested argument type. ${ }^{276)}$
4 Implementations introducing such replacement types shall provide additional functions and operators as follows:

- for every function taking a const valarray $\langle T\rangle \&$, identical functions taking the replacement types shall be added;
- for every function taking two const valarray<T>\& arguments, identical functions taking every combination of const valarray<T>\& and replacement types shall be added.

5 In particular, an implementation shall allow a valarray<T> to be constructed from such replacement types and shall allow assignments and computed assignments of such types to valarray<T>, slice_array<T>, gslice_array<T>, mask_array<T> and indirect_array<T> objects.
6 These library functions are permitted to throw a bad_alloc (18.5.2.1) exception if there are not sufficient resources available to carry out the operation. Note that the exception is not mandated.

### 26.5.2 Class template valarray

[template.valarray]

```
namespace std {
 template<class T> class valarray {
 public:
 typedef T value_type;
 // 26.5.2.1 construct/destroy:
 valarray();
 explicit valarray(size_t);
 valarray(const T&, size_t);
 valarray(const T*, size_t);
 valarray(const valarray&);
 valarray(const slice_array<T>&);
 valarray(const gslice_array<T>&);
 valarray(const mask_array<T>&);
 valarray(const indirect_array<T>&);
 ~valarray();
 // 26.5.2.2 assignment:
 valarray<T>& operator=(const valarray<T>&);
 valarray<T>& operator=(const T&);
```

[^160]```
valarray<T>& operator=(const slice_array<T>&);
valarray<T>& operator=(const gslice_array<T>&);
valarray<T>& operator=(const mask_array<T>&);
valarray<T>& operator=(const indirect_array<T>&);
// 26.5.2.3 element access:
const T& 年 (%erator[](size_t) const;
// 26.5.2.4 subset operations:
valarray<T> operator[](slice) const;
slice_array<T> operator[](slice);
valarray<T> operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray<T> operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray<T> operator[](const valarray<size_t>&) const;
indirect_array<T> operator[](const valarray<size_t>&);
```

// 26.5.2.5 unary operators:
valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator~() const;
valarray<bool> operator!() const;
// 26.5.2.6 computed assignment:
valarray<T>\& operator*= (const T\&) ;
valarray<T>\& operator/= (const T\&);
valarray<T>\& operator\%= (const T\&);
valarray<T>\& operator+= (const T\&);
valarray<T>\& operator-= (const T\&);
valarray<T>\& operator^= (const T\&);
valarray<T>\& operator\&= (const T\&);
valarray<T>\& operator|= (const T\&);
valarray<T>\& operator<<=(const T\&);
valarray<T>\& operator>>=(const T\&);
valarray<T>\& operator*= (const valarray<T>\&);
valarray<T>\& operator/= (const valarray<T>\&);
valarray<T>\& operator\%= (const valarray<T>\&);
valarray<T>\& operator+= (const valarray<T>\&);
valarray<T>\& operator-= (const valarray<T>\&);
valarray<T>\& operator^= (const valarray<T>\&);
valarray<T>\& operator|= (const valarray<T>\&);
valarray<T>\& operator\&= (const valarray<T>\&);
valarray<T>\& operator<<=(const valarray<T>\&);
valarray<T>\& operator>>=(const valarray<T>\&);
// 26.5.2.7 member functions:
size_t size() const;

```
    T sum() const;
    T min() const;
    T max() const;
    valarray<T> shift (int) const;
    valarray<T> cshift(int) const;
    valarray<T> apply(T func(T)) const;
    valarray<T> apply(T func(const T&)) const;
        void resize(size_t sz, T c = T());
    };
}
```

1 The class template valarray $\langle T\rangle$ is a one-dimensional smart array, with elements numbered sequentially from zero. It is a representation of the mathematical concept of an ordered set of values. The illusion of higher dimensionality may be produced by the familiar idiom of computed indices, together with the powerful subsetting capabilities provided by the generalized subscript operators. ${ }^{277)}$

2 An implementation is permitted to qualify any of the functions declared in <valarray> as inline.

26.5.2.1 valarray constructors

[valarray.cons]
valarray();
Effects: Constructs an object of class valarray<T>, ${ }^{278)}$ which has zero length until it is passed into a library function as a modifiable lvalue or through a non-constant this pointer. ${ }^{279)}$

```
explicit valarray(size_t);
```

The array created by this constructor has a length equal to the value of the argument. The elements of the array are constructed using the default constructor for the instantiating type T.

```
valarray(const T&, size_t);
```

The array created by this constructor has a length equal to the second argument. The elements of the array are initialized with the value of the first argument.

```
valarray(const T*, size_t);
```

The array created by this constructor has a length equal to the second argument n. The values of the elements of the array are initialized with the first n values pointed to by the first argument. ${ }^{280}$) If the value of the second argument is greater than the number of values pointed to by the first argument, the behavior is undefined.

```
valarray(const valarray<T>&);
```

[^161]```
valarray(const slice_array<T>&);
valarray(const gslice_array<T>&);
valarray(const mask_array<T>&);
valarray(const indirect_array<T>&);
```


### 26.5.2.3 valarray element access

[valarray.access]
const T\& operator[](size_t) const;
T\& operator[] (size_t);
When applied to a constant array, the subscript operator returns the value of the corresponding element of the array. When applied to a non-constant array, the subscript operator returns a reference to the corresponding element of the array.

Thus, the expression ( $\mathrm{a}[\mathrm{i}]=\mathrm{q}, \mathrm{a}[\mathrm{i}]$ ) == q evaluates as true for any non-constant valarray<T> a, any T q , and for any size_t i such that the value of $i$ is less than the length of a.

The expression \& $\mathrm{a}[\mathrm{i}+\mathrm{j}]==\& \mathrm{a}[\mathrm{i}]+\mathrm{j}$ evaluates as true for all size_t $i$ and size_t $j$ such that $i+j$ is less than the length of the non-constant array $a$.

[^162]
### 26.5.2.4 valarray subset operations

[valarray.sub]

```
valarray<T> operator[](slice) const;
slice_array<T> operator[](slice);
valarray<T> operator[](const gslice&) const;
gslice_array<T> operator[](const gslice&);
valarray<T> operator[](const valarray<bool>&) const;
mask_array<T> operator[](const valarray<bool>&);
valarray<T> operator[](const valarray<size_t>&) const;
indirect_array<T> operator[] (const valarray<size_t>&);
```

Each of these operations returns a subset of the array. The const-qualified versions return this subset as a new valarray. The non-const versions return a class template object which has reference semantics to the original array.

### 26.5.2.5 valarray unary operators

[valarray.unary]

```
valarray<T> operator+() const;
valarray<T> operator-() const;
valarray<T> operator~() const;
valarray<bool> operator!() const;
```

Each of these operators may only be instantiated for a type $T$ to which the indicated operator can be applied and for which the indicated operator returns a value which is of type $T$ (bool for operator!) or which may be unambiguously converted to type $T$ (bool for operator!).

Each of these operators returns an array whose length is equal to the length of the array. Each element of the returned array is initialized with the result of applying the indicated operator to the corresponding element of the array.

### 26.5.2.6 valarray computed assignment

[valarray.cassign]

```
valarray<T>& operator*= (const valarray<T>&);
valarray<T>& operator/= (const valarray<T>&);
```

[^163]```
valarray<T>& operator%= (const valarray<T>&);
valarray<T>& operator+= (const valarray<T>&);
valarray<T>& operator-= (const valarray<T>&);
valarray<T>& operator^= (const valarray<T>&);
valarray<T>& operator&= (const valarray<T>&);
valarray<T>& operator|= (const valarray<T>&);
valarray<T>& operator<<=(const valarray<T>&);
valarray<T>& operator>>=(const valarray<T>&);
```

```
valarray<T>& operator*= (const T&);
valarray<T>& operator/= (const T&);
valarray<T>& operator%= (const T&);
valarray<T>& operator+= (const T&);
valarray<T>& operator-= (const T&);
valarray<T>& operator^= (const T&);
valarray<T>& operator&= (const T&);
valarray<T>& operator|= (const T&);
valarray<T>& operator<<=(const T&);
valarray<T>& operator>>=(const T&);
```

Each of these operators may only be instantiated for a type T to which the indicated operator can be applied.
Each of these operators applies the indicated operation to each element of the array and the non-array argument.
The array is then returned by reference.
The appearance of an array on the left-hand side of a computed assignment does not invalidate references or pointers to the elements of the array.

26.5.2.7 valarray member functions

```
size_t size() const;
```

This function returns the number of elements in the array.
T sum() const;
This function may only be instantiated for a type T to which operator+= can be applied. This function returns the sum of all the elements of the array.

If the array has length 0 , the behavior is undefined. If the array has length 1 , sum () returns the value of element 0 . Otherwise, the returned value is calculated by applying operator $+=$ to a copy of an element of the array and all other elements of the array in an unspecified order.
$\mathrm{T} \min ()$ const;
This function returns the minimum value contained in $*$ this. The value returned for an array of length 0 is undefined. For an array of length 1 , the value of element 0 is returned. For all other array lengths, the determination is made using operator<.
$T \max ()$ const;
This function returns the maximum value contained in $*$ this. The value returned for an array of length 0 is undefined. For an array of length 1 , the value of element 0 is returned. For all other array lengths, the determination is made using operator<.

```
valarray<T> shift(int n) const;
```

This function returns an object of class valarray<T> of length size(), each of whose elements I is (*this) [I $+n]$ if $I+n$ is non-negative and less than size(), otherwise $T()$. Thus if element zero is taken as the leftmost element, a positive value of n shifts the elements left n places, with zero fill.
[Example: If the argument has the value -2 , the first two elements of the result will be constructed using the default constructor; the third element of the result will be assigned the value of the first element of the argument; etc. - end example]

```
valarray<T> cshift(int n) const;
```

This function returns an object of class valarray<T>, of length size (), each of whose elements I is (*this) [(I $+n) \%$ size ()]. Thus, if element zero is taken as the leftmost element, a positive value of n shifts the elements circularly left n places.
valarray<T> apply(T func(T)) const;
valarray<T> apply(T func(const T\&)) const;
These functions return an array whose length is equal to the array. Each element of the returned array is assigned the value returned by applying the argument function to the corresponding element of the array.

```
void resize(size_t sz, T c = T());
```

This member function changes the length of the $*$ this array to sz and then assigns to each element the value of the second argument. Resizing invalidates all pointers and references to elements in the array.
26.5.3 valarray non-member operations

26.5.3.1 valarray binary operators

```
template<class T> valarray<T> operator*
    (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> operator/
    (const valarray<T>&, const valarray<T>&);
```

```
template<class T> valarray<T> operator\%
    (const valarray<T>\&, const valarray<T>\&);
template<class T> valarray<T> operator+
    (const valarray<T>\&, const valarray<T>\&);
template<class T> valarray<T> operator-
    (const valarray<T>\&, const valarray<T>\&);
template<class T> valarray<T> operator^
    (const valarray<T>\&, const valarray<T>\&);
template<class T> valarray<T> operator\&
    (const valarray<T>\&, const valarray<T>\&);
template<class T> valarray<T> operator|
    (const valarray<T>\&, const valarray<T>\&);
template<class \(T>\) valarray<T> operator<<
    (const valarray<T>\&, const valarray<T>\&);
template<class T> valarray<T> operator>>
    (const valarray<T>\&, const valarray<T>\&);
```

1 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type T or which can be unambiguously converted to type T.

Each of these operators returns an array whose length is equal to the lengths of the argument arrays. Each element of the returned array is initialized with the result of applying the indicated operator to the corresponding elements of the argument arrays.

If the argument arrays do not have the same length, the behavior is undefined.

```
template<class T> valarray<T> operator* (const valarray<T>&, const T&);
template<class T> valarray<T> operator* (const T&, const valarray<T>&);
template<class T> valarray<T> operator/ (const valarray<T>&, const T&);
template<class T> valarray<T> operator/ (const T&, const valarray<T>&);
template<class T> valarray<T> operator% (const valarray<T>&, const T&);
template<class T> valarray<T> operator% (const T&, const valarray<T>&);
template<class T> valarray<T> operator+ (const valarray<T>&, const T&);
template<class T> valarray<T> operator+ (const T&, const valarray<T>&);
template<class T> valarray<T> operator- (const valarray<T>&, const T&);
template<class T> valarray<T> operator- (const T&, const valarray<T>&);
template<class T> valarray<T> operator^ (const valarray<T>&, const T&);
template<class T> valarray<T> operator^ (const T&, const valarray<T>&);
template<class T> valarray<T> operator& (const valarray<T>&, const T&);
template<class T> valarray<T> operator& (const T&, const valarray<T>&);
template<class T> valarray<T> operator| (const valarray<T>&, const T&);
template<class T> valarray<T> operator| (const T&, const valarray<T>&);
template<class T> valarray<T> operator<<(const valarray<T>&, const T&);
template<class T> valarray<T> operator<<(const T&, const valarray<T>&);
template<class T> valarray<T> operator>>(const valarray<T>&, const T&);
template<class T> valarray<T> operator>>(const T&, const valarray<T>&);
```

Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type T or which can be unambiguously converted to type T.

Each of these operators returns an array whose length is equal to the length of the array argument. Each element of the returned array is initialized with the result of applying the indicated operator to the corresponding element of the array argument and the non-array argument.

26.5.3.2 valarray logical operators

[valarray.comparison]

```
template<class T> valarray<bool> operator==
    (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator!=
    (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<
    (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>
    (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator<=
    (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator>=
    (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator&&
    (const valarray<T>&, const valarray<T>&);
template<class T> valarray<bool> operator||
    (const valarray<T>&, const valarray<T>&);
```

1 Each of these operators may only be instantiated for a type T to which the indicated operator can be applied and for which the indicated operator returns a value which is of type bool or which can be unambiguously converted to type bool.
Each of these operators returns a bool array whose length is equal to the length of the array arguments. Each element of the returned array is initialized with the result of applying the indicated operator to the corresponding elements of the argument arrays.

If the two array arguments do not have the same length, the behavior is undefined.

```
template<class T> valarray<bool> operator==(const valarray<T>&, const T&);
template<class T> valarray<bool> operator==(const T&, const valarray<T>&);
template<class T> valarray<bool> operator!=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator!=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator< (const valarray<T>&, const T&);
template<class T> valarray<bool> operator< (const T&, const valarray<T>&);
template<class T> valarray<bool> operator> (const valarray<T>&, const T&);
template<class T> valarray<bool> operator> (const T&, const valarray<T>&);
template<class T> valarray<bool> operator<=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator<=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator>=(const valarray<T>&, const T&);
template<class T> valarray<bool> operator>=(const T&, const valarray<T>&);
template<class T> valarray<bool> operator&&(const valarray<T>&, const T&);
template<class T> valarray<bool> operator&&(const T&, const valarray<T>&);
template<class T> valarray<bool> operator||(const valarray<T>&, const T&);
template<class T> valarray<bool> operator||(const T&, const valarray<T>&);
```


26.5.3.3 valarray transcendentals

[valarray.transcend]

```
template<class T> valarray<T> abs (const valarray<T>&);
template<class T> valarray<T> acos (const valarray<T>&);
template<class T> valarray<T> asin (const valarray<T>&);
template<class T> valarray<T> atan (const valarray<T>&);
template<class T> valarray<T> atan2
    (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> atan2(const valarray<T>&, const T&);
template<class T> valarray<T> atan2(const T&, const valarray<T>&);
template<class T> valarray<T> cos (const valarray<T>&);
template<class T> valarray<T> cosh (const valarray<T>&);
template<class T> valarray<T> exp (const valarray<T>&);
template<class T> valarray<T> log (const valarray<T>&);
template<class T> valarray<T> log10(const valarray<T>&);
template<class T> valarray<T> pow
    (const valarray<T>&, const valarray<T>&);
template<class T> valarray<T> pow (const valarray<T>&, const T&);
template<class T> valarray<T> pow (const T&, const valarray<T>&);
template<class T> valarray<T> sin (const valarray<T>&);
template<class T> valarray<T> sinh (const valarray<T>&);
template<class T> valarray<T> sqrt (const valarray<T>&);
template<class T> valarray<T> tan (const valarray<T>&);
template<class T> valarray<T> tanh (const valarray<T>&);
```

Each of these functions may only be instantiated for a type T to which a unique function with the indicated name can be applied (unqualified). This function shall return a value which is of type T or which can be unambiguously converted to type T.

26.5.4 Class slice

[class.slice]

```
namespace std {
    class slice {
    public:
        slice();
        slice(size_t, size_t, size_t);
        size_t start() const;
        size_t size() const;
        size_t stride() const;
```

```
    };
```

\}

1 The slice class represents a BLAS-like slice from an array. Such a slice is specified by a starting index, a length, and a stride. ${ }^{283)}$
26.5.4.1 slice constructors
[cons.slice]
slice();
slice(size_t start, size_t length, size_t stride);
slice(const slice\&);

26.5.4.2 slice access functions

[slice.access]

```
size_t start() const;
size_t size() const;
size_t stride() const;
```


26.5.5 Class template slice_array

```
namespace std {
    template <class T> class slice_array {
    public:
        typedef T value_type;
        void operator= (const valarray<T>&) const;
        void operator*= (const valarray<T>&) const;
        void operator/= (const valarray<T>&) const;
        void operator%= (const valarray<T>&) const;
        void operator+= (const valarray<T>&) const;
        void operator-= (const valarray<T>&) const;
        void operator^= (const valarray<T>&) const;
        void operator&= (const valarray<T>&) const;
        void operatorl= (const valarray<T>&) const;
        void operator<<=(const valarray<T>&) const;
        void operator>>=(const valarray<T>&) const;
```

[^164]```
 slice_array(const slice_array&);
 ~slice_array();
 slice_array& operator=(const slice_array&);
 void operator=(const T&) const;
 private:
 slice_array();
 };
}
```

1 The slice_array template is a helper template used by the slice subscript operator

```
slice_array<T> valarray<T>::operator[](slice);
```

It has reference semantics to a subset of an array specified by a slice object.
2 [Example: The expression a[slice (1, 5, 3)] $=\mathrm{b}$; has the effect of assigning the elements of b to a slice of the elements in a. For the slice shown, the elements selected from a are $1,4, \ldots, 13$. -end example ]
26.5.5.1 slice_array constructors [cons.slice.arr]
slice_array();
1

### 26.5.5.2 slice_array assignment

[slice.arr.assign]
void operator=(const valarray<T>\&) const;
slice_array\& operator=(const slice_array\&);
These assignment operators have reference semantics, assigning the values of the argument array elements to selected elements of the valarray<T> object to which the slice_array object refers.

### 26.5.5.3 slice_array computed assignment

[slice.arr.comp.assign]

```
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operatorl= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
```

These computed assignments have reference semantics, applying the indicated operation to the elements of the argument array and selected elements of the valarray<T> object to which the slice_array object refers.

### 26.5.5.4 slice_array fill function

[slice.arr.fill]
void operator=(const T\&) const;
1

### 26.5.6 The gslice class

[class.gslice]

```
namespace std {
 class gslice {
 public:
 gslice();
 gslice(size_t s, const valarray<size_t>& l, const valarray<size_t>& d);
 size_t start() const;
 valarray<size_t> size() const;
 valarray<size_t> stride() const;
 };
}
```

1 This class represents a generalized slice out of an array. A gslice is defined by a starting offset $(s)$, a set of lengths $\left(l_{j}\right)$, and a set of strides $\left(d_{j}\right)$. The number of lengths shall equal the number of strides.
2 A gslice represents a mapping from a set of indices $\left(i_{j}\right)$, equal in number to the number of strides, to a single index $k$. It is useful for building multidimensional array classes using the valarray template, which is one-dimensional. The set of one-dimensional index values specified by a gslice are

$$
k=s+\sum_{j} i_{j} d_{j}
$$

where the multidimensional indices $i_{j}$ range in value from 0 to $l_{i j}-1$.
3

```
start = 3
length = {2, 4, 3}
stride = {19, 4, 1}
```

yields the sequence of one-dimensional indices

$$
k=3+(0,1) \times 19+(0,1,2,3) \times 4+(0,1,2) \times 1
$$

which are ordered as shown in the following table:

$$
\begin{aligned}
& \left(i_{0}, \quad i_{1}, \quad i_{2}, \quad k\right)= \\
& (0, \quad 0, \quad 0, \quad 3) \text {, } \\
& (0, \quad 0, \quad 1, \quad 4) \text {, } \\
& (0, \quad 0, \quad 2, \quad 5) \text {, } \\
& (0, \quad 1, \quad 0, \quad 7) \text {, }
\end{aligned}
$$



That is, the highest-ordered index turns fastest. - end example ]
4 It is possible to have degenerate generalized slices in which an address is repeated.
5 [Example: If the stride parameters in the previous example are changed to $\{1,1,1\}$, the first few elements of the resulting sequence of indices will be

$$
\begin{array}{llll}
(0, & 0, & 0, & 3), \\
(0, & 0, & 1, & 4), \\
(0, & 0, & 2, & 5), \\
(0, & 1, & 0, & 4), \\
(0, & 1, & 1, & 5), \\
(0, & 1, & 2, & 6),
\end{array}
$$

- end example ]

6 If a degenerate slice is used as the argument to the non-const version of operator [] (const gslice\&), the resulting behavior is undefined.

### 26.5.6.1 gslice constructors

[gslice.cons]

```
gslice();
gslice(size_t start, const valarray<size_t>& lengths,
 const valarray<size_t>& strides);
gslice(const gslice&);
```

The default constructor creates a gslice which specifies no elements. The constructor with arguments builds a gslice based on a specification of start, lengths, and strides, as explained in the previous section.

### 26.5.6.2 gslice access functions

```
size_t start() const;
valarray<size_t> size() const;
valarray<size_t> stride() const;
```

26.5.7 Class template gslice_array

```
namespace std {
 template <class T> class gslice_array {
 public:
 typedef T value_type;
 void operator= (const valarray<T>&) const;
 void operator*= (const valarray<T>&) const;
 void operator/= (const valarray<T>&) const;
 void operator%= (const valarray<T>&) const;
 void operator+= (const valarray<T>&) const;
 void operator-= (const valarray<T>&) const;
 void operator^= (const valarray<T>&) const;
 void operator&= (const valarray<T>&) const;
 void operatorl= (const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 gslice_array(const gslice_array&);
 ~gslice_array();
 gslice_array& operator=(const gslice_array&);
 void operator=(const T&) const;
 private:
 gslice_array();
 };
}
```

1 This template is a helper template used by the slice subscript operator

```
gslice_array<T> valarray<T>::operator[](const gslice&);
```

It has reference semantics to a subset of an array specified by a gslice object.
Thus, the expression a [gslice (1, length, stride)] $=\mathrm{b}$ has the effect of assigning the elements of b to a generalized slice of the elements in a.

### 26.5.7.1 gslice_array constructors

[gslice.array.cons]

```
gslice_array();
```

This constructor is declared to be private. This constructor need not be defined.

### 26.5.7.2 gslice_array assignment

[gslice.array.assign]
void operator=(const valarray<T>\&) const;
gslice_array\& operator=(const gslice_array\&);
Draft

```
26.5.7.3 gslice_array
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
```


### 26.5.7.4 gslice_array fill function

[gslice.array.fill]

```
void operator=(const T&) const;
```

1
This function has reference semantics, assigning the value of its argument to the elements of the valarray<T> object to which the gslice_array object refers.

### 26.5.8 Class template mask_array

[template.mask.array]

```
namespace std {
 template <class T> class mask_array {
 public:
 typedef T value_type;
 void operator= (const valarray<T>&) const;
 void operator*= (const valarray<T>&) const;
 void operator/= (const valarray<T>&) const;
 void operator%= (const valarray<T>&) const;
 void operator+= (const valarray<T>&) const;
 void operator-= (const valarray<T>&) const;
 void operator^= (const valarray<T>&) const;
 void operator&= (const valarray<T>&) const;
 void operator|= (const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 mask_array(const mask_array&);
 ~mask_array();
 mask_array& operator=(const mask_array&);
```

Draft

```
 void operator=(const T&) const;
 private:
 mask_array();
 };
}
```

1 This template is a helper template used by the mask subscript operator:

```
mask_array<T> valarray<T>::operator[] (const valarray<bool>&).
```

It has reference semantics to a subset of an array specified by a boolean mask. Thus, the expression a[mask] = b ; has the effect of assigning the elements of b to the masked elements in $a$ (those for which the corresponding element in mask is true.)
26.5.8.1 mask_array constructors
[mask.array.cons]
mask_array();

1

### 26.5.8.2 mask_array assignment

[mask.array.assign]

```
void operator=(const valarray<T>&) const;
```

mask_array\& operator=(const mask_array\&);

These assignment operators have reference semantics, assigning the values of the argument array elements to selected elements of the valarray<T> object to which it refers.

### 26.5.8.3 mask_array computed assignment

[mask.array.comp.assign]

```
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operatorl= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
```

These computed assignments have reference semantics, applying the indicated operation to the elements of the argument array and selected elements of the valarray<T> object to which the mask object refers.
26.5.8.4 mask_array fill function
[mask.array.fill]
void operator=(const T\&) const;

Draft

1

### 26.5.9 Class template indirect_array

[template.indirect.array]

```
namespace std {
 template <class T> class indirect_array {
 public:
 typedef T value_type;
 void operator= (const valarray<T>&) const;
 void operator*= (const valarray<T>&) const;
 void operator/= (const valarray<T>&) const;
 void operator%= (const valarray<T>&) const;
 void operator+= (const valarray<T>&) const;
 void operator-= (const valarray<T>&) const;
 void operator^= (const valarray<T>&) const;
 void operator&= (const valarray<T>&) const;
 void operator|= (const valarray<T>&) const;
 void operator<<=(const valarray<T>&) const;
 void operator>>=(const valarray<T>&) const;
 indirect_array(const indirect_array&);
 ~indirect_array();
 indirect_array& operator=(const indirect_array&);
 void operator=(const T&) const;
 private:
 indirect_array();
 };
}
```

1 This template is a helper template used by the indirect subscript operator

```
indirect_array<T> valarray<T>::operator[](const valarray<size_t>&).
```

It has reference semantics to a subset of an array specified by an indirect_array. Thus the expression a [ indirect] $=b$; has the effect of assigning the elements of $b$ to the elements in a whose indices appear in indirect.
26.5.9.1 indirect_array constructors
[indirect.array.cons]

```
indirect_array();
```

This constructor is declared to be private. This constructor need not be defined.

```
void operator=(const valarray<T>&) const;
indirect_array& operator=(const indirect_array&);
```

These assignment operators have reference semantics, assigning the values of the argument array elements to selected elements of the valarray<T> object to which it refers.

If the indirect_array specifies an element in the valarray<T> object to which it refers more than once, the behavior is undefined.
[ Example:

```
int addr[] = {2, 3, 1, 4, 4};
valarray<size_t> indirect(addr, 5);
valarray<double> a(0., 10), b(1., 5);
a[indirect] = b;
```

results in undefined behavior since element 4 is specified twice in the indirection. -end example ]

### 26.5.9.3 indirect_array computed assignment

[indirect.array.comp.assign]

```
void operator*= (const valarray<T>&) const;
void operator/= (const valarray<T>&) const;
void operator%= (const valarray<T>&) const;
void operator+= (const valarray<T>&) const;
void operator-= (const valarray<T>&) const;
void operator^= (const valarray<T>&) const;
void operator&= (const valarray<T>&) const;
void operator|= (const valarray<T>&) const;
void operator<<=(const valarray<T>&) const;
void operator>>=(const valarray<T>&) const;
```

These computed assignments have reference semantics, applying the indicated operation to the elements of the argument array and selected elements of the valarray<T> object to which the indirect_array object refers.

If the indirect_array specifies an element in the valarray<T> object to which it refers more than once, the behavior is undefined.

### 26.5.9.4 indirect_array fill function

[indirect.array.fill]

```
void operator=(const T&) const;
```

This function has reference semantics, assigning the value of its argument to the elements of the valarray<T> object to which the indirect_array object refers.

### 26.6 Generalized numeric operations

## Header <numeric> synopsis

```
namespace std {
 template <class InputIterator, class T>
```

```
 T accumulate(InputIterator first, InputIterator last, T init);
template <class InputIterator, class T, class BinaryOperation>
 T accumulate(InputIterator first, InputIterator last, T init,
 BinaryOperation binary_op);
template <class InputIterator1, class InputIterator2, class T>
 T inner_product(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, T init);
template <class InputIterator1, class InputIterator2, class T,
 class BinaryOperation1, class BinaryOperation2>
 T inner_product(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, T init,
 BinaryOperation1 binary_op1,
 BinaryOperation2 binary_op2);
template <class InputIterator, class OutputIterator>
 OutputIterator partial_sum(InputIterator first,
 InputIterator last,
 OutputIterator result);
template <class InputIterator, class OutputIterator,
 class BinaryOperation>
 OutputIterator partial_sum(InputIterator first,
 InputIterator last,
 OutputIterator result,
 BinaryOperation binary_op);
template <class InputIterator, class OutputIterator>
 OutputIterator adjacent_difference(InputIterator first,
 InputIterator last,
 OutputIterator result);
template <class InputIterator, class OutputIterator,
 class BinaryOperation>
 OutputIterator adjacent_difference(InputIterator first,
 InputIterator last,
 OutputIterator result,
 BinaryOperation binary_op);
```

\}

1 The requirements on the types of algorithms' arguments that are described in the introduction to clause 25 also apply to the following algorithms.

### 26.6.1 Accumulate

```
template <class InputIterator, class T>
 T accumulate(InputIterator first, InputIterator last, T init);
template <class InputIterator, class T, class BinaryOperation>
 T accumulate(InputIterator first, InputIterator last, T init,
 BinaryOperation binary_op);
```


### 26.6.2 Inner product

[inner.product]

```
template <class InputIterator1, class InputIterator2, class T>
 T inner_product(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, T init);
template <class InputIterator1, class InputIterator2, class T,
 class BinaryOperation1, class BinaryOperation2>
 T inner_product(InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, T init,
 BinaryOperation1 binary_op1,
 BinaryOperation2 binary_op2);
```

Requires: T shall meet the requirements of CopyConstructible (20.1.3) and Assignable (23.1) types. In the ranges [first,last] and [first2,first2 + (last - first)] binary_op1 and binary_op2 shall neither modify elements nor invalidate iterators or subranges. ${ }^{286)}$

### 26.6.3 Partial sum

[partial.sum]

```
template <class InputIterator, class OutputIterator>
 OutputIterator
 partial_sum(InputIterator first, InputIterator last,
 OutputIterator result);
template
 <class InputIterator, class OutputIterator, class BinaryOperation>
 OutputIterator
 partial_sum(InputIterator first, InputIterator last,
 OutputIterator result, BinaryOperation binary_op);
```

1 Effects: Assigns to every element referred to by iterator i in the range [result, result + (last - first)) a value correspondingly equal to

$$
((\ldots(* f i r s t+*(f i r s t+1))+\ldots)+*(f i r s t+(i-\ldots \text { result })))
$$

[^165]or
binary_op(binary_op(...,

```
 binary_op(*first, *(first + 1)),...), *(first + (i - result)))
```

Returns: result + (last - first).
Complexity: Exactly (last - first) - 1 applications of binary_op.
Requires: In the ranges [first,last] and [result,result + (last - first)] binary_op shall neither modify elements nor invalidate iterators or subranges. ${ }^{287)}$

Remarks: result may be equal to first.

### 26.6.4 Adjacent difference

[adjacent.difference]

```
template <class InputIterator, class OutputIterator>
 OutputIterator
 adjacent_difference(InputIterator first, InputIterator last,
 OutputIterator result);
template
 <class InputIterator, class OutputIterator, class BinaryOperation>
 OutputIterator
 adjacent_difference(InputIterator first, InputIterator last,
 OutputIterator result,
 BinaryOperation binary_op);
```

Effects: Assigns to every element referred to by iterator i in the range [result $+1, r e s u l t+$ (last first)) a value correspondingly equal to
*(first + (i - result)) - *(first + (i - result) - 1)
or
binary_op(*(first + (i - result)), *(first + (i - result) - 1)).
result gets the value of *first.
Requires: In the ranges [first,last] and [result,result + (last - first)], binary_op shall neither modify elements nor invalidate iterators or subranges. ${ }^{288)}$

Remarks: result may be equal to first.
Returns: result + (last - first).
Complexity: Exactly (last - first) - 1 applications of binary_op.

[^166]
### 26.7 C Library

1 The header <ctgmath> simply includes the headers <ccomplex> and <cmath>.
2 [Note: The overloads provided in C99 by magic macros are already provided in <ccomplex> and <cmath> by "sufficient" additional overloads. - end note ]

3 The header <tgmath.h> effectively includes the headers <complex.h> and <math.h>.
4 Tables 101 and 102 describe headers <cmath ${ }^{289)}$ and <cstdlib>, respectively.

Table 101: Header <cmath> synopsis

| Type |  | Name(s) |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Macros: |  |  |  |  |
| FP_FAST_FMA | FP_ILOGBNAN | FP_SUBNORMAL | HUGE_VALL | MATH_ERRNO |
| FP_FAST_FMAF | FP_INFINITE | FP_ZERO | INFINITY | MATH_ERREXCEPT |
| FP_FAST_FMAL | FP_NAN | HUGE_VAL | NAN | math_errhandling |
| FP_ILOGB0 | FP_NORMAL | HUGE_VALF |  |  |
| Types: | double_t | float_t |  |  |
| Functions: |  |  |  |  |
| abs | cosh | fmod | logb | rint |
| acos | erf | frexp | lrint | round |
| acosh | erfc | hypot | lround | scalbln |
| asin | exp | ilogb | modf | scalbn |
| asinh | exp2 | ldexp | nan | sin |
| atan | expm1 | lgamma | nearbyint | sinh |
| atan2 | fabs | llrint | nextafter | sqrt |
| atanh | fdim | llround | nexttoward | tan |
| cbrt | floor | log | pow | tanh |
| ceil | fma | log10 | remainder | tgamma |
| copysign | fmax | log1p | remquo | trunc |
| cos | fmin | log2 |  |  |
| Templates: |  |  |  |  |
| fpclassify | isgreaterequal | islessequal | isnan | isunordered |
| isfinite | isinf | islessgreater | isnormal | signbit |
| isgreater | isless |  |  |  |

5 The contents of these headers are the same as the Standard C library headers <math.h> and <stdlib.h> respectively, with the following changes:

6 The rand function has the semantics specified in the $C$ standard, except that the implementation may specify that particular library functions may call rand.

7 In addition to the int versions of certain math functions in <cstdlib>, C++ adds long and long long overloaded versions of these functions, with the same semantics.

8 The added signatures are:

[^167]Table 102: Header <cstdlib> synopsis

| Type | Name(s) |  |
| :--- | :--- | :--- |
| Macro: | RAND_MAX |  |
| Types: |  |  |
| div_t | ldiv_t | lldiv_t |
| Functions: |  |  |
| abs | ldiv | rand |
| div | llabs | srand |
| labs | lldiv |  |

```
long abs(long); //labs()
long abs(long long); //llabs()
ldiv_t div(long, long); //ldiv()
lldiv_t div(long long, long long); //lldiv()
```

9 In addition to the double versions of the math functions in <cmath>, C++ adds float and long double overloaded versions of these functions, with the same semantics.

10 The added signatures are:

```
float abs(float);
float acos(float);
float acosh(float);
float asin(float);
float asinh(float);
float atan(float);
float atan2(float, float);
float atanh(float);
float cbrt(float);
float ceil(float);
float copysign(float, float);
float cos(float);
float cosh(float);
float erf(float);
float erfc(float);
float exp(float);
float exp2(float);
float expm1(float);
float fabs(float);
float fdim(float, float);
float floor(float);
float fma(float, float, float);
float fmax(float, float);
float fmin(float, float);
float fmod(float, float);
float frexp(float, int*);
float hypot(float, float);
float ilogb(float);
```

```
float ldexp(float, int);
float lgamma(float);
float llrint(float);
float llround(float);
float log(float);
float log10(float);
float log1p(float);
float log2(float);
float logb(float);
float lrint(float);
float lround(float);
float modf(float, float*);
float nearbyint(float);
float nextafter(float, float);
float nexttoward(float, long double);
float pow(float, float);
float pow(float, int);
float remainder(float, float);
float remquo(float, float, int *);
float rint(float);
float round(float);
float scalbln(float, long);
float scalbn(float, int);
float sin(float);
float sinh(float);
float sqrt(float);
float tan(float);
float tanh(float);
float tgamma(float);
float trunc(float);
double abs(double); //fabs()
double pow(double, int);
long double abs(long double);
long double acos(long double);
long double acosh(long double);
long double asin(long double);
long double asinh(long double);
long double atan(long double);
long double atan2(long double, long double);
long double atanh(long double);
long double cbrt(long double);
long double ceil(long double);
long double copysign(long double, long double);
long double cos(long double);
long double cosh(long double);
long double erf(long double);
long double erfc(long double);
long double exp(long double);
```

Draft

```
long double exp2(long double);
long double expm1(long double);
long double fabs(long double);
long double fdim(long double, long double);
long double floor(long double);
long double fma(long double, long double, long double);
long double fmax(long double, long double);
long double fmin(long double, long double);
long double fmod(long double, long double);
long double frexp(long double, int*);
long double hypot(long double, long double);
long double ilogb(long double);
long double ldexp(long double, int);
long double lgamma(long double);
long double llrint(long double);
long double llround(long double);
long double log(long double);
long double log10(long double);
long double log1p(long double);
long double log2(long double);
long double logb(long double);
long double lrint(long double);
long double lround(long double);
long double modf(long double, long double*);
long double nearbyint(long double);
long double nextafter(long double, long double);
long double nexttoward(long double, long double);
long double pow(long double, long double);
long double pow(long double, int);
long double remainder(long double, long double);
long double remquo(long double, long double, int *);
long double rint(long double);
long double round(long double);
long double scalbln(long double, long);
long double scalbn(long double, int);
long double sin(long double);
long double sinh(long double);
long double sqrt(long double);
long double tan(long double);
long double tanh(long double);
long double tgamma(long double);
long double trunc(long double);
```

11 Moreover, there shall be additional overloads sufficient to ensure:

1. If any argument corresponding to a double parameter has type long double, then all arguments corresponding to double parameters are effectively cast to long double.
2. Otherwise, if any argument corresponding to a double parameter has type double or an integer type, then all arguments corresponding to double parameters are effectively cast to double.
3. Otherwise, all arguments corresponding to double parameters are effectively cast to float.

12 The templates defined in <cmath> replace the C99 macros with the same names. The templates have the following declarations:

```
namespace std {
template <class T> bool signbit(T x);
template <class T> int fpclassify(T x);
template <class T> bool isfinite(T x);
template <class T> bool isinf(T x);
template <class T> bool isnan(T x);
template <class T> bool isnormal(T x);
template <class T> bool isgreater(T x, T y);
template <class T> bool isgreaterequal(T x, T y);
template <class T> bool isless(T x, T y);
template <class T> bool islessequal(T x, T y);
template <class T> bool islessgreater(T x, T y);
template <class T> bool isunordered(T x, T y);
} // namespace std
```

13 The templates behave the same as the C99 macros with corresponding names defined in C99 subclause 7.12.3, Classification macros, and C99 subclause 7.12.14, Comparison macros.
SEE ALSO: ISO C subclauses 7.5, 7.10.2, 7.10.6.

## Chapter 27 Input/output library

## [input.output]

1 This clause describes components that C++ programs may use to perform input/output operations.
2 The following subclauses describe requirements for stream parameters, and components for forward declarations of iostreams, predefined iostreams objects, base iostreams classes, stream buffering, stream formatting and manipulators, string streams, and file streams, as summarized in Table 103.

Table 103: Input/output library summary

| Subclause | Header(s) |
| :--- | :--- |
| 27.1 Requirements |  |
| 27.2 Forward declarations | <iosfwd> |
| 27.3 Standard iostream objects | <iostream> |
| 27.4 Iostreams base classes | <ios> |
| 27.5 Stream buffers | <streambuf> |
| 27.6 Formatting and manipulators | <istream> <br> <ostream> <br> <iomanip> |
| 27.7 String streams | <sstream> |
| 27.8 File streams | <fstream> <br> <cstdio> |

### 27.1 Iostreams requirements

## [iostreams.requirements]

### 27.1.1 Imbue Limitations

[iostream.limits.imbue]
1 No function described in clause 27 except for ios_base::imbue causes any instance of basic_ios::imbue or basic_streambuf: :imbue to be called. If any user function called from a function declared in clause 27 or as an overriding virtual function of any class declared in clause 27 calls imbue, the behavior is undefined.

### 27.1.2 Positioning Type Limitations

[iostreams.limits.pos]
1 The classes of clause 27 with template arguments charT and traits behave as described if traits: :pos_type and traits::off_type are streampos and streamoff respectively. Except as noted explicitly below, their behavior when traits::pos_type and traits: :off_type are other types is implementation-defined.

### 27.2 Forward declarations

[iostream.forward]

## Header <iosfwd> synopsis

```
namespace std {
 template<class charT> class char_traits;
 template<> class char_traits<char>;
 template<> class char_traits<wchar_t>;
 template<class T> class allocator;
 template <class charT, class traits = char_traits<charT> >
 class basic_ios;
 template <class charT, class traits = char_traits<charT> >
 class basic_streambuf;
 template <class charT, class traits = char_traits<charT> >
 class basic_istream;
 template <class charT, class traits = char_traits<charT> >
 class basic_ostream;
 template <class charT, class traits = char_traits<charT> >
 class basic_iostream;
 template <class charT, class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_stringbuf;
 template <class charT, class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_istringstream;
 template <class charT, class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_ostringstream;
 template <class charT, class traits = char_traits<charT>,
 class Allocator = allocator<charT> >
 class basic_stringstream;
 template <class charT, class traits = char_traits<charT> >
 class basic_filebuf;
 template <class charT, class traits = char_traits<charT> >
 class basic_ifstream;
 template <class charT, class traits = char_traits<charT> >
 class basic_ofstream;
 template <class charT, class traits = char_traits<charT> >
 class basic_fstream;
```

```
template <class charT, class traits = char_traits<charT> >
 class istreambuf_iterator;
template <class charT, class traits = char_traits<charT> >
 class ostreambuf_iterator;
typedef basic_ios<char> ios;
typedef basic_ios<wchar_t> wios;
typedef basic_streambuf<char> streambuf;
typedef basic_istream<char> istream;
typedef basic_ostream<char> ostream;
typedef basic_iostream<char> iostream;
typedef basic_stringbuf<char> stringbuf;
typedef basic_istringstream<char> istringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_stringstream<char> stringstream;
typedef basic_filebuf<char> filebuf;
typedef basic_ifstream<char> ifstream;
typedef basic_ofstream<char> ofstream;
typedef basic_fstream<char> fstream;
typedef basic_streambuf<wchar_t> wstreambuf;
typedef basic_istream<wchar_t> wistream;
typedef basic_ostream<wchar_t> wostream;
typedef basic_iostream<wchar_t> wiostream;
typedef basic_stringbuf<wchar_t> wstringbuf;
typedef basic_istringstream<wchar_t> wistringstream;
typedef basic_ostringstream<wchar_t> wostringstream;
typedef basic_stringstream<wchar_t> wstringstream;
typedef basic_filebuf<wchar_t> wfilebuf;
typedef basic_ifstream<wchar_t> wifstream;
typedef basic_ofstream<wchar_t> wofstream;
typedef basic_fstream<wchar_t> wfstream;
template <class state> class fpos;
typedef fpos<char_traits<char>::state_type> streampos;
typedef fpos<char_traits<wchar_t>::state_type> wstreampos;
```

\}

1 Default template arguments are described as appearing both in <iosfwd> and in the synopsis of other headers but it is well-formed to include both <iosfwd> and one or more of the other headers. ${ }^{290}$ )

[^168]2 [Note: The class template specialization basic_ios<charT, traits> serves as a virtual base class for the class templates basic_istream, basic_ostream, and class templates derived from them. basic_iostream is a class template derived from both basic_istream<charT, traits> and basic_ostream<charT,traits>.

3 The class template specialization basic_streambuf<charT,traits> serves as a base class for template classes basic_stringbuf and basic_filebuf.

4 The class template specialization basic_istream<charT, traits> serves as a base class for template classes basic_istringstream and basic_ifstream.

5 The class template specialization basic_ostream<charT, traits> serves as a base class for template classes basic_ostringstream and basic_ofstream.

6 The class template specialization basic_iostream<charT, traits> serves as a base class for template classes basic_stringstream and basic_fstream.

7 Other typedefs define instances of class templates specialized for char or wchar_t types.
8 Specializations of the class template fpos are used for specifying file position information.
9 The types streampos and wstreampos are used for positioning streams specialized on char and wchar_t respectively.
10 This synopsis suggests a circularity between streampos and char_traits<char>. An implementation can avoid this circularity by substituting equivalent types. One way to do this might be

```
template<class stateT> class fpos { ... }; // depends on nothing
typedef ... _STATE; // implementation private declaration of stateT
typedef fpos<_STATE> streampos;
template<> struct char_traits<char> {
 typedef streampos
 pos_type;
 // ..
}
- end note]
```


### 27.3 Standard iostream objects

## Header <iostream> synopsis

```
namespace std {
 extern istream cin;
 extern ostream cout;
 extern ostream cerr;
 extern ostream clog;
 extern wistream wcin;
 extern wostream wcout;
 extern wostream wcerr;
 extern wostream wclog;
}
```

1 The header <iostream> declares objects that associate objects with the standard C streams provided for by the functions declared in <cstdio> (27.8.2).

2 The objects are constructed and the associations are established at some time prior to or during the first time an object of class ios_base: : Init is constructed, and in any case before the body of main begins execution. ${ }^{291)}$ The objects are not destroyed during program execution. ${ }^{292 \text { ) }}$ If a translation unit includes <iostream> or explicitly constructs an ios_base: : Init object, these stream objects shall be constructed before dynamic initialization of non-local objects defined later in that translation unit, and these stream objects shall be destroyed after the destruction of dynamically initialized non-local objects defined later in that translation unit.

3 Mixing operations on corresponding wide- and narrow-character streams follows the same semantics as mixing such operations on FILEs, as specified in Amendment 1 of the ISO C standard.

### 27.3.1 Narrow stream objects

[narrow.stream.objects]
istream cin;
The object cin controls input from a stream buffer associated with the object stdin, declared in <cstdio>.
After the object cin is initialized, cin.tie() returns \&cout. Its state is otherwise the same as required for basic_ios<char>: :init (27.4.4.1).
ostream cout;
The object cout controls output to a stream buffer associated with the object stdout, declared in <cstdio> (27.8.2).
ostream cerr;
The object cerr controls output to a stream buffer associated with the object stderr, declared in <cstdio> (27.8.2).

After the object cerr is initialized, cerr.flags() \& unitbuf is nonzero and cerr.tie() returns \&cout. Its state is otherwise the same as required for basic_ios<char> : :init (27.4.4.1).

```
ostream clog;
```

The object clog controls output to a stream buffer associated with the object stderr, declared in <cstdio> (27.8.2).

### 27.3.2 Wide stream objects

[wide.stream.objects]

```
wistream wcin;
```

The object wcin controls input from a stream buffer associated with the object stdin, declared in <cstdio>.
After the object wcin is initialized, wcin.tie() returns \&wcout. Its state is otherwise the same as required for basic_ios<wchar_t>: :init (27.4.4.1).
wostream wcout;

[^169]```
wostream wcerr;
```

The object wcerr controls output to a stream buffer associated with the object stderr, declared in <cstdio> (27.8.2).

After the object wcerr is initialized, wcerr.flags () \& unitbuf is nonzero and wcerr.tie () returns \&wcout. Its state is otherwise the same as required for basic_ios<wchar_t>: :init (27.4.4.1).
wostream wclog;
The object wclog controls output to a stream buffer associated with the object stderr, declared in <cstdio> (27.8.2).

27.4 Iostreams base classes

[iostreams.base]

Header <ios> synopsis

```
\#include <iosfwd>
namespace std \{
    typedef OFF_T streamoff;
    typedef \(S Z_{-} T\) streamsize;
    template <class stateT> class fpos;
    class ios_base;
    template <class charT, class traits = char_traits<charT\gg
        class basic_ios;
    // 27.4.5, manipulators:
    ios_base\& boolalpha (ios_base\& str);
    ios_base\& noboolalpha(ios_base\& str);
    ios_base\& showbase (ios_base\& str);
    ios_base\& noshowbase (ios_base\& str);
    ios_base\& showpoint (ios_base\& str);
    ios_base\& noshowpoint(ios_base\& str);
    ios_base\& showpos (ios_base\& str);
    ios_base\& noshowpos (ios_base\& str);
    ios_base\& skipws (ios_base\& str);
    ios_base\& noskipws (ios_base\& str);
    ios_base\& uppercase (ios_base\& str);
    ios_base\& nouppercase(ios_base\& str);
    ios_base\& unitbuf (ios_base\& str);
```

```
ios_base& nounitbuf (ios_base& str);
// 27.4.5.2 adjustfield:
ios_base& internal (ios_base& str);
ios_base& left (ios_base& str);
ios_base& right (ios_base& str);
// 27.4.5.3 basefield:
ios_base& dec (ios_base& str);
ios_base& hex (ios_base& str);
ios_base& oct (ios_base& str);
// 27.4.5.4 floatfield:
ios_base& fixed (ios_base& str);
ios_base& scientific (ios_base& str);
ios_base& hexfloat (ios_base& str);
ios_base& defaultfloat(ios_base& str);
}
```


27.4.1 Types

[stream.types]

```
typedef OFF_T streamoff;
```

1

```
typedef SZ_T streamsize;
```

The type streamsize is a synonym for one of the signed basic integral types. It is used to represent the number of characters transferred in an I/O operation, or the size of I/O buffers. ${ }^{293}$)
27.4.2 Class ios_base
[ios.base]

```
namespace std {
    class ios_base {
    public:
        class failure;
        typedef T1 fmtflags;
        static const fmtflags boolalpha;
        static const fmtflags dec;
        static const fmtflags fixed;
        static const fmtflags hex;
        static const fmtflags internal;
        static const fmtflags left;
        static const fmtflags oct;
```

[^170]```
static const fmtflags right;
static const fmtflags scientific;
static const fmtflags showbase;
static const fmtflags showpoint;
static const fmtflags showpos;
static const fmtflags skipws;
static const fmtflags unitbuf;
static const fmtflags uppercase;
static const fmtflags adjustfield;
static const fmtflags basefield;
static const fmtflags floatfield;
typedef T2 iostate;
static const iostate badbit;
static const iostate eofbit;
static const iostate failbit;
static const iostate goodbit;
typedef T3 openmode;
static const openmode app;
static const openmode ate;
static const openmode binary;
static const openmode in;
static const openmode out;
static const openmode trunc;
typedef T4 seekdir;
static const seekdir beg;
static const seekdir cur;
static const seekdir end;
class Init;
// 27.4.2.2 fmtflags state:
fmtflags flags() const;
fmtflags flags(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl);
fmtflags setf(fmtflags fmtfl, fmtflags mask);
void unsetf(fmtflags mask);
streamsize precision() const;
streamsize precision(streamsize prec);
streamsize width() const;
streamsize width(streamsize wide);
// 27.4.2.3 locales:
locale imbue(const locale& loc);
locale getloc() const;
// 27.4.2.5 storage:
```

```
 static int xalloc();
 long& iword(int index);
 void*& pword(int index);
 // destructor
 virtual ~ios_base();
 // 27.4.2.6 callbacks;
 enum event { erase_event, imbue_event, copyfmt_event };
 typedef void (*event_callback)(event, ios_base&, int index);
 void register_callback(event_callback fn, int index);
 static bool sync_with_stdio(bool sync = true);
 protected:
 ios_base();
 private:
 // static int index; exposition only
 // long* iarray;
 // void** parray;
 private:
 ios_base(const ios_base&);
 ios_base& operator=(const ios_base&);
 };
}
```

1 ios_base defines several member types:

- a class failure derived from exception;
- a class Init;
- three bitmask types, fmtflags, iostate, and openmode;
- an enumerated type, seekdir.

2 It maintains several kinds of data:

- state information that reflects the integrity of the stream buffer;
- control information that influences how to interpret (format) input sequences and how to generate (format) output sequences;
- additional information that is stored by the program for its private use.

3 [Note: For the sake of exposition, the maintained data is presented here as:

- static int index, specifies the next available unique index for the integer or pointer arrays maintained for the private use of the program, initialized to an unspecified value;
- long* iarray, points to the first element of an arbitrary-length long array maintained for the private use of the program;
- void** parray, points to the first element of an arbitrary-length pointer array maintained for the private use of the program. -end note ]


### 27.4.2.1 Types

[ios.types]
27.4.2.1.1 Class ios_base: :failure
[ios::failure]

```
namespace std {
 class ios_base::failure : public exception {
 public:
 explicit failure(const string& msg);
 virtual const char* what() const throw();
 };
}
```

1 The class failure defines the base class for the types of all objects thrown as exceptions, by functions in the iostreams library, to report errors detected during stream buffer operations.
explicit failure(const string\& msg);

Effects: Constructs an object of class failure.
Postcondition: $\operatorname{strcmp}($ what (), msg.c_str()) $==0$
const char* what() const;
Returns: The message msg with which the exception was created.
27.4.2.1.2 Type ios_base: :fmtflags
[ios::fmtflags]
typedef T1 fmtflags;
The type fmtflags is a bitmask type (17.3.2.1.2). Setting its elements has the effects indicated in Table 104.
Type fmtflags also defines the constants indicated in Table 105.
27.4.2.1.3 Type ios_base: :iostate
[ios::iostate]
typedef T2 iostate;
The type iostate is a bitmask type (17.3.2.1.2) that contains the elements indicated in Table 106.
Type iostate also defines the constant:

- goodbit, the value zero.

Table 104: fmtflags effects

| Element | Effect(s) if set |
| :--- | :--- |
| boolalpha | insert and extract bool type in alphabetic format |
| dec | converts integer input or generates integer output in decimal base <br> fixed <br> hex |
| internal | converts floating-point output in fixed-point notation input or generates integer output in hexadecimal base <br> adds fill characters at a designated internal point in certain generated output, or <br> identical to right if no such point is designated |
| left | adds fill characters on the right (final positions) of certain generated output <br> oct |
| right | converts integer input or generates integer output in octal base |
| scientific characters on the left (initial positions) of certain generated output |  |
| showbase | generates floating-point output in scientific notation <br> generates a prefix indicating the numeric base of generated integer output <br> ghowpoint <br> generates a decimal-point character unconditionally in generated floating-point |
| showpos | output <br> generates a + sign in non-negative generated numeric output <br> skips leading whitespace before certain input operations |
| skipws | flushes output after each output operation |
| unitbuf | replaces certain lowercase letters with their uppercase equivalents in generated |

Table 105: fmtflags constants

| Constant | Allowable values | |
|---|---|---|
| adjustfield | left \| right | internal |
| basefield | dec \| oct | hex |
| floatfield | scientific \| fixed |

Table 106: iostate effects

| Element | Effect(s) if set |
| :--- | :--- |
| badbit | indicates a loss of integrity in an input or output sequence (such as an irrecoverable <br> read error from a file); |
| eofbit | indicates that an input operation reached the end of an input sequence; <br> failbit <br> indicates that an input operation failed to read the expected characters, or that an <br> output operation failed to generate the desired characters. |

27.4.2.1.4 Type ios_base: :openmode
[ios::openmode]
typedef T3 openmode;
27.4.2.1.5 Type ios_base: :seekdir
typedef T4 seekdir;
27.4.2.1.6 Class ios_base: :Init
namespace std \{
class ios_base::Init \{
public:
Init();
~Init();
private:
// static int init_cnt;
\};
\}

1 The class Init describes an object whose construction ensures the construction of the eight objects declared in <iostream> (27.3) that associate file stream buffers with the standard C streams provided for by the functions declared in <cstdio> (27.8.2).

2 For the sake of exposition, the maintained data is presented here as:

- static int init_cnt, counts the number of constructor and destructor calls for class Init, initialized to zero.

Init();

Effects: Constructs an object of class Init. If $i n i t_{-} c n t$ is zero, the function stores the value one in $i n i t_{-}-$ $c n t$, then constructs and initializes the objects cin, cout, cerr, clog (27.3.1), wcin, wcout, wcerr, and wclog (27.3.2). In any case, the function then adds one to the value stored in init_cnt.

Effects: Destroys an object of class Init. The function subtracts one from the value stored in init_cnt and, if the resulting stored value is one, calls cout.flush(), cerr.flush(), clog.flush(), wcout.flush(), wcerr.flush(), wclog.flush().
27.4.2.2 ios_base state functions
[fmtflags.state]
fmtflags flags() const;
Returns: The format control information for both input and output.
fmtflags flags(fmtflags fmtfl);
Postcondition: fmtfl == flags().
Returns: The previous value of flags().
fmtflags setf(fmtflags fmtfl);
Effects: Sets fmtfl in flags().
Returns: The previous value of flags().
fmtflags setf(fmtflags fmtfl, fmtflags mask);
Effects: Clears mask in flags(), sets fmtfl \& mask in flags().
Returns: The previous value of flags().
void unsetf(fmtflags mask);
Effects: Clears mask in flags().
streamsize precision() const;
Returns: The precision to generate on certain output conversions.
streamsize precision(streamsize prec);
Postcondition: prec == precision().
Returns: The previous value of precision().
streamsize width() const;
Returns: The minimum field width (number of characters) to generate on certain output conversions.
streamsize width(streamsize wide);

Postcondition: wide == width().
Returns: The previous value of width().
27.4.2.3 ios_base functions
[ios.base.locales]
locale imbue(const locale\& loc);
Effects: Calls each registered callback pair ( $f n, i n d e x$ ) (27.4.2.6) as ( $* f n$ ) (imbue_event, $*$ this, index) at such a time that a call to ios_base: : getloc() from within $f n$ returns the new locale value loc.

Returns: The previous value of getloc().
Postcondition: loc == getloc().
locale getloc() const;
Returns: If no locale has been imbued, a copy of the global C++ locale, locale(), in effect at the time of construction. Otherwise, returns the imbued locale, to be used to perform locale-dependent input and output operations.
27.4.2.4 ios_base static members
[ios.members.static]
bool sync_with_stdio(bool sync = true);
Returns: true if the previous state of the standard iostream objects (27.3) was synchronized and otherwise returns false. The first time it is called, the function returns true.

Effects: If any input or output operation has occurred using the standard streams prior to the call, the effect is implementation-defined. Otherwise, called with a false argument, it allows the standard streams to operate independently of the standard C streams.

When a standard iostream object str is synchronized with a standard stdio stream $f$, the effect of inserting a character $c$ by

```
fputc(f, c);
```

is the same as the effect of

```
str.rdbuf()->sputc(c);
```

for any sequences of characters; the effect of extracting a character $c$ by

$$
c=\operatorname{fgetc}(f) ;
$$

is the same as the effect of

```
c = str.rdbuf()->sbumpc(c);
```

for any sequences of characters; and the effect of pushing back a character $c$ by

Draft

```
ungetc(c, f);
```

is the same as the effect of

```
str.rdbuf()->sputbackc(c);
```

for any sequence of characters. ${ }^{294)}$

### 27.4.2.5 ios_base storage functions

[ios.base.storage]
static int xalloc();

Returns: index ++.
long\& iword(int $i d x)$;
Effects: If iarray is a null pointer, allocates an array of long of unspecified size and stores a pointer to its first element in iarray. The function then extends the array pointed at by iarray as necessary to include the element iarray [ $i d x$ ]. Each newly allocated element of the array is initialized to zero. The reference returned is invalid after any other operations on the object. ${ }^{295)}$ However, the value of the storage referred to is retained, so that until the next call to copyfmt, calling iword with the same index yields another reference to the same value. If the function fails ${ }^{296)}$ and $*$ this is a base subobject of a basic_ios<> object or subobject, the effect is equivalent to calling basic_ios<>: :setstate(badbit) on the derived object (which may throw failure).
void* \& pword(int idx);
Effects: If parray is a null pointer, allocates an array of pointers to void of unspecified size and stores a pointer to its first element in parray. The function then extends the array pointed at by parray as necessary to include the element parray [idx]. Each newly allocated element of the array is initialized to a null pointer. The reference returned is invalid after any other operations on the object. However, the value of the storage referred to is retained, so that until the next call to copyfmt, calling pword with the same index yields another reference to the same value. If the function fails ${ }^{2977}$ and $*$ this is a base subobject of a basic_ios<> object or subobject, the effect is equivalent to calling basic_ios<>: :setstate(badbit) on the derived object (which may throw failure).

Returns: On success parray [ $i d x$ ]. On failure a valid void*\& initialized to 0 .
Remarks: After a subsequent call to pword(int) for the same object, the earlier return value may no longer be valid.

[^171]27.4.2.6 ios_base callbacks
[ios.base.callback]
void register_callback(event_callback $f n$, int index);

### 27.4.3 Class template fpos

```
 namespace std {
 template <class stateT> class fpos {
 public:
 // 27.4.3.1 Members
 stateT state() const;
 void state(stateT);
 private;
 };
}
```

            // stateT st;
    27.4.3.1 fpos Members

```
void state(stateT s);
```

Effects: Assign $s$ to $s t$.
stateT state() const;

Returns: Current value of $s t$.
27.4.3.2 fpos requirements

1 Operations specified in Table 109 are permitted. In that table,

- P refers to an instance of fpos,
- $p$ and $q$ refer to values of type $P$,
- 0 refers to type streamoff,
- o refers to a value of type streamoff,
- sz refers to a value of type streamsize and
- i refers to a value of type int.

Table 109: Position type requirements

| expression | return type | operational semantics | assertion/note pre/post-condition |
| :---: | :---: | :---: | :---: |
| P (i) |  |  | $p==P(i)$ <br> note: a destructor is assumed. |
| $\begin{aligned} & \text { P p(i); } \\ & \text { P p }=i ; \end{aligned}$ |  |  | post: $\mathrm{p}==\mathrm{P}$ (i). |
| P(o) | fpos | converts from offset |  |
| O(p) | OFF_T | converts to offset | $P(0(p))==p$ |
| $\mathrm{p}=\mathrm{=}$ q | convertible to bool |  | $==$ is an equivalence relation |
| $p!=q$ | convertible to bool | ! (p == q) |  |
| $\begin{aligned} & q=p+o \\ & p+=o \end{aligned}$ | fpos | + offset | $q-o==p$ |
| $\begin{aligned} & q=p-o \\ & p-=o \end{aligned}$ | fpos | - offset | $q+o==p$ |
| o $=\mathrm{p}-\mathrm{q}$ | OFF_T | distance | $q+o==p$ |
| streamsize(o) | streamsize | converts | streamsize(0(sz)) == sz |
| O(sz) | OFF_T | converts | streamsize(0(sz)) == sz |

2 [Note: Every implementation is required to supply overloaded operators on fpos objects to satisfy the requirements of 27.4.3.2. It is unspecified whether these operators are members of $f$ pos, global operators, or provided in some other way. -end note]

3 Stream operations that return a value of type traits: :pos_type return $P(0(-1))$ as an invalid value to signal an error. If this value is used as an argument to any istream, ostream, or streambuf member that accepts a value of type traits: :pos_type then the behavior of that function is undefined.
27.4.4 Class template basic_ios

```
namespace std {
 template <class charT, class traits = char_traits<charT> >
```

```
class basic_ios : public ios_base {
public:
 // Types:
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;
 operator unspecified-bool-type() const;
 bool operator!() const;
 iostate rdstate() const;
 void clear(iostate state = goodbit);
 void setstate(iostate state);
 bool good() const;
 bool eof() const;
 bool fail() const;
 bool bad() const;
 iostate exceptions() const;
 void exceptions(iostate except);
 // 27.4.4.1 Constructor/destructor:
 explicit basic_ios(basic_streambuf<charT,traits>* sb);
 virtual ~basic_ios();
 // 27.4.4.2 Members:
 basic_ostream<charT,traits>* tie() const;
 basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);
 basic_streambuf<charT,traits>* rdbuf() const;
 basic_streambuf<charT,traits>* rdbuf(basic_streambuf<charT,traits>* sb);
 basic_ios& copyfmt(const basic_ios& rhs);
 char_type fill() const;
 char_type fill(char_type ch);
 // 27.4.2.3 locales:
 locale imbue(const locale& loc);
 char narrow(char_type c, char dfault) const;
 char_type widen(char c) const;
protected:
 basic_ios();
 void init(basic_streambuf<charT,traits>* sb);
private:
```

```
 basic_ios(const basic_ios&); // not defined
 basic_ios& operator=(const basic_ios&); // not defined
 };
}
```

27.4.4.1 basic_ios constructors
[basic.ios.cons]
explicit basic_ios(basic_streambuf<charT,traits>* sb);
void init(basic_streambuf<charT,traits>* sb);

Postconditions: The postconditions of this function are indicated in Table 110.

Table 110: basic_ios: :init() effects

| Element | Value |
| :--- | :--- |
| rdbuf() | sb |
| tie() | 0 |
| rdstate() | goodbit if sb is not a null pointer, otherwise badbit. |
| exceptions() | goodbit |
| flags() | skipws I dec |
| width() | 0 |
| precision() | 6 |
| fill() | widen(', '); |
| getloc() | a copy of the value returned by locale() |
| iarray | a null pointer |
| parray | a null pointer |

### 27.4.4.2 Member functions

[basic.ios.members]
basic_ostream<charT,traits>* tie() const;
Returns: An output sequence that is tied to (synchronized with) the sequence controlled by the stream buffer.
basic_ostream<charT,traits>* tie(basic_ostream<charT,traits>* tiestr);

Draft

Postcondition: tiestr == tie().
Returns: The previous value of tie().
basic_streambuf<charT,traits>* rdbuf() const;
Returns: A pointer to the streambuf associated with the stream.
basic_streambuf<charT,traits>* rdbuf (basic_streambuf<charT,traits>* sb);
Postcondition: sb == rdbuf().
Effects: Calls clear().
Returns: The previous value of rdbuf ().
// 27.4.2.3 locales:
locale imbue(const locale\& loc);
Effects: Calls ios_base: :imbue (loc) (27.4.2.3) and if $\operatorname{rdbuf}()!=0$ then $r d b u f()->p u b i m b u e(l o c)(27.5 .2 .2 .1)$.
Returns: The prior value of ios_base: :imbue().
char narrow(char_type $c$, char dfault) const;
Returns: use_facet< ctype<char_type\gg(getloc()).narrow(c,dfault)
char_type widen(char c) const;
Returns: use_facet< ctype<char_type\gg(getloc()).widen(c)
char_type fill() const;
Returns: The character used to pad (fill) an output conversion to the specified field width.
char_type fill(char_type fillch);
Postcondition: traits::eq(fillch, fill())
Returns: The previous value of fill().
basic_ios\& copyfmt(const basic_ios\& rhs);
Effects: If (this $==$ \&rhs) does nothing. Otherwise assigns to the member objects of $*$ this the corresponding member objects of rhs, except that:
— rdstate () and rdbuf () are left unchanged;

- exceptions () is altered last by calling exceptions (rhs. except).
— The contents of arrays pointed at by pword and iword are copied not the pointers themselves. ${ }^{298)}$
If any newly stored pointer values in $*$ this point at objects stored outside the object $r h s$, and those objects are destroyed when rhs is destroyed, the newly stored pointer values are altered to point at newly constructed copies of the objects.

[^172]Before copying any parts of rhs, calls each registered callback pair ( $f n$, index) as ( $* f n$ ) (erase_event, *this, index). After all parts but exceptions() have been replaced, calls each callback pair that was copied from rhs as ( $* f n$ ) (copyfmt_event,*this, index).

Remarks: The second pass permits a copied pword value to be zeroed, or its referent deep copied or reference counted or have other special action taken.

Returns: *this.

### 27.4.4.3 basic_ios flags functions

[iostate.flags]

```
 operator unspecified-bool-type() const;
```

Returns: If fail() then a value that will evaluate false in a boolean context; otherwise a value that will evaluate true in a boolean context. The value type returned shall not be convertible to int.
[ Note: This conversion can be used in contexts where a bool is expected (e.g., an if condition); however, implicit conversions (e.g., to int) that can occur with bool are not allowed, eliminating some sources of user error. One possible implementation choice for this type is pointer-to-member. - end note ]
bool operator! () const;
Returns: fail().
iostate rdstate() const;
Returns: The error state of the stream buffer.
void clear(iostate state = goodbit);
Postcondition: If $\operatorname{rdbuf()!=0}$ then state $==$ rdstate(); otherwise rdstate()==(state | ios_base:: badbit).

Effects: If ((state | (rdbuf() ? goodbit : badbit)) \& exceptions()) == 0, returns. Otherwise, the function throws an object fail of class basic_ios: :failure (27.4.2.1.1), constructed with implementationdefined argument values.

```
void setstate(iostate state);
```

Effects: Calls clear(rdstate() | state) (which may throw basic_ios::failure (27.4.2.1.1)).
bool good() const;
Returns: rdstate() == 0
bool eof() const;
Returns: true if eofbit is set in rdstate().
bool fail() const;
Returns: true if failbit or badbit is set in rdstate(). ${ }^{299)}$

[^173]```
bool bad() const;
```

Returns: true if badbit is set in rdstate().
iostate exceptions() const;
Returns: A mask that determines what elements set in rdstate () cause exceptions to be thrown.
void exceptions(iostate except);
Postcondition: except $==$ exceptions ().
Effects: Calls clear (rdstate ()).
27.4.5 ios_base manipulators
[std.ios.manip]
27.4.5.1 fmtflags manipulators [fmtflags.manip]

```
    ios_base& boolalpha(ios_base& str);
```

Effects: Calls str.setf(ios_base: : boolalpha).
Returns: str.
ios_base\& noboolalpha(ios_base\& str);
Effects: Calls str.unsetf(ios_base: : boolalpha).
Returns: str.
ios_base\& showbase(ios_base\& str);
Effects: Calls str.setf(ios_base: :showbase).
Returns: str.
ios_base\& noshowbase(ios_base\& str);
Effects: Calls str. unsetf (ios_base: : showbase).
Returns: str.
ios_base\& showpoint(ios_base\& str);
Effects: Calls str.setf(ios_base: : showpoint).
Returns: str.
ios_base\& noshowpoint(ios_base\& str);
Effects: Calls str.unsetf(ios_base: :showpoint).
Returns: str.
ios_base\& showpos(ios_base\& str);

Effects: Calls str.setf(ios_base:: showpos).
Returns: str.
ios_base\& noshowpos(ios_base\& str);
Effects: Calls str.unsetf (ios_base:: showpos).
Returns: str.
ios_base\& skipws(ios_base\& str);
Effects: Calls str.setf(ios_base::skipws).
Returns: str.
ios_base\& noskipws(ios_base\& str);
Effects: Calls str.unsetf(ios_base::skipws).
Returns: str.
ios_base\& uppercase(ios_base\& str);
Effects: Calls str.setf(ios_base: :uppercase).
Returns: str.
ios_base\& nouppercase(ios_base\& str);
Effects: Calls str.unsetf(ios_base::uppercase).
Returns: str.
ios_base\& unitbuf(ios_base\& str);
Effects: Calls str.setf(ios_base::unitbuf).
Returns: str.
ios_base\& nounitbuf (ios_base\& str);
Effects: Calls str.unsetf (ios_base: :unitbuf).
Returns: str.

27.4.5.2 adjustfield manipulators

[adjustfield.manip]

```
ios_base& internal(ios_base& str);
    Effects: Calls str.setf(ios_base::internal, ios_base::adjustfield).
    Returns: str.
ios_base& left(ios_base& str);
```


27.4.5.3 basefield manipulators

ios_base\& dec(ios_base\& str);
Effects: Calls str.setf(ios_base:: dec, ios_base::basefield).
Returns: str ${ }^{300)}$.
ios_base\& hex(ios_base\& str);
Effects: Calls str.setf(ios_base: :hex, ios_base::basefield).
Returns: str.
ios_base\& oct(ios_base\& str);
Effects: Calls str.setf(ios_base: :oct, ios_base::basefield).
Returns: str.

27.4.5.4 floatfield manipulators

[floatfield.manip]
Effects: Calls str.setf(ios_base::left, ios_base::adjustfield).
Returns: str.
ios_base\& right(ios_base\& str);
Effects: Calls str.setf(ios_base::right, ios_base::adjustfield).
Returns: str.
ios_base\& scientific(ios_base\& str);
Effects: Calls str.setf(ios_base::scientific, ios_base::floatfield).
Returns: str.
ios_base\& hexfloat(ios_base\& str);
Effects: Calls str.setf(ios_base::fixed | ios_base::scientific, ios_base::floatfield).
Returns: str.
${ }^{300)}$ The function signature $\operatorname{dec}(\mathrm{i}$ os_base\&) can be called by the function signature basi c_ostrean\& stream: oper at or $\lll \mathrm{i}$ os_base\& $(*)($ i os_base\&)) to permit expressions of the form cout \ll dec to change the format flags stored in cout.

7 [Note: The more obvious use of ios_base: :hex to specify hexadecimal floating-point format would change the meaning of existing well defined programs. C++2003 gives no meaning to the combination of fixed and scientific. - end note]

```
ios_base& defaultfloat(ios_base& str);
```


27.5 Stream buffers

[stream.buffers]

Header <streambuf> synopsis

```
namespace std {
    template <class charT, class traits = char_traits<charT> >
        class basic_streambuf;
    typedef basic_streambuf<char> streambuf;
    typedef basic_streambuf<wchar_t> wstreambuf;
}
```

1 The header <streambuf> defines types that control input from and output to character sequences.

27.5.1 Stream buffer requirements

1 Stream buffers can impose various constraints on the sequences they control. Some constraints are:

- The controlled input sequence can be not readable.
- The controlled output sequence can be not writable.
- The controlled sequences can be associated with the contents of other representations for character sequences, such as external files.
- The controlled sequences can support operations directly to or from associated sequences.
- The controlled sequences can impose limitations on how the program can read characters from a sequence, write characters to a sequence, put characters back into an input sequence, or alter the stream position.

2 Each sequence is characterized by three pointers which, if non-null, all point into the same charT array object. The array object represents, at any moment, a (sub)sequence of characters from the sequence. Operations performed on a sequence alter the values stored in these pointers, perform reads and writes directly to or from associated sequences, and alter "the stream position" and conversion state as needed to maintain this subsequence relationship. The three pointers are:

- the beginning pointer, or lowest element address in the array (called xbeg here);
- the next pointer, or next element address that is a current candidate for reading or writing (called xnext here);
- the end pointer, or first element address beyond the end of the array (called xend here).

3 The following semantic constraints shall always apply for any set of three pointers for a sequence, using the pointer names given immediately above:

- If $x n e x t$ is not a null pointer, then $x b e g$ and $x e n d$ shall also be non-null pointers into the same charT array, as described above; otherwise, $x b e g$ and xend shall also be null.
- If $x n e x t$ is not a null pointer and $x n e x t$ < xend for an output sequence, then a write position is available. In this case, $* x n e x t$ shall be assignable as the next element to write (to put, or to store a character value, into the sequence).
- If $x n e x t$ is not a null pointer and $x b e g<x n e x t$ for an input sequence, then a putback position is available. In this case, xnext [-1] shall have a defined value and is the next (preceding) element to store a character that is put back into the input sequence.
- If xnext is not a null pointer and xnext < xend for an input sequence, then a read position is available. In this case, *xnext shall have a defined value and is the next element to read (to get, or to obtain a character value, from the sequence).
27.5.2 Class template basic_streambuf<charT,traits>

```
namespace std {
    template <class charT, class traits = char_traits<charT> >
    class basic_streambuf {
    public:
// Types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
virtual ~basic_streambuf();
// 27.5.2.2.1 locales:
locale pubimbue(const locale& loc);
locale getloc() const;
// 27.5.2.2.2 buffer and positioning:
basic_streambuf<char_type,traits>*
            pubsetbuf(char_type* s, streamsize n);
pos_type pubseekoff(off_type off, ios_base::seekdir way,
                                    ios_base::openmode which =
                                    ios_base::in | ios_base::out);
pos_type pubseekpos(pos_type sp,
                                    ios_base::openmode which =
                                    ios_base::in | ios_base::out);
int pubsync();
// Get and put areas:
// 27.5.2.2.3 Get area:
streamsize in_avail();
int_type snextc();
```

```
    int_type sbumpc();
    int_type sgetc();
    streamsize sgetn(char_type* s, streamsize n);
    // 27.5.2.2.4 Putback:
    int_type sputbackc(char_type c);
    int_type sungetc();
    // 27.5.2.2.5 Put area:
    int_type sputc(char_type c);
    streamsize sputn(const char_type* s, streamsize n);
protected:
    basic_streambuf();
    // 27.5.2.3.1 Get area:
    char_type* eback() const;
    char_type* gptr() const;
    char_type* egptr() const;
    void gbump(int n);
    void setg(char_type* gbeg, char_type* gnext, char_type* gend);
    // 27.5.2.3.2 Put area:
    char_type* pbase() const;
    char_type* pptr() const;
    char_type* epptr() const;
    void pbump(int n);
    void setp(char_type* pbeg, char_type* pend);
    // 27.5.2.4 virtual functions:
    // 27.5.2.4.1 Locales:
    virtual void imbue(const locale& loc);
    // 27.5.2.4.2 Buffer management and positioning:
    virtual basic_streambuf<char_type,traits>*
    setbuf(char_type* s, streamsize n);
    virtual pos_type seekoff(off_type off, ios_base::seekdir way,
            ios_base::openmode which = ios_base::in | ios_base::out);
    virtual pos_type seekpos(pos_type sp,
            ios_base::openmode which = ios_base::in | ios_base::out);
virtual int sync();
// 27.5.2.4.3 Get area:
virtual streamsize showmanyc();
virtual streamsize xsgetn(char_type* s, streamsize n);
virtual int_type underflow();
virtual int_type uflow();
// 27.5.2.4.4 Putback:
virtual int_type pbackfail(int_type c = traits::eof());
```

Draft

```
        // 27.5.2.4.5 Put area:
        virtual streamsize xsputn(const char_type* s, streamsize n);
        virtual int_type overflow (int_type c = traits::eof());
        };
}
```

1 The class template basic_streambuf<charT,traits> serves as an abstract base class for deriving various stream buffers whose objects each control two character sequences:

- a character input sequence;
- a character output sequence.

2 [Note: This paragraph is intentionally empty. - end note]
3 [Note: This paragraph is intentionally empty. -end note]

27.5.2.1 basic_streambuf constructors

[streambuf.cons]
basic_streambuf();
27.5.2.2 basic_streambuf public member functions
[streambuf.members]

27.5.2.2.1 Locales

[streambuf.locales]
locale pubimbue(const locale\& loc);
Postcondition: loc == getloc().
Effects: Calls imbue (loc).
Returns: Previous value of getloc().
locale getloc() const;

[^174]Draft

27.5.2.2.3 Get area

streamsize in_avail();
Returns: If a read position is available, returns egptr () - gptr (). Otherwise returns showmanyc () (27.5.2.4.3). int_type snextc();

Effects: Calls sbumpc ().
Returns: if that function returns traits : : eof (), returns traits : : eof (). Otherwise, returns sgetc ().
int_type sbumpc();
Returns: If the input sequence read position is not available, returns uflow(). Otherwise, returns traits: :to_int_type (*gptr ()) and increments the next pointer for the input sequence.

```
int_type sgetc();
```

Returns: If the input sequence read position is not available, returns underflow (). Otherwise, returns traits : : to_int_type(*gptr()).

```
streamsize sgetn(char_type* s, streamsize n);
```

Returns: xsgetn (s, n).

27.5.2.2.4 Putback

int_type sputbackc(char_type c);

Returns: If the input sequence putback position is not available, or if traits: : eq ($c, \operatorname{gptr}()[-1])$ is false, returns pbackfail(traits: :to_int_type (c)). Otherwise, decrements the next pointer for the input sequence and returns traits: :to_int_type(*gptr()).
int_type sungetc();
Returns: If the input sequence putback position is not available, returns pbackfail(). Otherwise, decrements the next pointer for the input sequence and returns traits: :to_int_type(*gptr()).

27.5.2.2.5 Put area

[streambuf.pub.put]

```
int_type sputc(char_type c);
```

Returns: If the output sequence write position is not available, returns overflow (traits: :to_int_type (c)). Otherwise, stores c at the next pointer for the output sequence, increments the pointer, and returns traits: : to_int_type (c).

```
streamsize sputn(const char_type* s, streamsize n);
```

Returns: xsputn (s, n).
27.5.2.3 basic_streambuf protected member functions

27.5.2.3.1 Get area access

char_type* eback() const;
Returns: The beginning pointer for the input sequence.
char_type* gptr() const;
Returns: The next pointer for the input sequence.
char_type* egptr() const;
Returns: The end pointer for the input sequence.
void gbump(int n);
Effects: Adds n to the next pointer for the input sequence.
void setg(char_type* gbeg, char_type* gnext, char_type* gend);
Postconditions: gbeg == eback(), gnext $==\operatorname{gptr}()$, and gend $==$ egptr().

27.5.2.3.2 Put area access

```
char_type* pbase() const;
```

Returns: The beginning pointer for the output sequence.

```
char_type* pptr() const;
```

Returns: The next pointer for the output sequence.

```
char_type* epptr() const;
```

Returns: The end pointer for the output sequence.
void pbump (int n);
Effects: Adds n to the next pointer for the output sequence.

```
void setp(char_type* pbeg, char_type* pend);
```

 Postconditions: \(p b e g==\) pbase(), pbeg == pptr(), and pend == epptr().
 27.5.2.4 basic_streambuf virtual functions
[streambuf.virtuals]

27.5.2.4.1 Locales

void imbue(const locale\&)
Effects: Change any translations based on locale.
Remarks: Allows the derived class to be informed of changes in locale at the time they occur. Between invocations of this function a class derived from streambuf can safely cache results of calls to locale functions and to members of facets so obtained.

Default behavior: Does nothing.

27.5.2.4.2 Buffer management and positioning

[streambuf.virt.buffer]
basic_streambuf* setbuf(char_type* s, streamsize n);
Effects: Influences stream buffering in a way that is defined separately for each class derived from basic_streambuf in this clause (27.7.1.3, 27.8.1.4).

Default behavior: Does nothing. Returns this.

```
pos_type seekoff(off_type off, ios_base::seekdir way,
    ios_base::openmode which
    = ios_base::in | ios_base::out);
```

Effects: Alters the stream positions within one or more of the controlled sequences in a way that is defined separately for each class derived from basic_streambuf in this clause (27.7.1.3, 27.8.1.4).

Default behavior: Returns pos_type(off_type(-1)).

```
pos_type seekpos(pos_type sp,
    ios_base::openmode which
    = ios_base::in | ios_base::out);
```

Effects: Alters the stream positions within one or more of the controlled sequences in a way that is defined separately for each class derived from basic_streambuf in this clause (27.7.1, 27.8.1.1).

Default behavior: Returns pos_type(off_type(-1)).
int sync();
Effects: Synchronizes the controlled sequences with the arrays. That is, if pbase () is non-null the characters between pbase() and pptr () are written to the controlled sequence. The pointers may then be reset as appropriate.

Returns: -1 on failure. What constitutes failure is determined by each derived class (27.8.1.4).
Default behavior: Returns zero.

27.5.2.4.3 Get area

[streambuf.virt.get]
streamsize showmanyc(); ${ }^{302)}$
Returns: an estimate of the number of characters available in the sequence, or -1 . If it returns a positive value, then successive calls to underflow () will not return traits: :eof () until at least that number of characters have been extracted from the stream. If showmanyc () returns -1 , then calls to underflow() or uflow() will fail. ${ }^{303)}$

Default behavior: Returns zero.
Remarks: Uses traits: :eof ().

```
streamsize xsgetn(char_type* s, streamsize n);
```

Effects: Assigns up to n characters to successive elements of the array whose first element is designated by s. The characters assigned are read from the input sequence as if by repeated calls to sbumpc (). Assigning stops when either n characters have been assigned or a call to sbumpc() would return traits: :eof ().
Returns: The number of characters assigned. ${ }^{304)}$
Remarks: Uses traits: :eof ().
int_type underflow();
Remarks: The public members of basic_streambuf call this virtual function only if gptr() is null or gptr () >= egptr ()

[^175]Returns: traits: :to_int_type (c), where c is the first character of the pending sequence, without moving the input sequence position past it. If the pending sequence is null then the function returns traits: :eof() to indicate failure.

The pending sequence of characters is defined as the concatenation of:
a) If $\operatorname{gptr}()$ is non- NULL, then the egptr() - gptr() characters starting at gptr(), otherwise the empty sequence.
b) Some sequence (possibly empty) of characters read from the input sequence.

The result character is
a) If the pending sequence is non-empty, the first character of the sequence.
b) If the pending sequence is empty then the next character that would be read from the input sequence.

The backup sequence is defined as the concatenation of:
a) If eback() is null then empty,
b) Otherwise the $\operatorname{gptr}()$ - eback() characters beginning at eback().

Effects: The function sets up the gptr () and egptr () satisfying one of:
a) If the pending sequence is non-empty, egptr () is non-null and egptr() - gptr () characters starting at $\operatorname{gptr}()$ are the characters in the pending sequence
b) If the pending sequence is empty, either $\operatorname{gptr}()$ is null or $\operatorname{gptr}()$ and egptr() are set to the same non-NULL pointer.

If eback() and $\operatorname{gptr}()$ are non-null then the function is not constrained as to their contents, but the "usual backup condition" is that either:
a) If the backup sequence contains at least $g p \operatorname{tr}()$ - eback () characters, then the gptr () - eback() characters starting at eback() agree with the last $\operatorname{gptr}()$ - eback() characters of the backup sequence.
b) Or the n characters starting at $\operatorname{gptr}()-\mathrm{n}$ agree with the backup sequence (where n is the length of the backup sequence)
Default behavior: Returns traits: :eof ().
int_type uflow();
Requires: The constraints are the same as for underflow (), except that the result character is transferred from the pending sequence to the backup sequence, and the pending sequence may not be empty before the transfer.

Default behavior: Calls underflow(). If underflow() returns traits: :eof (), returns traits: :eof (). Otherwise, returns the value of traits: :to_int_type $(* \operatorname{gptr}())$ and increment the value of the next pointer for the input sequence.

Returns: traits: :eof () to indicate failure.

27.5.2.4.4 Putback

int_type pbackfail(int_type $c=$ traits::eof());
Remarks: The public functions of basic_streambuf call this virtual function only when gptr() is null, gptr() == eback(), or traits: :eq(traits::to_char_type (c

1) The effect of consuming a character on the associated output sequence is specified ${ }^{305}$)
2) Let r be the number of characters in the pending sequence not consumed. If r is non-zero then pbase() and $\operatorname{pptr}()$ shall be set so that: $\operatorname{pptr}()-\operatorname{pbase}()==r$ and the r characters starting at pbase() are the associated output stream. In case r is zero (all characters of the pending sequence have been consumed) then either pbase () is set to NULL, or pbase () and pptr () are both set to the same NULL non-value.
3) The function may fail if either appending some character to the associated output stream fails or if it is unable to establish pbase () and pptr () according to the above rules.

Returns: traits : :eof () or throws an exception if the function fails.
Otherwise, returns some value other than traits : :eof () to indicate success. ${ }^{306}$)
Default behavior: Returns traits: :eof ().

27.6 Formatting and manipulators

[iostream.format]

Header <istream> synopsis

```
namespace std {
    template <class charT, class traits = char_traits<charT> >
        class basic_istream;
    typedef basic_istream<char> istream;
    typedef basic_istream<wchar_t> wistream;
    template <class charT, class traits = char_traits<charT> >
        class basic_iostream;
    typedef basic_iostream<char> iostream;
    typedef basic_iostream<wchar_t> wiostream;
    template <class charT, class traits>
        basic_istream<charT,traits>& ws(basic_istream<charT,traits>& is);
}
```


Header <ostream> synopsis

```
namespace std {
    template <class charT, class traits = char_traits<charT> >
        class basic_ostream;
    typedef basic_ostream<char> ostream;
    typedef basic_ostream<wchar_t> wostream;
    template <class charT, class traits>
        basic_ostream<charT,traits>& endl(basic_ostream<charT,traits>& os);
    template <class charT, class traits>
        basic_ostream<charT,traits>& ends(basic_ostream<charT,traits>& os);
```

[^176]```
 template <class charT, class traits>
 basic_ostream<charT,traits>& flush(basic_ostream<charT,traits>& os);
}
```


## Header <iomanip> synopsis

```
namespace std {
 // Types T1, T2, ... are unspecified implementation types
 T1 resetiosflags(ios_base::fmtflags mask);
 T2 setiosflags (ios_base::fmtflags mask);
 T3 setbase(int base);
 template<charT> T4 setfill(charT c);
 T5 setprecision(int n);
 T6 setw(int n);
}
```


### 27.6.1 Input streams

1 The header <istream> defines two types and a function signature that control input from a stream buffer.
27.6.1.1 Class template basic_istream

```
namespace std {
 template <class charT, class traits = char_traits<charT> >
 class basic_istream : virtual public basic_ios<charT,traits> {
 public:
 // Types (inherited from basic_ios (27.4.4)):
 typedef charT char_type;
 typedef typename traits::int_type int_type;
 typedef typename traits::pos_type pos_type;
 typedef typename traits::off_type off_type;
 typedef traits traits_type;
 // 27.6.1.1.1 Constructor/destructor:
 explicit basic_istream(basic_streambuf<charT,traits>* sb);
 virtual ~basic_istream();
 // 27.6.1.1.2 Prefix/suffix:
 class sentry;
 // 27.6.1.2 Formatted input:
 basic_istream<charT,traits>& operator>>
 (basic_istream<charT,traits>& (*pf)(basic_istream<charT,traits>&));
 basic_istream<charT,traits>& operator>>
 (basic_ios<charT,traits>& (*pf)(basic_ios<charT,traits>&));
 basic_istream<charT,traits>& operator>>
 (ios_base& (*pf)(ios_base&));
 basic_istream<charT,traits>& operator>>(bool& n);
 basic_istream<charT,traits>& operator>>(short& n);
 basic_istream<charT,traits>& operator>>(unsigned short& n);
```

Draft

```
 basic_istream<charT,traits>& operator>>(int& n);
 basic_istream<charT,traits>& operator>>(unsigned int& n);
 basic_istream<charT,traits>& operator>>(long& n);
 basic_istream<charT,traits>& operator>>(unsigned long& n);
 basic_istream<charT,traits>& operator>>(long long& n);
 basic_istream<charT,traits>& operator>>(unsigned long long& n);
 basic_istream<charT,traits>& operator>>(float& f);
 basic_istream<charT,traits>& operator>>(double& f);
 basic_istream<charT,traits>& operator>>(long double& f);
 basic_istream<charT,traits>& operator>>(void*& p);
 basic_istream<charT,traits>& operator>>
 (basic_streambuf<char_type,traits>* sb);
 // 27.6.1.3 Unformatted input:
 streamsize gcount() const;
 int_type get();
 basic_istream<charT,traits>& get(char_type& c);
 basic_istream<charT,traits>& get(char_type* s, streamsize n);
 basic_istream<charT,traits>& get(char_type* s, streamsize n,
 char_type delim);
 basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb);
 basic_istream<charT,traits>& get(basic_streambuf<char_type,traits>& sb,
 char_type delim);
 basic_istream<charT,traits>& getline(char_type* s, streamsize n);
 basic_istream<charT,traits>& getline(char_type* s, streamsize n,
 char_type delim);
 basic_istream<charT,traits>& ignore
 (streamsize n = 1, int_type delim = traits::eof());
 int_type peek();
 basic_istream<charT,traits>& read (char_type* s, streamsize n);
 streamsize readsome(char_type* s, streamsize n);
 basic_istream<charT,traits>& putback(char_type c);
 basic_istream<charT,traits>& unget();
 int sync();
 pos_type tellg();
 basic_istream<charT,traits>& seekg(pos_type);
 basic_istream<charT,traits>& seekg(off_type, ios_base::seekdir);
};
// 27.6.1.2.3 character extraction templates:
template<class charT, class traits>
 basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>&,
 charT&);
template<class traits>
 basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,
```

Draft

```
 unsigned char&);
 template<class traits>
 basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,
 signed char&);
 template<class charT, class traits>
 basic_istream<charT,traits>& operator>>(basic_istream<charT,traits>&,
 charT*);
 template<class traits>
 basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,
 unsigned char*);
 template<class traits>
 basic_istream<char,traits>& operator>>(basic_istream<char,traits>&,
 signed char*);
```

\}

1 The class basic_istream defines a number of member function signatures that assist in reading and interpreting input from sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: the formatted input functions (or extractors) and the unformatted input functions. Both groups of input functions are described as if they obtain (or extract) input characters by calling rdbuf ()->sbumpc() or rdbuf()->sgetc(). They may use other public members of istream.

3 If rdbuf()->sbumpc() or rdbuf()->sgetc() returns traits: :eof(), then the input function, except as explicitly noted otherwise, completes its actions and does setstate(eofbit), which may throw ios_base::failure (27.4.4.3), before returning.

4 If one of these called functions throws an exception, then unless explicitly noted otherwise, the input function sets badbit in error state. If badbit is on in exceptions (), the input function rethrows the exception without completing its actions, otherwise it does not throw anything and proceeds as if the called function had returned a failure indication.
27.6.1.1.1 basic_istream constructors
[istream.cons]

```
explicit basic_istream(basic_streambuf<charT,traits>* sb);
```

Effects: Constructs an object of class basic_istream, assigning initial values to the base class by calling basic_ios::init(sb) (27.4.4.1).

Postcondition: gcount () == 0
virtual ~basic_istream();
Effects: Destroys an object of class basic_istream.
Remarks: Does not perform any operations of rdbuf ().
27.6.1.1.2 Class basic_istream::sentry
[istream::sentry]

```
namespace std {
 template <class charT,class traits = char_traits<charT> >
 class basic_istream<charT,traits>::sentry {
```

Draft

```
 typedef traits traits_type;
 // bool ok_; exposition only
 public:
 explicit sentry(basic_istream<charT,traits>& is, bool noskipws = false);
 ~sentry();
 operator bool() const { return ok_; }
 private:
 sentry(const sentry&); // not defined
 sentry& operator=(const sentry&); // not defined
 };
```

\}

The class sentry defines a class that is responsible for doing exception safe prefix and suffix operations.

```
explicit sentry(basic_istream<charT,traits>& is, bool noskipws = false);
```

Effects: If is.good() is true, prepares for formatted or unformatted input. First, if is . tie () is not a null pointer, the function calls is.tie() $->$ flush () to synchronize the output sequence with any associated external C stream. Except that this call can be suppressed if the put area of is.tie () is empty. Further an implementation is allowed to defer the call to flush until a call of $i s->r d b u f()->$ underflow occurs. If no such call occurs before the sentry object is destroyed, the call to flush may be eliminated entirely. ${ }^{307 \text { ) } \text {. If noskipws }}$ is zero and is.flags () \& ios_base: :skipws is nonzero, the function extracts and discards each character as long as the next available input character $c$ is a whitespace character. If is.rdbuf () ->sbumpc () or is.rdbuf () ->sgetc () returns traits: :eof (), the function calls setstate (failbit | eofbit) (which may throw ios_base: :failure).

Remarks: The constructor explicit sentry(basic_istream<charT,traits>\& is, bool noskipws = false) uses the currently imbued locale in $i s$, to determine whether the next input character is whitespace or not.

To decide if the character $c$ is a whitespace character, the constructor performs "as if" it executes the following code fragment:

```
const ctype<charT>& ctype = use_facet<ctype<charT> >(is.getloc());
if (ctype.is(ctype.space,c)!=0)
 // c is a whitespace character.
```

If, after any preparation is completed, is .good() is true, ok_ $!=f a l s e$ otherwise, ok_ $==$ false. During preparation, the constructor may call setstate(failbit) (which may throw ios_base: :failure (27.4.4.3) ${ }^{308)}$
[Note: This paragraph is intentionally empty. -end note]
~sentry ();
Effects: None.
operator bool() const;
Effects: Returns ok_.

[^177]
### 27.6.1.2 Formatted input functions

[istream.formatted]

### 27.6.1.2.1 Common requirements

1 Each formatted input function begins execution by constructing an object of class sentry with the noskipws (second) argument false. If the sentry object returns true, when converted to a value of type bool, the function endeavors to obtain the requested input. If an exception is thrown during input then ios: : badbit is turned on ${ }^{309}$ ) in $*$ this's error state. If (exceptions()\&badbit) $!=0$ then the exception is rethrown. In any case, the formatted input function destroys the sentry object. If no exception has been thrown, it returns *this.

### 27.6.1.2.2 Arithmetic Extractors

[istream.formatted.arithmetic]

```
operator>>(unsigned short& val);
operator>>(unsigned int& val);
operator>>(long& val);
operator>>(unsigned long& val);
operator>>(long long& val);
operator>>(unsigned long long& val);
operator>>(float& val);
operator>>(double& val);
operator>>(long double& val);
operator>>(bool& val);
operator>>(void*& val);
```

```
operator>>(short& val);
```

The conversion occurs as if performed by the following code fragment (using the same notation as for the preceding code fragment):

```
typedef num_get<charT,istreambuf_iterator<charT,traits> > numget;
iostate err = 0;
long lval;
use_facet<numget>(loc).get(*this, 0, *this, err, lval);
if (err == 0)
 && (lval < numeric_limits<short>::min()
 || numeric_limits<short>::max() < lval))
```

[^178]```
            err = ios_base::failbit;
setstate(err);
```

operator>>(int\& val);

27.6.1.2.3 basic_istream::operator>>

basic_istream<charT,traits>\& operator>>
(basic_istream<charT,traits>\& (*pf) (basic_istream<charT,traits>\&))
The conversion occurs as if performed by the following code fragment (using the same notation as for the preceding code fragment):

```
typedef num_get<charT,istreambuf_iterator<charT,traits> > numget;
iostate err = 0;
long lval;
use_facet<numget>(loc).get(*this, 0, *this, err, lval);
if (err == 0)
    && (lval < numeric_limits<int>::min()
            || numeric_limits<int>::max() < lval))
            err = ios_base::failbit;
setstate(err);
```

 Effects: None. This extractor does not behave as a formatted input function (as described in 27.6.1.2.1.)
 Returns: pf (*this). \({ }^{310)}\)
 basic_istream<charT,traits>\& operator>>
 (basic_ios<charT,traits>\& (*pf) (basic_ios<charT,traits>\&));
 Effects: Calls \(p f\) (*this). This extractor does not behave as a formatted input function (as described in 27.6.1.2.1).
 Returns: *this.
 basic_istream<charT,traits>\& operator>>
(ios_base\& (*pf) (ios_base\&));

Effects: Calls $p f$ (*this). ${ }^{311)}$ This extractor does not behave as a formatted input function (as described in 27.6.1.2.1).

Returns: *this.
template<class charT, class traits>
basic_istream<charT,traits>\& operator>>(basic_istream<charT,traits>\& in, charT* s);
template<class traits>
basic_istream<char,traits>\& operator>>(basic_istream<char,traits>\& in, unsigned char* s);
template<class traits>

[^179]basic_istream<char,traits>\& operator>>(basic_istream<char,traits>\& in,
signed char* s);
basic_istream<charT,traits>\& operator>>
(basic_streambuf<charT,traits>* sb); characters stored.

- $n-1$ characters are stored;
- end of file occurs on the input sequence; charT\gg(in.getloc()). were extracted. operator>> then calls width (0). (27.4.4.3).

Returns: in.
template<class charT, class traits>
template<class traits>
template<class traits> in.setstate(failbit).

Returns: in.

Effects: Behaves like a formatted input member (as described in 27.6.1.2.1) of $i n$. After a sentry object is constructed, operator>> extracts characters and stores them into successive locations of an array whose first element is designated by s. If width() is greater than zero, n is width(). Otherwise n is the the number of elements of the largest array of char_type that can store a terminating charT(). n is the maximum number of

Characters are extracted and stored until any of the following occurs:

- ct.is (ct.space, c) is true for the next available input character c, where $c t$ is use_facet<ctype<
operator>> then stores a null byte (charT()) in the next position, which may be the first position if no characters

If the function extracted no characters, it calls setstate(failbit), which may throw ios_base: :failure basic_istream<charT,traits>\& operator>>(basic_istream<charT,traits>\& in, charT\& c);
basic_istream<char,traits>\& operator>>(basic_istream<char,traits>\& in, unsigned char\& c);
basic_istream<char,traits>\& operator>>(basic_istream<char,traits>\& in,
signed char\& c);
Effects: Behaves like a formatted input member (as described in 27.6.1.2.1) of in. After a sentry object is constructed a character is extracted from $i n$, if one is available, and stored in c. Otherwise, the function calls

Effects: Behaves as a formatted input function (as described in 27.6.1.2.1). If $s b$ is null, calls setstate(failbit), which may throw ios_base : :failure (27.4.4.3). After a sentry object is constructed, extracts characters from $*$ this and inserts them in the output sequence controlled by $s b$. Characters are extracted and inserted until any of the following occurs:

- end-of-file occurs on the input sequence;
- inserting in the output sequence fails (in which case the character to be inserted is not extracted);
- an exception occurs (in which case the exception is caught).

27.6.1.3 Unformatted input functions

[istream.unformatted]

1 Each unformatted input function begins execution by constructing an object of class sentry with the default argument noskipws (second) argument true. If the sentry object returns true, when converted to a value of type bool, the function endeavors to obtain the requested input. Otherwise, if the sentry constructor exits by throwing an exception or if the sentry object returns false, when converted to a value of type bool, the function returns without attempting to obtain any input. In either case the number of extracted characters is set to 0 ; unformatted input functions taking a character array of non-zero size as an argument shall also store a null character (using charT()) in the first location of the array. If an exception is thrown during input then ios: : badbit is turned on ${ }^{312)}$ in $*$ this's error state. (Exceptions thrown from basic_ios<>: : clear () are not caught or rethrown.) If (exceptions()\&badbit) !=0 then the exception is rethrown. It also counts the number of characters extracted. If no exception has been thrown it ends by storing the count in a member object and returning the value specified. In any event the sentry object is destroyed before leaving the unformatted input function.
streamsize gcount() const;
Effects: None. This member function does not behave as an unformatted input function (as described in 27.6.1.3, paragraph 1).

Returns: The number of characters extracted by the last unformatted input member function called for the object.

```
int_type get();
```

Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts a character c, if one is available. Otherwise, the function calls setstate(failbit), which may throw ios_base: :failure (27.4.4.3),

Returns: c if available, otherwise traits: :eof().
basic_istream<charT,traits>\& get(char_type\& c);
Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts a character, if one is available, and assigns it to c. ${ }^{313 \text {) }}$ Otherwise, the function calls setstate(failbit) (which may throw ios_base: :failure (27.4.4.3)).

Returns: *this.
basic_istream<charT,traits>\& get(char_type* s, streamsize n, char_type delim);

[^180]Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts characters and stores them into successive locations of an array whose first element is designated by $s .{ }^{314)}$ Characters are extracted and stored until any of the following occurs:

- n - 1 characters are stored;
- end-of-file occurs on the input sequence (in which case the function calls setstate (eofbit));
— traits: :eq (c, delim) for the next available input character c (in which case c is not extracted).
If the function stores no characters, it calls setstate (failbit) (which may throw ios_base : : failure (27.4.4.3)). In any case, it then stores a null character into the next successive location of the array.

Returns: *this.
basic_istream<charT,traits>\& get(char_type* s, streamsize n)
Effects: Calls get (s, n, widen(' $\backslash \mathrm{n}$ '))
Returns: Value returned by the call.
basic_istream<charT,traits>\& get(basic_streambuf<char_type,traits>\& sb, char_type delim);

Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts characters and inserts them in the output sequence controlled by $s b$. Characters are extracted and inserted until any of the following occurs:

- end-of-file occurs on the input sequence;
- inserting in the output sequence fails (in which case the character to be inserted is not extracted);
— traits: :eq (c, delim) for the next available input character c (in which case c is not extracted);
- an exception occurs (in which case, the exception is caught but not rethrown).

If the function inserts no characters, it calls setstate(failbit), which may throw ios_base::failure (27.4.4.3).

Returns: *this.
basic_istream<charT,traits>\& get(basic_streambuf<char_type,traits>\& sb);
Effects: Calls get(sb, widen('\n'))
Returns: Value returned by the call.

```
basic_istream<charT,traits>& getline(char_type* s, streamsize n,
```

 char_type delim);
 Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts characters and stores them into successive locations of an array whose first element is designated by $s .{ }^{315)}$ Characters are extracted and stored until one of the following occurs:

[^181]1. end-of-file occurs on the input sequence (in which case the function calls setstate (eofbit));
2. traits: :eq (c, delim) for the next available input character c (in which case the input character is extracted but not stored); ${ }^{316)}$
3. $n-1$ characters are stored (in which case the function calls setstate(failbit)).

These conditions are tested in the order shown. ${ }^{317)}$
If the function extracts no characters, it calls setstate(failbit) (which may throw ios_base::failure (27.4.4.3)). ${ }^{318)}$

In any case, it then stores a null character (using charT()) into the next successive location of the array.
Returns: *this.
[Example:

```
        #include <iostream>
        int main()
        {
            using namespace std;
            const int line_buffer_size = 100;
            char buffer[line_buffer_size];
            int line_number = 0;
            while (cin.getline(buffer, line_buffer_size, '\n') || cin.gcount()) {
                int count = cin.gcount();
                if (cin.eof())
                cout << "Partial final line"; // cin.fail() isfalse
            else if (cin.fail()) {
                cout << "Partial long line";
                cin.clear(cin.rdstate() & ~ios::failbit);
            } else {
                count--; // Don't include newline in count
                cout << "Line " << ++line_number;
            }
            cout << " (" << count << " chars): " << buffer << endl;
        }
        }
            _ end example ]
basic_istream<charT,traits>& getline(char_type* s, streamsize n);
    Returns: getline(s,n,widen('\n'))
```

[^182]basic_istream<charT,traits>\&
ignore(streamsize $n=1$, int_type delim = traits: :eof());

Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, extracts characters and discards them. Characters are extracted until any of the following occurs:
— if n != numeric_limits<streamsize>: : $\max ()(18.2 .1), n$ characters are extracted

- end-of-file occurs on the input sequence (in which case the function calls setstate (eofbit), which may throw ios_base: :failure (27.4.4.3));
— traits: :eq_int_type (traits: :to_int_type (c), delim) for the next available input character c (in which case c is extracted).

Remarks: The last condition will never occur if traits: :eq_int_type(delim, traits: :eof()).
Returns: *this.
int_type peek();
Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, reads but does not extract the current input character.

Returns: traits: :eof() if good() is false. Otherwise, returns rdbuf()->sgetc().
basic_istream<charT,traits>\& read(char_type* s, streamsize n);
Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, if ! good() calls setstate (failbit) which may throw an exception, and return. Otherwise extracts characters and stores them into successive locations of an array whose first element is designated by $s .{ }^{319)}$ Characters are extracted and stored until either of the following occurs:

- n characters are stored;
- end-of-file occurs on the input sequence (in which case the function calls setstate (failbit|eofbit), which may throw ios_base: :failure (27.4.4.3)).

Returns: *this.
streamsize readsome(char_type* s, streamsize n);
Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, if ! good () calls setstate (failbit) which may throw an exception, and return. Otherwise extracts characters and stores them into successive locations of an array whose first element is designated by s. If rdbuf()->in_avail() == -1, calls setstate (eofbit) (which may throw ios_base: :failure (27.4.4.3)), and extracts no characters;

- If rdbuf()->in_avail() == 0 , extracts no characters
— If rdbuf()->in_avail() > 0, extracts min(rdbuf()->in_avail(), n)).
Returns: The number of characters extracted.

[^183]basic_istream<charT,traits>\& putback(char_type c);

Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, if ! good() calls setstate (failbit) which may throw an exception, and return. If rdbuf() is not null, calls rdbuf->sputbackc(). If rdbuf() is null, or if sputbackc() returns traits: :eof(), calls setstate(badbit) (which may throw ios_base: : failure (27.4.4.3)). [Note: this function extracts no characters, so the value returned by the next call to gcount () is 0 . - end note]

Returns: *this.
basic_istream<charT,traits>\& unget();
Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1). After constructing a sentry object, if ! good() calls setstate (failbit) which may throw an exception, and return. If rdbuf () is not null, calls rdbuf()->sungetc(). If rdbuf() is null, or if sungetc() returns traits: :eof(), calls setstate (badbit) (which may throw ios_base : : failure (27.4.4.3)). [Note: this function extracts no characters, so the value returned by the next call to gcount () is 0 . - end note]

Returns: *this.
int sync();
Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of characters extracted and does not affect the value returned by subsequent calls to gcount (). After constructing a sentry object, if $r d b u f()$ is a null pointer, returns -1 . Otherwise, calls rdbuf () $->$ pubsync () and, if that function returns -1 calls setstate (badbit) (which may throw ios_base: : failure (27.4.4.3), and returns -1 . Otherwise, returns zero.
pos_type tellg();
Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of characters extracted and does not affect the value returned by subsequent calls to gcount ().

Returns: After constructing a sentry object, if fail() != false, returns pos_type(-1) to indicate failure. Otherwise, returns rdbuf () ->pubseekoff(0, cur, in).

```
basic_istream<charT,traits>& seekg(pos_type pos);
```

Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of characters extracted and does not affect the value returned by subsequent calls to gcount(). After constructing a sentry object, if fail() ! = true, executes rdbuf() ->pubseekpos (pos, ios_base::in). In case of failure, the function calls setstate(failbit) (which may throw ios_base failure).

Returns: *this.
basic_istream<charT,traits>\& seekg(off_type off, ios_base::seekdir dir);
Effects: Behaves as an unformatted input function (as described in 27.6.1.3, paragraph 1), except that it does not count the number of characters extracted and does not affect the value returned by subsequent calls to gcount (). After constructing a sentry object, if fail() ! = true, executes rdbuf()->pubseekoff(off, dir, ios_base: :in).

27.6.1.4 Standard basic_istream manipulators

[istream.manip]

```
namespace std {
    template <class charT, class traits>
        basic_istream<charT,traits>& ws(basic_istream<charT,traits>& is);
}
```


27.6.1.5 Class template basic_iostream

[iostreamclass]

```
namespace std {
    template <class charT, class traits = char_traits<charT> >
    class basic_iostream :
            public basic_istream<charT,traits>,
            public basic_ostream<charT,traits> {
        public:
            // types:
                typedef charT char_type;
                typedef typename traits::int_type int_type;
                typedef typename traits::pos_type pos_type;
                typedef typename traits::off_type off_type;
                typedef traits traits_type;
            // constructor/destructor
            explicit basic_iostream(basic_streambuf<charT,traits>* sb);
            virtual ~basic_iostream();
        };
}
```

1 The class basic_iostream inherits a number of functions that allow reading input and writing output to sequences controlled by a stream buffer.
27.6.1.5.1 basic_iostream constructors
[iostream.cons]
explicit basic_iostream(basic_streambuf<charT,traits>* sb);
Effects: Constructs an object of class basic_iostream, assigning initial values to the base classes by calling basic_istream<charT,traits> (sb) (27.6.1.1) and basic_ostream<charT,traits>(sb) (27.6.2.1)

Postcondition: $\operatorname{rdbuf}()==s b$ and $g c o u n t()==0$.

Draft
27.6.1.5.2 basic_iostream destructor

```
virtual ~basic_iostream();
```


27.6.2 Output streams

[output.streams]
1 The header <ostream> defines a type and several function signatures that control output to a stream buffer.
27.6.2.1 Class template basic_ostream
[ostream]

```
namespace std {
    template <class charT, class traits = char_traits<charT> >
    class basic_ostream : virtual public basic_ios<charT,traits> {
    public:
        // Types (inherited from basic_ios (27.4.4)):
        typedef charT char_type;
        typedef typename traits::int_type int_type;
        typedef typename traits::pos_type pos_type;
        typedef typename traits::off_type off_type;
        typedef traits traits_type;
        // 27.6.2.2 Constructor/destructor:
        explicit basic_ostream(basic_streambuf<char_type,traits>* sb);
        virtual ~basic_ostream();
        // 27.6.2.3 Prefix/suffix:
        class sentry;
        // 27.6.2.5 Formatted output:
        basic_ostream<charT,traits>& operator<<
            (basic_ostream<charT,traits>& (*pf)(basic_ostream<charT,traits>&));
        basic_ostream<charT,traits>& operator<<
            (basic_ios<charT,traits>& (*pf)(basic_ios<charT,traits>&));
    basic_ostream<charT,traits>& operator<<
            (ios_base& (*pf)(ios_base&));
    basic_ostream<charT,traits>& operator<<(bool n);
    basic_ostream<charT,traits>& operator<<(short n);
    basic_ostream<charT,traits>& operator<<(unsigned short n);
    basic_ostream<charT,traits>& operator<< (int n);
    basic_ostream<charT,traits>& operator<<(unsigned int n);
    basic_ostream<charT,traits>& operator<<(long n);
    basic_ostream<charT,traits>& operator<<(unsigned long n);
    basic_ostream<charT,traits>& operator<<(long long n);
    basic_ostream<charT,traits>& operator<<(unsigned long long n);
    basic_ostream<charT,traits>& operator<<(float f);
```

```
    basic_ostream<charT,traits>& operator<<(double f);
    basic_ostream<charT,traits>& operator<<(long double f);
    basic_ostream<charT,traits>& operator<<(const void* p);
    basic_ostream<charT,traits>& operator<<
        (basic_streambuf<char_type,traits>* sb);
    // 27.6.2.6 Unformatted output:
    basic_ostream<charT,traits>& put(char_type c);
    basic_ostream<charT,traits>& write(const char_type* s, streamsize n);
    basic_ostream<charT,traits>& flush();
    // 27.6.2.4 seeks:
    pos_type tellp();
    basic_ostream<charT,traits>& seekp(pos_type);
    basic_ostream<charT,traits>& seekp(off_type, ios_base::seekdir);
};
// 27.6.2.5.4 character inserters
template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,
                                    charT);
template<class charT, class traits>
basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,
                                    char);
template<class traits>
    basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
                                char);
// signed and unsigned
template<class traits>
    basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
    signed char);
template<class traits>
    basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
                                    unsigned char)
template<class charT, class traits>
    basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,
                        const charT*);
template<class charT, class traits>
    basic_ostream<charT,traits>& operator<<(basic_ostream<charT,traits>&,
                        const char*);
template<class traits>
    basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
                                    const char*);
// signed and unsigned
template<class traits>
    basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
                                    const signed char*);
```

Draft

```
template<class traits>
    basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>&,
                    const unsigned char*);
```

\}

1 The class basic_ostream defines a number of member function signatures that assist in formatting and writing output to output sequences controlled by a stream buffer.

2 Two groups of member function signatures share common properties: the formatted output functions (or inserters) and the unformatted output functions. Both groups of output functions generate (or insert) output characters by actions equivalent to calling rdbuf ()->sputc (int_type). They may use other public members of basic_ostream except that they shall not invoke any virtual members of $\operatorname{rdbuf}()$ except overflow(), xsputn(), and sync().

3 If one of these called functions throws an exception, then unless explicitly noted otherwise the output function sets badbit in error state. If badbit is on in exceptions (), the output function rethrows the exception without completing its actions, otherwise it does not throw anything and treat as an error.
27.6.2.2 basic_ostream constructors
[ostream.cons]
explicit basic_ostream(basic_streambuf<charT,traits>* sb);
Effects: Constructs an object of class basic_ostream, assigning initial values to the base class by calling basic_ios<charT, traits>::init(sb) (27.4.4.1).

Postcondition: $\operatorname{rdbuf}()==s b$.
virtual ~basic_ostream();
Effects: Destroys an object of class basic_ostream.
Remarks: Does not perform any operations on rdbuf ().
27.6.2.3 Class basic_ostream: :sentry
[ostream::sentry]

```
namespace std {
    template <class charT,class traits = char_traits<charT> >
    class basic_ostream<charT,traits>::sentry {
        // bool ok_;
        public:
            explicit sentry(basic_ostream<charT,traits>& os);
            ~sentry();
            operator bool() const { return ok_; }
        private:
            sentry(const sentry&); // not defined
            sentry& operator=(const sentry&); // not defined
    };
}
```

1
The class sentry defines a class that is responsible for doing exception safe prefix and suffix operations.

```
explicit sentry(basic_ostream<charT,traits>& os);
```

If os $\operatorname{good}()$ is nonzero, prepares for formatted or unformatted output. If os .tie() is not a null pointer, calls os.tie()->flush(). ${ }^{320)}$

If, after any preparation is completed, os.good() is true, ok_= true otherwise, ok_== false. During preparation, the constructor may call setstate (failbit) (which may throw ios_base : :failure (27.4.4.3) $)^{321}$)
~sentry ();
If ((os.flags() \& ios_base::unitbuf) \&\& !uncaught_exception()) is true, calls os.flush().
operator bool() const;
Effects: Returns ok_.
27.6.2.4 basic_ostream seek members
pos_type tellp();
Returns: if fail() ! = false, returns pos_type (-1) to indicate failure. Otherwise, returns rdbuf () $->$ pubseekoff(0, cur, out).
basic_ostream<charT,traits>\& seekp(pos_type pos);
Effects: If fail() != true, executes rdbuf()->pubseekpos (pos, ios_base: :out). In case of failure, the function calls setstate(failbit) (which may throw ios_base::failure).

Returns: *this.
basic_ostream<charT,traits>\& seekp(off_type off, ios_base::seekdir dir);
Effects: If fail() $!=$ true, executes $\operatorname{rdbuf}()->$ pubseekoff(off, dir, ios_base: :out).
Returns: *this.

27.6.2.5 Formatted output functions

27.6.2.5.1 Common requirements

1 Each formatted output function begins execution by constructing an object of class sentry. If this object returns true when converted to a value of type bool, the function endeavors to generate the requested output. If the generation fails, then the formatted output function does setstate (ios: :failbit), which might throw an exception. If an exception is thrown during output, then ios: :badbit is turned on ${ }^{322)}$ in *this's error state. If (exceptions()\&badbit) != 0 then the exception is rethrown. Whether or not an exception is thrown, the sentry object is destroyed before leaving the formatted output function. If no exception is thrown, the result of the formattted output function is *this.

[^184]2 The descriptions of the individual formatted output operations describe how they perform output and do not mention the sentry object.

27.6.2.5.2 Arithmetic Inserters

[ostream.inserters.arithmetic]

```
operator<<(bool val);
operator<<(short val);
operator<<(unsigned short val);
operator<<(int val);
operator<<(unsigned int val);
operator<<(long val);
operator<<(unsigned long val);
operator<<(long long val);
operator<<(unsigned long long val);
operator<<(float val);
operator<<(double val);
operator<<(long double val);
operator<<(const void* val);
```

Effects: The classes num_get<> and num_put<> handle locale-dependent numeric formatting and parsing. These inserter functions use the imbued locale value to perform numeric formatting. When val is of type bool, long, unsigned long, double, long double, or const void*, the formatting conversion occurs as if it performed the following code fragment:

```
bool failed = use_facet<
    num_put<charT,ostreambuf_iterator<charT,traits> >
    >(getloc()).put(*this, *this, fill(), val).failed();
```

When $v a l$ is of type short the formatting conversion occurs as if it performed the following code fragment:

```
ios_base::fmtflags baseflags = ios_base::flags() & ios_base::basefield;
bool failed = use_facet<
    num_put<charT,ostreambuf_iterator<charT,traits> >
            >(getloc()).put(*this, *this, fill(),
                baseflags == ios_base::oct || baseflag == ios_base::hex
                    ? static_cast<long>(static_cast<unsigned short>(val))
                    : static_cast<long>(val)).failed();
```

When val is of type int the formatting conversion occurs as if it performed the following code fragment:

```
ios_base::fmtflags baseflags = ios_base::flags() \& ios_base::basefield;
bool failed = use_facet<
    num_put<charT,ostreambuf_iterator<charT,traits\gg
            \(>(\) getloc ()).put(*this, *this, fill(),
                baseflags == ios_base::oct || baseflags == ios_base::hex
                    ? static_cast<long>(static_cast<unsigned int>(val))
                    : static_cast<long>(val)).failed();
```

When val is of type unsigned short or unsigned int the formatting conversion occurs as if it performed the following code fragment:

Draft

```
bool failed = use_facet<
    num_put<charT,ostreambuf_iterator<charT,traits> >
            >(getloc()).put(*this, *this, fill(),
                static_cast<unsigned long>(val)).failed();
```

When $v a l$ is of type float the formatting conversion occurs as if it performed the following code fragment:

```
bool failed = use_facet<
    num_put<charT,ostreambuf_iterator<charT,traits> >
            >(getloc()).put(*this, *this, fill(),
                static_cast<double>(val)).failed();
``` which may throw an exception, and returns.
Returns: *this.

\subsection*{27.6.2.5.3 basic_ostream::operator<<}
basic_ostream<charT,traits>\& operator<<

\section*{basic_ostream<charT,traits>\& operator<<}
(basic_streambuf<charT,traits>* sb);
Returns: *this
basic_ostream<charT,traits>\& operator<<
(basic_streambuf<charT,traits>* sb);

The first argument provides an object of the ostreambuf_iterator<> class which is an iterator for class basic_ostream<>. It bypasses ostreams and uses streambufs directly. Class locale relies on these types as its interface to iostreams, since for flexibility it has been abstracted away from direct dependence on ostream. The second parameter is a reference to the base subobject of type ios_base. It provides formatting specifications such as field width, and a locale from which to obtain other facets. If failed is true then does setstate(badbit),
[ostream.inserters]
(basic_ostream<charT,traits>\& (*pf) (basic_ostream<charT,traits>\&))
 basic_ostream<charT,traits>\& operator<<
 (basic_ios<charT,traits>\& (*pf) (basic_ios<charT,traits>\&))

Effects: Calls \(p f\) (*this). This inserter does not behave as a formatted output function (as described in 27.6.2.5.1).
Returns: *this. \({ }^{324)}\)
basic_ostream<charT,traits>\& operator<<
(ios_base\& (*pf) (ios_base\&))
Effects: None. Does not behave as a formatted output function (as described in 27.6.2.5.1).
Returns: \(p f\) (*this). \({ }^{323)}\)
basic_ostream<charT,traits>\& operator<<
(basic_ios<charT,traits>\& (*pf) (basic_ios<charT,traits>\&))

Effects: Behaves as a formatted output function (as described in 27.6.2.5.1). After the sentry object is constructed, if \(s b\) is null calls setstate(badbit) (which may throw ios_base: :failure).

\footnotetext{
\({ }^{323)}\) See, for example, the function signature endl (basi c_ost rean\&) (27.6.2.7) .
\({ }^{324)}\) See, for example, the function signature dec(i os_baseß) (27.4.5.3).
}

\subsection*{27.6.2.5.4 Character inserter function templates}
```

template<class charT, class traits>
basic_ostream<charT,traits>\& operator<<(basic_ostream<charT,traits>\& out,
charT c);
template<class charT, class traits>
basic_ostream<charT,traits>\& operator<<(basic_ostream<charT,traits>\& out,
char c);
// specialization
template<class traits>
basic_ostream<char,traits>\& operator<<(basic_ostream<char,traits>\& out,
char c);
// signed and unsigned
template<class traits>
basic_ostream<char,traits>\& operator<<(basic_ostream<char,traits>\& out,
signed char c);
template<class traits>
basic_ostream<char,traits>\& operator<<(basic_ostream<char,traits>\& out,
unsigned char c);

```

Effects: Behaves like a formatted inserter (as described in 27.6.2.5.1) of out. After a sentry object is constructed it inserts characters. In case \(c\) has type char and the character type of the stream is not char, then the character to be inserted is out. widen (\(c\)) ; otherwise the character is \(c^{325)}\). Padding is determined as described in 22.2.2.2.2. width (0) is called. The insertion character and any required padding are inserted into out.
```

template<class charT, class traits>
basic_ostream<charT,traits>\& operator<<(basic_ostream<charT,traits>\& out,
const charT* s);
template<class charT, class traits>
basic_ostream<charT,traits>\& operator<<(basic_ostream<charT,traits>\& out,
const char* s);
template<class traits>
325)

```
```

    basic_ostream<char,traits>& operator<<(basic_ostream<char,traits>& out,
    const char* s);
    template<class traits>
basic_ostream<char,traits>\& operator<<(basic_ostream<char,traits>\& out,
const signed char* s);
template<class traits>
basic_ostream<char,traits>\& operator<<(basic_ostream<char,traits>\& out,
const unsigned char* s);

```

\subsection*{27.6.2.6 Unformatted output functions}

\section*{[ostream.unformatted]}

1 Each unformatted output function begins execution by constructing an object of class sentry. If this object returns true, while converting to a value of type bool, the function endeavors to generate the requested output. If an exception is thrown during output, then ios : : badbit is turned on \({ }^{326}\) in \(*\) this's error state. If (exceptions () \& badbit) != 0 then the exception is rethrown. In any case, the unformatted output function ends by destroying the sentry object, then, if no exception was thrown, returning the value specified for the unformatted output function.
```

basic_ostream<charT,traits>\& put(char_type c);

```

Effects: Behaves as an unformatted output function (as described in 27.6.2.6, paragraph 1). After constructing a sentry object, inserts the character \(c\), if possible. \({ }^{327)}\)

Otherwise, calls setstate(badbit) (which may throw ios_base: :failure (27.4.4.3)).
Returns: *this.
basic_ostream\& write (const char_type* \(s\), streamsize \(n\));

\footnotetext{
\({ }^{326)}\) without causing an i os: : fail ure to be thrown.
\({ }^{327)}\) Note that this function is not overloaded on types si gned char and unsi gned char.
}

\subsection*{27.6.2.7 Standard basic_ostream manipulators}
[ostream.manip]
```

namespace std {
template <class charT, class traits>
basic_ostream<charT,traits>\& endl(basic_ostream<charT,traits>\& os);
}
1 Effects: Calls os.put(os.widen('\n')), then os.flush().
2 Returns:os.
namespace std {
template <class charT, class traits>
basic_ostream<charT,traits>\& ends(basic_ostream<charT,traits>\& os);
}
3 Effects: Inserts a null character into the output sequence: calls os .put (charT()).
4 Returns:os.
namespace std {
template <class charT, class traits>
basic_ostream<charT,traits>\& flush(basic_ostream<charT,traits>\& os);
}
5 Effects: Calls os.flush().
6 Returns:os.
${ }^{328)}$ Note that this function is not overloaded on types si gned char and unsi gned char.

```

\subsection*{27.6.3 Standard manipulators}
[std.manip]
1 The header <iomanip> defines a type and several related functions that use this type to provide extractors and inserters that alter information maintained by class ios_base and its derived classes.

2 The type designated smanip in each of the following function descriptions is implementation-defined and may be different for each function.
```

smanip resetiosflags(ios_base::fmtflags mask);

```
```

smanip setbase(int base);

```

Returns: An object \(s\) of unspecified type such that if out is an instance of basic_ostream<charT, traits> then the expression out<<s behaves as if \(f(s)\) were called, or if in is an instance of basic_istream<charT, traits> then the expression in>>s behaves as if \(\mathrm{f}(s\), base) were called. The function \(f\) can be defined as:
```

ios_base\& f(ios_base\& str, int base)
{

```

\footnotetext{
\({ }^{329)}\) The expression ci \(n \gg\) reset i osflags(i os_base: : ski pus) clears i os_base: : ski pus in the format flags stored in the basi c_i streameharT, trai ts>object ci \(n\) (the same as \(\overline{\mathrm{Ci}} \mathrm{n} \gg\) noski pus), and the expression cout << reseti osflags(i os_base: : shoubase) clears i os_base: : showbase in the format flags stored in the basi c_ostreameharT, traits>object cout (the same as cout \(\ll\) noshoubase).
}
```

    // set basefield
    str.setf(base == 8 ? ios_base::oct :
        base == 10 ? ios_base::dec :
        base == 16 ? ios_base::hex :
            ios_base::fmtflags(0), ios_base::basefield);
    return str;
    }

```

The expression out<<s has type basic_ostream<charT, traits>\& and value out. The expression in>>s has type basic_istream<charT, traits>\& and value in.
```

smanip setfill(char_type c);

```

Returns: An object \(s\) of unspecified type such that if out is (or is derived from) basic_ostream<charT, traits> and \(c\) has type charT then the expression out<<s behaves as if \(\mathrm{f}(s, c)\) were called. The function \(f\) can be defined as:
```

template<class charT, class traits>
basic_ios<charT,traits>\& f(basic_ios<charT,traits>\& str, charT c)
{
// set fill character
str.fill(c);
return str;
}

```

The expression out<<s has type basic_ostream<charT, traits>\& and value out.
```

smanip setprecision(int n);

```

Returns: An object \(s\) of unspecified type such that if out is an instance of basic_ostream<charT, traits> then the expression out<<s behaves as if \(f(s, n)\) were called, or if in is an instance of basic_istream<charT, traits> then the expression in>>s behaves as if \(\mathrm{f}(s, n)\) were called. The function \(f\) can be defined as:
```

ios_base\& f(ios_base\& str, int n)
{
// set precision
str.precision(n);
return str;
}

```

The expression out<<s has type basic_ostream<charT, traits>\& and value out. The expression in>>s has type basic_istream<charT, traits>\& and value in.
```

smanip setw(int n);

```

Returns: An object \(s\) of unspecified type such that if out is an (instance of) basic_ostream<charT, traits> then the expression out<<s behaves as if \(f(s, n)\) were called, or if in is an instance of basic_istream<charT, traits> then the expression in>>s behaves as if \(\mathrm{f}(s, n)\) were called. The function \(f\) can be defined as:
```

ios_base\& f(ios_base\& str, int n)
{
// set width

```

Draft
```

    str.width(n);
    return str;
    ```
\}

The expression out<<s has type basic_ostream<charT, traits>\& and value out. The expression in>>s has type basic_istream<charT, traits>\& and value in.

\subsection*{27.6.4 Extended Manipulators}
[ext.manip]
1 The header <iomanip> defines a type and several related functions that use this type to provide extractors and inserters that allow for the parsing and formatting of sequences and values for money.

2 The type designated by smanip in each of the following function descriptions is implementation-defined and may be different for each function.
```

template <class moneyT> smanip get_money(moneyT\& mon, bool intl = false);

```
```

```
template <class charT, class moneyT> smanip put_money(const moneyT& mon, bool intl = false;
```

```
```

```
template <class charT, class moneyT> smanip put_money(const moneyT& mon, bool intl = false;
```

```

Requires: The type moneyT shall be either long double or a specialization of the basic_string template (Clause 21).

Returns: An object s of unspecified type such that if in is an object of type basic_istream<charT, traits> then the expression in >> get_money (mon, intl) behaves as if \(f\) (in, mon, intl) were called. The function \(f\) can be defined as:
```

template <class charT, class traits, class moneyT>
void f(basic_ios<charT, traits>\& str, moneyT\& mon, bool intl)
{
typedef istreambuf_iterator<charT> Iter;
typedef money_get<charT, Iter> MoneyGet;
ios_base::iostate err = ios_base::goodbit;
const MoneyGet \&mg = use_facet<MoneyGet>(str.getloc());
mg.get(Iter(str.rdbuf()), Iter(), intl, strm, err, mon);
if (ios_base::goodbit != err)
str.setstate(err);
}

```

The expression in >> s has type basic_istream<charT, traits>\& and value in.

Requires: The type moneyT shall be either long double or a specialization of the basic_string template (Clause 21).

Returns: An object s of unspecified type such that if out is an object of type basic_ostream<charT, traits> then the expression out << put_money(mon, intl) behaves as if \(f\) (out, mon, intl) were called. The function \(f\) can be defined as:
```

template <class charT, class traits, class moneyT>
void f(basic_ios<charT, traits>\& str, const moneyT\& mon, bool intl)
{
typedef ostreambuf_iterator<charT> Iter;
typedef money_put<charT, Iter> MoneyPut;
const MoneyPut \&mp = use_facet<MoneyPut>(str.getloc());
const Iter end = mp.put(Iter(str.rdbuf()), intl, str, str.fill(), mon);
if (end.failed())
str.setstate(ios::badbit);
}

```

The expression out << s has type basic_ostream<charT, traits>\& and value out.

\subsection*{27.7 String-based streams}
[string.streams]
1 The header <sstream> defines four class templates and eight types that associate stream buffers with objects of class basic_string, as described in 21.2.

\section*{Header <sstream> synopsis}
```

namespace std {
template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
class basic_stringbuf;
typedef basic_stringbuf<char> stringbuf;
typedef basic_stringbuf<wchar_t> wstringbuf;
template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
class basic_istringstream;
typedef basic_istringstream<char> istringstream;
typedef basic_istringstream<wchar_t> wistringstream;
template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
class basic_ostringstream;
typedef basic_ostringstream<char> ostringstream;
typedef basic_ostringstream<wchar_t> wostringstream;
template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
class basic_stringstream;
typedef basic_stringstream<char> stringstream;
typedef basic_stringstream<wchar_t> wstringstream;
}

```

\subsection*{27.7.1 Class template basic_stringbuf}
```

namespace std {
template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
class basic_stringbuf : public basic_streambuf<charT,traits> {
public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
typedef Allocator allocator_type;
// 27.7.1.1 Constructors:
explicit basic_stringbuf(ios_base::openmode which
= ios_base::in | ios_base::out);
explicit basic_stringbuf
(const basic_string<charT,traits,Allocator>\& str,
ios_base::openmode which = ios_base::in | ios_base::out);
// 27.7.1.2 Get and set:
basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>\& s);
protected:
// 27.7.1.3 Overridden virtual functions:
virtual int_type underflow();
virtual int_type pbackfail(int_type c = traits::eof());
virtual int_type overflow (int_type c = traits::eof());
virtual basic_streambuf<charT,traits>* setbuf(charT*, streamsize);
virtual pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp,
ios_base::openmode which
= ios_base::in | ios_base::out);
private:
// ios_base::openmode mode; exposition only
};
}

```

1 The class basic_stringbuf is derived from basic_streambuf to associate possibly the input sequence and possibly the output sequence with a sequence of arbitrary characters. The sequence can be initialized from, or made available as, an object of class basic_string.
2 For the sake of exposition, the maintained data is presented here as:

Draft
- ios_base::openmode mode, has in set if the input sequence can be read, and out set if the output sequence can be written.
27.7.1.1 basic_stringbuf constructors
[stringbuf.cons]
```

explicit basic_stringbuf(ios_base::openmode which =
ios_base::in | ios_base::out);

```

1 Effects: Constructs an object of class basic_stringbuf, initializing the base class with basic_streambuf () (27.5.2.1), and initializing mode with which.

2 Postcondition: \(\operatorname{str}()==\) " .
```

explicit basic_stringbuf(const basic_string<charT,traits,Allocator>\& str,
ios_base::openmode which = ios_base::in | ios_base::out);

```

Effects: Constructs an object of class basic_stringbuf, initializing the base class with basic_streambuf () (27.5.2.1), and initializing mode with which. Then copies the content of str into the basic_stringbuf underlying character sequence. If which \& ios_base: : out is true, initializes the output sequence such that pbase() points to the first underlying character, epptr() points one past the last underlying character, and pptr() is equal to epptr() if which \& ios_base: :ate is true, otherwise pptr() is equal to pbase(). If which \& ios_base: : in is true, initializes the input sequence such that eback() and gptr() point to the first underlying character and egptr () points one past the last underlying character.

\subsection*{27.7.1.2 Member functions}
[stringbuf.members]
basic_string<charT,traits,Allocator> str() const;
Returns: A basic_string object whose content is equal to the basic_stringbuf underlying character sequence. If the basic_stringbuf was created only in input mode, the resultant basic_string contains the character sequence in the range [eback(),egptr()). If the basic_stringbuf was created with which \& ios_base: :out being true then the resultant basic_string contains the character sequence in the range [pbase(),high_mark), where high_mark represents the position one past the highest initialized character in the buffer. Characters can be initialized by writing to the stream, by constructing the basic_stringbuf with a basic_string, or by calling the str (basic_string) member function. In the case of calling the str (basic_string) member function, all characters initialized prior to the call are now considered uninitialized (except for those characters re-initialized by the new basic_string). Otherwise the basic_stringbuf has been created in neither input nor output mode and a zero length basic_string is returned.
```

void str(const basic_string<charT,traits,Allocator>\& s);

```

Effects: Copies the content of \(s\) into the basic_stringbuf underlying character sequence. If mode \& ios_base: :out is true, initializes the output sequence such that pbase() points to the first underlying character, epptr () points one past the last underlying character, and pptr() is equal to epptr() if mode \&ios_base: :in is true, otherwise pptr() is equal to pbase(). If mode \& ios_base: :in is true, initializes the input sequence such that eback() and gptr() point to the first underlying character and egptr() points one past the last underlying character.

\subsection*{27.7.1.3 Overridden virtual functions}
[stringbuf.virtuals]
```

int_type underflow();

```

Returns: If the input sequence has a read position available, returns traits: :to_int_type (*gptr()). Otherwise, returns traits : : \(\operatorname{eof}()\). Any character in the underlying buffer which has been initialized is considered to be part of the input sequence.
```

int_type pbackfail(int_type c = traits::eof());

```

Effects: Puts back the character designated by \(c\) to the input sequence, if possible, in one of three ways:
— If traits::eq_int_type (\(c\),traits: :eof()) returns false and if the input sequence has a putback position available, and if traits: :eq(to_char_type (c), gptr () [-1]) returns true, assigns gptr () - 1 to gptr().

Returns: \(c\).
- If traits: :eq_int_type (c,traits: :eof()) returns false and if the input sequence has a putback position available, and if mode \& ios_base: :out is nonzero, assigns \(c\) to \(*--\operatorname{gptr}()\).

Returns: c.
— If traits: :eq_int_type (\(c\), traits: : eof ()) returns true and if the input sequence has a putback position available, assigns \(\operatorname{gptr}()-1\) to \(\operatorname{gptr}()\).

Returns: traits: :not_eof (c).
Returns: traits: :eof () to indicate failure.
Remarks: If the function can succeed in more than one of these ways, it is unspecified which way is chosen.
```

int_type overflow(int_type c = traits::eof());

```

Effects: Appends the character designated by \(c\) to the output sequence, if possible, in one of two ways:
- If traits: :eq_int_type (c,traits: :eof()) returns false and if either the output sequence has a write position available or the function makes a write position available (as described below), the function calls sputc (c).
Signals success by returning \(c\).
— If traits: :eq_int_type (\(c\), traits: :eof()) returns true, there is no character to append.
Signals success by returning a value other than traits: :eof ().
Remarks: The function can alter the number of write positions available as a result of any call.
Returns: traits: : eof () to indicate failure.
The function can make a write position available only if (mode \& ios_base: :out) ! = 0. To make a write position available, the function reallocates (or initially allocates) an array object with a sufficient number of elements to hold the current array object (if any), plus at least one additional write position. If (mode \& ios_base: :in) \(!=0\), the function alters the read end pointer egptr() to point just past the new write position.

Draft
```

pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which
= ios_base::in | ios_base::out);

```

Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in Table 111.

Table 111: seekoff positioning
\begin{tabular}{|c|c|}
\hline Conditions & Result \\
\hline \begin{tabular}{l}
(which \& ios_base:: \\
in) == ios_base::in
\end{tabular} & positions the input sequence \\
\hline (which \& ios_base:: out) == ios_base::out & positions the output sequence \\
\hline ```
(which & (ios_base::in |
ios_base::out)) ==
(ios_base::in) |
ios_base::out))
and way == either
ios_base::beg or
ios_base::end
``` & positions both the input and the output sequences \\
\hline Otherwise & the positioning operation fails. \\
\hline
\end{tabular}

For a sequence to be positioned, if its next pointer (either \(\operatorname{gptr}()\) or \(\operatorname{pptr}()\) ) is a null pointer and the new offset newoff is nonzero, the positioning operation fails. Otherwise, the function determines newoff as indicated in Table 112.

Table 112: newoff values
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Condition } & \multicolumn{1}{c|}{ newoff Value } \\
\hline \hline way \(==\) ios_base: : beg & 0 \\
\hline way \(==\) ios_base : :cur & \begin{tabular}{l} 
the next pointer minus the beginning \\
pointer (xnext - xbeg).
\end{tabular} \\
\hline way \(==\) ios_base: : end & \begin{tabular}{l} 
the end pointer minus the beginning \\
pointer (xend - xbeg).
\end{tabular} \\
\hline
\end{tabular}

If ( \(n e w o f f+o f f\) ) < 0, or if newoff + off refers to an uninitialized character (as defined in 27.7.1.2 paragraph 1), the positioning operation fails. Otherwise, the function assigns \(x b e g+n e w o f f+o f f\) to the next pointer \(x n e x t\).
Returns: pos_type (newoff), constructed from the resultant offset newoff (of type off_type), that stores the resultant stream position, if possible. If the positioning operation fails, or if the constructed object cannot represent the resultant stream position, the return value is pos_type (off_type ( -1 ) ).
```

pos_type seekpos(pos_type sp, ios_base::openmode which
= ios_base::in | ios_base::out);

```

Effects: Alters the stream position within the controlled sequences, if possible, to correspond to the stream position stored in \(s p\) (as described below).
— If (which \& ios_base::in) != 0, positions the input sequence.
- If (which \& ios_base: :out) != 0, positions the output sequence.
- If \(s p\) is an invalid stream position, or if the function positions neither sequence, the positioning operation fails. If \(s p\) has not been obtained by a previous successful call to one of the positioning functions (seekoff, seekpos, tellg, tellp) the effect is undefined.

Returns: \(s p\) to indicate success, or pos_type (off_type (-1)) to indicate failure.
```

basic_streambuf<charT,traits>* setbuf(charT* s, streamsize n);

```

Effects: implementation-defined, except that setbuf \((0,0)\) has no effect.
Returns: this.

\subsection*{27.7.2 Class template basic_istringstream}
[istringstream]
```

namespace std {
template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
class basic_istringstream : public basic_istream<charT,traits> {
public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
typedef Allocator allocator_type;
// 27.7.2.1 Constructors:
explicit basic_istringstream(ios_base::openmode which = ios_base::in);
explicit basic_istringstream(
const basic_string<charT,traits,Allocator>\& str,
ios_base::openmode which = ios_base::in);
// 27.7.2.2 Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;
basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>\& s);
private:
// basic_stringbuf<charT,traits,Allocator> sb;
};
}

```

1 The class basic_istringstream<charT, traits, Allocator> supports reading objects of class basic_string< charT, traits, Allocator>. It uses a basic_stringbuf<charT, traits, Allocator> object to control the associated storage. For the sake of exposition, the maintained data is presented here as:
- \(s b\), the stringbuf object.

Draft
27.7.2.1 basic_istringstream constructors
explicit basic_istringstream(ios_base::openmode which = ios_base::in);
Effects: Constructs an object of class basic_istringstream<charT, traits>, initializing the base class with basic_istream (\&sb) and initializing sb with basic_stringbuf<charT, traits, Allocator>(which | ios_base::in)) (27.7.1.1).
explicit basic_istringstream(
const basic_string<charT,traits, allocator>\& str,
ios_base::openmode which = ios_base::in);

Effects: Constructs an object of class basic_istringstream<charT, traits>, initializing the base class with basic_istream(\&sb) and initializing sb with basic_stringbuf<charT, traits, Allocator>(str, which | ios_base::in)) (27.7.1.1).

\subsection*{27.7.2.2 Member functions}
[istringstream.members]
```

 basic_stringbuf<charT,traits,Allocator>* rdbuf() const;
 Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(&sb).
 basic_string<charT,traits,Allocator> str() const;
 Returns: rdbuf()->str().
 void str(const basic_string<charT,traits,Allocator>\& s);
Effects: Calls rdbuf()->str(s).

```

\subsection*{27.7.3 Class basic_ostringstream}
[ostringstream]
```

namespace std {
template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
class basic_ostringstream : public basic_ostream<charT,traits> {
public:
// Types:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
typedef Allocator allocator_type;

```
```

// 27.7.3.1 Constructors/destructor:

```
// 27.7.3.1 Constructors/destructor:
explicit basic_ostringstream(ios_base::openmode which = ios_base::out);
explicit basic_ostringstream(ios_base::openmode which = ios_base::out);
explicit basic_ostringstream(
explicit basic_ostringstream(
    const basic_string<charT,traits,Allocator>& str,
```

 const basic_string<charT,traits,Allocator>& str,
    ```
```

 ios_base::openmode which = ios_base::out);
 // 27.7.3.2 Members:
 basic_stringbuf<charT,traits,Allocator>* rdbuf() const;
 basic_string<charT,traits,Allocator> str() const;
 void str(const basic_string<charT,traits,Allocator>& s);
 private:
 // basic_stringbuf<charT,traits,Allocator> sb;
 };
 }

```
                            exposition only

1 The class basic_ostringstream<charT, traits, Allocator> supports writing objects of class basic_string< charT, traits, Allocator>. It uses a basic_stringbuf object to control the associated storage. For the sake of exposition, the maintained data is presented here as:
- \(s b\), the stringbuf object.
27.7.3.1 basic_ostringstream constructors
[ostringstream.cons]
explicit basic_ostringstream(ios_base::openmode which = ios_base::out);
Effects: Constructs an object of class basic_ostringstream, initializing the base class with basic_ostream( \&sb) and initializing sb with basic_stringbuf<charT, traits, Allocator>(which | ios_base::out)) (27.7.1.1).
```

explicit basic_ostringstream(
const basic_string<charT,traits,Allocator>\& str,
ios_base::openmode which = ios_base::out);

```

Effects: Constructs an object of class basic_ostringstream<charT, traits>, initializing the base class with basic_ostream(\&sb) and initializing sb with basic_stringbuf<charT, traits, Allocator>(str, which | ios_base::out)) (27.7.1.1).

\subsection*{27.7.3.2 Member functions}
[ostringstream.members]
```

 basic_stringbuf<charT,traits,Allocator>* rdbuf() const;
    ```

Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(\&sb).
basic_string<charT,traits,Allocator> str() const;
Returns: rdbuf()->str().
void str(const basic_string<charT,traits,Allocator>\& s);
Effects: Calls rdbuf ()->str (s).
27.7.4 Class template basic_stringstream
```

namespace std {
template <class charT, class traits = char_traits<charT>,
class Allocator = allocator<charT> >
class basic_stringstream
: public basic_iostream<charT,traits> {
public:
// Types
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
typedef Allocator allocator_type;
// constructors/destructors
explicit basic_stringstream(
ios_base::openmode which = ios_base::out|ios_base::in);
explicit basic_stringstream(
const basic_string<charT,traits,Allocator>\& str,
ios_base::openmode which = ios_base::out|ios_base::in);
// Members:
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;
basic_string<charT,traits,Allocator> str() const;
void str(const basic_string<charT,traits,Allocator>\& str);
private:
// basic_stringbuf<charT, traits> sb;
};
}

```

1 The class template basic_stringstream<charT, traits> supports reading and writing from objects of class basic_string<charT, traits, Allocator>. It uses a basic_stringbuf<charT, traits, Allocator> object to control the associated sequence. For the sake of exposition, the maintained data is presented here as
- \(s b\), the stringbuf object.

\subsection*{27.7.5 basic_stringstream constructors}
[stringstream.cons]
```

explicit basic_stringstream(
ios_base::openmode which = ios_base::out|ios_base::in);

```

1 Effects: Constructs an object of class basic_stringstream<charT,traits>, initializing the base class with basic_iostream (\&sb) and initializing sb with basic_stringbuf<charT,traits,Allocator>(which).
explicit basic_stringstream(
const basic_string<charT,traits,Allocator>\& str,

Draft
```

ios_base::openmode which = ios_base::out|ios_base::in);

```

Effects: Constructs an object of class basic_stringstream<charT, traits>, initializing the base class with basic_iostream (\&sb) and initializing sb with basic_stringbuf<charT, traits, Allocator>(str, which).

\subsection*{27.7.6 Member functions}
[stringstream.members]
basic_stringbuf<charT,traits,Allocator>* rdbuf() const;
Returns: const_cast<basic_stringbuf<charT,traits,Allocator>*>(\&sb)
basic_string<charT,traits,Allocator> str() const;
Returns: rdbuf()->str().
void str(const basic_string<charT,traits,Allocator>\& str);
Effects: Calls rdbuf ()->str(str).

\subsection*{27.8 File-based streams}

\section*{[file.streams]}

\subsection*{27.8.1 File streams}
[fstreams]
1 The header <fstream> defines four class templates and eight types that associate stream buffers with files and assist reading and writing files.

\section*{Header <fstream> synopsis}
```

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_filebuf;
typedef basic_filebuf<char> filebuf;
typedef basic_filebuf<wchar_t> wfilebuf;
template <class charT, class traits = char_traits<charT> >
class basic_ifstream;
typedef basic_ifstream<char> ifstream;
typedef basic_ifstream<wchar_t> wifstream;
template <class charT, class traits = char_traits<charT> >
class basic_ofstream;
typedef basic_ofstream<char> ofstream;
typedef basic_ofstream<wchar_t> wofstream;
template <class charT, class traits = char_traits<charT> >
class basic_fstream;
typedef basic_fstream<char> fstream;
typedef basic_fstream<wchar_t> wfstream;
}

```

2 In this subclause, the type name FILE refers to the type FILE declared in <cstdio> (27.8.2). \({ }^{330}\) )
File A File provides an external source/sink stream whose underlaid character type is char (byte). \({ }^{331)}\)
Multibyte character and Files A File provides byte sequences. So the streambuf (or its derived classes) treats a file as the external source/sink byte sequence. In a large character set environment, multibyte character sequences are held in files. In order to provide the contents of a file as wide character sequences, wide-oriented filebuf, namely wfilebuf should convert wide character sequences.
27.8.1.1 Class template basic_filebuf
[filebuf]
```

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits> {
public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
// 27.8.1.2 Constructors/destructor:
basic_filebuf();
virtual ~basic_filebuf();
// 27.8.1.3 Members:
bool is_open() const;
basic_filebuf<charT,traits>* open(const char* s,
ios_base::openmode mode);
basic_filebuf<charT,traits>* open(const string\& s,
ios_base::openmode mode);
basic_filebuf<charT,traits>* close();
protected:
// 27.8.1.4 Overridden virtual functions:
virtual streamsize showmanyc();
virtual int_type underflow();
virtual int_type uflow();
virtual int_type pbackfail(int_type c = traits::eof());
virtual int_type overflow (int_type c = traits::eof());
virtual basic_streambuf<charT,traits>*
setbuf(char_type* s, streamsize n);
virtual pos_type seekoff(off_type off, ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out);
virtual pos_type seekpos(pos_type sp,

```

\footnotetext{
\({ }^{330)}\) In C FI LE must be a typedef. In C++ it may be a typedef or other type name.
\({ }^{331)}\) A File is a sequence of multibyte characters. In order to provide the contents as a wide character sequence, filebuf should convert between wide character sequences and multibyte character sequences.
}
```

 ios_base::openmode which = ios_base::in | ios_base::out);
 virtual int sync();
 virtual void imbue(const locale& loc);
 };
 }

```

1 The class basic_filebuf<charT, traits> associates both the input sequence and the output sequence with a file.
2 The restrictions on reading and writing a sequence controlled by an object of class basic_filebuf<charT,traits> are the same as for reading and writing with the Standard C library FILEs.

3 In particular:
- If the file is not open for reading the input sequence cannot be read.
- If the file is not open for writing the output sequence cannot be written.
- A joint file position is maintained for both the input sequence and the output sequence.

4 An instance of basic_filebuf behaves as described in 27.8.1.1 provided traits: :pos_type is fpos<traits:: state_type>. Otherwise the behavior is undefined.

5 In order to support file I/O and multibyte/wide character conversion, conversions are performed using members of a facet, referred to as a_codecvt in following sections, obtained "as if" by
```

codecvt<charT,char,typename traits::state_type> a_codecvt =
use_facet<codecvt<charT,char,typename traits::state_type> >(getloc());

```
27.8.1.2 basic_filebuf constructors
[filebuf.cons]
basic_filebuf();
Effects: Constructs an object of class basic_filebuf<charT, traits>, initializing the base class with basic_streambuf<charT,traits>() (27.5.2.1).

Postcondition: is_open() == false.
virtual ~basic_filebuf();
Effects: Destroys an object of class basic_filebuf<charT,traits>. Calls close().

\subsection*{27.8.1.3 Member functions}
[filebuf.members]
bool is_open() const;
1 Returns: true if a previous call to open succeeded (returned a non-null value) and there has been no intervening call to close.
```

basic_filebuf<charT,traits>* open(const char* s,
ios_base::openmode mode);

```

Effects: If is_open() \(!=f a l s e\), returns a null pointer. Otherwise, initializes the filebuf as required. It then opens a file, if possible, whose name is the NTBS \(s\) ("as if" by calling std::fopen ( \(s\), modstr)). The NTBS modstr is determined from mode \& ~ios_base: :ate as indicated in Table 113. If mode is not some combination of flags shown in the table then the open fails.

Table 113: File open modes
\begin{tabular}{|ccccc|}
\hline \multicolumn{4}{|c}{ ios_base Flag combination } & stdio equivalent \\
binary & in & out & trunc & app
\end{tabular}

If the open operation succeeds and (mode \& ios_base: :ate) ! = 0, positions the file to the end ("as if" by calling std: :fseek(file, 0,SEEK_END)). \({ }^{332)}\)

If the repositioning operation fails, calls close() and returns a null pointer to indicate failure.
Returns: this if successful, a null pointer otherwise.
basic_filebuf<charT,traits>* open(const string\& s,ios_base::openmode mode);
Returns: open(s.c_str(), mode);
basic_filebuf<charT,traits>* close();
Effects: If is_open() == false, returns a null pointer. If a put area exists, calls overflow(traits::eof()) to flush characters. If the last virtual member function called on \(*\) this (between underflow, overflow, seekoff, and seekpos) was overflow then calls \(a_{-}\)codecvt . unshift (possibly several times) to determine a termination sequence, inserts those characters and calls overflow (traits: :eof()) again. Finally it closes the file ("as if" by calling std: :fclose(file)). \({ }^{333)}\) If any of the calls to overflow or std: :fclose fails then close fails.

Returns: this on success, a null pointer otherwise.
Postcondition: is_open() == false.

\footnotetext{
\({ }^{332)}\) The macro SEEK_END is defined, and the function signatures fopen( const char*, const char*) and fseek(FI LE*, I ong, int) are declared, in <cst di 0\(\rangle\) (27.8.2).
\({ }^{333)}\) The function signature fcl ose( \(\left.\mathrm{FILE}^{*}\right)\) is declared in \(<\mathrm{cst}\) di \(0>(27.8 .2)\).
}

\subsection*{27.8.1.4 Overridden virtual functions}
[filebuf.virtuals]
streamsize showmanyc();

Effects: Behaves according to the description of basic_streambuf<charT,traits>: :uflow(), with the specialization that a sequence of characters is read from the input with the same method as used by underflow.
```

```
int_type pbackfail(int_type c = traits::eof());
```

```
```

```
int_type pbackfail(int_type c = traits::eof());
```

```

Effects: Behaves the same as basic_streambuf::showmanyc() (27.5.2.4).
Remarks: An implementation might well provide an overriding definition for this function signature if it can determine that more characters can be read from the input sequence.
```

int_type underflow();

```

Effects: Behaves according to the description of basic_streambuf<charT, traits>: :underflow(), with the specialization that a sequence of characters is read from the input sequence "as if" by reading from the associated file into an internal buffer ( extern_buf) and then "as if" doing
```

char extern_buf[XSIZE];
char* extern_end;
charT intern_buf[ISIZE];
charT* intern_end;
codecvt_base::result r =
a_codecvt.in(state, extern_buf, extern_buf+XSIZE, extern_end,
intern_buf, intern_buf+ISIZE, intern_end);

```

This shall be done in such a way that the class can recover the position (fpos_t) corresponding to each character between intern_buf and intern_end. If the value of \(r\) indicates that \(a_{-}\)codecvt.in() ran out of space in intern_buf, retry with a larger intern_buf.
```

int_type uflow();

```

Effects: Puts back the character designated by \(c\) to the input sequence, if possible, in one of three ways:
- If traits: :eq_int_type ( \(c\),traits: :eof()) returns false and if the function makes a putback position available and if traits: :eq(to_char_type (c),gptr()[-1]) returns true, decrements the next pointer for the input sequence, gptr ().

Returns: \(c\).
— If traits: :eq_int_type (c,traits: :eof()) returns false and if the function makes a putback position available and if the function is permitted to assign to the putback position, decrements the next pointer for the input sequence, and stores \(c\) there.

Returns: \(c\).
- If traits: :eq_int_type (c,traits: :eof()) returns true, and if either the input sequence has a putback position available or the function makes a putback position available, decrements the next pointer for the input sequence, gptr ().

Returns: traits::not_eof (c).

Returns: traits: : eof () to indicate failure.
Remarks: If is_open() == false, the function always fails.
The function does not put back a character directly to the input sequence.
If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The function can alter the number of putback positions available as a result of any call.
```

int_type overflow(int_type c = traits::eof());

```

Effects: Behaves according to the description of basic_streambuf<charT,traits>: :overflow (c), except that the behavior of "consuming characters" is performed by first coverting "as if" by:
```

charT* b = pbase();
charT* p = pptr();
charT* end;
char xbuf[XSIZE];
char* xbuf_end;
codecvt_base::result r =
a_codecvt.out(state, b, p, end, xbuf, xbuf+XSIZE, xbuf_end);

```
and then
- If r == codecvt_base: :error then fail.
- If \(r==\) codecvt_base : : noconv then output characters from \(b\) up to (and not including) \(p\).
— If \(r\) == codecvt_base: : partial then output to the file characters from xbuf up to xbuf_end, and repeat using characters from end to p. If output fails, fail (without repeating).
— Otherwise output from xbuf to xbuf_end, and fail if output fails. At this point if \(b!=p\) and \(b==e n d\) (xbuf isn't large enough) then increase XSIZE and repeat from the beginning.

Returns: traits: :not_eof (c) to indicate success, and traits: :eof() to indicate failure. If is_open() == false, the function always fails.
basic_streambuf* setbuf(char_type* \(s\), streamsize \(n\) );
Effects: If setbuf \((0,0)\) is called on a stream before any I/O has occurred on that stream, the stream becomes unbuffered. Otherwise the results are implementation-defined. "Unbuffered" means that pbase() and pptr() always return null and output to the file should appear as soon as possible.
pos_type seekoff (off_type off, ios_base::seekdir way,
ios_base::openmode which = ios_base::in | ios_base::out);
Effects: Let width denote \(a_{-}\)codecvt.encoding(). If is_open() == false, or off \(!=0\) \&\& width <= 0 , then the positioning operation fails. Otherwise, if way \(!=\) basic_ios: :cur or off \(!=0\), and if the last operation was output, then update the output sequence and write any unshift sequence. Next, seek to the new position: if width > 0, call std::fseek(file, width * off, whence), otherwise call std::fseek(file, 0 , whence).

Remarks: "The last operation was output" means either the last virtual operation was overflow or the put buffer is non-empty. "Write any unshift sequence" means, if width if less than zero then call \(a_{-}\)codecvt.unshift (state,
xbuf, xbuf+XSIZE, xbuf_end) and output the resulting unshift sequence. The function determines one of three values for the argument whence, of type int, as indicated in Table 114.
Table 114: seekoff effects
\begin{tabular}{|cl|}
\hline way Value & stdio Equivalent \\
\hline \hline basic_ios: : beg & SEEK_SET \\
basic_ios: : cur & SEEK_CUR \\
basic_ios: :end & SEEK_END \\
\hline
\end{tabular}

Returns: a newly constructed pos_type object that stores the resultant stream position, if possible. If the positioning operation fails, or if the object cannot represent the resultant stream position, returns pos_type (off_type (-1)).
pos_type seekpos (pos_type \(s p\),
ios_base::openmode which = ios_base::in | ios_base::out);
Alters the file position, if possible, to correspond to the position stored in \(s p\) (as described below). Altering the file position performs as follows:
1. if (om \& ios_base: :out) \(!=0\), then update the output sequence and write any unshift sequence;
2. set the file position to \(s p\);
3. if (om \& ios_base::in) \(!=0\), then update the input sequence;
where om is the open mode passed to the last call to open(). The operation fails if is_open() returns false.
If \(s p\) is an invalid stream position, or if the function positions neither sequence, the positioning operation fails. If \(s p\) has not been obtained by a previous successful call to one of the positioning functions (seekoff or seekpos) on the same file the effects are undefined.

Returns: \(s p\) on success. Otherwise returns pos_type(off_type(-1)).
int sync();
Effects: If a put area exists, calls filebuf : :overflow to write the characters to the file. If a get area exists, the effect is implementation-defined.
void imbue(const locale\& loc);
Precondition: If the file is not positioned at its beginning and the encoding of the current locale as determined by \(a_{-}\)codecvt . encoding () is state-dependent (22.2.1.4.2) then that facet is the same as the corresponding facet of loc.

Effects: Causes characters inserted or extracted after this call to be converted according to loc until another call of imbue.

Remark: This may require reconversion of previously converted characters. This in turn may require the implementation to be able to reconstruct the original contents of the file.

\subsection*{27.8.1.5 Class template basic_ifstream}
```

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits> {
public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
// 27.8.1.6 Constructors:
basic_ifstream();
explicit basic_ifstream(const char* s,
ios_base::openmode mode = ios_base::in);
explicit basic_ifstream(const string\& s,
ios_base::openmode mode = ios_base::in);
// 27.8.1.7 Members:
basic_filebuf<charT,traits>* rdbuf() const;
bool is_open() const;
void open(const char* s, ios_base::openmode mode = ios_base::in);
void open(const string\& s, ios_base::openmode mode = ios_base::in);
void close();
private:
// basic_filebuf<charT,traits> sb; exposition only
};
}

```

1 The class basic_ifstream<charT, traits> supports reading from named files. It uses a basic_filebuf<charT, traits> object to control the associated sequence. For the sake of exposition, the maintained data is presented here as:
- \(s b\), the filebuf object.
27.8.1.6 basic_ifstream constructors
[ifstream.cons]
```

basic_ifstream();

```

Effects: Constructs an object of class basic_ifstream<charT, traits>, initializing the base class with basic_istream (\&sb) and initializing sb with basic_filebuf<charT,traits>()) (27.6.1.1.1, 27.8.1.2).
```

explicit basic_ifstream(const char* s,
ios_base::openmode mode = ios_base::in);

```

Effects: Constructs an object of class basic_ifstream, initializing the base class with basic_istream(\&sb) and initializing \(s b\) with basic_filebuf<charT, traits>()) (27.6.1.1.1, 27.8.1.2), then calls rdbuf()->open( \(s\), mode | ios_base::in). If that function returns a null pointer, calls setstate(failbit).
```

explicit basic_ifstream(const string\& s,ios_base::openmode mode = ios_base::in);

```

Effects: the same as basic_ifstream(s.c_str(), mode).

\subsection*{27.8.1.7 Member functions}
[ifstream.members]
```

basic_filebuf<charT,traits>* rdbuf() const;
Returns: const_cast<basic_filebuf<charT,traits>*>(\&sb).
bool is_open() const;
Returns: rdbuf()->is_open().
void open(const char* s, ios_base::openmode mode = ios_base::in);
Effects: Calls rdbuf()->open(s, mode | ios_base::in). If that function does not return a null pointer
calls clear(), otherwise calls setstate(failbit) (which may throw ios_base: :failure (27.4.4.3)). }\mp@subsup{}{}{334
void open(const string\& s, ios_base::openmode mode = ios_base::in);
Effects: calls open(s.c_str(), mode).
void close();
Effects: Calls rdbuf()->close() and, if that function returns false, calls setstate(failbit) (which may throw ios_base: :failure (27.4.4.3)).

```

\subsection*{27.8.1.8 Class template basic_ofstream}
```

namespace std {
template <class charT, class traits = char_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits> {
public:
typedef charT char_type;
typedef typename traits::int_type int_type;
typedef typename traits::pos_type pos_type;
typedef typename traits::off_type off_type;
typedef traits traits_type;
// 27.8.1.9 Constructors:
basic_ofstream();
explicit basic_ofstream(const char* s,
ios_base::openmode mode = ios_base::out);
explicit basic_ofstream(const string\& s,
ios_base::openmode mode = ios_base::out);
// 27.8.1.10 Members:
basic_filebuf<charT,traits>* rdbuf() const;

```

\footnotetext{
\({ }^{334)}\) A successful open does not change the error state.
}
```

 bool is_open() const;
 void open(const char* s, ios_base::openmode mode = ios_base::out);
 void open(const string& s, ios_base::openmode mode = ios_base::out);
 void close();
 private:
 // basic_filebuf<charT,traits> sb; exposition only
 };
    ```
\}

1 The class basic_ofstream<charT, traits> supports writing to named files. It uses a basic_filebuf<charT, traits> object to control the associated sequence. For the sake of exposition, the maintained data is presented here as:
- \(s b\), the filebuf object.

\subsection*{27.8.1.9 basic_ofstream constructors}
[ofstream.cons]
basic_ofstream();
Effects: Constructs an object of class basic_ofstream<charT, traits>, initializing the base class with basic_ostream (\&sb) and initializing sb with basic_filebuf<charT,traits>()) (27.6.2.2, 27.8.1.2).
explicit basic_ofstream(const char* s, ios_base::openmode mode = ios_base::out);

Effects: Constructs an object of class basic_ofstream<charT, traits>, initializing the base class with basic_ostream (\&sb) and initializing sb with basic_filebuf<charT,traits>()) (27.6.2.2, 27.8.1.2), then calls rdbuf()->open(s, modelios_base::out). If that function returns a null pointer, calls setstate(failbit).
explicit basic_ofstream(const string\& s,ios_base::openmode mode = ios_base::out);
Effects: the same as basic_ofstream(s.c_str(), mode); @

\subsection*{27.8.1.10 Member functions}
[ofstream.members]
```

basic_filebuf<charT,traits>* rdbuf() const;
Returns: const_cast<basic_filebuf<charT,traits>*>(\&sb).
bool is_open() const;
Returns: rdbuf()->is_open().
void open(const char* s, ios_base::openmode mode = ios_base::out);

```

Effects: Calls rdbuf ()->open ( \(s\), mode | ios_base::out). If that function does not return a null pointer calls clear (), otherwise calls setstate(failbit) (which may throw ios_base: :failure (27.4.4.3)). \({ }^{335}\) )

\footnotetext{
\({ }^{335)}\) A successful open does not change the error state.
}
```

void close();
Effects: Calls rdbuf()->close() and, if that function fails (returns a null pointer), calls setstate(failbit) (which may throw ios_base: :failure (27.4.4.3)).

```
```

void open(const string\& s, ios_base::openmode mode = ios_base::out);

```
void open(const string& s, ios_base::openmode mode = ios_base::out);
    Effects: calls open(s.c_str(), mode);
```


27.8.1.11 Class template basic_fstream

[fstream]

```
namespace std {
    template <class charT, class traits=char_traits<charT> >
    class basic_fstream
        : public basic_iostream<charT,traits> {
    public:
        typedef charT char_type;
        typedef typename traits::int_type int_type;
        typedef typename traits::pos_type pos_type;
        typedef typename traits::off_type off_type;
        typedef traits traits_type;
        // constructors/destructor
        basic_fstream();
        explicit basic_fstream(const char* s,
            ios_base::openmode mode = ios_base::in|ios_base::out);
        explicit basic_fstream(const string& s,
                ios_base::openmode mode = ios_base::in|ios_base::out);
        // Members:
        basic_filebuf<charT,traits>* rdbuf() const;
        bool is_open() const;
        void open(const char* s,
            ios_base::openmode mode = ios_base::in|ios_base::out);
        void open(const string7 s,
            ios_base::openmode mode = ios_base::in|ios_base::out);
        void close();
    private:
        // basic_filebuf<charT,traits> sb;
    };
}
```

 exposition only
 1 The class template basic_fstream<charT, traits> supports reading and writing from named files. It uses a basic_filebuf<charT, traits> object to control the associated sequences. For the sake of exposition, the maintained data is presented here as:

- $s b$, the basic_filebuf object.
27.8.1.12 basic_fstream constructors
basic_fstream();
explicit basic_fstream(const char* s, ios_base::openmode mode = ios_base::in|ios_base::out);

27.8.1.13 Member functions

[fstream.members]

```
basic_filebuf<charT,traits>* rdbuf() const;
    Returns: const_cast<basic_filebuf<charT,traits>*>(&sb).
    bool is_open() const;
    Returns: rdbuf()->is_open().
void open(const char* s,
    ios_base::openmode mode = ios_base::in|ios_base::out);
```

Effects: Calls rdbuf () ->open (s, mode). If that function does not return a null pointer calls clear (), otherwise calls setstate(failbit), (which may throw ios_base: :failure) (

Table 115: Header <cstdio> synopsis

| Type | | Name(s) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Macros: | | | | | |
| BUFSIZ | FOPEN_MAX | SEEK_CUR | TMP_MAX | _IONBF | stdout |
| EOF | L_tmpnam | SEEK_END | _IOFBF | stderr | |
| FILENAME_MAX | NULL <cstdio> | SEEK_SET | _IOLBF | stdin | |
| Types: | FILE | fpos_t | size_t $<$ cstdio> | | |
| Functions: | | | | | |
| clearerr | fopen | fsetpos | putc | setbuf | vprintf |
| fclose | fprintf | ftell | putchar | setvbuf | vscanf |
| feof | fputc | fwrite | puts | snprintf | vsnprintf |
| ferror | fputs | getc | rename | sprintf | vsprintf |
| fflush | fread | getchar | remove | tmpfile | vsscanf |
| fgetc | freopen | gets | rewind | tmpnam | |
| fgetpos | fscanf | perror | scanf | ungetc | |
| fgets | fseek | printf | sscanf | vfprintf | |

Table 116: Header <cinttypes> synopsis

| Type | Name(s) | | |
| :---: | :---: | :---: | :---: |
| Macros: | | | |
| $\operatorname{PRI}\{\mathrm{d}$ i o u x X $\}$ [FAST LEAST] $\left.8_{8}^{16} 36364\right\}$ | | | |
| $\operatorname{PRI}\{\mathrm{d}$ i o u x X $\}$ \{MAX PTR\} | | | |
| $\operatorname{SCN}\{\mathrm{d}$ i o u x X $\}$ [FAST LEAST] $\left\{\begin{array}{lllll}16 & 32 & 64\end{array}\right\}$ | | | |
| SCN\{d i o u x X $\{$ \{MAX PTR\} | | | |
| Types: imaxdiv_t | | | |
| Functions: | | | |
| abs | imaxabs | strtoimax | wcstoimax |
| div | imaxdiv | strtoumax | wcstoumax |

Chapter 28 Regular expressions library

1 This clause describes components that C++ programs may use to perform operations involving regular expression matching and searching.

28.1 Definitions
 [re.def]

1 The following definitions shall apply to this clause:

28.1.1

[defns.regex.collating.element] collating element
a sequence of one or more characters within the current locale that collate as if they were a single character.

28.1.2

[defns.regex.finite.state.machine]
finite state machine
an unspecified data structure that is used to represent a regular expression, and which permits efficient matches against the regular expression to be obtained.

28.1.3

[defns.regex.format.specifier]
format specifier
a sequence of one or more characters that is to be replaced with some part of a regular expression match.

28.1.4

[defns.regex.matched]
matched
a sequence of zero or more characters is matched by a regular expression when the characters in the sequence correspond to a sequence of characters defined by the pattern.

28.1.5

[defns.regex.primary.equivalence.class] primary equivalence class
a set of one or more characters which share the same primary sort key: that is the sort key weighting that depends only upon character shape, and not accentation, case, or locale specific tailorings.

regular expression

a pattern that selects specific strings from a set of character strings.

28.1.7

[defns.regex.subexpression]

sub-expression

a subset of a regular expression that has been marked by parenthesis.

28.2 Requirements

1 This subclause defines requirements on classes representing regular expression traits. [Note: The class template regex_traits, defined in clause 28.7, satisfies these requirements. - end note]

2 The class template basic_regex, defined in clause 28.8, needs a set of related types and functions to complete the definition of its semantics. These types and functions are provided as a set of member typedefs and functions in the template parameter traits used by the basic_regex class template. This subclause defines the semantics guaranteed by these members.

3 To specialize class template basic_regex for a character container CharT and its related regular expression traits class Traits, use basic_regex<CharT, Traits>.

4 In Table 117 X denotes a traits class defining types and functions for the character container type charT; u is an object of type X; v is an object of type const X; p is a value of type const charT*; I1 and I2 are Input Iterators; F1 and F2 are forward iterators; c is a value of type const charT; s is an object of type $\mathrm{X}:$:string_type; cs is an object of type const X : :string_type; b is a value of type bool; I is a value of type int; cl is an object of type $\mathrm{X}:$:char_class_type, and loc is an object of type $\mathrm{X}:$: locale_type.

Table 117: regular expression traits class requirements

| expression | Return Type | Assertion / Note / Pre / Post condition |
| :---: | :---: | :---: |
| X: :char_type | char T | The character container type used in the implementation of class template basic_regex. |
| X::string_type | std::basic_-
 string<charT> | |
| X: :locale_type | A copy constructible type | A type that represents the locale used by the traits class. |
| X: :char_class_type | A bitmask type [lib.bitmask.types]. | A bitmask type representing a particular character classification. |
| $\mathrm{X}:$: length (p) | std: :size_t | Yields the smallest i such that $\mathrm{p}[\mathrm{i}]==0$. Complexity is linear in i . |
| v.translate(c) | X: :char_type | Returns a character such that for any character d that is to be considered equivalent to c then v.translate(c) == v.translate(d). |
| v.translate_nocase (c) | X: :char_type | For all characters C that are to be considered equivalent to c when comparisons are to be performed without regard to case, then v.translate_nocase(c) == v.translate_nocase(C). |

| expression | Return Type | Assertion / Note / Pre / Post condition |
| :---: | :---: | :---: |
| v.transform(F1, F2) | X: :string_type | Returns a sort key for the character sequence designated by the iterator range [F1, F2) such that if the character sequence [G1, G2) sorts before the character sequence $[\mathrm{H} 1, \mathrm{H} 2)$ then v.transform(G1, G2) < v.transform(H1, H2). |
| ```v.transform_primary(F1, F2)``` | X: :string_type | Returns a sort key for the character sequence designated by the iterator range [F1, F2) such that if the character sequence [G1, G2) sorts before the character sequence [H1, H2) when character case is not considered then
 v.transform_primary(G1, G2) <
 v.transform_primary (H1, H2). |
| ```v.lookup_collatename(F1, F2)``` | X: :string_type | Returns a sequence of characters that represents the collating element consisting of the character sequence designated by the iterator range [F 1 , F2). Returns an empty string if the character sequence is not a valid collating element. |
| $\begin{aligned} & \text { v.lookup_classname(F1, } \\ & \text { F2) } \end{aligned}$ | $\begin{aligned} & \text { X::char_class_- } \\ & \text { type } \end{aligned}$ | Converts the character sequence designated by the iterator range [F1, F2) into a value of a bitmask type that can subsequently be passed to isctype. Values returned from lookup_classname can be bitwise or'ed together; the resulting value represents membership in either of the corresponding character classes. Returns 0 if the character sequence is not the name of a character class recognized by X . The value returned shall be independent of the case of the characters in the sequence. |
| v.isctype(c, cl) | bool | Returns true if character c is a member of one of the character classes designated by cl, false otherwise. |
| v.value (c, I) | int | Returns the value represented by the digit c in base I if the character c is a valid digit in base I; otherwise returns -1 . [Note: the value of I will only be 8,10 , or 16 . - end note] |
| u.imbue (loc) | X: :locale_type | Imbues u with the locale loc and returns the previous locale used by u if any. |
| v.getloc () | X: :locale_type | Returns the current locale used by v, if any. |

5 [Note: Class template regex_traits satisfies the requirements for a regular expression traits class when it is specialized for char or wchar_t. This Class template is described in the header <regex>, and is described in clause 28.7.

- end note]

28.3 Regular expressions summary

1 The header <regex> defines a basic regular expression class template and its traits that can handle all char-like template arguments ([lib.strings]).

2 The header <regex> defines a class template that holds the result of a regular expression match.
3 The header <regex> defines a series of algorithms that allow an iterator sequence to be operated upon by a regular expression.

4 The header <regex> defines two specific template classes, regex and wregex, and their special traits.
5 The header <regex> also defines two iterator types for enumerating regular expression matches.

28.4 Header <regex> synopsis

```
namespace std {
    // 28.5, regex constants:
    namespace regex_constants {
        typedef bitmask_type syntax_option_type;
        typedef bitmask_type match_flag_type;
        typedef implementation-defined error_type;
    } // namespace regex_constants
    // 28.6, class regex_error:
    class regex_error;
    // 28.7, class template regex_traits:
    template <class charT> struct regex_traits;
    // 28.8, class template basic_regex:
    template <class charT, class traits = regex_traits<charT> > class basic_regex;
    typedef basic_regex<char> regex;
    typedef basic_regex<wchar_t> wregex;
    // 28.8.6, basic_regex swap:
    template <class charT, class traits>
        void swap(basic_regex<charT, traits>& e1, basic_regex<charT, traits>& e2);
    // 28.9
```

```
template <class BiIter>
    bool operator==(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator!=(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator<(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator<=(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator>=(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator>(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
```

template <class BiIter, class ST, class SA>
bool operator==(
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter, class ST, class SA>
bool operator!=(
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter, class ST, class SA>
bool operator<(
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter, class ST, class SA>
bool operator>(
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter, class ST, class SA>
bool operator>=(
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter, class ST, class SA>
bool operator<=(
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter, class ST, class SA>
bool operator==(
const sub_match<BiIter>\& lhs,
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& rhs);

```
template <class BiIter, class ST, class SA>
    bool operator!=(
        const sub_match<BiIter>& lhs,
        const basic_string<
            typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
template <class BiIter, class ST, class SA>
    bool operator<(
        const sub_match<BiIter>& lhs,
        const basic_string<
            typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
template <class BiIter, class ST, class SA>
    bool operator>(
        const sub_match<BiIter>& lhs,
        const basic_string<
            typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
template <class BiIter, class ST, class SA>
    bool operator>=(
        const sub_match<BiIter>& lhs,
        const basic_string<
            typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
template <class BiIter, class ST, class SA>
    bool operator<=(
        const sub_match<BiIter>& lhs,
        const basic_string<
            typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
```

template <class BiIter>
bool operator==(typename iterator_traits<BiIter>::value_type const* lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter>
bool operator!=(typename iterator_traits<BiIter>::value_type const* lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter>
bool operator<(typename iterator_traits<BiIter>::value_type const* lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter>
bool operator>(typename iterator_traits<BiIter>::value_type const* lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter>
bool operator>=(typename iterator_traits<BiIter>::value_type const* lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter>
bool operator<=(typename iterator_traits<BiIter>::value_type const* lhs,
const sub_match<BiIter>\& rhs);
template <class BiIter>
bool operator==(const sub_match<BiIter>\& lhs,
typename iterator_traits<BiIter>::value_type const* rhs);
template <class BiIter>
bool operator!=(const sub_match<BiIter>\& lhs,

```
    typename iterator_traits<BiIter>::value_type const* rhs);
template <class BiIter>
    bool operator<(const sub_match<BiIter>& lhs,
                            typename iterator_traits<BiIter>::value_type const* rhs);
template <class BiIter>
    bool operator>(const sub_match<BiIter>& lhs,
                            typename iterator_traits<BiIter>::value_type const* rhs);
template <class BiIter>
    bool operator>=(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const* rhs);
template <class BiIter>
    bool operator<=(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const* rhs);
template <class BiIter>
    bool operator==(typename iterator_traits<BiIter>::value_type const& lhs,
                    const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator!=(typename iterator_traits<BiIter>::value_type const& lhs,
                                    const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator<(typename iterator_traits<BiIter>::value_type const& lhs,
                            const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator>(typename iterator_traits<BiIter>::value_type const& lhs,
                                    const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator>=(typename iterator_traits<BiIter>::value_type const& lhs,
                        const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator<=(typename iterator_traits<BiIter>::value_type const& lhs,
                                    const sub_match<BiIter>& rhs);
template <class BiIter>
    bool operator==(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const& rhs);
template <class BiIter>
    bool operator!=(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const& rhs);
template <class BiIter>
    bool operator<(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const& rhs);
template <class BiIter>
    bool operator>(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const& rhs);
template <class BiIter>
    bool operator>=(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const& rhs);
template <class BiIter>
    bool operator<=(const sub_match<BiIter>& lhs,
```

```
typename iterator_traits<BiIter>::value_type const& rhs);
template <class charT, class ST, class BiIter>
    basic_ostream<charT, ST>&
    operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m);
// 28.10, class template match_results.
template <class BidirectionalIterator
            class Allocator = allocator<sub_match<BidirectionalIterator> > >
    class match_results;
typedef match_results<const char*> cmatch;
typedef match_results<const wchar_t*> wcmatch;
typedef match_results<string::const_iterator> smatch;
typedef match_results<wstring::const_iterator> wsmatch;
// match_results comparisons
template <class BidirectionalIterator, class Allocator>
    bool operator== (const match_results<BidirectionalIterator, Allocator>& m1,
                                    const match_results<BidirectionalIterator, Allocator>& m2);
template <class BidirectionalIterator, class Allocator>
    bool operator!= (const match_results<BidirectionalIterator, Allocator>& m1,
                                    const match_results<BidirectionalIterator, Allocator>& m2);
// 28.10.6, match_results swap:
template <class BidirectionalIterator, class Allocator>
    void swap(match_results<BidirectionalIterator, Allocator>& m1,
                    match results<BidirectionalIterator, Allocator>& m2);
// 28.11.2, function template regex_match:
template <class BidirectionalIterator, class Allocator,
        class charT, class traits>
    bool regex_match(BidirectionalIterator first, BidirectionalIterator last,
                    match_results<BidirectionalIterator, Allocator>& m,
                    const basic_regex<charT, traits>& e,
                            regex_constants::match_flag_type flags =
                        regex_constants::match_default);
template <class BidirectionalIterator, class charT, class traits>
bool regex_match(BidirectionalIterator first, BidirectionalIterator last,
    const basic_regex<charT, traits>& e,
    regex_constants::match_flag_type flags =
    regex_constants::match_default);
template <class charT, class Allocator, class traits>
    bool regex_match(const charT* str, match_results<const charT*, Allocator>& m,
                                    const basic_regex<charT, traits>& e,
                                    regex_constants::match_flag_type flags =
                                    regex_constants::match_default)
template <class ST, class SA, class Allocator, class charT, class traits>
    bool regex_match(const basic_string<charT, ST, SA>& s,
                match_results<
```

```
                    typename basic_string<charT, ST, SA>::const_iterator,
                Allocator>& m,
    const basic_regex<charT, traits>& e,
    regex_constants::match_flag_type flags =
    regex_constants::match_default);
template <class charT, class traits>
    bool regex_match(const charT* str,
    const basic_regex<charT, traits>& e,
    regex_constants::match_flag_type flags =
    regex_constants::match_default);
template <class ST, class SA, class charT, class traits>
    bool regex_match(const basic_string<charT, ST, SA>& s,
                                    const basic_regex<charT, traits>& e,
                                    regex_constants::match_flag_type flags =
                            regex_constants::match_default);
// 28.11.3, function template regex_search:
template <class BidirectionalIterator, class Allocator,
    class charT, class traits>
    bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
                            match_results<BidirectionalIterator, Allocator>& m,
                            const basic_regex<charT, traits>& e,
                            regex_constants::match_flag_type flags =
                            regex_constants::match_default);
template <class BidirectionalIterator, class charT, class traits>
    bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
                            const basic_regex<charT, traits>& e,
                            regex_constants::match_flag_type flags =
                        regex_constants::match_default);
template <class charT, class Allocator, class traits>
    bool regex_search(const charT* str,
                            match_results<const charT*, Allocator>& m,
                            const basic_regex<charT, traits>& e,
                            regex_constants::match_flag_type flags =
                        regex_constants::match_default);
template <class charT, class traits>
    bool regex_search(const charT* str,
                            const basic_regex<charT, traits>& e,
                            regex_constants::match_flag_type flags =
                            regex_constants::match_default);
template <class ST, class SA, class charT, class traits>
    bool regex_search(const basic_string<charT, ST, SA>& s,
                            const basic_regex<charT, traits>& e,
                            regex_constants::match_flag_type flags =
                            regex_constants::match_default);
template <class ST, class SA, class Allocator, class charT, class traits>
    bool regex_search(const basic_string<charT, ST, SA>& s,
                            match_results<
                            typename basic_string<charT, ST, SA>::const_iterator,
                        Allocator>& m,
```

```
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags =
    regex_constants::match_default);
template <class OutputIterator, class BidirectionalIterator,
                        BidirectionalIterator first, BidirectionalIterator last,
                        const basic_regex<charT, traits>& e,
            const basic_string<charT>& fmt,
            regex_constants::match_flag_type flags =
                    regex_constants::match_default);
                        const basic_regex<charT, traits>& e,
                        const basic_string<charT>& fmt,
                            regex_constants::match_flag_type flags =
                        regex_constants::match_default);
```

// 28.11.4, function template regex_replace:
class traits, class charT>
OutputIterator
regex_replace(OutputIterator out,
template <class traits, class charT>
basic_string<charT>
regex_replace(const basic_string<charT>\& s,
// 28.12.1, class template regex_iterator:
template <class BidirectionalIterator,
class charT = typename iterator_traits<
BidirectionalIterator>::value_type,
class traits = regex_traits<charT\gg
class regex_iterator;
typedef regex_iterator<const char*> cregex_iterator;
typedef regex_iterator<const wchar_t*> wcregex_iterator;
typedef regex_iteratorstring::const_iterator sregex_iterator;
typedef regex_iterator<wstring: :const_iterator> wsregex_iterator;
// 28.12.2, class template regex_token_iterator:
template <class BidirectionalIterator,
class charT = typename iterator_traits<
BidirectionalIterator>: :value_type,
class traits = regex_traits<charT\gg
class regex_token_iterator;
typedef regex_token_iterator<const char*> cregex_token_iterator;
typedef regex_token_iterator<const wchar_t*> wcregex_token_iterator;
typedef regex_token_iteratorstring::const_iterator sregex_token_iterator;
typedef regex_token_iterator<wstring: :const_iterator> wsregex_token_iterator;
\} // namespace std

28.5 Namespace tr1::regex_constants

[re.const]
1 The namespace tr1: :regex_constants holds symbolic constants used by the regular expression library. This namespace provides three types, syntax_option_type, match_flag_type, and error_type, along with several constants of these types.

28.5.1 Bitmask Type syntax_option_type

[re.synopt]

```
namespace regex_constants {
    typedef bitmask_type syntax_option_type;
    static const syntax_option_type icase;
    static const syntax_option_type nosubs;
    static const syntax_option_type optimize;
    static const syntax_option_type collate;
    static const syntax_option_type ECMAScript;
    static const syntax_option_type basic;
    static const syntax_option_type extended;
    static const syntax_option_type awk;
    static const syntax_option_type grep;
    static const syntax_option_type egrep;
} // namespace regex_constants
```

1 The type syntax_option_type

Table 118: syntax_option_type effects

| Element | Effect(s) if set |
| :--- | :--- |
| icase | Specifies that matching of regular expressions against a character container se-
 quence shall be performed without regard to case. |
| nosubs | Specifies that when a regular expression is matched against a character container
 sequence, no sub-expression matches are to be stored in the supplied match_-
 results structure. |
| optimize | Specifies that the regular expression engine should pay more attention to the speed
 with which regular expressions are matched, and less to the speed with which
 regular expression objects are constructed. Otherwise it has no detectable effect
 on the program output. |
| collate | Specifies that character ranges of the form "[a-b]" should be locale sensitive. |
| ECMAScript | Specifies that the grammar recognized by the regular expression engine is that
 used by ECMAScript in ECMA-262, as modified in [28.13]. |
| basic | Specifies that the grammar recognized by the regular expression engine is that
 used by basic regular expressions in POSIX, Base Definitions and Headers, Sec-
 tion 9, Regular Expressions. |
| extended | Specifies that the grammar recognized by the regular expression engine is that
 used by extended regular expressions in POSIX, Base Definitions and Headers,
 Section 9, Regular Expressions. |
| awk | Specifies that the grammar recognized by the regular expression engine is that
 used by the utility awk in POSIX. |
| grep | Specifies that the grammar recognized by the regular expression engine is that
 used by the utility grep in POSIX. |
| egrep | Specifies that the grammar recognized by the regular expression engine is that
 used by the utility grep when given the -E option in POSIX. |

Table 119: regex_constants::match_flag_type effects when obtaining a match against a character container sequence [first, last).

| Element | Effect(s) if set |
| :--- | :--- |
| match_not_bol | The first character in the sequence [first, last) is treated as though it is not
 at the beginning of a line, so the character "^" in the regular expression shall not
 match [first, first). |
| match_not_eol | The last character in the sequence [first, last) is treated as though it is not
 at the end of a line, so the character "\$" in the regular expression shall not match
 [last, last). |
| match_not_bow | The expression "\b" is not matched against the sub-sequence [first,first). |
| match_not_eow | The expression "\b" should not be matched against the sub-sequence [last,last). |
| match_any | If more than one match is possible then any match is an acceptable result. |
| match_not_null | The expression does not match an empty sequence. |
| match_continuous | The expression only matchs a sub-sequence that begins at first. |
| match_prev_avail | - -first is a valid iterator position. . When this flag is set then the flags
 match_not_bol and match_not_bow are ignored by the regular expression algo-
 rithms 28.11 and iterators 28..12. |
| format_default | When a regular expression match is to be replaced by a new string, the new string
 is constructed using the rules used by the ECMAScript replace function in ECMA-
 262, part 15.4.11 String.prototype.replace. In addition, during search and replace
 operations all non-overlapping occurrences of the regular expression are located
 and replaced, and sections of the input that did not match the expression are copied
 unchanged to the output string. |
| format_sed | When a regular expression match is to be replaced by a new string, the new string
 is constructed using the rules used by the sed utility in POSIX. |
| format_no_copy | During a search and replace operation, sections of the character container se-
 quence being searched that do not match the regular expression shall not be copied
 to the output string. |
| format_first_only | When specified during a search and replace operation, only the first occurrence of
 the regular expression shall be replaced. |

28.5.3 Implementation defined error_type

```
namespace regex_constants {
    typedef implementation defined error_type;
    static const error_type error_collate;
    static const error_type error_ctype;
    static const error_type error_escape;
    static const error_type error_backref;
    static const error_type error_brack;
    static const error_type error_paren;
    static const error_type error_brace;
    static const error_type error_badbrace;
    static const error_type error_range;
```

```
static const error_type error_space;
static const error_type error_badrepeat;
static const error_type error_complexity;
static const error_type error_stack;
} // namespace regex_constants
```

1 The type error_type is an implementation defined enumeration type ([lib.enumerated.types]). Values of type error_type represent the error conditions described in table 120:

Table 120: error_type values in the C locale

| Value | Error condition |
| :--- | :--- |
| error_collate | The expression contained an invalid collating element name. |
| error_ctype | The expression contained an invalid character class name. |
| error_escape | The expression contained an invalid escaped character, or a trailing escape. |
| error_backref | The expression contained an invalid back reference. |
| error_brack | The expression contained mismatched [and]. |
| error_paren | The expression contained mismatched (and). |
| error_brace | The expression contained mismatched \{ and \} |
| error_badbrace | The expression contained an invalid range in a \{\} expression. |
| error_range | The expression contained an invalid character range, such as [b-a] in most en-
 codings. |
| error_space | There was insufficient memory to convert the expression into a finite state ma-
 chine. |
| error_badrepeat | One of $*$? + \{ was not preceded by a valid regular expression.
 error_complexityThe complexity of an attempted match against a regular expression exceeded a
 pre-set level. |
| error_stack | There was insufficient memory to determine whether the regular expression could
 match the specified character sequence. |

28.6 Class regex_error

```
class regex_error : public std::runtime_error
{
public:
    explicit regex_error(regex_constants::error_type ecode);
    regex_constants::error_type code() const;
};
```

1 The class regex_error defines the type of objects thrown as exceptions to report errors from the regular expression library.

```
regex_error(regex_constants::error_type ecode);
```

2 Effects: Constructs an object of class regex_error.
3 Postcondition:: ecode == code()

```
regex_constants::error_type code() const;
```

28.7 Class template regex_traits

```
template <class charT>
struct regex_traits
{
public:
    typedef charT char_type;
    typedef std::basic_string<char_type> string_type;
    typedef std::locale locale_type;
    typedef bitmask_type char_class_type;
    regex_traits();
    static std::size_t length(const char_type* p);
    charT translate(charT c) const;
    charT translate_nocase(charT c) const;
    template <class ForwardIterator>
        string_type transform(ForwardIterator first, ForwardIterator last) const;
    template <class ForwardIterator>
            string_type transform_primary(
            ForwardIterator first, ForwardIterator last) const;
    template <class ForwardIterator>
            string_type lookup_collatename(
            ForwardIterator first, ForwardIterator last) const;
    template <class ForwardIterator>
            char_class_type lookup_classname(
            ForwardIterator first, ForwardIterator last) const;
    bool isctype(charT c, char_class_type f) const;
    int value(charT ch, int radix) const;
    locale_type imbue(locale_type l);
    locale_type getloc()const;
};
```

1 The specializations regex_traits<char> and regex_traits<wchar_t> shall be valid and shall satisfy the requirements for a regular expression traits class (28.2).

```
typedef bitmask_type char_class_type;
```

 static std::size_t length(const char_type* p);
 Returns: char_traits<charT>: :length (p) ;
charT translate(charT c) const;
Returns: (c).

Draft

```
    charT translate_nocase(charT c) const;
Returns: use_facet<ctype<charT\gg(getloc()).tolower (c).
template <class ForwardIterator>
string_type transform(ForwardIterator first, ForwardIterator last) const;
```

```
            string_type str(first, last);
```

 string_type str(first, last);
 return use_facet<collate<charT> >(
 return use_facet<collate<charT> >(
 getloc()).transform(&*str.begin(), &*str.end());
 getloc()).transform(&*str.begin(), &*str.end());
 template <class ForwardIterator>
template <class ForwardIterator>
string_type transform_primary(ForwardIterator first, ForwardIterator last) const;

```
    string_type transform_primary(ForwardIterator first, ForwardIterator last) const;
```

Effects: if typeid(use_facet<collate<charT\gg) == typeid(collate_byname<charT>) and the form of the sort key returned by collate_byname<charT> : :transform (first, last) is known and can be converted into a primary sort key then returns that key, otherwise returns an empty string.

```
template <class ForwardIterator>
    string_type lookup_collatename(ForwardIterator first, ForwardIterator last) const;
```

```
template <class ForwardIterator>
    char_class_type lookup_classname(
        ForwardIterator first, ForwardIterator last) const;
```

Returns: an unspecified value that represents the character classification named by the character sequence designated by the iterator range [first, last). The value returned shall be independent of the case of the characters in the character sequence. If the name is not recognized then returns a value that compares equal to 0 .
Remarks: For regex_traits<char>, at least the names "d", "w", "s", "alnum", "alpha", "blank", "cntrl", "digit", "graph", "lower", "print", "punct", "space", "upper" and "xdigit" shall be recognized. For regex_traits<wchar_t>, at least the names L"d", L"w", L"s", L"alnum", L"alpha", L"blank", L"cntrl", L"digit", L"graph", L"lower", L"print", L"punct", L"space", L"upper" and L"xdigit" shall be recognized.
bool isctype(charT c, char_class_type f) const;
Effects: Determines if the character c is a member of the character classification represented by f.
Returns: Converts f into a value m of type std: :ctype_base: :mask in an unspecified manner, and returns true if use_facet<ctype<charT\gg(getloc()).is(c, m) is true. Otherwise returns true if f bitwise or'ed with the result of calling lookup_classname with an iterator pair that designates the character sequence " w " is not equal to 0 and $c==$, ', or if f bitwise or'ed with the result of calling lookup_classname with an iterator pair that designates the character sequence "blank" is not equal to 0 and c is one of an implementation-defined subset of the characters for which isspace ($c, \operatorname{getloc}())$ returns true, otherwise returns false.
int value(charT ch, int radix) const;

28.8 Class template basic_regex

1 For a char-like type charT, specializations of class template basic_regex represent regular expressions constructed from character sequences of charT characters. In the rest of 28.8 , charT denotes a given char-like type. Storage for a regular expression is allocated and freed as necessary by the member functions of class basic_regex.

2 Objects of type specialization of basic_regex are responsible for converting the sequence of charT objects to an internal representation. It is not specified what form this representation takes, nor how it is accessed by algorithms that operate on regular expressions. [Note: implementations will typically declare some function templates as friends of basic_regex to achieve this -end note]

The functions described in this clause report errors by throwing exceptions of type regex_error.

```
template <class charT,
            class traits = regex_traits<charT> >
class basic_regex
{
public:
    // types:
    typedef charT value_type;
    typedef regex_constants::syntax_option_type flag_type;
    typedef typename traits::locale_type locale_type;
    // 28.8.1, constants:
    static const regex_constants::syntax_option_type
        icase = regex_constants::icase;
    static const regex_constants::syntax_option_type
        nosubs = regex_constants::nosubs;
    static const regex_constants::syntax_option_type
        optimize = regex_constants::optimize;
```

```
static const regex_constants::syntax_option_type
    collate = regex_constants::collate;
static const regex_constants::syntax_option_type
    ECMAScript = regex_constants::ECMAScript;
static const regex_constants::syntax_option_type
    basic = regex_constants::basic;
static const regex_constants::syntax_option_type
    extended = regex_constants::extended;
static const regex_constants::syntax_option_type
    awk = regex_constants::awk;
static const regex_constants::syntax_option_type
    grep = regex_constants::grep;
static const regex_constants::syntax_option_type
    egrep = regex_constants::egrep;
// 28.8.2, construct/copy/destroy:
basic_regex();
explicit basic_regex(const charT* p,
    flag_type f = regex_constants::ECMAScript);
basic_regex(const charT* p, size_t len, flag_type f);
basic_regex(const basic_regex&);
template <class ST, class SA>
    explicit basic_regex(const basic_string<charT, ST, SA>& p,
                            flag_type f = regex_constants::ECMAScript);
template <class InputIterator>
    basic_regex(InputIterator first, InputIterator last,
                flag_type f = regex_constants::ECMAScript);
~}\mathrm{ basic_regex();
basic_regex& operator=(const basic_regex&);
basic_regex& operator=(const charT* ptr);
template <class ST, class SA>
    basic_regex& operator=(const basic_string<charT, ST, SA>& p);
// 28.8.3, assign:
basic_regex& assign(const basic_regex& that);
basic_regex& assign(const charT* ptr,
    flag_type f = regex_constants::ECMAScript);
basic_regex& assign(const charT* p, size_t len, flag_type f);
template <class string_traits, class A>
    basic_regex& assign(const basic_string<charT, string_traits, A>& s,
                flag_type f = regex_constants::ECMAScript);
template <class InputIterator>
    basic_regex& assign(InputIterator first, InputIterator last,
                                    flag_type f = regex_constants::ECMAScript);
```

// 28.8.4, const operations:
unsigned mark_count() const;
flag_type flags() const;

```
    // 28.8.5, locale:
    locale_type imbue(locale_type loc);
    locale_type getloc() const;
    // 28.8.6, swap:
    void swap(basic_regex&);
};
```

28.8.1 basic_regex constants

```
static const regex_constants::syntax_option_type
    icase = regex_constants::icase;
static const regex_constants::syntax_option_type
    nosubs = regex_constants::nosubs;
static const regex_constants::syntax_option_type
    optimize = regex_constants::optimize;
static const regex_constants::syntax_option_type
    collate = regex_constants::collate;
static const regex_constants::syntax_option_type
    ECMAScript = regex_constants::ECMAScript;
static const regex_constants::syntax_option_type
    basic = regex_constants::basic;
static const regex_constants::syntax_option_type
    extended = regex_constants::extended;
static const regex_constants::syntax_option_type
    awk = regex_constants::awk;
static const regex_constants::syntax_option_type
    grep = regex_constants::grep;
static const regex_constants::syntax_option_type
    egrep = regex_constants::egrep;
```

1 The static constant members are provided as synonyms for the constants declared in namespace regex_constants.

28.8.2 basic_regex constructors

```
basic_regex();
```

Effects: Constructs an object of class basic_regex that does not match any character sequence.

```
basic_regex(const charT* p, flag_type f = regex_constants::ECMAScript);
```

Requires: p shall not be a null pointer.
Throws: regex_error if p is not a valid regular expression.
Effects: Constructs an object of class basic_regex; the object's internal finite state machine is constructed from the regular expression contained in the array of charT of length char_traits<charT> : : length (p) whose first element is designated by p, and interpreted according to the flags f.

Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions within the expression.

```
basic_regex(const charT* p, size_t len, flag_type f);
```

Requires: p shall not be a null pointer.
Throws: regex_error if p is not a valid regular expression.
Effects: Constructs an object of class basic_regex; the object's internal finite state machine is constructed from the regular expression contained in the sequence of characters [p, p+len), and interpreted according the flags specified in f.
Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions within the expression.
basic_regex(const basic_regex\& e);
Effects: Constructs an object of class basic_regex as a copy of the object e.
Postconditions: flags() and mark_count() return e.flags() and e.mark_count(), respectively.
template <class ST, class SA>
basic_regex(const basic_string<charT, ST, SA>\& s,
flag_type f = regex_constants::ECMAScript);
Throws: regex_error if s is not a valid regular expression.
Effects: Constructs an object of class basic_regex; the object's internal finite state machine is constructed from the regular expression contained in the string s, and interpreted according to the flags specified in f.

Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions within the expression.

```
template <class ForwardIterator>
    basic_regex(ForwardIterator first, ForwardIterator last,
                    flag_type f = regex_constants::ECMAScript);
```

Throws: regex_error if the sequence [first, last) is not a valid regular expression.
Effects: Constructs an object of class basic_regex; the object's internal finite state machine is constructed from the regular expression contained in the sequence of characters [first, last), and interpreted according to the flags specified in f.

Postconditions: flags() returns f. mark_count() returns the number of marked sub-expressions within the expression.
basic_regex\& operator=(const basic_regex\& e);
Effects: Returns the result of assign(e).
basic_regex\& operator=(const charT* ptr);
Requires: ptr shall not be a null pointer.
Effects: Returns the result of assign(ptr).

```
template <class ST, class SA>
```

```
basic_regex& operator=(const basic_string<charT, ST, SA>& p);
```

Effects: Returns the result of assign(p).

28.8.3 basic_regex assign

[re.regex.assign]
basic_regex\& assign(const basic_regex\& that);
Effects: Copies that into *this and returns *this.
Postconditions: flags() and mark_count() return that.flags() and that.mark_count (), respectively.
basic_regex\& assign(const charT* ptr, flag_type f = regex_constants::ECMAScript);
Returns: assign(string_type(ptr), f).
basic_regex\& assign(const charT* ptr, size_t len, flag_type f = regex_constants::ECMAScript);

Returns: assign(string_type(ptr, len), f).
template <class string_traits, class A>
basic_regex\& assign(const basic_string<charT, string_traits, A>\& s, flag_type $\left.f=r e g e x _c o n s t a n t s:: E C M A S c r i p t\right) ;$

Throws: regex_error if s is not a valid regular expression.
Returns: *this.
Effects: Assigns the regular expression contained in the string s, interpreted according the flags specified in f. If an exception is thrown, *this is unchanged.

Postconditions: If no exception is thrown, flags () returns f and mark_count () returns the number of marked sub-expressions within the expression.

```
template <class InputIterator>
    basic_regex& assign(InputIterator first, InputIterator last,
                    flag_type f = regex_constants::ECMAScript);
```

Requires: The type InputIterator corresponds to the Input Iterator requirements ([lib.input.iterators]).
Returns: assign(string_type(first, last), f).
28.8.4 basic_regex constant operations
[re.regex.operations]
unsigned mark_count() const;
Effects: Returns the number of marked sub-expressions within the regular expression.
flag_type flags() const;
Effects: Returns a copy of the regular expression syntax flags that were passed to the object's constructor or to the last call to assign.
28.8.5 basic_regex locale
[re.regex.locale]
locale_type imbue(locale_type loc);
28.8.7 basic_regex non-member functions
[re.regex.nonmemb]
28.8.7.1 basic_regex non-member swap
template <class charT, class traits>
void swap(basic_regex<charT, traits>\& lhs, basic_regex<charT, traits>\& rhs);
Effects: Calls lhs. swap(rhs).

28.9 Class template sub_match

[re.submatch]
1 Class template sub_match denotes the sequence of characters matched by a particular marked sub-expression.

```
template <class BidirectionalIterator>
class sub_match : public std::pair<BidirectionalIterator, BidirectionalIterator>
{
public:
    typedef typename iterator_traits<BidirectionalIterator>::
        value_type value_type;
    typedef typename iterator_traits<BidirectionalIterator>::
        difference_type difference_type;
        typedef BidirectionalIterator iterator;
        bool matched;
        difference_type length() const;
```

```
    operator basic_string<value_type>() const;
    basic_string<value_type> str() const;
    int compare(const sub_match& s) const;
    int compare(const basic_string<value_type>& s) const;
        int compare(const value_type* s) const;
};
```


28.9.1 sub_match members

 difference_type length();

28.9.2 sub_match non-member operators

```
    template <class BiIter>
```

 bool operator==(const sub_match<BiIter>\& lhs, const sub_match<BiIter>\& rhs);
 Returns: lhs.compare(rhs) \(==0\).
 template <class BiIter>
 bool operator!=(const sub_match<BiIter>\& lhs, const sub_match<BiIter>\& rhs);
 Returns:lhs.compare(rhs) != 0 .
 template <class BiIter>
 bool operator<(const sub_match<BiIter>\& lhs, const sub_match<BiIter>\& rhs);
 Returns: lhs.compare(rhs) < 0.
 template <class BiIter>
bool operator<=(const sub_match<BiIter>\& lhs, const sub_match<BiIter>\& rhs);

```
template <class BiIter>
```

 bool operator>=(const sub_match<BiIter>\& lhs, const sub_match<BiIter>\& rhs);
 5

```
template <class BiIter>
    bool operator>(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
```

Returns: lhs.compare(rhs) >0.

```
template <class BiIter, class ST, class SA>
```

 bool operator==(
 const basic_string<
 typename iterator_traits<BiIter>::value_type, ST, SA>\& lhs,
 const sub_match<BiIter>\& rhs);
    ```
template <class BiIter, class ST, class SA>
    bool operator!=(
        const basic_string<
            typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,
        const sub_match<BiIter>& rhs);
```

 Returns: lhs ! = rhs.str().
 template <class BiIter, class ST, class SA>
 bool operator<(
 const basic_string<
 typename iterator_traits<BiIter>::value_type, ST, SA>\& lhs,
 const sub_match<BiIter>\& rhs);
 Returns: lhs < rhs.str().
 template <class BiIter, class ST, class SA>
 bool operator>(
 const basic_string<
 typename iterator_traits<BiIter>::value_type, ST, SA>\& lhs,
 const sub_match<BiIter>\& rhs);
 Returns: lhs > rhs.str().
 template <class BiIter, class ST, class SA>
 bool operator>=(
 const basic_string<
 typename iterator_traits<BiIter>::value_type, ST, SA>\& lhs,
 const sub_match<BiIter>\& rhs);
 Returns: lhs >= rhs.str().
 template <class BiIter, class ST, class SA>
bool operator<=(

Draft

```
const basic_string<
    typename iterator_traits<BiIter>::value_type, ST, SA>& lhs,
const sub_match<BiIter>& rhs);
```

 Returns: lhs <= rhs.str().
 template <class BiIter, class ST, class SA>
bool operator==(const sub_match<BiIter>\& lhs,
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& rhs);
Returns: lhs.str() == rhs.
template <class BiIter, class ST, class SA>
bool operator!=(const sub_match<BiIter>\& lhs,
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& rhs);
Returns: lhs.str() ! = rhs.
template <class BiIter, class ST, class SA>
bool operator<(const sub_match<BiIter>\& lhs,
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& rhs);

Returns: lhs.str() < rhs.
template <class BiIter, class ST, class SA>
bool operator>(const sub_match<BiIter>\& lhs,
const basic_string<
typename iterator_traits<BiIter>: :value_type, ST, SA>\& rhs);

Returns: lhs.str() > rhs.
template <class BiIter, class ST, class SA>
bool operator>=(const sub_match<BiIter>\& lhs,
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& rhs);
Returns: lhs.str() >= rhs.
template <class BiIter, class ST, class SA>
bool operator<= (const sub_match<BiIter>\& lhs,
const basic_string<
typename iterator_traits<BiIter>::value_type, ST, SA>\& rhs);
Returns: lhs.str() <= rhs.
template <class BiIter>
bool operator==(typename iterator_traits<BiIter>::value_type const* lhs,
const sub_match<BiIter>\& rhs);
Returns: lhs == rhs.str().

```
template <class BiIter>
    bool operator!=(typename iterator_traits<BiIter>::value_type const* lhs,
                const sub_match<BiIter>& rhs);
            Returns: lhs != rhs.str().
template <class BiIter>
    bool operator<(typename iterator_traits<BiIter>::value_type const* lhs,
                                    const sub_match<BiIter>& rhs);
            Returns: lhs < rhs.str().
template <class BiIter>
    bool operator>(typename iterator_traits<BiIter>::value_type const* lhs,
                const sub_match<BiIter>& rhs);
            Returns:lhs > rhs.str().
template <class BiIter>
    bool operator>=(typename iterator_traits<BiIter>::value_type const* lhs,
                                    const sub_match<BiIter>& rhs);
            Returns: lhs >= rhs.str().
template <class BiIter>
    bool operator<=(typename iterator_traits<BiIter>::value_type const* lhs,
                const sub_match<BiIter>& rhs);
            Returns: lhs <= rhs.str().
template <class BiIter>
    bool operator==(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const* rhs);
            Returns: lhs.str() == rhs.
template <class BiIter>
    bool operator!=(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const* rhs);
            Returns: lhs.str() != rhs.
    template <class BiIter>
        bool operator<(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const* rhs);
            Returns: lhs.str() < rhs.
template <class BiIter>
    bool operator>(const sub_match<BiIter>& lhs,
                                    typename iterator_traits<BiIter>::value_type const* rhs);
            Returns: lhs.str() > rhs.
template <class BiIter>
```

bool operator>=(const sub_match<BiIter>\& lhs, typename iterator_traits<BiIter>::value_type const* rhs);

Returns: lhs.str() >= rhs.

template <class BiIter>

bool operator<=(const sub_match<BiIter>\& lhs, typename iterator_traits<BiIter>::value_type const* rhs);

Returns: lhs.str() <= rhs.

```
template <class BiIter>
```

 bool operator==(typename iterator_traits<BiIter>::value_type const\& lhs,
 const sub_match<BiIter>\& rhs);
 Returns: lhs == rhs.str().
 template <class BiIter>
bool operator!=(typename iterator_traits<BiIter>::value_type const\& lhs,
const sub_match<BiIter>\& rhs);

Returns: lhs != rhs.str().

```
template <class BiIter>
```

 bool operator<(typename iterator_traits<BiIter>::value_type const\& lhs, const sub_match<BiIter>\& rhs);
 Returns: lhs < rhs.str().
template <class BiIter>
bool operator>(typename iterator_traits<BiIter>::value_type const\& lhs, const sub_match<BiIter>\& rhs);
Returns: lhs > rhs.str().
template <class BiIter>
bool operator>=(typename iterator_traits<BiIter>::value_type const\& lhs, const sub_match<BiIter>\& rhs);

Returns: lhs >= rhs.str().
template <class BiIter>
bool operator<=(typename iterator_traits<BiIter>::value_type const\& lhs, const sub_match<BiIter>\& rhs);
Returns: lhs <= rhs.str().
template <class BiIter>
bool operator==(const sub_match<BiIter>\& lhs, typename iterator_traits<BiIter>::value_type const\& rhs);
Returns: lhs.str() == rhs.
template <class BiIter>
bool operator!=(const sub_match<BiIter>\& lhs,
Draft
typename iterator_traits<BiIter>::value_type const\& rhs);

Returns: lhs.str() != rhs.
template <class BiIter>
bool operator<(const sub_match<BiIter>\& lhs,
typename iterator_traits<BiIter>::value_type const\& rhs);
Returns: lhs.str() < rhs.
template <class BiIter>
bool operator>(const sub_match<BiIter>\& lhs, typename iterator_traits<BiIter>::value_type const\& rhs);

Returns: lhs.str() > rhs.
template <class BiIter>
bool operator>=(const sub_match<BiIter>\& lhs, typename iterator_traits<BiIter>::value_type const\& rhs);

Returns: lhs.str() >= rhs.
template <class BiIter>
bool operator<=(const sub_match<BiIter>\& lhs, typename iterator_traits<BiIter>::value_type const\& rhs);

Returns: lhs.str() <= rhs.

```
template <class charT, class ST, class BiIter>
    basic_ostream<charT, ST>&
    operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m);
```

Returns: (os << m.str()).

28.10 Class template match_results

[re.results]

1 Class template match_results denotes a collection of character sequences representing the result of a regular expression match. Storage for the collection is allocated and freed as necessary by the member functions of class template match_results.

2 The class template match_results shall satisfy the requirements of a Sequence, as specified in [lib.sequence.reqmts], except that only operations defined for const-qualified Sequences are supported.

3 The sub_match object stored at index 0 represents sub-expression 0 , i.e. the whole match. In this case the sub_match member matched is always true. The sub_match object stored at index n denotes what matched the marked sub-expression n within the matched expression. If the sub-expression n participated in a regular expression match then the sub_match member matched evaluates to true, and members first and second denote the range of characters [first, second) which formed that match. Otherwise matched is false, and members first and second point to the end of the sequence that was searched. [Note: The sub_match objects representing different sub-expressions that did not participate in a regular expression match need not be distinct. - end note]

```
template <class BidirectionalIterator,
    class Allocator = allocator<sub_match<BidirectionalIterator> >
```

```
class match_results
{
public:
    typedef sub_match<BidirectionalIterator>
    typedef typename Allocator::const_reference
    typedef const_reference
    typedef implementation defined
    typedef const_iterator
    typedef typename iterator_traits<BidirectionalIterator>::
        difference_type
    typedef typename Allocator::size_type
    typedef Allocator
    typedef typename iterator_traits<BidirectionalIterator>::
        value_type
        char_type;
        typedef basic_string<char_type>
    string_type;
    // 28.10.1, construct/copy/destroy:
    explicit match_results(const Allocator& a = Allocator());
    match_results(const match_results& m);
    match_results& operator=(const match_results& m);
    ~match_results();
    // 28.10.2, size:
    size_type size() const;
    size_type max_size() const;
    bool empty() const;
    // 28.10.3 element access:
    difference_type length(size_type sub = 0) const;
    difference_type position(size_type sub = 0) const;
    string_type str(size_type sub = 0) const;
    const_reference operator[](size_type n) const;
    const_reference prefix() const;
    const_reference suffix() const;
    const_iterator begin() const;
    const_iterator end() const;
    // 28.10.4, format:
    template <class OutputIter>
        OutputIter
        format(OutputIter out,
            const string_type& fmt,
            regex_constants::match_flag_type flags =
                            regex_constants::format_default) const;
    string_type
    format(const string_type& fmt,
            regex_constants::match_flag_type flags =
            regex_constants::format_default) const;
```

```
    // 28.10.5, allocator:
    allocator_type get_allocator() const;
    // 28.10.6, swap:
    void swap(match_results& that);
};
```

28.10.1 match_results constructors
[re.results.const]
1 In all match_results constructors, a copy of the Allocator argument shall be used for any memory allocation performed by the constructor or member functions during the lifetime of the object.
match_results(const Allocator\& a = Allocator());

28.10.2 match_results size

```
size_type size() const;
```

Returns: One plus the number of marked sub-expressions in the regular expression that was matched if $*$ this represents the result of a successful match. Otherwise returns 0. [Note: The state of a match_results object can be modified only by passing that object to regex_match or regex_search. Sections 28.11.2 and 28.11.3 specify the effects of those algorithms on their match_results arguments. -end note]

```
size_type max_size()const;
```

Returns: The maximum number of sub_match elements that can be stored in *this.

```
    bool empty()const;
    Returns: size() == 0.
```

28.10.3 match_results element access
[re.results.acc]
difference_type length (size_type sub $=0$) const;
Returns: (*this) [sub] .length().
difference_type position(size_type sub $=0$)const;
Returns: The distance from the start of the target sequence to (*this) [sub].first.
string_type str(size_type sub $=0$) const;
Returns: string_type ((*this) [sub]).
const_reference operator [] (size_type n) const;
Returns: A reference to the sub_match object representing the character sequence that matched marked subexpression n. If $n=0$ then returns a reference to a sub_match object representing the character sequence that matched the whole regular expression. If $n>=\operatorname{size}()$ then returns a sub_match object representing an unmatched sub-expression.

```
const_reference prefix()const;
```

Returns: A reference to the sub_match object representing the character sequence from the start of the string being matched/searched to the start of the match found.

```
const_reference suffix()const;
```

```
const_iterator begin()const;
```

Returns: A starting iterator that enumerates over all the sub-expressions stored in *this.
const_iterator end()const;
Returns: A terminating iterator that enumerates over all the sub-expressions stored in *this.

28.10.4 match_results formatting

```
template <class OutputIter>
    OutputIter format(OutputIter out,
            const string_type& fmt,
            regex_constants::match_flag_type flags =
            regex_constants::format_default);
```

```
template <class BidirectionalIterator, class Allocator, class charT, class traits>
    bool regex_match(BidirectionalIterator first, BidirectionalIterator last,
                    match_results<BidirectionalIterator, Allocator>& m,
                    const basic_regex<charT, traits>& e,
                            regex_constants::match_flag_type flags =
                            regex_constants::match_default);
```

Requires: The type BidirectionalIterator shall satisfy the requirements of a Bidirectional Iterator ([lib.bidirectional.iterators]).

Effects: Determines whether there is a match between the regular expression e, and all of the character sequence [first, last). The parameter flags is used to control how the expression is matched against the character sequence. Returns true if such a match exists, false otherwise.

Postconditions: If the function returns false, then the effect on parameter m is unspecified except that m .size() returns 0 and $m . e m p t y()$ returns true. Otherwise the effects on parameter m are given in table 122.

Table 122: Effects of regex_match algorithm

Element	Value
m.size()	1 + e.mark_count()
m.empty ()	false
m.prefix().first	first
m.prefix().second	first
m.prefix().matched	false
m.suffix().first	last
m.suffix().second	last
m.suffix().matched	false
m[0].first	first
m[0]. second	last
m[0] . matched	true if a full match was found.
m[n].first	For all integers $\mathrm{n}<\mathrm{m}$.size(), the start of the sequence that matched sub-expression n . Alternatively, if sub-expression n did not participate in the match, then last.
m[n].second	For all integers $n<m . s i z e()$, the end of the sequence that matched sub-expression n . Alternatively, if sub-expression n did not participate in the match, then last.
m[n].matched	For all integers $\mathrm{n}<\mathrm{m}$. size(), true if sub-expression n participated in the match, false otherwise.

```
template <class BidirectionalIterator, class charT, class traits>
    bool regex_match(BidirectionalIterator first, BidirectionalIterator last,
                    const basic_regex<charT, traits>& e,
                regex_constants::match_flag_type flags =
                        regex_constants::match_default);
```

Effects: Behaves "as if" by constructing an instance of match_results<BidirectionalIterator> what, and
then returning the result of regex_match(first, last, what, e, flags).

```
template <class charT, class Allocator, class traits>
    bool regex_match(const charT* str,
                    match_results<const charT*, Allocator>& m,
                    const basic_regex<charT, traits>& e,
                    regex_constants::match_flag_type flags =
                            regex_constants::match_default);
```

 template <class ST, class SA, class charT, class traits>
    ```
    template <class ST, class SA, class charT, class traits>
    bool regex_match(const basic_string<charT, ST, SA>& s,
                    const basic_regex<charT, traits>& e,
                        regex_constants::match_flag_type flags =
                        regex_constants::match_default);
            Returns: regex_match(s.begin(), s.end(), e, flags).
            Returns: regex_match(str, str + char_traits<charT>::length(str), m, e, flags).
    template <class ST, class SA, class Allocator, class charT, class traits>
    bool regex_match(const basic_string<charT, ST, SA>& s,
                    match_results<
                            typename basic_string<charT, ST, SA>::const_iterator,
                    Allocator>& m,
                    const basic_regex<charT, traits>& e,
                    regex_constants::match_flag_type flags =
                            regex_constants::match_default);
            Returns: regex_match(s.begin(), s.end(), m, e, flags).
    template <class charT, class traits>
        bool regex_match(const charT* str,
                    const basic_regex<charT, traits>& e,
                    regex_constants::match_flag_type flags =
                        regex_constants::match_default);
            Returns: regex_match(str, str + char_traits<charT>::length(str), e, flags)
8
```

28.11.3 regex_search
[re.alg.search]

Requires: Type BidirectionalIterator shall satisfy the requirements of a Bidirectional Iterator (24.1.4).

```
template <class BidirectionalIterator, class Allocator, class charT, class traits>
```

template <class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
match_results<BidirectionalIterator, Allocator>\& m,
match_results<BidirectionalIterator, Allocator>\& m,
const basic_regex<charT, traits>\& e,
const basic_regex<charT, traits>\& e,
regex_constants::match_flag_type flags =
regex_constants::match_flag_type flags =
regex_constants::match_default);

```
                            regex_constants::match_default);
```

Effects: Determines whether there is some sub-sequence within [first,last) that matches the regular expres- sion e. The parameter flags is used to control how the expression is matched against the character sequence.

Returns true if such a sequence exists, false otherwise.
Postconditions: If the function returns false, then the effect on parameter m is unspecified except that m.size () returns 0 and $\mathrm{m} . \operatorname{empty}()$ returns true. Otherwise the effects on parameter m are given in table 123.

Table 123: Effects of regex_search algorithm

| Element | Value |
| :---: | :---: |
| m.size() | 1 + e.mark_count() |
| m.empty () | false |
| m.prefix().first | first |
| m.prefix().second | m[0].first |
| m.prefix().matched | m.prefix().first ! m m.prefix().second |
| m.suffix().first | m[0]. second |
| m.suffix().second | last |
| m.suffix().matched | m.suffix().first ! m.suffix().second |
| m[0].first | The start of the sequence of characters that matched the regular expression |
| m[0].second | The end of the sequence of characters that matched the regular expression |
| m[0].matched | true if a match was found, and false otherwise. |
| m[n].first | For all integers $\mathrm{n}<\mathrm{m}$. size(), the start of the sequence that matched sub-expression n. Alternatively, if sub-expression n did not participate in the match, then last. |
| m[n].second | For all integers $n<m$.size(), the end of the sequence that matched sub-expression n. Alternatively, if sub-expression n did not participate in the match, then last. |
| m[n].matched | For all integers $\mathrm{n}<\mathrm{m}$. size(), true if sub-expression n participated in the match, false otherwise. |

```
template <class charT, class Allocator, class traits>
bool regex_search(const charT* str, match_results<const charT*, Allocator>& m,
    const basic_regex<charT, traits>& e,
    regex_constants::match_flag_type flags =
    regex_constants::match_default);
```

Returns: The result of regex_search(str, str + char_traits<charT>::length(str), m, e, flags).

```
template <class ST, class SA, class Allocator, class charT, class traits>
    bool regex_search(const basic_string<charT, ST, SA>& s,
            match_results<
                typename basic_string<charT, ST, SA>::const_iterator,
                Allocator>& m,
            const basic_regex<charT, traits>& e,
            regex_constants::match_flag_type flags =
            regex_constants::match_default);
```

```
template <class iterator, class charT, class traits>
    bool regex_search(iterator first, iterator last,
                const basic_regex<charT, traits>& e,
                    regex_constants::match_flag_type flags =
                        regex_constants::match_default);
```

Effects: Behaves "as if" by constructing an object what of type match_results<iterator> and then returning the result of regex_search(first, last, what, e, flags).

```
template <class charT, class traits>
    bool regex_search(const charT* str,
                            const basic_regex<charT, traits>& e,
                            regex_constants::match_flag_type flags =
                        regex_constants::match_default);
```

7 Returns: regex_search(str, str + char_traits<charT>::length(str), e, flags)
template <class ST, class SA, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>\& s,
const basic_regex<charT, traits>\& e,
regex_constants::match_flag_type flags =
regex_constants::match_default);
8
Returns: regex_search(s.begin(), s.end(), e, flags).

28.11.4 regex_replace

[re.alg.replace]

```
template <class OutputIterator, class BidirectionalIterator,
        class traits, class charT>
    OutputIterator
    regex_replace(OutputIterator out,
                BidirectionalIterator first, BidirectionalIterator last,
                        const basic_regex<charT, traits>& e,
                const basic_string<charT>& fmt,
                regex_constants::match_flag_type flags =
                    regex_constants::match_default);
```

Effects: Constructs a regex_iterator object i as if by regex_iterator<BidirectionalIterator, charT, traits> i (first, last, e, flags), and uses i to enumerate through all of the matches m of type match_results<BidirectionalIterator> that occur within the sequence [first, last). If no such matches are found and ! (flags \& regex_constants : :format_no_copy) then calls std::copy (first, last, out). If any matches are found then, for each such match, if ! (flags \& regex_constants: :format_no_copy) calls std : : copy (m.prefix().first, m.prefix().second, out), and then calls m.format (out, fmt, flags). Finally, if such a match is found and ! (flags \& regex_constants : :format_no_copy), calls std: : copy (last_m.suffix().first, last_m.suffix().second, out) where last_m is a copy of the last match found. If flags \& regex_constants: :format_first_only is non-zero then only the first match found is replaced.

Returns: out.

```
template <class traits, class charT>
    basic_string<charT>
    regex_replace(const basic_string<charT>& s,
                const basic_regex<charT, traits>& e,
                const basic_string<charT>& fmt,
                regex_constants::match_flag_type flags =
                    regex_constants::match_default);
```

Effects: Constructs an empty string result of type basic_string<charT>, calls regex_replace(back_inserter(result), s.begin(), s.end(), e, fmt, flags), and then returns result.

28.12 Regular expression Iterators

[re.iter]
28.12.1 Class template regex_iterator
[re.regiter]
1 The class template regex_iterator is an iterator adapter. It represents a new view of an existing iterator sequence, by enumerating all the occurrences of a regular expression within that sequence. A regex_iterator uses regex_search to find successive regular expression matches within the sequence from which it was constructed. After the iterator is constructed, and every time operator++ is used, the iterator finds and stores a value of match_results<BidirectionalIterator>. If the end of the sequence is reached (regex_search returns false), the iterator becomes equal to the end-of-sequence iterator value. The default constructor constructs an end-of-sequence iterator object, which is the only legitimate iterator to be used for the end condition. The result of operator* on an end-ofsequence iterator is not defined. For any other iterator value a const match_results<BidirectionalIterator>\& is returned. The result of operator $->$ on an end-of-sequence iterator is not defined. For any other iterator value a const match_results<BidirectionalIterator>* is returned. It is impossible to store things into regex_iterators. Two end-of-sequence iterators are always equal. An end-of-sequence iterator is not equal to a non-end-of-sequence iterator. Two non-end-of-sequence iterators are equal when they are constructed from the same arguments.

```
template <class BidirectionalIterator,
    class charT = typename iterator_traits<
        BidirectionalIterator>::value_type,
        class traits = regex_traits<charT> >
class regex_iterator
{
public:
    typedef basic_regex<charT, traits> regex_type;
    typedef match_results<BidirectionalIterator> value_type;
    typedef std::ptrdiff_t difference_type;
    typedef const value_type* pointer;
    typedef const value_type& reference;
    typedef std::forward_iterator_tag iterator_category;
    regex_iterator();
    regex_iterator(BidirectionalIterator a, BidirectionalIterator b,
                const regex_type& re,
                regex_constants::match_flag_type m =
                    regex_constants::match_default);
```

```
    regex_iterator(const regex_iterator&);
    regex_iterator& operator=(const regex_iterator&);
    bool operator==(const regex_iterator&);
    bool operator!=(const regex_iterator&);
    const value_type& operator*();
    const value_type* operator->();
    regex_iterator& operator++();
    regex_iterator operator++(int);
private:
    // these members are shown for exposition only:
    BidirectionalIterator begin;
    BidirectionalIterator end;
    const regex_type* pregex;
    regex_constants::match_flag_type flags;
    match_results<BidirectionalIterator> match;
};
```

2 A regex_iterator object that is not an end-of-sequence iterator holds a zero-length match if match [0].matched == true and match[0].first $==$ match [0].second. [Note: for example, this can occur when the part of the regular expression that matched consists only of an assertion (such as ${ }^{\prime}{ }^{\prime}$, ' $\${ }^{\prime}$, ' $\backslash \mathrm{b} \mathrm{b}^{\prime}, ' \backslash \mathrm{~B}^{\prime}$). - end note]

28.12.1.1 regex_iterator constructors

regex_iterator();
Effects: Constructs an end-of-sequence iterator.

```
regex_iterator(BidirectionalIterator a, BidirectionalIterator b,
    const regex_type& re,
    regex_constants::match_flag_type m = regex_constants::match_default);
```

Effects: Initializes begin and end to point to the beginning and the end of the target sequence, sets pregex to \&re, sets flags to f, then calls regex_search(begin, end, match, *pregex, flags). If this call returns false the constructor sets *this to the end-of-sequence iterator.

28.12.1.2 regex_iterator comparisons

bool operator==(const regex_iterator\& right);
Returns: true if *this and right are both end-of-sequence iterators or if begin == right.begin, end == right.end, pregex == right.pregex, flags == right.flags, andmatch[0] == right.match[0], otherwise false.

```
bool operator!=(const regex_iterator& right);
```

Returns: ! (*this == right).
28.12.1.3 regex_iterator dereference
[re.regiter.deref]

```
    const value_type& operator*();
    Returns:match.
    const value_type* operator->();
    Returns: &match.
```

28.12.1.4 regex_iterator increment

```
regex_iterator& operator++();
```

Effects: Constructs a local variable start of type BidirectionalIterator and initializes it with the value of match[0]. second.

If the iterator holds a zero-length match and start $==$ end the operator sets $*$ this to the end-of-sequence iterator and returns *this.

Otherwise, if the iterator holds a zero-length match the operator calls regex_search(start, end, match, *pregex, flags | regex_constants::match_not_null | regex_constants::match_continuous). If the call returns true the operator returns *this. Otherwise the operator increments start and continues as if the most recent match was not a zero-length match.

If the most recent match was not a zero-length match, the operator sets flags to flags | regex_constants : :match_prev_avail and calls regex_search(start, end, match, *pregex, flags). If the call returns false the iterator sets $*$ this to the end-of-sequence iterator. The iterator then returns $*$ this.

In all cases in which the call to regex_search returns true, match.prefix().first shall be equal to the previous value of match [0].second, and for each index i in the half-open range [0, match.size()) for which match[i].matched is true, match[i]. position() shall return distance(begin, match[i].first]).
[Note: this means that match[i]. position() gives the offset from the beginning of the target sequence, which is often not the same as the offset from the sequence passed in the call to regex_search. -end note]

It is unspecified how the implementation makes these adjustments.
[Note: this means that a compiler may call an implementation-specific search function, in which case a userdefined specialization of regex_search will not be called. -end note]

```
regex_iterator operator++(int);
```


Effects:

```
regex_iterator tmp = *this;
++(*this);
return tmp;
```

28.12.2 Class template regex_token_iterator

1 The class template regex_token_iterator is an iterator adapter; that is to say it represents a new view of an existing iterator sequence, by enumerating all the occurrences of a regular expression within that sequence, and presenting one
or more sub-expressions for each match found. Each position enumerated by the iterator is a sub_match class template instance that represents what matched a particular sub-expression within the regular expression.

2 When class regex_token_iterator is used to enumerate a single sub-expression with index -1 the iterator performs field splitting: that is to say it enumerates one sub-expression for each section of the character container sequence that does not match the regular expression specified.

3 After it is constructed, the iterator finds and stores a value match_results<BidirectionalIterator> position and sets the internal count N to zero. It also maintains a sequence subs which contains a list of the sub-expressions which will be enumerated. Every time operator++ is used the count N is incremented; if N exceeds or equals subs.size(), then the iterator increments member position and sets count N to zero.

4 If the end of sequence is reached (position is equal to the end of sequence iterator), the iterator becomes equal to the end-of-sequence iterator value, unless the sub-expression being enumerated has index -1 , in which case the iterator enumerates one last sub-expression that contains all the characters from the end of the last regular expression match to the end of the input sequence being enumerated, provided that this would not be an empty sub-expression.

5 The default constructor constructs an end-of-sequence iterator object, which is the only legitimate iterator to be used for the end condition. The result of operator* on an end-of-sequence iterator is not defined. For any other iterator value a const sub_match<BidirectionalIterator>\& is returned. The result of operator-> on an end-of-sequence iterator is not defined. For any other iterator value a const sub_match<BidirectionalIterator>* is returned.

6 It is impossible to store things into regex_iterators. Two end-of-sequence iterators are always equal. An end-ofsequence iterator is not equal to a non-end-of-sequence iterator. Two non-end-of-sequence iterators are equal when they are constructed from the same arguments.

```
template <class BidirectionalIterator,
            class charT = typename iterator_traits<
                BidirectionalIterator>::value_type,
            class traits = regex_traits<charT> >
class regex_token_iterator
{
public:
    typedef basic_regex<charT, traits> regex_type;
    typedef sub_match<BidirectionalIterator> value_type;
    typedef std::ptrdiff_t difference_type;
    typedef const value_type* pointer;
    typedef const value_type& reference;
    typedef std::forward_iterator_tag iterator_category;
    regex_token_iterator();
    regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                            const regex_type& re,
                            int submatch = 0,
                            regex_constants::match_flag_type m =
                    regex_constants::match_default);
    regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                        const regex_type& re,
                        const std::vector<int>& submatches,
                            regex_constants::match_flag_type m =
                        regex_constants::match_default);
```

```
    template <std::size_t N>
    regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                const regex_type& re,
                const int (&submatches) [N],
                regex_constants::match_flag_type m =
                    regex_constants::match_default);
    regex_token_iterator(const regex_token_iterator&);
    regex_token_iterator& operator=(const regex_token_iterator&);
    bool operator==(const regex_token_iterator&);
    bool operator!=(const regex_token_iterator&);
    const value_type& operator*();
    const value_type* operator->();
    regex_token_iterator& operator++();
    regex_token_iterator operator++(int);
private: // data members for exposition only:
    typedef regex_iterator<BidirectionalIterator, charT, traits> position_iterator;
    position_iterator position;
    const value_type *result;
    value_type suffix;
    std::size_t N;
    std::vector<int> subs;
};
```

7 A suffix iterator is a regex_token_iterator object that points to a final sequence of characters at the end of the target sequence. In a suffix iterator the member result holds a pointer to the data member suffix, the value of the member suffix.match is true, suffix.first points to the beginning of the final sequence, and suffix.second points to the end of the final sequence.
8 [Note: for a suffix iterator, data member suffix.first is the same as the end of the last match found, and suffix . second is the same as the end of the target sequence -end note]
9 The current match is (*position). prefix() if subs [N] == -1, or (*position) [subs [N]] for any other value of subs [N].

28.12.2.1 regex_token_iterator constructors

[re.tokiter.cnstr]
regex_token_iterator();
1 Effects: Constructs the end-of-sequence iterator.

```
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
    const regex_type& re,
    int submatch = 0,
    regex_constants::match_flag_type m =
        regex_constants::match_default);
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
    const regex_type& re,
    const std::vector<int>& submatches,
    regex_constants::match_flag_type m =
        regex_constants::match_default);
```

```
template <std::size_t N>
    regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                    const regex_type& re,
                const int (&submatches)[R],
                regex_constants::match_flag_type m =
                regex_constants::match_default);
```

Effects: The first constructor initializes the member subs to hold the single value submatch. The second constructor initializes the member subs to hold a copy of the argument submatches. The third constructor initializes the member subs to hold a copy of the sequence of integer values pointed to by the iterator range [\&submatches, \&submatches + R).

Each constructor then sets N to 0 , and position to position_iterator (a, b, re, f). If position is not an end-of-sequence iterator the constructor sets result to the address of the current match. Otherwise if any of the values stored in subs is equal to -1 the constructor sets $*$ this to a suffix iterator that points to the range [a, b), otherwise the constructor sets $*$ this to an end-of-sequence iterator.
28.12.2.2 regex_token_iterator comparisons
[re.tokiter.comp]
bool operator==(const regex_token_iterator\& right);
Returns: true if *this and right are both end-of-sequence iterators, or if $*$ this and right are both suffix iterators and suffix $==$ right.suffix; otherwise returns false if $*$ this or right is an end-of-sequence iterator or a suffix iterator. Otherwise returns true if position == right.position, $\mathrm{N}==$ right. N , and subs == right.subs. Otherwise returns false.
bool operator!=(const regex_token_iterator\& right);
Returns: ! (*this == right).

28.12.2.3 regex_token_iterator dereference

[re.tokiter.deref]
const value_type\& operator*();
Returns: *result.
const value_type* operator->();
Returns: result.
28.12.2.4 regex_token_iterator increment
[re.tokiter.incr]
regex_token_iterator\& operator++();
Effects: Constructs a local variable prev of type position_iterator, initialized with the value of position.
If $*$ this is a suffix iterator, sets $*$ this to an end-of-sequence iterator.
Otherwise, if $N+1<$ subs.size(), increments N and sets result to the address of the current match.

28.13 Modified ECMAScript regular expression grammar

[re.grammar]

1 The regular expression grammar recognized by basic_regex objects constructed with the ECMAScript flag is that specified by ECMA-262, except as specified below.

2 Objects of type specialization of basic_regex store within themselves a default-constructed instance of their traits template parameter, henceforth referred to as traits_inst. This traits_inst object is used to support localization of the regular expression; basic_regex object member functions shall not call any locale dependent C or C++ API, including the formatted string input functions. Instead they shall call the appropriate traits member function to achieve the required effect.

3 The following productions within the ECMAScript grammar are modified as follows:

```
CharacterClass ::
    [ [lookahead \not\in {^}] ClassRanges ]
    [ ~ ClassRanges ]
ClassAtom ::
    -
    ClassAtomNoDash
    ClassAtomExClass
    ClassAtomCollatingElement
    ClassAtomEquivalence
```

4 The following new productions are then added:

```
ClassAtomExClass ::
    [: ClassName :]
ClassAtomCollatingElement ::
    [. ClassName .]
ClassAtomEquivalence ::
    [= ClassName =]
ClassName ::
```

```
    ClassNameCharacter
    ClassNameCharacter ClassName
ClassNameCharacter ::
    SourceCharacter but not one of "." "=" ":"
```

5 The productions ClassAtomExClass, ClassAtomCollatingElement and ClassAtomEquivalence provide functionality equivalent to that of the same features in regular expressions in POSIX.

6 The regular expression grammar may be modified by any regex_constants: :syntax_option_type flags specified when constructing an object of type specialization of basic_regex according to the rules in table 118.

7 A ClassName production, when used in ClassAtomExClass, is not valid if traits_inst.lookup_classname returns zero for that name. The names recognized as valid ClassNames are determined by the type of the traits class, but at least the following names shall be recognized: alnum, alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper, xdigit, d, s, w. In addition the following expressions shall be equivalent:

```
\d and [[:digit:]]
\D and [^[:digit:]]
\s and [[:space:]]
\S and [^[:space:]]
\w and [_[:alnum:]]
\W and [^_[:alnum:]]
```

8 A ClassName production when used in a ClassAtomCollatingElement production is not valid if the value returned by traits_inst.lookup_collatename for that name is an empty string.

9 The results from multiple calls to traits_inst.lookup_classname can be bitwise OR'ed together and subsequently passed to traist_inst.isctype.

10 A ClassName production when used in a ClassAtomEquivalence production is not valid if the value returned by traits_inst.lookup_collatename for that name is an empty string or if the value returned by traits_inst .transform_primary for the result of the call to traits_inst.lookup_collatename is an empty string.

11 When the sequence of characters being transformed to a finite state machine contains an invalid class name the translator shall throw an exception object of type regex_error.

12 If the $C V$ of a UnicodeEscapeSequence is greater than the largest value that can be held in an object of type charT the translator shall throw an exception object of type regex_error. [Note: this means that values of the form "uxxxx" that do not fit in a character are invalid. - end note]

13 Where the regular expression grammar requires the conversion of a sequence of characters to an integral value, this is accomplished by calling traits_inst.value.

14 The behavior of the internal finite state machine representation when used to match a sequence of characters is as described in ECMA-262. The behavior is modified according to any match_flag_type flags 28.5 .2 specified when using
the regular expression object in one of the regular expression algorithms 28.11. The behavior is also localized by interaction with the traits class template parameter as follows:

- During matching of a regular expression finite state machine against a sequence of characters, two characters c and d are compared using the following rules:

1. if (flags() \& regex_constants: :icase) the two characters are equal if traits_inst.translate_nocase (c) == traits_inst.translate_nocase (d);
2. otherwise, if flags() \& regex_constants: :collate) the two characters are equal if traits_inst .translate(c) == traits_inst.translate(d);
3. otherwise, the two characters are equal if $c==d$.

- During matching of a regular expression finite state machine against a sequence of characters, comparison of a collating element range $c 1-c 2$ against a character c is conducted as follows: if flags () \& regex_constants : : collate is false then the character c is matched if $c 1<=c \& \&<=c 2$, otherwise c is matched in accordance with the following algorithm:

```
string_type str1 = string_type(1,
    flags() & icase ?
        traits_inst.translate_nocase(c1) : traits_inst.translate(c1);
string_type str2 = string_type(1,
    flags() & icase ?
        traits_inst.translate_nocase(c2) : traits_inst.translate(c2);
string_type str = string_type(1,
    flags() & icase ?
        traits_inst.translate_nocase(c) : traits_inst.translate(c);
return traits_inst.transform(str1.begin(), str1.end())
            <= traits_inst.transform(str.begin(), str.end())
        && traits_inst.transform(str.begin(), str.end())
            <= traits_inst.transform(str2.begin(), str2.end());
```

- During matching of a regular expression finite state machine against a sequence of characters, testing whether a collating element is a member of a primary equivalence class is conducted by first converting the collating element and the equivalence class to sort keys using traits: :transform_primary, and then comparing the sort keys for equality.
- During matching of a regular expression finite state machine against a sequence of characters, a character c is a member of a character class designated by an iterator range [first, last) if traits_inst.isctype(c, traits_inst.lookup_classname(first, last)) is true.

[^185]
Chapter 29 Atomic operations library

[atomics]

This section is a placeholder. The next $\mathrm{C}++$ standard is intended to include support for atomic types and operations, which may be used to concurrently access data from multiple threads without introducing undefined behavior. For more information and snapshots of current draft proposals still under discussion and development, see:

- An Atomic Operations Library for C++ http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2047.html

Chapter 30 Thread support library

[threads]

This section is a placeholder. The next C++ standard is intended to include support for a threading API. This feature is intended to provide support for synchronization facilities and thread launching and joining. For more information and snapshots of current draft proposals still under discussion and development, see:

N1907, N2090.

- A Multi-threading Library for Standard C++, Revision 1 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1907.html
- A Threading API for C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2090.html

Appendix A (informative)
 Grammar summary

1 This summary of C++ syntax is intended to be an aid to comprehension. It is not an exact statement of the language. In particular, the grammar described here accepts a superset of valid $\mathrm{C}++$ constructs. Disambiguation rules $(6.8,7.1,10.2)$ must be applied to distinguish expressions from declarations. Further, access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless constructs.

A. 1 Keywords

[gram.key]
1 New context-dependent keywords are introduced into a program by typedef (7.1.3), namespace (7.3.1), class (clause 9), enumeration (7.2), and template (clause 14) declarations.

```
typedef-name:
    identifier
namespace-name:
    original-namespace-name
    namespace-alias
original-namespace-name:
    identifier
namespace-alias:
    identifier
class-name:
    identifier
    template-id
enum-name:
    identifier
template-name:
    identifier
```

Note that a typedef-name naming a class is also a class-name (9.1).

A. 2 Lexical conventions

[gram.lex]
hex-quad:
hexadecimal-digit hexadecimal-digit hexadecimal-digit hexadecimal-digit

```
universal-character-name:
    \u hex-quad
    \U hex-quad hex-quad
preprocessing-token:
    header-name
    identifier
    pp-number
    character-literal
    string-literal
    preprocessing-op-or-punc
    each non-white-space character that cannot be one of the above
token:
    identifier
    keyword
    literal
    operator
    punctuator
header-name:
    < h-char-sequence >
    " q-char-sequence "
h-char-sequence:
    h-char
    h-char-sequence h-char
h-char:
    any member of the source character set except new-line and >
q-char-sequence:
    q-char
    q-char-sequence q-char
q-char:
    any member of the source character set except new-line and "
pp-number:
    digit
    . digit
    pp-number digit
    pp-number nondigit
    pp-number e sign
    pp-number E sign
    pp-number.
identifier:
    identifier-nondigit
    identifier identifier-nondigit
    identifier digit
identifier-nondigit:
    nondigit
    universal-character-name
    other implementation-defined characters
```

nondigit: one of
a b c defghijklm
n opqratuvwxyz
ABCDEFGHIJKLM
N O P QRSTUVWXYZ
digit: one of

```
    0123456789
```

literal:
integer-literal
character-literal
floating-literal
string-literal
boolean-literal
integer-literal:
decimal-literal integer-suffix $x_{o p t}$
octal-literal integer-suffix $x_{\text {pt }}$
hexadecimal-literal integer-suffix ${ }_{\text {opt }}$
decimal-literal:
nonzero-digit
decimal-literal digit
octal-literal:
0
octal-literal octal-digit
hexadecimal-literal:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-literal hexadecimal-digit
nonzero-digit: one of
123456789
octal-digit: one of
01234567
hexadecimal-digit: one of
0123456789
abledef
A B C D E F
integer-suffix:
unsigned-suffix long-suffix opt
unsigned-suffix long-long-suffix ${ }_{\text {opt }}$
long-suffix unsigned-suffix opt
long-long-suffix unsigned-suffix opt
unsigned-suffix: one of
u U
long-suffix: one of
1 L
long-long-suffix: one of
11 LL

```
character-literal:
    'c-char-sequence'
    L' c-char-sequence,
c-char-sequence:
    c-char
    c-char-sequence c-char
c-char:
    any member of the source character set except
        the single-quote ', backslash \, or new-line character
    escape-sequence
    universal-character-name
escape-sequence:
    simple-escape-sequence
    octal-escape-sequence
    hexadecimal-escape-sequence
simple-escape-sequence: one of
    \' \" \? \\
    \a \b \f \n \r \t \v
octal-escape-sequence:
    \octal-digit
    \ octal-digit octal-digit
    \ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence:
    \x hexadecimal-digit
    hexadecimal-escape-sequence hexadecimal-digit
floating-literal:
    fractional-constant exponent-part opt floating-suffix opt
    digit-sequence exponent-part floating-suffix opt
fractional-constant:
    digit-sequence opt . digit-sequence
    digit-sequence .
exponent-part:
    e sign opt digit-sequence
    E sign opt digit-sequence
sign: one of
    + -
digit-sequence:
    digit
    digit-sequence digit
floating-suffix: one of
    f l F L
string-literal:
    "s-char-sequence opt"
    L"s-char-sequence opt"
```

```
s-char-sequence:
    s-char
    s-char-sequence s-char
s-char:
    any member of the source character set except
                the double-quote ", backslash \, or new-line character
    escape-sequence
    universal-character-name
boolean-literal:
    false
    true
```


A. 3 Basic concepts

translation-unit:
declaration-seq $_{\text {opt }}$

A. 4 Expressions

[gram.expr]
primary-expression:
literal
this
(expression) id-expression
id-expression: unqualified-id qualified-id
unqualified-id:
identifier
operator-function-id
conversion-function-id
~ class-name
template-id
qualified-id:
$:$: opt nested-name-specifier template ${ }_{\text {opt }}$ unqualified-id
: : identifier
: : operator-function-id
: : template-id
nested-name-specifier: type-name : : namespace-name : : nested-name-specifier identifier : : nested-name-specifier template opt $^{\text {simple-template-id }: \text { : }}$

```
postfix-expression.
    primary-expression
    postfix-expression [ expression ]
    postfix-expression ( expression-list opt )
    simple-type-specifier ( expression-list opt )
    typename-specifier ( expression-list opt )
    postfix-expression . template opt id-expression
    postfix-expression -> template opt id-expression
    postfix-expression . pseudo-destructor-name
    postfix-expression -> pseudo-destructor-name
    postfix-expression ++
    postfix-expression --
    dynamic_cast < type-id> ( expression)
    static_cast < type-id> ( expression)
    reinterpret_cast <type-id> ( expression)
    const_cast < type-id> ( expression)
    typeid (expression)
    typeid (type-id)
expression-list:
    assignment-expression
    expression-list , assignment-expression
pseudo-destructor-name:
    ::opt nested-name-specifier opt type-name :: ~ type-name
    :: opt nested-name-specifier template simple-template-id :: ~ type-name
    : : opt nested-name-specifier 
unary-expression.
    postfix-expression
    ++ cast-expression
    -- cast-expression
    unary-operator cast-expression
    sizeof unary-expression
    sizeof (type-id)
    new-expression
    delete-expression
unary-operator: one of
    *&+-! ~
new-expression:
    : : opt new new-placement opt new-type-id new-initializer
    : :opt new new-placement opt ( type-id ) new-initializer opt
new-placement:
    ( expression-list )
new-type-id:
    type-specifier-seq new-declarator opt
new-declarator:
    ptr-operator new-declarator}\mp@subsup{}{opt}{
    direct-new-declarator
```

```
direct-new-declarator:
    [ expression ]
    direct-new-declarator [ constant-expression ]
new-initializer:
    ( expression-list opt )
delete-expression:
    : :opt delete cast-expression
    ::opt delete [ ] cast-expression
cast-expression:
    unary-expression
    ( type-id ) cast-expression
pm-expression.
    cast-expression
    pm-expression .* cast-expression
    pm-expression ->* cast-expression
multiplicative-expression:
    pm-expression
    multiplicative-expression * pm-expression
    multiplicative-expression / pm-expression
    multiplicative-expression % pm-expression
additive-expression:
    multiplicative-expression
    additive-expression + multiplicative-expression
    additive-expression - multiplicative-expression
shift-expression:
    additive-expression
    shift-expression << additive-expression
    shift-expression >> additive-expression
relational-expression:
    shift-expression
    relational-expression < shift-expression
    relational-expression > shift-expression
    relational-expression <= shift-expression
    relational-expression >= shift-expression
equality-expression:
    relational-expression
    equality-expression == relational-expression
    equality-expression != relational-expression
and-expression:
    equality-expression
    and-expression & equality-expression
```

exclusive-or-expression:
and-expression
exclusive-or-expression ^ and-expression
inclusive-or-expression:
exclusive-or-expression
inclusive-or-expression | exclusive-or-expression
logical-and-expression:
inclusive-or-expression
logical-and-expression \&\& inclusive-or-expression
logical-or-expression.
logical-and-expression
logical-or-expression || logical-and-expression
conditional-expression:
logical-or-expression
logical-or-expression ? expression : assignment-expression
assignment-expression:
conditional-expression
logical-or-expression assignment-operator assignment-expression throw-expression
assignment-operator: one of

```
    = *= /= %= += -= >>= <<= &= ^= |=
```

expression:
assignment-expression
expression, assignment-expression
constant-expression:
conditional-expression

A. 5 Statements

[gram.stmt]
statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block
labeled-statement.
identifier : statement
case constant-expression : statement
default : statement
expression-statement.
expression $_{\text {opt }}$;
compound-statement:
$\left\{\right.$ statement-seq $\left._{\text {opt }}\right\}$
statement-seq:
statement
statement-seq statement
selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement
condition:
expression
type-specifier-seq declarator $=$ assignment-expression
iteration-statement:
while (condition) statement
do statement while (expression) ;
for (for-init-statement condition ${ }_{\text {opt }} ;$ expression $_{\text {opt }}$) statement
for-init-statement:
expression-statement
simple-declaration
jump-statement:
break ;
continue ;
return expression $_{\text {opt }}$;
goto identifier ;
declaration-statement:
block-declaration

A. 6 Declarations

[gram.dcl]
declaration-seq:
declaration
declaration-seq declaration
declaration:
block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
static_assert-declaration
simple-declaration:
decl-specifier-seq ${ }_{o p t}$ init-declarator-list ${ }_{\text {opt }}$;

Draft

```
static_assert-declaration:
    static_assert (constant-expression, string-literal) ;
decl-specifier:
    storage-class-specifier
    type-specifier
    function-specifier
    friend
    typedef
decl-specifier-seq:
    decl-specifier-seq}\mp@subsup{|}{\mathrm{ opt }}{}\mathrm{ decl-specifier
    storage-class-specifier:
    register
    static
    extern
    mutable
function-specifier:
        inline
        virtual
        explicit
typedef-name:
        identifier
type-specifier:
        simple-type-specifier
        class-specifier
        enum-specifier
        elaborated-type-specifier
        typename-specifier
        cv-qualifier
simple-type-specifier:
    : :opt nested-name-specifier opt type-name
    : :opt nested-name-specifier template simple-template-id
    char
    wchar_t
    bool
    short
    int
    long
    signed
    unsigned
    float
    double
    void
    auto
type-name:
    class-name
    enum-name
    typedef-name
```

elaborated-type-specifier:
class-key $::$ opt nested-name-specifier ${ }_{\text {opt }}$ identifier
class-key : :opt nested-name-specifier ${ }_{\text {opt }}$ template ${ }_{\text {opt }}$ simple-template-id
enum : : opt n nested-name-specifier ${ }_{\text {opt }}$ identifier
enum-name:
identifier
enum-specifier:
enum identifier $_{\text {opt }}\left\{\right.$ enumerator-list $\left._{\text {opt }}\right\}$
enum identifier $_{\text {opt }}\{$ enumerator-list , \}
enumerator-list:
enumerator-definition
enumerator-list, enumerator-definition
enumerator-definition:
enumerator
enumerator $=$ constant-expression
enumerator:
identifier
namespace-name:
original-namespace-name
namespace-alias
original-namespace-name:
identifier
namespace-definition:
named-namespace-definition
unnamed-namespace-definition
named-namespace-definition:
original-namespace-definition
extension-namespace-definition
original-namespace-definition:
namespace identifier $\{$ namespace-body \}
extension-namespace-definition:
namespace original-namespace-name \{ namespace-body \}
unnamed-namespace-definition:
namespace \{ namespace-body \}
namespace-body:
declaration-seq ${ }_{\text {opt }}$
namespace-alias:
identifier
namespace-alias-definition:
namespace identifier $=$ qualified-namespace-specifier ;
qualified-namespace-specifier:
: : opt nested-name-specifier ${ }_{\text {opt }}$ namespace-name
using-declaration:
using typename ${ }_{\text {opt }}::_{\text {opt }}$ nested-name-specifier unqualified-id ;
using :: unqualified-id;
using-directive:
using namespace : : opt nested-name-specifier $r_{\text {opt }}$ namespace-name ;
asm-definition:
asm (string-literal) ;
linkage-specification:
extern string-literal \{ declaration-seq opt $\}$
extern string-literal declaration

A. 7 Declarators

[gram.decl]
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator initializeropt
declarator:
direct-declarator
ptr-operator declarator
direct-declarator:
declarator-id
direct-declarator (parameter-declaration-clause) cv-qualifier-seq opt $^{\text {exception-specification }}$ opt direct-declarator [constant-expression ${ }_{\text {opt }}$]
(declarator)
ptr-operator:

* cv-qualifier-seq ${ }_{\text {opt }}$
\&
\&\&
: : opt nested-name-specifier $* c v$-qualifier-seq ${ }_{\text {opt }}$
cv-qualifier-seq: $c v$-qualifier $c v$-qualifier-seq ${ }_{\text {opt }}$
cv-qualifier: const volatile
declarator-id: id-expression : : opt nested-name-specifier ${ }_{\text {opt }}$ class-name
type-id:
type-specifier-seq abstract-declarator $r_{\text {opt }}$
type-specifier-seq: type-specifier type-specifier-seq ${ }_{\text {opt }}$
abstract-declarator: ptr-operator abstract-declarator ${ }_{\text {opt }}$ direct-abstract-declarator
direct-abstract-declarator:
direct-abstract-declarator ${ }_{\text {opt }}$
(parameter-declaration-clause) cv-qualifier-seq opt $^{\text {exception-specification }}$ opt direct-abstract-declarator ${ }_{\text {opt }}\left[\right.$ constant-expression $\left.{ }_{\text {opt }}\right]$
(abstract-declarator)

Draft
parameter-declaration-clause:
parameter-declaration-list opt \cdots opt
parameter-declaration-list , ...
parameter-declaration-list:
parameter-declaration
parameter-declaration-list, parameter-declaration
parameter-declaration:
decl-specifier-seq declarator
decl-specifier-seq declarator $=$ assignment-expression
decl-specifier-seq abstract-declarator ${ }_{\text {opt }}$
decl-specifier-seq abstract-declarator ${ }_{\text {opt }}=$ assignment-expression
function-definition:
decl-specifier-seq opt declarator ctor-initializer ${ }_{\text {opt }}$ function-body
decl-specifier-seqopt declarator function-try-block
function-body:
compound-statement
initializer:
= initializer-clause
(expression-list)
initializer-clause:
assignment-expression
\{ initializer-list, opt \}
\{ \}
initializer-list:
initializer-clause
initializer-list, initializer-clause

A. 8 Classes

[gram.class]
class-name:
identifier
simple-template-id
class-specifier:
class-head $\left\{\right.$ member-specification $\left._{\text {opt }}\right\}$
class-head:
class-key identifier $_{\text {opt }}$ base-clause ${ }_{\text {opt }}$
class-key nested-name-specifier identifier base-clause ${ }_{\text {opt }}$
class-key nested-name-specifier ${ }_{\text {opt }}$ simple-template-id base-clause ${ }_{\text {opt }}$
class-key:
class
struct
union
member-specification:
member-declaration member-specification ${ }_{\text {opt }}$
access-specifier : member-specification ${ }_{o p t}$

Draft

```
member-declaration:
    decl-specifier-seq \(q_{\text {opt }}\) member-declarator-list \(t_{\text {opt }}\);
    function-definition ; opt
    : : opt nested-name-specifier template \({ }_{\text {opt }}\) unqualified-id;
    using-declaration
    static_assert-declaration
    template-declaration
member-declarator-list:
    member-declarator
    member-declarator-list, member-declarator
member-declarator:
    declarator pure-specifier \({ }_{\text {opt }}\)
    declarator constant-initializer \({ }_{\text {opt }}\)
    identifier \(_{\text {opt }}\) : constant-expression
pure-specifier:
    = 0
constant-initializer:
    = constant-expression
```


A. 9 Derived classes

base-clause:
: base-specifier-list
base-specifier-list:
base-specifier
base-specifier-list, base-specifier
base-specifier:
: : opt nested-name-specifier ${ }_{\text {opt }}$ class-name
virtual access-specifier ${ }_{\text {opt }}::_{\text {opt }}$ nested-name-specifier ${ }_{\text {opt }}$ class-name
access-specifier virtual $_{\text {opt }}::_{\text {opt }}$ nested-name-specifier ${ }_{\text {opt }}$ class-name
access-specifier:
private
protected
public

A. 10 Special member functions

[gram.special]
conversion-function-id:
operator conversion-type-id
conversion-type-id:
type-specifier-seq conversion-declarator ${ }_{\text {opt }}$
conversion-declarator:
ptr-operator conversion-declarator ${ }_{\text {opt }}$
ctor-initializer:
: mem-initializer-list
mem-initializer-list:
mem-initializer
mem-initializer, mem-initializer-list
mem-initializer:
mem-initializer-id (expression-list $_{\text {opt }}$)
mem-initializer-id:
: : opt nested-name-specifier ${ }_{\text {opt }}$ class-name identifier

A. 11 Overloading

operator-function-id: operator operator

A. 12 Templates

[gram.temp]
template-declaration: export $_{\text {opt }}$ template < template-parameter-list > declaration
template-parameter-list:
template-parameter template-parameter-list, template-parameter
template-parameter: type-parameter parameter-declaration
type-parameter: class identifier $_{\text {opt }}$ class identifier $_{o p t}=$ type-id typename identifier ${ }_{\text {opt }}$ typename identifier $_{\text {opt }}=$ type-id template < template-parameter-list> class identifier $_{\text {opt }}$ template < template-parameter-list > class identifier $_{\text {opt }}=i^{\text {- }}$-expression
simple-template-id: template-name < template-argument-list ${ }_{\text {opt }}>$
template-id: simple-template-id operator-function-id < template-argument-list ${ }_{\text {opt }}>$
template-name: identifier
template-argument-list: template-argument template-argument-list, template-argument
template-argument: assignment-expression type-id id-expression

```
typename-specifier:
    typename ::opt nested-name-specifier identifier
    typename ::opt nested-name-specifier template opt simple-template-id
explicit-instantiation:
    extern opt template declaration
explicit-specialization:
    template < > declaration
```


A. 13 Exception handling

try-block:
try compound-statement handler-seq
function-try-block: try ctor-initializer $r_{\text {opt }}$ function-body handler-seq
handler-seq:
handler handler-seq opt
handler:
catch (exception-declaration) compound-statement
exception-declaration:
type-specifier-seq declarator type-specifier-seq abstract-declarator type-specifier-seq
throw-expression: throw assignment-expression opt
exception-specification. throw (type-id-list $t_{\text {opt }}$)
type-id-list: type-id type-id-list, type-id

A. 14 Preprocessing directives

[gram.cpp]
preprocessing-file: group opt
group:
group-part group group-part
group-part.
if-section
control-line
text-line
\# non-directive
if-section:
if-group elif-groups opt $^{\text {else-group }}$ opt endif-line $^{\text {end }}$

Draft

```
if-group:
    # if constant-expression new-line group opt
    # ifdef identifier new-line group opt
    # ifndef identifier new-line group opt
elif-groups:
    elif-group
    elif-groups elif-group
elif-group:
    # elif constant-expression new-line groupopt
else-group:
    # else new-line groupopt
endif-line:
    # endif new-line
control-line:
    # include pp-tokens new-line
    # define identifier replacement-list new-line
    # define identifier lparen identifier-list opt ) replacement-list new-line
    # define identifierlparen ... ) replacement-list new-line
    # define identifier lparen identifier-list, . . ) replacement-list new-line
    # undef identifier new-line
    # line pp-tokens new-line
    # error pp-tokens opt new-line
    # pragma pp-tokens opt new-line
    # new-line
text-line:
    pp-tokens sopt new-line
non-directive:
    pp-tokens spt new-line
lparen:
a ( character not immediately preceded by white-space
identifier-list:
identifier
identifier-list, identifier
replacement-list:
pp-tokens \({ }_{\text {opt }}\)
pp-tokens:
preprocessing-token
pp-tokens preprocessing-token
new-line:
the new-line character
```

A. 14 Preprocessing directives

Appendix B (informative)
 Implementation quantities

[implimits]

1 Because computers are finite, $\mathrm{C}++$ implementations are inevitably limited in the size of the programs they can successfully process. Every implementation shall document those limitations where known. This documentation may cite fixed limits where they exist, say how to compute variable limits as a function of available resources, or say that fixed limits do not exist or are unknown.

2 The limits may constrain quantities that include those described below or others. The bracketed number following each quantity is recommended as the minimum for that quantity. However, these quantities are only guidelines and do not determine compliance.

- Nesting levels of compound statements, iteration control structures, and selection control structures [256].
- Nesting levels of conditional inclusion [256].
- Pointer, array, and function declarators (in any combination) modifying an arithmetic, structure, union, or incomplete type in a declaration [256].
- Nesting levels of parenthesized expressions within a full expression [256].
- Number of characters in an internal identifier or macro name [1024].
- Number of characters in an external identifier [1024].
- External identifiers in one translation unit [65 536].
- Identifiers with block scope declared in one block [1 024].
- Macro identifiers simultaneously defined in one translation unit [65 536].
- Parameters in one function definition [256].
- Arguments in one function call [256].
- Parameters in one macro definition [256].
- Arguments in one macro invocation [256].
- Characters in one logical source line [65 536].
- Characters in a character string literal or wide string literal (after concatenation) [65 536].
- Size of an object [262 144].
- Nesting levels for \#include files [256].
- Case labels for a switch statement (excluding those for any nested switch statements) [16384].
- Data members in a single class, structure, or union [16384].
- Enumeration constants in a single enumeration [4096].
- Levels of nested class, structure, or union definitions in a single struct-declaration-list [256].
- Functions registered by atexit()[32].
— Direct and indirect base classes [16384].
- Direct base classes for a single class [1024].
- Members declared in a single class [4096].
- Final overriding virtual functions in a class, accessible or not [16384].
- Direct and indirect virtual bases of a class [1024].
- Static members of a class [1024].
- Friend declarations in a class [4096].
- Access control declarations in a class [4096].
- Member initializers in a constructor definition [6 144].
- Scope qualifications of one identifier [256].
- Nested external specifications [1024].
- Template arguments in a template declaration [1 024].
- Recursively nested template instantiations [17].
- Handlers per try block [256].
- Throw specifications on a single function declaration [256].

Appendix C
 (informative)
 Compatibility

C. 1 C++ and ISO C

[diff.iso]
1 The subclauses of this subclause list the differences between C++ and ISO C, by the chapters of this document.

C.1.1 Clause 2: lexical conventions

[diff.lex]

2.3

Change: C++ style comments (//) are added
A pair of slashes now introduce a one-line comment.
Rationale: This style of comments is a useful addition to the language.
Effect on original feature: Change to semantics of well-defined feature. A valid ISO C expression containing a division operator followed immediately by a C -style comment will now be treated as a $\mathrm{C}++$ style comment. For example:
\{
int $\mathrm{a}=4$;
int $\mathrm{b}=8 \quad / / *$ divide by $a * / a$;
+a ;
\}

Difficulty of converting: Syntactic transformation. Just add white space after the division operator.
How widely used: The token sequence //* probably occurs very seldom.
2.11

Change: New Keywords New keywords are added to C++; see 2.11.
Rationale: These keywords were added in order to implement the new semantics of $\mathrm{C}++$.
Effect on original feature: Change to semantics of well-defined feature. Any ISO C programs that used any of these
keywords as identifiers are not valid C++ programs.
Difficulty of converting: Syntactic transformation. Converting one specific program is easy. Converting a large collection of related programs takes more work.
How widely used: Common.

2.13.2

Change: Type of character literal is changed from int to char
Rationale: This is needed for improved overloaded function argument type matching. For example:

```
int function( int i );
int function( char c );
function( 'x' );
```

It is preferable that this call match the second version of function rather than the first.
Effect on original feature: Change to semantics of well-defined feature. ISO C programs which depend on

```
sizeof('x') == sizeof(int)
```

will not work the same as $\mathrm{C}++$ programs.
Difficulty of converting: Simple.
How widely used: Programs which depend upon sizeof ('x') are probably rare.
Subclause 2.13.4:
Change: String literals made const The type of a string literal is changed from "array of char " to "array of const char." The type of a wide string literal is changed from "array of wchar_t" to "array of const wchar_t."
Rationale: This avoids calling an inappropriate overloaded function, which might expect to be able to modify its argument.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Simple syntactic transformation, because string literals can be converted to char*; (4.2). The most common cases are handled by a new but deprecated standard conversion:

```
char* p = "abc"; // valid in C, deprecated in C++
char* q = expr ? "abc" : "de"; // valid in C, invalid in C++
```

How widely used: Programs that have a legitimate reason to treat string literals as pointers to potentially modifiable memory are probably rare.

C.1.2 Clause 3: basic concepts

[diff.basic]
3.1

Change: C++ does not have "tentative definitions" as in C E.g., at file scope,

```
int i;
int i;
```

is valid in C , invalid in $\mathrm{C}++$. This makes it impossible to define mutually referential file-local static objects, if initializers are restricted to the syntactic forms of C. For example,

```
struct X { int i; struct X *next; };
static struct X a;
static struct X b = { 0, &a };
static struct X a = { 1, &b };
```

Rationale: This avoids having different initialization rules for built-in types and user-defined types.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
Rationale: In C++, the initializer for one of a set of mutually-referential file-local static objects must invoke a function call to achieve the initialization.
How widely used: Seldom.
3.3

Change: A struct is a scope in $\mathrm{C}++$, not in C
Rationale: Class scope is crucial to $\mathrm{C}++$, and a struct is a class.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: C programs use struct extremely frequently, but the change is only noticeable when struct, enumeration, or enumerator names are referred to outside the struct. The latter is probably rare.

3.5 [also 7.1.5]

Change: A name of file scope that is explicitly declared const, and not explicitly declared extern, has internal linkage, while in C it would have external linkage
Rationale: Because const objects can be used as compile-time values in $\mathrm{C}++$, this feature urges programmers to provide explicit initializer values for each const. This feature allows the user to put constobjects in header files that are included in many compilation units.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation
How widely used: Seldom
3.6

Change: Main cannot be called recursively and cannot have its address taken
Rationale: The main function may require special actions.
Effect on original feature: Deletion of semantically well-defined feature
Difficulty of converting: Trivial: create an intermediary function such as mymain (argc, argv.
How widely used: Seldom
3.9

Change: C allows "compatible types" in several places, C++ does not For example, otherwise-identical struct types with different tag names are "compatible" in C but are distinctly different types in C++.
Rationale: Stricter type checking is essential for C++.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The "typesafe linkage" mechanism will find many, but not all, of such problems. Those problems not found by typesafe linkage will continue to function properly, according to the "layout compatibility rules" of this International Standard.
How widely used: Common.
4.10

Change: Converting void* to a pointer-to-object type requires casting

```
char a[10];
void *b=a;
void foo() {
```

```
char *c=b;
}
```

ISO C will accept this usage of pointer to void being assigned to a pointer to object type. $\mathrm{C}++$ will not.
Rationale: C++ tries harder than C to enforce compile-time type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. Violations will be diagnosed by the C++ translator. The fix is to add a cast For example:

```
char *c = (char *) b;
```

How widely used: This is fairly widely used but it is good programming practice to add the cast when assigning pointer-to-void to pointer-to-object. Some ISO C translators will give a warning if the cast is not used.
4.10

Change: Only pointers to non-const and non-volatile objects may be implicitly converted to void*
Rationale: This improves type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Could be automated. A C program containing such an implicit conversion from (e.g.) pointer-to-const-object to void* will receive a diagnostic message. The correction is to add an explicit cast.
How widely used: Seldom.

C.1.3 Clause 5: expressions
 [diff.expr]

5.2.2

Change: Implicit declaration of functions is not allowed
Rationale: The type-safe nature of C++.
Effect on original feature: Deletion of semantically well-defined feature. Note: the original feature was labeled as "obsolescent" in ISO C.
Difficulty of converting: Syntactic transformation. Facilities for producing explicit function declarations are fairly widespread commercially.
How widely used: Common.
5.3.3, 5.4

Change: Types must be declared in declarations, not in expressions In C, a sizeof expression or cast expression may create a new type. For example,

```
p = (void*)(struct x {int i;} *)0;
```

declares a new type, struct x.
Rationale: This prohibition helps to clarify the location of declarations in the source code.
Effect on original feature: Deletion of a semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom.
5.16, 5.17, 5.18

Change: The result of a conditional expression, an assignment expression, or a comma expression may be an lvalue

Rationale: C++ is an object-oriented language, placing relatively more emphasis on lvalues. For example, functions may return lvalues.
Effect on original feature: Change to semantics of well-defined feature. Some C expressions that implicitly rely on lvalue-to-rvalue conversions will yield different results. For example,

```
char arr[100];
sizeof(0, arr)
```

yields 100 in C++ and sizeof (char*) in C.
Difficulty of converting: Programs must add explicit casts to the appropriate rvalue.
How widely used: Rare.

C.1.4 Clause 6: statements

[diff.stat]
6.4.2, 6.6.4 (switch and goto statements)

Change: It is now invalid to jump past a declaration with explicit or implicit initializer (except across entire block not entered)
Rationale: Constructors used in initializers may allocate resources which need to be de-allocated upon leaving the block. Allowing jump past initializers would require complicated run-time determination of allocation. Furthermore, any use of the uninitialized object could be a disaster. With this simple compile-time rule, $\mathrm{C}++$ assures that if an initialized variable is in scope, then it has assuredly been initialized.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.

6.6.3

Change: It is now invalid to return (explicitly or implicitly) from a function which is declared to return a value without actually returning a value
Rationale: The caller and callee may assume fairly elaborate return-value mechanisms for the return of class objects. If some flow paths execute a return without specifying any value, the implementation must embody many more complications. Besides, promising to return a value of a given type, and then not returning such a value, has always been recognized to be a questionable practice, tolerated only because very-old C had no distinction between void functions and int functions.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Add an appropriate return value to the source code, e.g. zero.
How widely used: Seldom. For several years, many existing C implementations have produced warnings in this case.

C.1.5 Clause 7: declarations

[diff.dcl]

7.1.1

Change: In C++, the static or extern specifiers can only be applied to names of objects or functions Using these specifiers with type declarations is illegal in $\mathrm{C}++$. In C , these specifiers are ignored when used on type declarations.
Example:

```
static struct S { // valid C, invalid in C++
int i;
// ...
};
```

Rationale: Storage class specifiers don't have any meaning when associated with a type. In C++, class members can be declared with the static storage class specifier. Allowing storage class specifiers on type declarations could render the code confusing for users.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Seldom

7.1.3

Change: A C++ typedef name must be different from any class type name declared in the same scope (except if the typedef is a synonym of the class name with the same name). In C, a typedef name and a struct tag name declared in the same scope can have the same name (because they have different name spaces)

Example:

```
typedef struct name1 { /*...*/ } name1; // valid C and C++
struct name { /*...*/ };
typedef int name; // valid C, invalid C++
```

Rationale: For ease of use, C++ doesn't require that a type name be prefixed with the keywords class, struct or union when used in object declarations or type casts.

Example:

```
class name { /*...*/ };
name i; // i has type class name
```

Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. One of the 2 types has to be renamed.
How widely used: Seldom.
7.1.5 [see also 3.5]

Change: const objects must be initialized in $\mathrm{C}++$ but can be left uninitialized in C
Rationale: A const object cannot be assigned to so it must be initialized to hold a useful value.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom.
7.1.5 (type specifiers)

Change: Banning implicit int
In C++ a decl-specifier-seq must contain a type-specifier. In the following example, the left-hand column presents valid C ; the right-hand column presents equivalent $\mathrm{C}++$:

```
void f(const parm);
const n = 3;
main()
    /* ... */
```

```
void f(const int parm);
const int n = 3;
int main()
    /* ... */
```

Rationale: In C++, implicit int creates several opportunities for ambiguity between expressions involving functionlike casts and declarations. Explicit declaration is increasingly considered to be proper style. Liaison with WG14 (C) indicated support for (at least) deprecating implicit int in the next revision of C .
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. Could be automated.
How widely used: Common.
7.2

Change: C++ objects of enumeration type can only be assigned values of the same enumeration type. In C, objects of enumeration type can be assigned values of any integral type

Example:

```
enum color { red, blue, green };
color c = 1; // valid C, invalid C++
```

Rationale: The type-safe nature of $\mathrm{C}++$.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation. (The type error produced by the assignment can be automatically corrected by applying an explicit cast.)

How widely used: Common.

7.2

Change: In C++, the type of an enumerator is its enumeration. In C, the type of an enumerator is int.
Example:

```
enum e { A };
sizeof(A) == sizeof(int) // in C
sizeof(A) == sizeof(e) // in C++
/* and sizeof (int) is not necessarily equal to sizeof (e) */
```

Rationale: In $\mathrm{C}++$, an enumeration is a distinct type.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Seldom. The only time this affects existing C code is when the size of an enumerator is taken. Taking the size of an enumerator is not a common C coding practice.

C.1.6 Clause 8: declarators

[diff.decl]

8.3.5

Change: In $\mathrm{C}++$, a function declared with an empty parameter list takes no arguments. In C , an empty parameter list means that the number and type of the function arguments are unknown"
Example:

```
int f();
// means int f(void) in C++
// int f(unknown) in C
```

Rationale: This is to avoid erroneous function calls (i.e. function calls with the wrong number or type of arguments).
Effect on original feature: Change to semantics of well-defined feature. This feature was marked as "obsolescent" in C.

Difficulty of converting: Syntactic transformation. The function declarations using C incomplete declaration style must be completed to become full prototype declarations. A program may need to be updated further if different calls to the same (non-prototype) function have different numbers of arguments or if the type of corresponding arguments differed. How widely used: Common.
8.3.5 [see 5.3.3]

Change: In C++, types may not be defined in return or parameter types. In C, these type definitions are allowed
Example:

```
void f( struct S { int a; } arg ) {} // valid C, invalid C++
enum E { A, B, C } f() {} // valid C, invalid C++
```

Rationale: When comparing types in different compilation units, $\mathrm{C}++$ relies on name equivalence when C relies on structural equivalence. Regarding parameter types: since the type defined in an parameter list would be in the scope of the function, the only legal calls in $\mathrm{C}++$ would be from within the function itself.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The type definitions must be moved to file scope, or in header files. How widely used: Seldom. This style of type definitions is seen as poor coding style.

8.4

Change: In C++, the syntax for function definition excludes the "old-style" C function. In C, "old-style" syntax is allowed, but deprecated as "obsolescent."
Rationale: Prototypes are essential to type safety.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Syntactic transformation.
How widely used: Common in old programs, but already known to be obsolescent.

8.5.2

Change: In C++, when initializing an array of character with a string, the number of characters in the string (including the terminating ' $\backslash 0^{\prime}$) must not exceed the number of elements in the array. In C, an array can be initialized with a string even if the array is not large enough to contain the string-terminating ' $\backslash 0$ '

Example:

```
char array[4] = "abcd"; // valid C, invalid C++
```

Rationale: When these non-terminated arrays are manipulated by standard string routines, there is potential for major catastrophe.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. The arrays must be declared one element bigger to contain the string terminating ' $\backslash 0$ '.

How widely used: Seldom. This style of array initialization is seen as poor coding style.

C.1.7 Clause 9: classes

[diff.class]
9.1 [see also 7.1.3]

Change: In C++, a class declaration introduces the class name into the scope where it is declared and hides any object, function or other declaration of that name in an enclosing scope. In C, an inner scope declaration of a struct tag name never hides the name of an object or function in an outer scope

```
Example:
int x[99];
void f()
{
    struct x { int a; };
    sizeof (x); /* size of the array in C */
    /* size of the struct in C++ */
}
```

Rationale: This is one of the few incompatibilities between C and $\mathrm{C}++$ that can be attributed to the new $\mathrm{C}++$ name space definition where a name can be declared as a type and as a non-type in a single scope causing the non-type name to hide the type name and requiring that the keywords class, struct, union or enum be used to refer to the type name. This new name space definition provides important notational conveniences to $\mathrm{C}++$ programmers and helps making the use of the user-defined types as similar as possible to the use of built-in types. The advantages of the new name space definition were judged to outweigh by far the incompatibility with C described above.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation. If the hidden name that needs to be accessed is at global scope, the : : C++ operator can be used. If the hidden name is at block scope, either the type or the struct tag has to be renamed. How widely used: Seldom.

9.7

Change: In $\mathrm{C}++$, the name of a nested class is local to its enclosing class. In C the name of the nested class belongs to the same scope as the name of the outermost enclosing class.

Example:

```
struct X {
    struct Y { /*... */ } y;
};
struct Y yy; // valid C, invalid C++
```

Rationale: C++ classes have member functions which require that classes establish scopes. The C rule would leave classes as an incomplete scope mechanism which would prevent $\mathrm{C}++$ programmers from maintaining locality within a class. A coherent set of scope rules for $\mathrm{C}++$ based on the C rule would be very complicated and $\mathrm{C}++$ programmers would be unable to predict reliably the meanings of nontrivial examples involving nested or local functions.
Effect on original feature: Change of semantics of well-defined feature.
Difficulty of converting: Semantic transformation. To make the struct type name visible in the scope of the enclosing
struct, the struct tag could be declared in the scope of the enclosing struct, before the enclosing struct is defined. Example:

```
struct Y; // struct Y and struct X are at the same scope
struct X {
    struct Y { /* ... */ } y;
};
```

1 All the definitions of C struct types enclosed in other struct definitions and accessed outside the scope of the enclosing struct could be exported to the scope of the enclosing struct. Note: this is a consequence of the difference in scope rules, which is documented in 3.3.

How widely used: Seldom.

9.9

Change: In C++, a typedef name may not be redeclared in a class definition after being used in that definition
Example:

```
typedef int I;
struct S {
            I i;
    int I; // valid C, invalid C++
};
```

Rationale: When classes become complicated, allowing such a redefinition after the type has been used can create confusion for C++ programmers as to what the meaning of ' I ' really is.
Effect on original feature: Deletion of semantically well-defined feature.
Difficulty of converting: Semantic transformation. Either the type or the struct member has to be renamed.
How widely used: Seldom.
C.1.8 Clause 12: special member functions
[diff.special]
12.8 (copying class objects)

Change: Copying volatile objects
1 The implicitly-declared copy constructor and implicitly-declared copy assignment operator cannot make a copy of a volatile lvalue. For example, the following is valid in ISO C:

```
struct X { int i; };
struct X x1, x2;
volatile struct X x3 = {0};
x1 = x3; // invalid C++
x2 = x3; // also invalid C++
```

Rationale: Several alternatives were debated at length. Changing the parameter to volatile const X\& would greatly complicate the generation of efficient code for class objects. Discussion of providing two alternative signatures for these implicitly-defined operations raised unanswered concerns about creating ambiguities and complicating the rules that specify the formation of these operators according to the bases and members.
Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation. If volatile semantics are required for the copy, a user-declared constructor or assignment must be provided. If non-volatile semantics are required, an explicit const_cast can be used.
How widely used: Seldom.
C.1.9 Clause 16: preprocessing directives
[diff.cpp]
16.8 (predefined names)

Change: Whether _ _ STDC _ _ is defined and if so, what its value is, are implementation-defined
Rationale: C++ is not identical to ISO C. Mandating that _ _ STDC _ _ be defined would require that translators make an incorrect claim. Each implementation must choose the behavior that will be most useful to its marketplace.
Effect on original feature: Change to semantics of well-defined feature.
Difficulty of converting: Semantic transformation.
How widely used: Programs and headers that reference _ _ STDC _ _ are quite common.

C. 2 Standard C library

[diff.library]
1 This subclause summarizes the contents of the C++ Standard library included from the Standard C library. It also summarizes the explicit changes in definitions, declarations, or behavior from the ISO/IEC 9899:1990 and ISO/IEC 9899:1990/DAM 1 noted in other subclauses (17.4.1.2, 18.1, 21.4).

2 The C++ Standard library provides 56 standard macros from the C library, as shown in Table 124.
3 The header names (enclosed in < and >) indicate that the macro may be defined in more than one header. All such definitions are equivalent (3.2).

Table 124: Standard Macros

| assert | HUGE_VAL | NULL <cstdlib> | SIG_ERR | TMP_MAX |
| :--- | :--- | :--- | :--- | :--- |
| BUFSIZ | L_tmpnam | NULL_cstring> | SIG_IGN | va_arg |
| CLOCKS_PER_SEC | LC_ALL | NULL <ctime> | SIGABRT | va_end |
| EDOM | LC_COLLATE | NULL <cwchar> | SIGFPE | va_start |
| EILSEQ | LC_CTYPE | offsetof | SIGILL | WCHAR_MAX |
| EOF | LC_MONETARY | RAND_MAX | SIGINT | WCHAR_MIN |
| ERANGE | LC_NUMERIC | SEEK_CUR | SIGSEGV | WEOF <cwchar> |
| errno | LC_TIME | SEEK_END | SIGTERM | WEOF <cwctype> |
| EXIT_FAILURE | MB_CUR_MAX | SEEK_SET | stderr | _IOFBF |
| EXIT_SUCCESS | NULL <clocale> | setjmp | stdin | _IOLBF |
| FILENAME_MAX | NULL <cstddef> | SIG_DFL | stdout | _IONBF |
| FOPEN_MAX | | | | |

4 The C++ Standard library provides 57 standard values from the C library, as shown in Table 125.
5 The C++ Standard library provides 20 standard types from the C library, as shown in Table 126.
6 The C++ Standard library provides 2 standard structures from the C library, as shown in Table 127.
7 The C++ Standard library provides 209 standard functions from the C library, as shown in Table 128.

Table 125: Standard Values

| CHAR_BIT | FLT_DIG | INT_MIN | MB_LEN_MAX |
| :--- | :--- | :--- | :--- |
| CHAR_MAX | FLT_EPSILON | LDBL_DIG | SCHAR_MAX |
| CHAR_MIN | FLT_MANT_DIG | LDBL_EPSILON | SCHAR_MIN |
| DBL_DIG | FLT_MAX | LDBL_MANT_DIG | SHRT_MAX |
| DBL_EPSILON | FLT_MAX_10_EXP | LDBL_MAX | SHRT_MIN |
| DBL_MANT_DIG | FLT_MAX_EXP | LDBL_MAX_10_EXP | UCHAR_MAX |
| DBL_MAX | FLT_MIN | LDBL_MAX_EXP | UINT_MAX |
| DBL_MAX_10_EXP | FLT_MIN_10_EXP | LDBL_MIN | ULONG_MAX |
| DBL_MAX_EXP | FLT_MIN_EXP | LDBL_MIN_10_EXP | USRT_MAX |
| DBL_MIN | FLT_RADIX | LDBL_MIN_EXP | |
| DBL_MIN_10_EXP | FLT_ROUNDS | LONG_MAX | |
| DBL_MIN_EXP | INT_MAX | LONG_MIN | |

Table 126: Standard Types

| clock_t | ldiv_t | size_t <cstdio> | va_list |
| :--- | :--- | :--- | :--- |
| div_t | mbstate_t | size_t <cstdlib> | wctrans_t |
| FILE | ptrdiff_t | size_t <cstring> | wctype_t |
| fpos_t | sig_atomic_t | size_t <ctime> | wint_t <cwchar> |
| jmp_buf | size_t <cstddef> | time_t | wint_t <cwctype> |

Table 127: Standard Structs
lconv tm

Table 128: Standard Functions

| abort | fmod | isupper | mktime | strftime | wcrtomb |
| :---: | :---: | :---: | :---: | :---: | :---: |
| abs | fopen | iswalnum | modf | strlen | wcscat |
| acos | fprintf | iswalpha | perror | strncat | wcschr |
| asctime | fputc | iswcntrl | pow | strncmp | wcscmp |
| asin | fputs | iswctype | printf | strncpy | wcscoll |
| atan | fputwc | iswdigit | putc | strpbrk | wcscpy |
| atan2 | fputws | iswgraph | putchar | strrchr | wcscspn |
| atexit | fread | iswlower | puts | strspn | wcsftime |
| atof | free | iswprint | putwc | strstr | wcslen |
| atoi | freopen | iswpunct | putwchar | strtod | wcsncat |
| atol | frexp | iswspace | qsort | strtok | wcsncmp |
| bsearch | fscanf | iswupper | raise | strtol | wcsncpy |
| btowc | fseek | iswxdigit | rand | strtoul | wcspbrk |
| calloc | fsetpos | isxdigit | realloc | strxfrm | wcsrchr |
| ceil | ftell | labs | remove | swprintf | wcsrtombs |
| clearerr | fwide | ldexp | rename | swscanf | wcsspn |
| clock | fwprintf | ldiv | rewind | system | wcsstr |
| cos | fwrite | localeconv | scanf | tan | wcstod |
| cosh | fwscanf | localtime | setbuf | tanh | wcstok |
| ctime | getc | log | setlocale | time | wcstol |
| difftime | getchar | $\log 10$ | setvbuf | tmpfile | wcstombs |
| div | getenv | longjmp | signal | tmpnam | wcstoul |
| exit | gets | malloc | sin | tolower | wcsxfrm |
| exp | getwc | mblen | sinh | toupper | wctob |
| fabs | getwchar | mbrlen | sprintf | towctrans | wctomb |
| fclose | gmtime | mbrtowc | sqrt | towlower | wctrans |
| feof | isalnum | mbsinit | srand | towupper | wctype |
| ferror | isalpha | mbsrtowcs | sscanf | ungetc | wmemchr |
| fflush | iscntrl | mbstowcs | strcat | ungetwc | wmemcmp |
| fgetc | isdigit | mbtowc | strchr | vfprintf | wmemcpy |
| fgetpos | isgraph | memchr | strcmp | vfwprintf | wmemmove |
| fgets | islower | memcmp | strcoll | vprintf | wmemset |
| fgetwc | isprint | memcpy | strcpy | vsprintf | wprintf |
| fgetws | ispunct | memmove | strcspn | vswprintf | wscanf |
| floor | isspace | memset | strerror | vwprintf | |

Draft

C.2.1 Modifications to headers

[diff.mods.to.headers]
1 For compatibility with the Standard C library, the C++ Standard library provides the 18 C headers (D.5), but their use is deprecated in $\mathrm{C}++$.

C.2.2 Modifications to definitions

[diff.mods.to.definitions]
C.2.2.1 Type wchar_t
[diff.wchar.t]
1 wchar_t is a keyword in this International Standard (2.11). It does not appear as a type name defined in any of <cstddef>, <cstdlib>, or <cwchar> (21.4).
C.2.2.2 Header <iso646.h>
[diff.header.iso646.h]
1 The tokens and, and_eq, bitand, bitor, compl, not_eq, not, or, or_eq, xor, and xor_eq are keywords in this International Standard (2.11). They do not appear as macro names defined in <ciso646>.
C.2.2.3 Macro NULL

1 The macro NULL, defined in any of <clocale>, <cstddef>, <cstdio>, <cstdlib>, <cstring>, <ctime>, or <cwchar>, is an implementation-defined C++ null pointer constant in this International Standard (18.1).

C.2.3 Modifications to declarations

[diff.mods.to.declarations]
1 Header <cstring>: The following functions have different declarations:

- strchr
- strpbrk
- strrchr
- strstr
- memchr
21.4 describes the changes.

C.2.4 Modifications to behavior

[diff.mods.to.behavior]
1 Header <cstdlib>: The following functions have different behavior:
— atexit

- exit
- abort
18.4 describes the changes.

2 Header <csetjmp>: The following functions have different behavior:

- longjmp
18.8 describes the changes.

1 The macro offsetof, defined in <cstddef>, accepts a restricted set of type arguments in this International Standard. 18.1 describes the change.

C.2.4.2 Memory allocation functions
 [diff.malloc]

1 The functions calloc, malloc, and realloc are restricted in this International Standard. 20.6.7 describes the changes.
C. 2 Standard C library Compatibility 992

Appendix D
 (normative)
 Compatibility features

1 This clause describes features of the $\mathrm{C}++$ Standard that are specified for compatibility with existing implementations.
2 These are deprecated features, where deprecated is defined as: Normative for the current edition of the Standard, but not guaranteed to be part of the Standard in future revisions.

D. 1 Increment operator with bool operand

[depr.incr.bool]
1 The use of an operand of type bool with the ++ operator is deprecated (see 5.3.2 and 5.2.6).

D. 2 static keyword

[depr.static]
1 The use of the static keyword is deprecated when declaring objects in namespace scope (see 3.3.5).

D. 3 Access declarations

[depr.access.dcl]
1 Access declarations are deprecated (see 11.3).

D. 4 Implicit conversion from const strings

1 The implicit conversion from const to non-const qualification for string literals (4.2) is deprecated.

D. 5 Standard C library headers

[depr.c.headers]
1 For compatibility with the Standard C library, the C++ Standard library provides the $24 C$ headers, as shown in Table 129.

Table 129: C Headers

| <assert.h> | <float.h> | <math.h> | <stddef.h> | <tgmath.h> |
| :--- | :--- | :--- | :--- | :--- |
| <complex.h> | <inttypes.h> | <setjmp.h> | <stdio.h> | <time.h> |
| <ctype.h> | <iso646.h> | <signal.h> | <stdint.h> | <wchar.h> |
| <errno.h> | <limits.h> | <stdarg.h> | <stdlib.h> | <wctype.h> |
| <fenv.h> | <locale.h> | <stdbool.h> | <string.h> | |

2 Every C header, each of which has a name of the form name .h, behaves as if each name placed in the Standard library namespace by the corresponding c name header is also placed within the namespace scope of the namespace std and is
followed by an explicit using-declaration (7.3.3).
3 [Example: The header <cstdlib> provides its declarations and definitions within the namespace std. The header <stdlib.h> makes these available also in the global namespace, much as in the C Standard. -end example]

D. 6 Old iostreams members

[depr.ios.members]
1 The following member names are in addition to names specified in clause 27:

```
namespace std {
    class ios_base {
    public:
        typedef T1 io_state;
        typedef T2 open_mode;
        typedef T3 seek_dir;
        typedef OFF_T streamoff;
        typedef POS_T streampos;
        // remainder unchanged
    };
}
```

2 The type io_state is a synonym for an integer type (indicated here as $T 1$) that permits certain member functions to overload others on parameters of type iostate and provide the same behavior.

3 The type open_mode is a synonym for an integer type (indicated here as T2) that permits certain member functions to overload others on parameters of type openmode and provide the same behavior.

4 The type seek_dir is a synonym for an integer type (indicated here as T3) that permits certain member functions to overload others on parameters of type seekdir and provide the same behavior.

5 The type streamoff is an implementation-defined type that satisfies the requirements of type $O F F _T$ (27.4.1).
6 The type streampos is an implementation-defined type that satisfies the requirements of type POS_T (27.2).
7 An implementation may provide the following additional member function, which has the effect of calling sbumpc() (27.5.2.2.3):

```
namespace std {
    template<class charT, class traits = char_traits<charT> >
    class basic_streambuf {
    public:
        void stossc();
        // remainder unchanged
    };
}
```

8 An implementation may provide the following member functions that overload signatures specified in clause 27:

```
namespace std {
    template<class charT, class Traits> class basic_ios {
    public:
        void clear(io_state state);
```

```
    void setstate(io_state state);
    void exceptions(io_state);
    // remainder unchanged
};
class ios_base {
public:
    // remainder unchanged
};
template<class charT, class traits = char_traits<charT> >
class basic_streambuf {
public:
    pos_type pubseekoff(off_type off, ios_base::seek_dir way,
            ios_base::open_mode which = ios_base::in | ios_base::out);
    pos_type pubseekpos(pos_type sp,
                ios_base::open_mode which);
    // remainder unchanged
};
template <class charT, class traits = char_traits<charT> >
class basic_filebuf : public basic_streambuf<charT,traits> {
public:
    basic_filebuf<charT,traits>* open
    (const char* s, ios_base::open_mode mode);
    // remainder unchanged
};
template <class charT, class traits = char_traits<charT> >
class basic_ifstream : public basic_istream<charT,traits> {
public:
    void open(const char* s, ios_base::open_mode mode);
    // remainder unchanged
};
template <class charT, class traits = char_traits<charT> >
class basic_ofstream : public basic_ostream<charT,traits> {
public:
    void open(const char* s, ios_base::open_mode mode);
    // remainder unchanged
};
```

\}

9 The effects of these functions is to call the corresponding member function specified in clause 27.

D. 7 char* streams

[depr.str.strstreams]
1 The header <strstream> defines three types that associate stream buffers with character array objects and assist reading
and writing such objects.

D.7.1 Class strstreambuf

```
namespace std {
    class strstreambuf : public basic_streambuf<char> {
    public:
        explicit strstreambuf(streamsize alsize_arg = 0);
        strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));
        strstreambuf(char* gnext_arg, streamsize n, char* pbeg_arg = 0);
        strstreambuf(const char* gnext_arg, streamsize n);
        strstreambuf(signed char* gnext_arg, streamsize n,
                signed char* pbeg_arg = 0);
        strstreambuf(const signed char* gnext_arg, streamsize n);
        strstreambuf(unsigned char* gnext_arg, streamsize n,
            unsigned char* pbeg_arg = 0);
        strstreambuf(const unsigned char* gnext_arg, streamsize n);
        virtual ~strstreambuf();
        void freeze(bool freezefl = true);
        char* str();
        int pcount();
    protected:
        virtual int_type overflow (int_type c = EOF);
        virtual int_type pbackfail(int_type c = EOF);
        virtual int_type underflow();
        virtual pos_type seekoff(off_type off, ios_base::seekdir way,
                            ios_base::openmode which
                            = ios_base::in | ios_base::out);
        virtual pos_type seekpos(pos_type sp, ios_base::openmode which
                                    = ios_base::in | ios_base::out);
        virtual streambuf* setbuf(char* s, streamsize n);
    private:
        // typedef T1 strstate; exposition only
        // static const strstate allocated; exposition only
        // static const strstate constant;
        // static const strstate dynamic;
        // static const strstate frozen;
        // strstate strmode;
        // streamsize alsize;
        // void* (*palloc)(size_t);
        // void (*pfree)(void*);
    };
}
```

1 The class strstreambuf associates the input sequence, and possibly the output sequence, with an object of some
character array type, whose elements store arbitrary values. The array object has several attributes.
2 [Note: For the sake of exposition, these are represented as elements of a bitmask type (indicated here as T1) called strstate. The elements are:

- allocated, set when a dynamic array object has been allocated, and hence should be freed by the destructor for the strstreambuf object;
- constant, set when the array object has const elements, so the output sequence cannot be written;
- dynamic, set when the array object is allocated (or reallocated) as necessary to hold a character sequence that can change in length;
- frozen, set when the program has requested that the array object not be altered, reallocated, or freed.
- end note]

3 [Note: For the sake of exposition, the maintained data is presented here as:

- strstate strmode, the attributes of the array object associated with the strstreambuf object;
- int alsize, the suggested minimum size for a dynamic array object;
— void* palloc) (size_t), points to the function to call to allocate a dynamic array object;
— void (*pfree) (void*), points to the function to call to free a dynamic array object.
- end note]

4 Each object of class strstreambuf has a seekable area, delimited by the pointers seeklow and seekhigh. If gnext is a null pointer, the seekable area is undefined. Otherwise, seeklow equals gbeg and seekhigh is either pend, if pend is not a null pointer, or gend.

D.7.1.1 strstreambuf constructors

[depr.strstreambuf.cons]

```
explicit strstreambuf(streamsize alsize_arg = 0);
```

```
strstreambuf(void* (*palloc_arg)(size_t), void (*pfree_arg)(void*));
```

Effects: Constructs an object of class strstreambuf, initializing the base class with streambuf (). The postconditions of this function are indicated in Table 131.

Table 131: strstreambuf (void* (*) (size_t), void (*) (void*)) effects

| Element | Value |
| :--- | :--- |
| strmode | dynamic |
| alsize | an unspecified value |
| palloc | palloc_arg |
| pfree | pfree_arg |

```
strstreambuf(char* gnext_arg, streamsize n, char *pbeg_arg = 0);
strstreambuf(signed char* gnext_arg, streamsize n,
    signed char *pbeg_arg = 0);
strstreambuf(unsigned char* gnext_arg, streamsize n,
    unsigned char *pbeg_arg = 0);
```

gnext_arg shall point to the first element of an array object whose number of elements N is determined as follows:

- If $n>0, N$ is n.
— If $n==0, N$ is std:: strlen(gnext_arg).
- If $n<0, N$ is INT_MAX. ${ }^{336)}$

If pbeg_arg is a null pointer, the function executes:

```
setg(gnext_arg, gnext_arg, gnext_arg + N);
```

Otherwise, the function executes:

```
setg(gnext_arg, gnext_arg, pbeg_arg);
setp(pbeg_arg, pbeg_arg + N);
strstreambuf(const char* gnext_arg, streamsize n);
strstreambuf(const signed char* gnext_arg, streamsize n);
strstreambuf(const unsigned char* gnext_arg, streamsize n);
```

Effects: Behaves the same as strstreambuf((char*) gnext_arg, n), except that the constructor also sets constant in strmode.

[^186]Draft

```
virtual ~}\mathrm{ strstreambuf();
```

Effects: Destroys an object of class strstreambuf. The function frees the dynamically allocated array object only if strmode \& allocated $!=0$ and strmode \& frozen $==0$. (D.7.1.3 describes how a dynamically allocated array object is freed.)

D.7.1.2 Member functions

[depr.strstreambuf.members]

void freeze(bool freezefl = true);
Effects: If strmode \& dynamic is non-zero, alters the freeze status of the dynamic array object as follows:

- If freezefl is true, the function sets frozen in strmode.
- Otherwise, it clears frozen in strmode.
char* $\operatorname{str}()$;
Effects: Calls freeze(), then returns the beginning pointer for the input sequence, gbeg.
Remarks: The return value can be a null pointer.
int pcount() const;
Effects: If the next pointer for the output sequence, pnext, is a null pointer, returns zero. Otherwise, returns the current effective length of the array object as the next pointer minus the beginning pointer for the output sequence, pnext-pbeg.

D.7.1.3 strstreambuf overridden virtual functions

[depr.strstreambuf.virtuals]

int_type overflow(int_type $c=$ EOF);
Effects: Appends the character designated by c to the output sequence, if possible, in one of two ways:

- If $c \quad!=$ EOF and if either the output sequence has a write position available or the function makes a write position available (as described below), assigns c to $* p n e x t++$.

Returns (unsigned char)c.

- If $c==\mathrm{EOF}$, there is no character to append.

Returns a value other than EOF.
Returns EOF to indicate failure.
Remarks: The function can alter the number of write positions available as a result of any call.
To make a write position available, the function reallocates (or initially allocates) an array object with a sufficient number of elements n to hold the current array object (if any), plus at least one additional write position. How many additional write positions are made available is otherwise unspecified. ${ }^{337)}$ If palloc is not a null pointer, the function calls (*palloc) (n) to allocate the new dynamic array object. Otherwise, it evaluates the expression

[^187]new charT $[n]$. In either case, if the allocation fails, the function returns EOF. Otherwise, it sets allocated in strmode.

To free a previously existing dynamic array object whose first element address is p : If $p f r e e$ is not a null pointer, the function calls $(* p f r e e)(p)$. Otherwise, it evaluates the expression delete [] p.

If strmode \& dynamic $==0$, or if strmode \& frozen $!=0$, the function cannot extend the array (reallocate it with greater length) to make a write position available.
int_type pbackfail(int_type $c=$ EOF);
Puts back the character designated by c to the input sequence, if possible, in one of three ways:

- If $c \quad!=E O F$, if the input sequence has a putback position available, and if (char) $c==$ gnext $[-1]$, assigns gnext - 1 to gnext.

Returns c.

- If $c \quad!=\mathrm{EOF}$, if the input sequence has a putback position available, and if strmode \& constant is zero, assigns c to $*-$ gnext.

Returns c.

- If $c==E O F$ and if the input sequence has a putback position available, assigns gnext - 1 to gnext.

Returns a value other than EOF.
Returns EOF to indicate failure.
Remarks: If the function can succeed in more than one of these ways, it is unspecified which way is chosen. The function can alter the number of putback positions available as a result of any call.
int_type underflow();
Effects: Reads a character from the input sequence, if possible, without moving the stream position past it, as follows:

- If the input sequence has a read position available, the function signals success by returning (unsigned char) $*$ gnext .
- Otherwise, if the current write next pointer pnext is not a null pointer and is greater than the current read end pointer gend, makes a read position available by assigning to gend a value greater than gnext and no greater than pnext.
Returns (unsigned char*) gnext.
Returns EOF to indicate failure.
Remarks: The function can alter the number of read positions available as a result of any call.
pos_type seekoff(off_type off, seekdir way, openmode which = in \mid out);
Effects: Alters the stream position within one of the controlled sequences, if possible, as indicated in Table 133.
For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Otherwise, the function determines newoff as indicated in Table 134.

Table 133: seekoff positioning

| Conditions | Result | |
|---|---|---|
| (which \& ios::in) ! = 0 | positions the input sequence |
| (which \& ios::out) ! = 0 | positions the output sequence |
| ```(which & (ios::in \| ios::out)) == (ios::in | ios::out)) and way == either ios::beg or ios::end``` | positions both the input and the output sequences |
| Otherwise | the positioning operation fails. |

Table 134: newoff values

| Condition | newoff Value |
| :--- | :--- |
| way == ios: : beg | 0 |
| way $==$ ios: cur | the next pointer minus the beginning
 pointer (xnext - xbeg). |
| way == ios: :end | seekhigh minus the beginning
 pointer (seekhigh - xbeg). |
| If (newoff + off) <
 (seeklow - xbeg),
 or (seekhigh - xbeg) <
 (newoff + off) | the positioning operation fails |

Draft

Otherwise, the function assigns $x b e g+n e w o f f+o f f$ to the next pointer $x n e x t$.
Returns: pos_type (newoff), constructed from the resultant offset newoff (of type off_type), that stores the resultant stream position, if possible. If the positioning operation fails, or if the constructed object cannot represent the resultant stream position, the return value is pos_type (off_type (-1)).
pos_type seekpos(pos_type $s p$, ios_base::openmode which
= ios_base::in | ios_base::out);
Effects: Alters the stream position within one of the controlled sequences, if possible, to correspond to the stream position stored in $s p$ (as described below).
— If (which \& ios::in) != 0, positions the input sequence.

- If (which \& ios::out) != 0, positions the output sequence.
- If the function positions neither sequence, the positioning operation fails.

For a sequence to be positioned, if its next pointer is a null pointer, the positioning operation fails. Otherwise, the function determines newoff from $s p$.offset ():

- If newoff is an invalid stream position, has a negative value, or has a value greater than (seekhigh seeklow), the positioning operation fails
- Otherwise, the function adds newoff to the beginning pointer $x b e g$ and stores the result in the next pointer xnext.

Returns: pos_type (newoff), constructed from the resultant offset newoff (of type off_type), that stores the resultant stream position, if possible. If the positioning operation fails, or if the constructed object cannot represent the resultant stream position, the return value is pos_type (off_type (-1)).
streambuf<char>* setbuf(char* s, streamsize n);
Effects: Implementation defined, except that setbuf $(0,0)$ has no effect.

D.7.2 Class istrstream

```
namespace std {
    class istrstream : public basic_istream<char> {
    public:
        explicit istrstream(const char* s);
        explicit istrstream(char* s);
        istrstream(const char* s, streamsize n);
        istrstream(char* s, streamsize n);
        virtual ~istrstream();
        strstreambuf* rdbuf() const;
        char *str();
    private:
        // strstreambuf sb;
    };
}
```

Draft

1 The class istrstream supports the reading of objects of class strstreambuf. It supplies a strstreambuf object to control the associated array object. For the sake of exposition, the maintained data is presented here as:

- $s b$, the strstreambuf object.
D.7.2.1 istrstream constructors
[depr.istrstream.cons]
explicit istrstream(const char* s);
explicit istrstream(char* s);
istrstream(const char* s, streamsize n);
Effects: Constructs an object of class istrstream, initializing the base class with istream (\&sb) and initializing $s b$ with strstreambuf $(s, n))$. s shall designate the first element of an array whose length is n elements, and n shall be greater than zero.

D.7.2.2 Member functions

[depr.istrstream.members]

```
strstreambuf* rdbuf() const;
    Returns: const_cast<strstreambuf*>(&sb).
    char* str();
    Returns: rdbuf()->str().
```


D.7.3 Class ostrstream

[depr.ostrstream]

```
    namespace std {
```

 class ostrstream : public basic_ostream<char> \{
 public:
 ostrstream();
 ostrstream(char* \(s\), int \(n\), ios_base::openmode mode = ios_base::out);
 virtual ~ostrstream();
 strstreambuf* rdbuf() const;
 void freeze(bool freezefl = true);
 char* str();
 int pcount() const;
 private:
 // strstreambuf \(s b\); exposition only
 \};
 \}

1 The class ostrstream supports the writing of objects of class strstreambuf. It supplies a strstreambuf object to control the associated array object. For the sake of exposition, the maintained data is presented here as:

- sb, the strstreambuf object.
D.7.3.1 ostrstream constructors
[depr.ostrstream.cons]
ostrstream();

D.7.3.2 Member functions

```
    strstreambuf* rdbuf() const;
```

Returns: (strstreambuf*)\&sb .
void freeze(bool freezefl = true);
Effects: Calls rdbuf ()->freeze (freezefl).
char* $\operatorname{str}()$;
Returns: $\operatorname{rdbuf()->str().}$
int pcount() const;
Returns: rdbuf()->pcount().

D.7.4 Class strstream

 class strstream
 : public basic_iostream<char> \{
 public:
 // Types
 typedef char char_type;
 typedef typename char_traits<char>::int_type int_type;
 [^188]Draft

```
        typedef typename char_traits<char>::pos_type pos_type;
        typedef typename char_traits<char>::off_type off_type;
        // constructors/destructor
        strstream();
        strstream(char* s, int n,
                ios_base::openmode mode = ios_base::in|ios_base::out);
        virtual ~strstream();
        // Members:
        strstreambuf* rdbuf() const;
        void freeze(bool freezefl = true);
        int pcount() const;
        char* str();
    private:
    // strstreambuf sb;
    };
}
```

1 The class strstream supports reading and writing from objects of classs strstreambuf. It supplies a strstreambuf object to control the associated array object. For the sake of exposition, the maintained data is presented here as
— $s b$, the strstreambuf object.

D.7.4.1 strstream constructors

[depr.strstream.cons]

```
strstream();
```

```
strstream(char* s, int n,
```

 ios_base::openmode mode = ios_base::in|ios_base::out);
 Effects: Constructs an object of class strstream, initializing the base class with iostream (\&sb) and initializing $s b$ with one of the two constructors:
— If (mode \& app) $==0$, then s shall designate the first element of an array of n elements. The constructor is strstreambuf (s, n, s).

- If (mode \& app) $!=0$, then s shall designate the first element of an array of n elements that contains an NTBS whose first element is designated by s. The constructor is strstreambuf ($s, n, s+$ std::strlen(s)).
D.7.4.2 strstream destructor
[depr.strstream.dest]
virtual ~strstream()
1
Effects: Destroys an object of class strstream.

Draft

```
    strstreambuf* rdbuf() const;
    Returns: &sb.
```


D.7.4.3 strstream operations

```
    void freeze(bool freezefl = true);
    Effects: Calls rdbuf()->freeze(freezefl).
    char* str();
    Returns: rdbuf()->str().
    int pcount() const;
    Returns: rdbuf()->pcount().
```


D. 8 Binders

[depr.lib.binders]

The binders binder1st, bind1st, binder2nd, and bind2nd are deprecated. [Note:The template function bind (20.5.10) provides a better solution. - end note]
D.8.1 Class template binder1st
[depr.lib.binder.1st]

```
template <class Fn>
class binder1st
    : public unary_function<typename Fn::second_argument_type,
            typename Fn::result_type> {
protected:
    Fn fn;
    typename Fn::first_argument_type value;
public:
    binder1st(const Fn& x,
                const typename Fn::first_argument_type& y);
    typename Fn::result_type
            operator()(const typename Fn::second_argument_type& x) const;
    typename Fn::result_type
            operator()(typename Fn::second_argument_type& x) const;
};
```

```
    template <class Fn, class T>
    binder1st<Fn> bind1st(const Fn& fn, const T& x);
            Returns: binder1st<Fn>(fn, typename Fn::first_argument_type(x)).
```

```
template <class Fn>
class binder2nd
    : public unary_function<typename Fn::first_argument_type,
                typename Fn::result_type> {
protected:
    Fn fn;
    typename Fn::second_argument_type value;
public:
    binder2nd(const Fn& }x\mathrm{ ,
                const typename Fn::second_argument_type& y);
    typename Fn::result_type
            operator()(const typename Fn::first_argument_type& x) const;
    typename Fn::result_type
            operator()(typename Fn::first_argument_type& x) const;
};
```


D.8.4 bind2nd

```
template <class Fn, class T>
    binder2nd<Fn> bind2nd(const Fn& op, const T& x);
            Returns: binder2nd<Fn>(op, typename Fn::second_argument_type(x)).
            [ Example:
```

 find_if(v.begin(), v.end(), bind2nd(greater<int>(), 5));
 finds the first integer in vector v greater than 5 ;

```
find_if(v.begin(), v.end(), bind1st(greater<int>(), 5));
```

finds the first integer in v less than 5. - end example]
D. 8 Binders \quad Compatibility features 1008

Appendix E
 (normative)
 Universal-character-names

[extendid]

1 This clause lists the complete set of hexadecimal code values that are valid in universal-character-names in C++ identifiers (2.10).

2 This table is reproduced unchanged from ISO/IEC PDTR 10176, produced by ISO/IEC JTC1/SC22/WG20, except that the ranges 0041-005a and 0061-007a designate the upper and lower case English alphabets, which are part of the basic source character set, and are not repeated in the table below.

Latin: 00c0-00d6, 00d8-00f6, 00f8-01f5, 01fa-0217, 0250-02a8, 1e00-1e9a, 1ea0-1ef9
Greek: 0384, 0388-038a, 038c, 038e-03a1, 03a3-03ce, 03d0-03d6, 03da, 03dc, 03de, 03e0, 03e2-03f3, 1f00-1f15, 1f18-1f1d, 1f20-1f45, 1f48-1f4d, 1f50-1f57, 1f59, 1f5b, 1f5d, 1f5f-1f7d, 1f80-1fb4, 1fb6-1fbc, 1fc2-1fc4, 1fc61 fcc, 1 fd0-1fd3, 1fd6-1fdb, 1 fe0-1fec, 1 ff2-1ff4, 1 ff6-1ffc

Cyrillic: 0401-040d, 040f-044f, 0451-045c, 045e-0481, 0490-04c4, 04c7-04c8, 04cb-04cc, 04d0-04eb, 04ee-04f5, 04f8-04f9

Armenian: 0531-0556, 0561-0587
Hebrew: 05d0-05ea, 05f0-05f4
Arabic: 0621-063a, 0640-0652, 0670-06b7, 06ba-06be, 06c0-06ce, 06e5-06e7
Devanagari: 0905-0939, 0958-0962
Bengali: 0985-098c, 098f-0990, 0993-09a8, 09aa-09b0, 09b2, 09b6-09b9, 09dc-09dd, 09df-09e1, 09f0-09f1
Gurmukhi: 0a05-0a0a, 0a0f-0a10, 0a13-0a28, 0a2a-0a30, 0a32-0a33, 0a35-0a36, 0a38-0a39, 0a59-0a5c, 0a5e
Gujarati: 0a85-0a8b, 0a8d, 0a8f-0a91, 0a93-0aa8, 0aaa-0ab0, 0ab2-0ab3, 0ab5-0ab9, 0ae0
Oriya: 0b05-0b0c, 0b0f-0b10, 0b13-0b28, 0b2a-0b30, 0b32-0b33, 0b36-0b39, 0b5c-0b5d, 0b5f-0b61
Tamil: 0b85-0b8a, 0b8e-0b90, 0b92-0b95, 0b99-0b9a, 0b9c, 0b9e-0b9f, 0ba3-0ba4, 0ba8-0baa, 0bae-0bb5, 0bb70bb9

Telugu: 0c05-0c0c, 0c0e-0c10, 0c12-0c28, 0c2a-0c33, 0c35-0c39, 0c60-0c61
Kannada: 0c85-0c8c, 0c8e-0c90, 0c92-0ca8, 0caa-0cb3, 0cb5-0cb9, 0ce0-0ce1

Malayalam: 0d05-0d0c, 0d0e-0d10, 0d12-0d28, 0d2a-0d39, 0d60-0d61
Thai: 0e01-0e30, 0e32-0e33, 0e40-0e46, 0e4f-0e5b
Lao: 0e81-0e82, 0e84, 0e87, 0e88, 0e8a, 0e8d, 0e94-0e97, 0e99-0e9f, 0ea1-0ea3, 0ea5, 0ea7, 0eaa, 0eab, 0ead-0eb0, 0eb2, 0eb3, 0ebd, 0ec0-0ec4, 0ec6

Georgian: 10a0-10c5, 10d0-10f6
Hiragana: 3041-3094, 309b-309e
Katakana: 30a1-30fe
Bopomofo: 3105-312c
Hangul: 1100-1159, 1161-11a2, 11a8-11f9
CJK Unified Ideographs: f900-fa2d, fb1f-fb36, fb38-fb3c, fb3e, fb40-fb41, fb42-fb44, fb46-fbb1, fbd3-fd3f, fd50fd8f, fd92-fdc7, fdf0-fdfb, fe70-fe72, fe74, fe76-fefc, ff21-ff3a, ff41-ff5a, ff66-ffbe, ffc2-ffc7, ffca-ffcf, ffd2-ffd7, ffda-ffdc, 4e00-9fa5

Appendix \mathbf{F} (informative)
 Cross references

To refer to sections in the text, use section labels, which appear at the beginning of every section on the right-hand side of the page. While section numbers appear more natural, they change from time to time as material is added and removed from the draft.

This appendix lists each section label and the corresponding section number, in alphabetical order by label. It will be revised with each new draft, so can be used to find where a section is located in the current draft.

All of the section labels are the same as in the 2003 standard, except:

- Labels that begin with lib. in the 2003 standard have had the lib. removed so that they do not all appear in the same part of this list. For example, in the 2003 standard, the non-modifying sequence algorithms were found in a section with the label [lib.alg.nonmodifying]. The label for that section is now [alg.nonmodifying].
- The label for Appendix B has been changed from [limits] to [implimits]. The label [limits] refers to section 18.2.1.

A

accumulate 26.6.1
adjacent.difference 26.6.4
adjustfield.manip 27.4.5.2
alg.adjacent.find 25.1.5
alg.binary.search 25.3.3
alg.c.library 25.4
alg.copy 25.2.1
alg.count 25.1.6
alg.equal 25.1.8
alg.fill 25.2.5
alg.find 25.1.2
alg.find.end 25.1.3
alg.find.first.of 25.1.4
alg.foreach 25.1.1
alg.generate 25.2.6
alg.heap.operations 25.3 .6
alg.lex.comparison 25.3.8
alg.merge 25.3.4
alg.min.max 25.3.7
alg.modifying.operations 25.2
alg.nonmodifying 25.1
alg.nth.element 25.3.2
alg.partitions 25.2.12
alg.permutation.generators 25.3 .9
alg.random.shuffle 25.2 .11
alg.remove 25.2.7
alg.replace 25.2.4
alg.reverse 25.2.9
alg.rotate $\quad 25.2 .10$
alg.search 25.1.9
alg.set.operations 25.3.5
alg.sort 25.3.1
alg.sorting 25.3
alg.swap 25.2.2
alg.transform 25.2.3
alg.unique 25.2.8
algorithms 25
alloc.errors 18.5.2
allocator.globals 20.6.1.2
allocator.members 20.6.1.1
allocator.requirements 20.1.6
alt.headers 17.4.3.2
arithmetic.operations 20.5.6
array 23.2.1
array.cons 23.2.1.1
array.data 23.2.1.4
array.size 23.2.1.3
array.special 23.2.1.2
array.tuple 23.2.1.6
array.zero 23.2.1.5
assertions 19.2
associative 23.3
associative.reqmts 23.1.2
auto.ptr 20.6.5
auto.ptr.cons 20.6.5.1
auto.ptr.conv 20.6.5.3
auto.ptr.members 20.6.5.2

B

back.insert.iter.cons 24.4.2.2.1
back.insert.iter.op* 24.4.2.2.3
back.insert.iter.op++ 24.4.2.2.4
back.insert.iter. $\mathrm{op}=$ 24.4.2.2.2
back.insert.iter.ops 24.4.2.2
back.insert.iterator 24.4.2.1
back.inserter 24.4.2.2.5
bad.alloc 18.5.2.1
bad.cast 18.6.2
bad.exception 18.7.2.1
bad.typeid 18.6.3
base 20.5.3
basefield.manip 27.4.5.3
basic 3
basic.compound 3.9.2
basic.def 3.1
basic.def.odr 3.2
basic.fundamental 3.9.1
basic.funscope 3.3.4
basic.ios.cons 27.4.4.1
basic.ios.members 27.4.4.2
basic.life 3.8
basic.link 3.5
basic.lookup 3.4
basic.lookup.argdep 3.4.2
basic.lookup.classref 3.4.5
basic.lookup.elab 3.4.4
basic.lookup.qual 3.4.3
basic.lookup.udir 3.4.6
basic.lookup.unqual 3.4.1
basic.lval 3.10
basic.namespace 7.3
basic.scope 3.3
basic.scope.class 3.3.6
basic.scope.hiding 3.3.7
basic.scope.local 3.3.2
basic.scope.namespace 3.3.5
basic.scope.pdecl 3.3.1
basic.scope.proto 3.3.3
basic.start 3.6
basic.start.init 3.6.2
basic.start.main 3.6.1
basic.start.term 3.6.3
basic.stc 3.7
basic.stc.auto 3.7.3
basic.stc.collect 3.7.5
basic.stc.dynamic 3.7.4
basic.stc.dynamic.allocation 3.7.4.1
basic.stc.dynamic.deallocation 3.7.4.2
basic.stc.inherit 3.7.6
basic.stc.static 3.7.1
basic.stc.threadlocal 3.7.2
basic.string 21.3
basic.type.qualifier 3.9.3
basic.types 3.9
bidirectional.iterators 24.1.4
binary.search 25.3.3.4
bind 20.5.10
bitmask.types 17.3.2.1.2
bitset.cons 23.3.5.1
bitset.members 23.3.5.2
bitset.operators 23.3.5.3
byte.strings 17.3 .2 .1 .3.1

```
C
c.files 27.8.2
c.limits 18.2.2
c.locales 22.3
c.malloc 20.6.7
c.math 26.7
c.strings 21.4
category.collate 22.2.4
category.ctype 22.2.1
category.messages 22.2.7
category.monetary 22.2.6
category.numeric 22.2.2
category.time 22.2.5
ccmplx 26.3.10
cfenv 26.2
cfenv.syn 26.2.1
char.traits 21.1
char.traits.require 21.1.1
char.traits.specializations 21.1.3
char.traits.specializations.char 21.1.3.1
char.traits.specializations.wchar.t 21.1.3.2
char.traits.typedefs 21.1.2
character.seq 17.3.2.1.3
class 9
class.abstract 10.4
class.access 11
class.access.base 11.2
class.access.dcl 11.3
class.access.nest 11.8
class.access.spec 11.1
class.access.virt 11.6
class.base.init 12.6.2
class.bit 9.6
class.cdtor 12.7
class.conv 12.3
class.conv.ctor 12.3.1
class.conv.fct 12.3.2
class.copy 12.8
class.ctor 12.1
class.derived 10
class.dtor 12.4
class.expl.init 12.6.1
class.free 12.5
class.friend 11.4
class.gslice 26.5.6
```

```
class.init 12.6
class.local 9.8
class.mem 9.2
class.member.lookup 10.2
class.mfct 9.3
class.mfct.non-static 9.3.1
class.mi 10.1
class.name 9.1
class.nest 9.7
class.nested.type 9.9
class.paths 11.7
class.protected 11.5
class.qual 3.4.3.1
class.slice 26.5.4
class.static 9.4
class.static.data 9.4.2
class.static.mfct 9.4.1
class.temporary 12.2
class.this 9.3.2
class.union 9.5
class.virtual 10.3
classification 22.1.3.1
cmplx.over 26.3.9
cmplxh 26.3.11
comparisons 20.5.7
complex 26.3.2
complex.member.ops 26.3.5
complex.members 26.3.4
complex.numbers 26.3
complex.ops 26.3.6
complex.special 26.3.3
complex.synopsis 26.3.1
complex.transcendentals 26.3.8
complex.value.ops 26.3.7
compliance 17.4.1.3
conforming 17.4.4
cons.slice 26.5.4.1
cons.slice.arr 26.5.5.1
constraints 17.4.3
container.adaptors 23.2.4
container.requirements 23.1
containers 23
contents 17.4.1.1
conv 4
conv.array 4.2
conv.bool 4.12
```

Draft

```
conv.double 4.8
conv.fpint 4.9
conv.fpprom 4.6
conv.func 4.3
conv.integral 4.7
conv.lval 4.1
conv.mem 4.11
conv.prom 4.5
conv.ptr 4.10
conv.qual 4.4
conv.rank 4.13
conventions 17.3.2
conversions 22.1.3.2
copyconstructible 20.1.3
cpp 16
cpp.concat 16.3.3
cpp.cond 16.1
cpp.error 16.5
cpp.include 16.2
cpp.line 16.4
cpp.null 16.7
cpp.pragma 16.6
cpp.pragma.op 16.9
cpp.predefined 16.8
cpp.replace 16.3
cpp.rescan 16.3.4
cpp.scope 16.3.5
cpp.stringize 16.3.2
cpp.subst 16.3.1
cstdint 18.3
cstdint.syn 18.3.1
D
date.time 20.7
dcl.ambig.res 8.2
dcl.array 8.3.4
dcl.asm 7.4
dcl.dcl }
dcl.decl 8
dcl.enum 7.2
dcl.fct 8.3.5
dcl.fct.def 8.4
dcl.fct.default 8.3.6
dcl.fct.spec 7.1.2
dcl.friend 7.1.4
```

```
dcl.init 8.5
dcl.init.aggr 8.5.1
dcl.init.ref 8.5.3
dcl.init.string 8.5.2
dcl.link 7.5
dcl.meaning 8.3
dcl.mptr 8.3.3
dcl.name 8.1
dcl.ptr 8.3.1
dcl.ref 8.3.2
dcl.spec 7.1
dcl.spec.auto 7.1.5.4
dcl.stc 7.1.1
dcl.type 7.1.5
dcl.type.cv 7.1.5.1
dcl.type.elab 7.1.5.3
dcl.type.simple 7.1.5.2
dcl.typedef 7.1.3
default.allocator 20.6.1
default.con.req 20.1.5
definitions 17.1
defns.additional 17.2
denorm.style 18.2.1.4
depr D
depr.access.dcl D. }
depr.c.headers D.5
depr.incr.bool D.1
depr.ios.members D.6
depr.istrstream D.7.2
depr.istrstream.cons D.7.2.1
depr.istrstream.members D.7.2.2
depr.lib.bind.1st D.8.2
depr.lib.bind.2nd D.8.4
depr.lib.binder.1st D.8.1
depr.lib.binder.2nd D.8.3
depr.lib.binders D. }
depr.ostrstream D.7.3
depr.ostrstream.cons D.7.3.1
depr.ostrstream.members D.7.3.2
depr.static D. }
depr.str.strstreams D. }
depr.string D. }
depr.strstream D.7.4
depr.strstream.cons D.7.4.1
depr.strstream.dest D.7.4.2
depr.strstream.oper D.7.4.3
```

Draft

```
depr.strstreambuf D.7.1
depr.strstreambuf.cons D.7.1.1
depr.strstreambuf.members D.7.1.2
depr.strstreambuf.virtuals D.7.1.3
deque 23.2.2
deque.capacity 23.2.2.2
deque.cons 23.2.2.1
deque.modifiers 23.2.2.3
deque.special 23.2.2.4
derivation 17.4.4.7
derived.classes 17.4.3.3
description 17.3
diagnostics 19
diff C
diff.basic C.1.2
diff.class C.1.7
diff.cpp C.1.9
diff.dcl C.1.5
diff.decl C.1.6
diff.expr C.1.3
diff.header.iso646.h C.2.2.2
diff.iso C. 1
diff.lex C.1.1
diff.library C.2
diff.malloc C.2.4.2
diff.mods.to.behavior C.2.4
diff.mods.to.declarations C.2.3
diff.mods.to.definitions C.2.2
diff.mods.to.headers C.2.1
diff.null C.2.2.3
diff.offsetof C.2.4.1
diff.special C.1.8
diff.stat C.1.4
diff.wchar.t C.2.2.1
domain.error 19.1.2
```

```
E
enumerated.types 17.3.2.1.1
equal.range 25.3.3.3
equalitycomparable 20.1.1
errno 19.3
except 15
except.access 15.6
except.ctor 15.2
except.handle 15.3
```

except.spec 15.4
except.special 15.5
except.terminate 15.5 .1
except.throw 15.1
except.uncaught 15.5 .3
except.unexpected 15.5 .2
exception 18.7.1
exception.terminate 18.7.3
exception.unexpected 18.7.2
expr 5
expr.add 5.7
expr.ass 5.17
expr.bit.and 5.11
expr.call 5.2.2
expr.cast 5.4
expr.comma 5.18
expr.cond 5.16
expr.const 5.19
expr.const.cast 5.2.11
expr.delete 5.3.5
expr.dynamic.cast 5.2 .7
expr.eq 5.10
expr.log.and 5.14
expr.log.or 5.15
expr.mptr.oper 5.5
expr.mul 5.6
expr.new 5.3.4
expr.or 5.13
expr.post 5.2
expr.post.incr 5.2.6
expr.pre.incr 5.3.2
expr.prim 5.1
expr.pseudo 5.2.4
expr.ref 5.2 .5
expr.reinterpret.cast 5.2 .10
expr.rel 5.9
expr.shift 5.8
expr.sizeof 5.3.3
expr.static.cast 5.2.9
expr.sub 5.2.1
expr.type.conv 5.2.3
expr.typeid 5.2.8
expr.unary 5.3
expr.unary.op 5.3.1
expr.xor 5.12
ext.manip 27.6.4

Draft
extendid E
extern.names 17.4.3.1.3
extern.types 17.4.3.1.4

F

facet.ctype.char.dtor 22.2.1.3.1
facet.ctype.char.members 22.2.1.3.2
facet.ctype.char.statics 22.2.1.3.3
facet.ctype.char.virtuals 22.2.1.3.4
facet.ctype.special 22.2.1.3
facet.num.get.members 22.2.2.1.1
facet.num.get.virtuals 22.2.2.1.2
facet.num.put.members 22.2.2.2.1
facet.num.put.virtuals 22.2.2.2.2
facet.numpunct 22.2 .3
facet.numpunct.members 22.2.3.1.1
facet.numpunct.virtuals 22.2.3.1.2
facets.examples 22.2.8
fenv 26.2.2
file.streams 27.8
filebuf 27.8.1.1
filebuf.cons 27.8.1.2
filebuf.members 27.8.1.3
filebuf.virtuals 27.8.1.4
floatfield.manip 27.4.5.4
fmtflags.manip 27.4.5.1
fmtflags.state 27.4.2.2
forward.iterators 24.1.3
fpos 27.4.3
fpos.members 27.4.3.1
fpos.operations 27.4.3.2
front.insert.iter.cons 24.4.2.4.1
front.insert.iter.op* 24.4.2.4.3
front.insert.iter.op++ 24.4.2.4.4
front.insert.iter.op= 24.4.2.4.2
front.insert.iter.ops 24.4.2.4
front.insert.iterator 24.4.2.3
front.inserter 24.4.2.4.5
fstream 27.8.1.11
fstream.cons 27.8.1.12
fstream.members 27.8.1.13
fstreams 27.8.1
func.bind 20.5.10.1
func.bind.bind 20.5.10.1.3
func.bind.isbind 20.5.10.1.1
func.bind.isplace 20.5.10.1.2
func.bind.place 20.5.10.1.4
func.def 20.5.1
func.memfn 20.5.13
func.require 20.5.2
func.ret 20.5.4
func.wrap 20.5.14
func.wrap.badcall 20.5.14.1
func.wrap.badcall.const 20.5.14.1.1
func.wrap.func 20.5.14.2
func.wrap.func.alg 20.5.14.2.8
func.wrap.func.cap 20.5.14.2.3
func.wrap.func.con 20.5.14.2.1
func.wrap.func.inv 20.5.14.2.4
func.wrap.func.mod 20.5.14.2.2
func.wrap.func.nullptr 20.5.14.2.7
func.wrap.func.targ 20.5.14.2.5
func.wrap.func.undef 20.5.14.2.6
function.objects 20.5
function.pointer.adaptors 20.5.11
functions.within.classes 17.3.2.2

G

global.functions 17.4.4.3
global.names 17.4.3.1.2
gram A
gram.basic A. 3
gram.class A. 8
gram.cpp A. 14
gram.dcl A. 6
gram.decl A. 7
gram.derived A. 9
gram.except A. 13
gram.expr A. 4
gram.key A. 1
gram.lex A. 2
gram.over A. 11
gram.special A. 10
gram.stmt A. 5
gram.temp A. 12
gslice.access 26.5.6.2
gslice.array.assign 26.5.7.2
gslice.array.comp.assign 26.5.7.3
gslice.array.cons 26.5.7.1
gslice.array.fill 26.5.7.4

Draft
gslice.cons 26.5.6.1

H

handler.functions 17.4.3.5
headers 17.4.1.2

I

ifstream 27.8.1.5
ifstream.cons 27.8.1.6
ifstream.members 27.8.1.7
implimits B
includes 25.3.5.1
indirect.array.assign 26.5.9.2
indirect.array.comp.assign 26.5.9.3
indirect.array.cons 26.5.9.1
indirect.array.fill 26.5.9.4
inner.product 26.6 .2
input.iterators 24.1.1
input.output 27
input.streams 27.6.1
insert.iter.cons 24.4.2.6.1
insert.iter.op* 24.4.2.6.3
insert.iter.op++ 24.4.2.6.4
insert.iter.op= 24.4.2.6.2
insert.iter.ops 24.4.2.6
insert.iterator 24.4.2.5
insert.iterators 24.4.2
inserter 24.4.2.6.5
intro 1
intro.ack 1.11
intro.compliance 1.4
intro.concur 1.10
intro.defs 1.3
intro.execution 1.9
intro.memory 1.7
intro.object 1.8
intro.refs 1.2
intro.scope 1.1
intro.structure 1.5
invalid.argument 19.1.3
ios 27.4.4
ios.base 27.4.2
ios.base.callback 27.4.2.6
ios.base.cons 27.4.2.7

```
ios.base.locales 27.4.2.3
ios.base.storage 27.4.2.5
ios.members.static 27.4.2.4
ios.types 27.4.2.1
ios::failure 27.4.2.1.1
ios::fmtflags 27.4.2.1.2
ios::Init 27.4.2.1.6
ios::iostate 27.4.2.1.3
ios::openmode 27.4.2.1.4
ios::seekdir 27.4.2.1.5
iostate.flags 27.4.4.3
iostream.cons 27.6.1.5.1
iostream.dest 27.6.1.5.2
iostream.format 27.6
iostream.forward 27.2
iostream.limits.imbue 27.1.1
iostream.objects 27.3
iostreamclass 27.6.1.5
iostreams.base 27.4
iostreams.limits.pos 27.1.2
iostreams.requirements 27.1
istream 27.6.1.1
istream.cons 27.6.1.1.1
istream.formatted 27.6.1.2
istream.formatted.arithmetic 27.6.1.2.2
istream.formatted.reqmts 27.6.1.2.1
istream.iterator 24.5.1
istream.iterator.cons 24.5.1.1
istream.iterator.ops 24.5.1.2
istream.manip 27.6.1.4
istream.unformatted 27.6.1.3
istream::extractors 27.6.1.2.3
istream::sentry 27.6.1.1.2
istreambuf.iterator 24.5.3
istreambuf.iterator.cons 24.5.3.2
istreambuf.iterator::equal 24.5.3.5
istreambuf.iterator::op!= 24.5.3.7
istreambuf.iterator::op* 24.5.3.3
istreambuf.iterator::op++ 24.5.3.4
istreambuf.iterator::op== 24.5.3.6
istreambuf.iterator::proxy 24.5.3.1
istringstream 27.7.2
istringstream.cons 27.7.2.1
istringstream.members 27.7.2.2
iterator.basic 24.3.2
iterator.operations 24.3.4
```

Draft
iterator.primitives 24.3
iterator.requirements 24.1
iterator.synopsis 24.2
iterator.traits 24.3.1
iterators 24

J

K

L
language.support 18
length.error 19.1.4
lessthancomparable 20.1.2
lex 2
lex.bool 2.13.5
lex.ccon 2.13 .2
lex.charset 2.2
lex.comment 2.7
lex.digraph 2.5
lex.fcon 2.13 .3
lex.header 2.8
lex.icon 2.13 .1
lex.key 2.11
lex.literal 2.13
lex.name 2.10
lex.operators 2.12
lex.phases 2.1
lex.ppnumber 2.9
lex.pptoken 2.4
lex.string 2.13 .4
lex.token 2.6
lex.trigraph 2.3
library 17
limits 18.2.1
list 23.2.3
list.capacity 23.2.3.2
list.cons 23.2.3.1
list.modifiers 23.2.3.3
list.ops 23.2.3.4
list.special 23.2.3.5
locale 22.1.1
locale.categories 22.2
locale.category 22.1.1.1.1
locale.codecvt 22.2.1.4
locale.codecvt.byname 22.2.1.5
locale.codecvt.members 22.2.1.4.1
locale.codecvt.virtuals 22.2.1.4.2
locale.collate 22.2.4.1
locale.collate.byname 22.2.4.2
locale.collate.members 22.2.4.1.1
locale.collate.virtuals 22.2.4.1.2
locale.cons 22.1.1.2
locale.convenience 22.1.3
locale.ctype 22.2.1.1
locale.ctype.byname 22.2.1.2
locale.ctype.members 22.2.1.1.1
locale.ctype.virtuals 22.2.1.1.2
locale.facet 22.1.1.1.2
locale.global.templates 22.1.2
locale.id 22.1.1.1.3
locale.members 22.1.1.3
locale.messages 22.2.7.1
locale.messages.byname 22.2.7.2
locale.messages.members 22.2.7.1.1
locale.messages.virtuals 22.2.7.1.2
locale.money.get 22.2.6.1
locale.money.get.members 22.2.6.1.1
locale.money.get.virtuals 22.2.6.1.2
locale.money.put 22.2.6.2
locale.money.put.members 22.2.6.2.1
locale.money.put.virtuals 22.2.6.2.2
locale.moneypunct 22.2.6.3
locale.moneypunct.byname 22.2.6.4
locale.moneypunct.members 22.2.6.3.1
locale.moneypunct.virtuals 22.2.6.3.2
locale.nm.put 22.2.2.2
locale.num.get 22.2.2.1
locale.numpunct 22.2.3.1
locale.numpunct.byname 22.2.3.2
locale.operators 22.1.1.4
locale.statics 22.1.1.5
locale.time.get 22.2.5.1
locale.time.get.byname 22.2.5.2
locale.time.get.members 22.2.5.1.1
locale.time.get.virtuals 22.2.5.1.2
locale.time.put 22.2.5.3
locale.time.put.byname 22.2.5.4
locale.time.put.members 22.2.5.3.1
locale.time.put.virtuals 22.2.5.3.2
locale.types 22.1.1.1
locales 22.1

Draft
localization 22
logic.error 19.1.1
logical.operations 20.5.8
lower.bound 25.3.3.1

M

macro.names 17.4.3.1.1
make.heap 25.3.6.3
map 23.3.1
map.access 23.3.1.2
map.cons 23.3.1.1
map.ops 23.3.1.3
map.special 23.3.1.4
mask.array.assign 26.5.8.2
mask.array.comp.assign 26.5.8.3
mask.array.cons 26.5.8.1
mask.array.fill 26.5.8.4
member.functions 17.4.4.4
member.pointer.adaptors $\quad 20.5 .12$
memory 20.6
meta 20.4
meta.help 20.4.3
meta.rel 20.4.6
meta.req 20.4.9
meta.requirements 20.4.4
meta.rqmts 20.4.1
meta.trans 20.4.7
meta.trans.arr 20.4.7.3
meta.trans.cv 20.4.7.1
meta.trans.other 20.4.8
meta.trans.ptr 20.4.7.4
meta.trans.ref 20.4.7.2
meta.type.synop 20.4.2
meta.unary 20.4.5
meta.unary.cat 20.4.5.1
meta.unary.comp 20.4.5.2
meta.unary.prop 20.4.5.3
mismatch 25.1.7
multibyte.strings $\quad 17.3 .2 .1 .3 .2$
multimap 23.3.2
multimap.cons 23.3.2.1
multimap.ops 23.3.2.2
multimap.special 23.3.2.3
multiset 23.3.4
multiset.cons 23.3.4.1
multiset.special 23.3.4.2

N

namespace.alias 7.3.2
namespace.def 7.3.1
namespace.memdef 7.3.1.2
namespace.qual 3.4.3.2
namespace.udecl 7.3.3
namespace.udir 7.3.4
namespace.unnamed 7.3.1.1
narrow.stream.objects 27.3.1
negators 20.5.9
new.delete 18.5.1
new.delete.array 18.5.1.2
new.delete.placement 18.5 .1 .3
new.delete.single 18.5.1.1
new.handler 18.5.2.2
numarray 26.5
numeric.limits 18.2.1.1
numeric.limits.members 18.2.1.2
numeric.ops 26.6
numeric.requirements 26.1
numeric.special 18.2.1.5
numerics 26

0

objects.within.classes 17.3.2.3
ofstream 27.8.1.8
ofstream.cons 27.8.1.9
ofstream.members 27.8.1.10
operators 20.2.1
organization 17.4.1
ostream 27.6.2.1
ostream.cons 27.6.2.2
ostream.formatted 27.6.2.5
ostream.formatted.reqmts 27.6.2.5.1
ostream.inserters 27.6.2.5.3
ostream.inserters.arithmetic 27.6.2.5.2
ostream.inserters.character 27.6.2.5.4
ostream.iterator 24.5.2
ostream.iterator.cons.des 24.5.2.1
ostream.iterator.ops 24.5.2.2
ostream.manip 27.6.2.7
ostream.seeks 27.6.2.4

```
ostream.unformatted 27.6.2.6
ostream::sentry 27.6.2.3
ostreambuf.iter.cons 24.5.4.1
ostreambuf.iter.ops 24.5.4.2
ostreambuf.iterator 24.5.4
ostringstream 27.7.3
ostringstream.cons 27.7.3.1
ostringstream.members 27.7.3.2
out.of.range 19.1.5
output.iterators 24.1.2
output.streams 27.6.2
over 13
over.ass 13.5.3
over.best.ics 13.3.3.1
over.binary 13.5.2
over.built 13.6
over.call 13.5.4
over.call.func 13.3.1.1.1
over.call.object 13.3.1.1.2
over.dcl 13.2
over.ics.ellipsis 13.3.3.1.3
over.ics.rank 13.3.3.2
over.ics.ref 13.3.3.1.4
over.ics.scs 13.3.3.1.1
over.ics.user 13.3.3.1.2
over.inc 13.5.7
over.load 13.1
over.match 13.3
over.match.best 13.3.3
over.match.call 13.3.1.1
over.match.conv 13.3.1.5
over.match.copy 13.3.1.4
over.match.ctor 13.3.1.3
over.match.funcs 13.3.1
over.match.oper 13.3.1.2
over.match.ref 13.3.1.6
over.match.viable 13.3.2
over.oper 13.5
over.over 13.4
over.ref 13.5.6
over.sub 13.5.5
over.unary 13.5.1
overflow.error 19.1.8
P
```

pairs 20.2.2
partial.sort 25.3.1.3
partial.sort.copy 25.3.1.4
partial.sum 26.6.3
pop.heap 25.3.6.2
predef.iterators 24.4
priority.queue 23.2.4.2
priqueue.cons 23.2.4.2.1
priqueue.members 23.2.4.2.2
protection.within.classes 17.4.4.6
push.heap 25.3.6.1

Q

queue 23.2.4.1
queue.defn 23.2.4.1.1
queue.ops 23.2.4.1.2

R

rand 26.4
rand.adapt 26.4.4
rand.adapt.disc 26.4.4.1
rand.adapt.ibits 26.4.4.2
rand.adapt.shuf 26.4.4.3
rand.adapt.xor 26.4.4.4
rand.device 26.4.6
rand.dist 26.4.8
rand.dist.bern 26.4.8.2
rand.dist.bern.bernoulli 26.4.8.2.1
rand.dist.bern.bin 26.4.8.2.2
rand.dist.bern.geo 26.4.8.2.3
rand.dist.bern.negbin 26.4.8.2.4
rand.dist.norm 26.4.8.4
rand.dist.norm.cauchy 26.4.8.4.4
rand.dist.norm.chisq 26.4.8.4.3
rand.dist.norm.f 26.4.8.4.5
rand.dist.norm.lognormal 26.4.8.4.2
rand.dist.norm.normal 26.4.8.4.1
rand.dist.norm.t 26.4.8.4.6
rand.dist.pois 26.4.8.3
rand.dist.pois.exp 26.4.8.3.2
rand.dist.pois.extreme 26.4.8.3.5
rand.dist.pois.gamma 26.4.8.3.3
rand.dist.pois.poisson 26.4.8.3.1
rand.dist.pois.weibull 26.4.8.3.4
rand.dist.samp 26.4.8.5
rand.dist.samp.discrete 26.4.8.5.1
rand.dist.samp.genpdf 26.4.8.5.3
rand.dist.samp.pconst 26.4.8.5.2
rand.dist.uni 26.4.8.1
rand.dist.uni.int 26.4.8.1.1
rand.dist.uni.real 26.4.8.1.2
rand.eng 26.4.3
rand.eng.lcong 26.4.3.1
rand.eng.mers 26.4.3.2
rand.eng.sub 26.4.3.3
rand.predef 26.4.5
rand.req 26.4.1
rand.req.adapt 26.4.1.4
rand.req.dist 26.4.1.5
rand.req.eng 26.4.1.3
rand.req.genl 26.4.1.1
rand.req.urng 26.4.1.2
rand.synopsis 26.4.2
rand.util 26.4.7
rand.util.canonical 26.4.7.2
rand.util.seedseq 26.4.7.1
random.access.iterators 24.1 .5
range.error 19.1.7
re 28
re.alg 28.11
re.alg.match 28.11.2
re.alg.replace 28.11 .4
re.alg.search 28.11.3
re.badexp 28.6
re.const 28.5
re.def 28.1
re.err 28.5.3
re.except 28.11.1
re.grammar 28.13
re.iter 28.12
re.matchflag 28.5.2
re.regex 28.8
re.regex.assign 28.8 .3
re.regex.const 28.8 .1
re.regex.construct 28.8 .2
re.regex.locale 28.8 .5
re.regex.nmswap 28.8.7.1
re.regex.nonmemb 28.8.7
re.regex.operations 28.8.4
re.regex.swap 28.8.6
re.regiter 28.12.1
re.regiter.cnstr 28.12.1.1
re.regiter.comp 28.12.1.2
re.regiter.deref 28.12.1.3
re.regiter.incr 28.12.1.4
re.req 28.2
re.results 28.10
re.results.acc 28.10 .3
re.results.all 28.10 .5
re.results.const 28.10 .1
re.results.form 28.10.4
re.results.size 28.10 .2
re.results.swap 28.10 .6
re.submatch 28.9
re.submatch.members 28.9.1
re.submatch.op 28.9.2
re.sum 28.3
re.syn 28.4
re.synopt 28.5.1
re.tokiter 28.12.2
re.tokiter.cnstr 28.12 .2 .1
re.tokiter.comp 28.12.2.2
re.tokiter.deref 28.12.2.3
re.tokiter.incr 28.12.2.4
re.traits 28.7
reentrancy 17.4.4.5
refwrap 20.5.5
refwrap.access 20.5.5.3
refwrap.assign 20.5.5.2
refwrap.const 20.5.5.1
refwrap.helpers 20.5 .5 .5
refwrap.invoke 20.5.5.4
replacement.functions 17.4.3.4
requirements 17.4
res.on.arguments 17.4.3.7
res.on.exception.handling 17.4.4.8
res.on.functions 17.4.3.6
res.on.headers 17.4.4.1
res.on.macro.definitions 17.4.4.2
res.on.required 17.4.3.8
reserved.names 17.4.3.1
reverse.iter.cons 24.4.1.3.1
reverse.iter.conv 24.4.1.3.3
reverse.iter.op!= 24.4.1.3.15
reverse.iter.op+ 24.4.1.3.8
reverse.iter.op++ 24.4.1.3.6
reverse.iter.op+= 24.4.1.3.9
reverse.iter.op- 24.4.1.3.10
reverse.iter.op-= 24.4.1.3.11
reverse.iter.op.star 24.4.1.3.4
reverse.iter.op< 24.4.1.3.14
reverse.iter.op<= 24.4.1.3.18
reverse.iter.op= 24.4.1.3.2
reverse.iter. $\mathrm{op}==24.4 .1 .3 .13$
reverse.iter.op> 24.4.1.3.16
reverse.iter.op $>=24.4 .1 .3 .17$
reverse.iter.opdiff 24.4.1.3.19
reverse.iter.opindex 24.4.1.3.12
reverse.iter.opref 24.4.1.3.5
reverse.iter.ops 24.4.1.3
reverse.iter.opsum 24.4.1.3.20
reverse.iter.op-- 24.4.1.3.7
reverse.iter.requirements 24.4.1.2
reverse.iterator 24.4.1.1
reverse.iterators 24.4.1
round.style 18.2.1.3
runtime.error 19.1.6

S

sequence.reqmts 23.1.1
sequences 23.2
set 23.3.3
set.cons 23.3.3.1
set.difference 25.3.5.4
set.intersection 25.3.5.3
set.new.handler 18.5.2.3
set.special 23.3.3.2
set.symmetric.difference 25.3 .5 .5
set.terminate 18.7.3.2
set.unexpected 18.7.2.3
set.union 25.3.5.2
slice.access 26.5.4.2
slice.arr.assign 26.5.5.2
slice.arr.comp.assign 26.5.5.3
slice.arr.fill 26.5.5.4
sort 25.3.1.1
sort.heap 25.3.6.4
special 12
specialized.algorithms $\quad 20.6 .4$
stable.sort 25.3.1.2
stack 23.2.4.3
stack.defn 23.2.4.3.1
stack.ops 23.2.4.3.2
std.exceptions 19.1
std.ios.manip 27.4.5
std.iterator.tags 24.3.3
std.manip 27.6.3
stdinth 18.3 .2
stmt.ambig 6.8
stmt.block 6.3
stmt.break 6.6.1
stmt.cont 6.6.2
stmt.dcl 6.7
stmt.do $\quad 6.5 .2$
stmt.expr 6.2
stmt.for 6.5.3
stmt.goto $\quad 6.6 .4$
stmt.if 6.4.1
stmt.iter 6.5
stmt.jump 6.6
stmt.label 6.1
stmt.return 6.6.3
stmt.select 6.4
stmt.stmt 6
stmt.switch 6.4.2
stmt.while 6.5 .1
storage.iterator 20.6.2
stream.buffers 27.5
stream.iterators 24.5
stream.types 27.4.1
streambuf 27.5.2
streambuf.buffer 27.5.2.2.2
streambuf.cons 27.5.2.1
streambuf.get.area 27.5.2.3.1
streambuf.locales 27.5.2.2.1
streambuf.members 27.5.2.2
streambuf.protected 27.5.2.3
streambuf.pub.get 27.5.2.2.3
streambuf.pub.pback 27.5.2.2.4
streambuf.pub.put 27.5.2.2.5
streambuf.put.area 27.5.2.3.2
streambuf.reqts 27.5.1
streambuf.virt.buffer 27.5.2.4.2
streambuf.virt.get 27.5.2.4.3
streambuf.virt.locales 27.5.2.4.1
streambuf.virt.pback 27.5.2.4.4
streambuf.virt.put 27.5.2.4.5

Draft
streambuf.virtuals 27.5.2.4
string.access 21.3.5
string.capacity 21.3.4
string.classes 21.2
string.cons 21.3.2
string.io 21.3.8.9
string.iterators 21.3.3
string.modifiers 21.3.6
string.nonmembers 21.3.8
string.ops 21.3.7
string.require 21.3.1
string.special 21.3.8.8
string.streams 27.7
string::append 21.3.6.2
string::assign 21.3.6.3
string::compare 21.3.7.8
string::copy 21.3.6.7
string::erase 21.3.6.5
string::find 21.3.7.1
string::find.first.not.of 21.3.7.5
string::find.first.of 21.3.7.3
string::find.last.not.of 21.3.7.6
string::find.last.of 21.3.7.4
string::insert 21.3.6.4
string::op!= 21.3.8.3
string::op+ 21.3.8.1
string::op+= 21.3.6.1
string::op< 21.3.8.4
string::op<= 21.3.8.6
string::op> 21.3.8.5
string::op>= 21.3.8.7
string::operator== 21.3.8.2
string::replace 21.3.6.6
string::rfind 21.3.7.2
string::substr 21.3.7.7
string::swap 21.3.6.8
stringbuf 27.7.1
stringbuf.cons 27.7.1.1
stringbuf.members 27.7.1.2
stringbuf.virtuals 27.7.1.3
strings 21
stringstream 27.7.4
stringstream.cons 27.7.5
stringstream.members 27.7.6
structure 17.3.1
structure.requirements 17.3.1.2
structure.see.also 17.3.1.4
structure.specifications 17.3.1.3
structure.summary 17.3.1.1
support.dynamic 18.5
support.exception 18.7
support.limits 18.2
support.rtti 18.6
support.runtime 18.8
support.start.term 18.4
support.types 18.1
swappable 20.1.4
syntax 1.6

T
temp 14
temp.arg 14.3
temp.arg.explicit $\quad 14.8 .1$
temp.arg.nontype 14.3 .2
temp.arg.template 14.3 .3
temp.arg.type 14.3 .1
temp.class 14.5 .1
temp.class.order 14.5.4.2
temp.class.spec 14.5.4
temp.class.spec.match 14.5.4.1
temp.class.spec.mfunc 14.5.4.3
temp.concepts 14.9
temp.decls 14.5
temp.deduct 14.8 .2
temp.deduct.call 14.8.2.1
temp.deduct.conv 14.8.2.3
temp.deduct.funcaddr 14.8.2.2
temp.deduct.partial 14.8.2.4
temp.deduct.type 14.8.2.5
temp.dep 14.6.2
temp.dep.candidate 14.6 .4 .2
temp.dep.constexpr 14.6.2.3
temp.dep.expr 14.6.2.2
temp.dep.res 14.6 .4
temp.dep.temp 14.6.2.4
temp.dep.type 14.6 .2 .1
temp.expl.spec 14.7.3
temp.explicit 14.7 .2
temp.fct 14.5 .5
temp.fct.spec 14.8
temp.friend 14.5 .3

Draft
temp.func.order 14.5.5.2
temp.inject 14.6 .5
temp.inst 14.7.1
temp.local 14.6.1
temp.mem 14.5.2
temp.mem.class 14.5.1.2
temp.mem.func 14.5.1.1
temp.names 14.2
temp.nondep 14.6 .3
temp.over 14.8.3
temp.over.link 14.5.5.1
temp.param 14.1
temp.point 14.6.4.1
temp.res 14.6
temp.spec 14.7
temp.static 14.5.1.3
temp.type 14.4
template.bitset 23.3.5
template.gslice.array 26.5 .7
template.indirect.array 26.5 .9
template.mask.array 26.5 .8
template.slice.array 26.5 .5
template.valarray 26.5 .2
temporary.buffer 20.6.3
terminate 18.7.3.3
terminate.handler 18.7.3.1
tuple 20.3
tuple.cnstr 20.3.1.1
tuple.creation 20.3.1.2
tuple.elem 20.3.1.4
tuple.helper 20.3.1.3
tuple.rel 20.3.1.5
tuple.tuple 20.3.1
type.descriptions 17.3.2.1
type.info 18.6.1

\mathbf{U}

uncaught 18.7.4
underflow.error 19.1.9
unexpected 18.7.2.4
unexpected.handler 18.7.2.2
uninitialized.copy 20.6.4.1
uninitialized.fill 20.6.4.2
uninitialized.fill.n 20.6.4.3
unord 23.4
unord.hash 20.5.15
unord.map 23.4.1
unord.map.cnstr 23.4.1.1
unord.map.elem 23.4.1.2
unord.map.swap 23.4.1.3
unord.multimap 23.4.2
unord.multimap.cnstr 23.4.2.1
unord.multimap.swap 23.4.2.2
unord.multiset 23.4.4
unord.multiset.cnstr 23.4.4.1
unord.multiset.swap 23.4.4.2
unord.req 23.1.3
unord.req.except 23.1.3.1
unord.set 23.4.3
unord.set.cnstr 23.4.3.1
unord.set.swap 23.4.3.2
upper.bound 25.3.3.2
using 17.4.2
using.headers 17.4.2.1
using.linkage 17.4.2.2
util.smartptr 20.6.6
util.smartptr.enab 20.6.6.4
util.smartptr.getdeleter 20.6.6.2.10
util.smartptr.shared 20.6.6.2
util.smartptr.shared.assign 20.6.6.2.3
util.smartptr.shared.cast 20.6.6.2.9
util.smartptr.shared.cmp 20.6.6.2.6
util.smartptr.shared.const 20.6.6.2.1
util.smartptr.shared.dest 20.6.6.2.2
util.smartptr.shared.io 20.6.6.2.7
util.smartptr.shared.mod 20.6.6.2.4
util.smartptr.shared.obs 20.6.6.2.5
util.smartptr.shared.spec 20.6.6.2.8
util.smartptr.weak 20.6.6.3
util.smartptr.weak.assign 20.6.6.3.3
util.smartptr.weak.cmp 20.6.6.3.6
util.smartptr.weak.const 20.6.6.3.1
util.smartptr.weak.dest 20.6 .6 .3 .2
util.smartptr.weak.mod 20.6.6.3.4
util.smartptr.weak.obs 20.6.6.3.5
util.smartptr.weak.spec 20.6.6.3.7
util.smartptr.weakptr 20.6.6.1
utilities 20
utility 20.2
utility.requirements 20.1

V

valarray.access 26.5.2.3
valarray.assign 26.5.2.2
valarray.binary 26.5.3.1
valarray.cassign 26.5.2.6
valarray.comparison 26.5.3.2
valarray.cons 26.5.2.1
valarray.members 26.5.2.7
valarray.nonmembers 26.5 .3
valarray.sub 26.5.2.4
valarray.synopsis 26.5.1
valarray.transcend 26.5.3.3
valarray.unary 26.5.2.5
vector 23.2.5
vector.bool 23.2.6
vector.capacity 23.2.5.2
vector.cons 23.2.5.1
vector.data 23.2.5.3
vector.modifiers 23.2.5.4
vector.special 23.2.5.5

W

wide.characters 17.3.2.1.3.3
wide.stream.objects 27.3.2

X

xref F

Y
Z

Index

!, see logical negation operator
$!=$, see inequality operator
(), see function call operator
function declarator, 160
*, see indirection operator, see multiplication operator pointer declarator, 155
+, see unary plus operator, see addition operator
++ , see increment operator
,, see comma operator
-, see unary minus operator, see subtraction operator
->, see class member access operator
->*, see pointer to member operator
--, see decrement operator
., see class member access operator
.*, see pointer to member operator
..., see ellipsis
/, see division operator
:
field declaration, 189
label specifier, 109
: : , see scope resolution operator
::*
pointer to member declarator, 158
<, see less than operator
template and, 283, 284
<<, see left shift operator
$<=$, see less than or equal to operator
$=$, see assignment operator
$==$, see equality operator
$>$, see greater than operator
$>=$, see greater than or equal operator
>>, see right shift operator
?:, see conditional expression operator
[], see subscripting operator
array declarator, 158
\#define, 368
\#elif, 365
\#else, 366
\#endif, 366
\#error, 373
\#if, 365, 393
\#ifdef, 366
\#ifndef, 366
\#include, 366, 389
\#line, 373
\#pragma, 374
\#undef, 370, 390
$\%$, see modulus operator
\&, see address-of operator, see bitwise AND operator
reference declarator, 156
\&\&, see logical AND operator
^, see bitwise exclusive OR operator
\#\# operator, 369
\# operator, 369
basic_ios::failure argument
implementation-defined, 845
const object
undefined change to, 127
exception: :what message
implementation-defined, 419
friend function
nested class, 191
delete, 94, 97
new, 94
operator bool
basic_ios, 845

, see backslash
_ _cplusplus, 374
_ _ DATE _ _ 374
_ _ FILE _ _ 374
_ _ LINE _ _ 374
_ _ STDC_HOSTED _ _, 374
implementation-defined, 374
_ _ STDC_ISO_10646 _ _, 375
implementation-defined, 375
_ _ STDC_VERSION _ _, 375
implementation-defined, 375
_ _ STDC _ _ 374
implementation-defined, 374
_ _ TIME _ _ 374
\{\}
block statement, 110
class declaration, 177
class definition, 177
enum declaration, 131
initializer list, 170
\sim, see one's complement operator, see destructor
~Init
ios_base::Init, 837
~auto_ptr
auto_ptr, 482
~basic_filebuf
basic_filebuf, 896
~basic_iostream
basic_iostream, 872
~basic_ostream
basic_ostream, 875
~ctype<char>
ctype<char>, 550
~exception
exception, 418
~locale
locale, 542
~sentry
basic_istream, 863
basic_ostream, 876
~strstream
strstream, 1005
~strstreambuf
strstreambuf, 999
~valarray
valarray, 800
_, see character, underscore
I, 104
0 , see also zero, null
null character, 23
string terminator, 23
_1, 466
a()
cauchy_distribution<>, 788
extreme_value_distribution<>, 784
uniform_int_distribution<>, 774
uniform_real_distribution<>, 775
weibull_distribution<>, 783
abort, 54, 114, 388, 409, 415, 420
abs, 806,820
complex, 746
abstract-declarator, 152
access
struct default member, 177
union default member, 177
adjusting base class member, 212
base class, 210
base class member, 193
class member, 81
member name, 207
overloading and, 252
virtual function, 218
access-specifier, 193
access control, 207
anonymous union, 188
member function and, 221
overloading resolution and, 197
access specifier, 209, 210
accumulate, 816
acos, 806, 820
complex, 747
acosh, 820
complex, 747
addition operator, 100
additive-expression, 100
address, 64, 103
address of member function
unspecified, 394
adjacent_difference, 818
adjacent_find, 712
advance, 682
aggregate, 170
algorithm
stable, 380
<algorithm>, 701
alias, 137
alignment requirement
implementation-defined, 61

Draft

allocation

alignment storage, 94
implementation defined bit-field, 189
unspecified, 181, 209
allocator, 658, 661, 664, 667, 938
allocator, 476
alpha()
gamma_distribution<>, 782
always_noconv
codecvt, 554
ambiguity
base class member, 196
class conversion, 199
declaration type, 121
declaration versus cast, 153
declaration versus expression, 116
function declaration, 168
member access, 196
parentheses and, 93
ambiguity detection
overloaded function, 253
Amendment 1, 390
any
bitset, 655
append
basic_string, 514
apply
valarray, 803
arg, 748
complex, 746
argc, 51
argument, 2, 392-394, 425
access checking and default, 208
binding of default, 164
evaluation of default, 164, 165
example of default, 163, 164
overloaded operator and default, 272
reference, 80
scope of default, 165
template, 285
type checking of default, 164
arguments
implementation-defined order of evaluation of function, 165
argument and name hiding
default, 165
argument and virtual function
default, 166
argument list
empty, 160
variable, 160
argument passing, 80
reference and, 174
argument substitution, 369
argument type
unknown, 160
argv, 51
arithmetic
pointer, 100
unsigned, 63
array, 161
bound, 159
const, 65
delete, 96
multidimensional, 159
new, 93
overloading and pointer versus, 250
sizeof, 92
storage of, 160
<array>, 605
array, 609, 611
as aggregate, 609
begin, 609
contiguous storage, 609
data, 610
end, 609
get, 611
initialization, 609, 610
max_size, 609
size, 609, 610
swap, 610
tuple interface to, 611
zero sized, 611
array size
default, 159
arrow operator, see class member access operator
asin, 806, 820
complex, 747
asinh, 820
complex, 747
asm
implementation-defined, 147

Draft
assembler, 147
<assert.h>, 389
assign
basic_string, 515
deque, 614
list, 619
vector, 630
basic_regex, 927
assignment
and lvalue, 106
conversion by, 106
reference, 174
assignment-expression, 106
assignment-operator, 106
assignment operator
copy, 244
overloaded, 273
associative containers
unordered, see unordered associative containers
at
basic_string, 514
map, 639
atan, 806, 820
complex, 747
atan2, 806, 820
atanh, 820
complex, 747
atexit, 54, 388, 409
auto
destruction of, 114, 115
auto_ptr, 480, 486
auto_ptr, 481
awk, 918
b()
cauchy_distribution<>, 788
extreme_value_distribution<>, 784
uniform_int_distribution<>, 774
uniform_real_distribution<>, 775
weibull_distribution<>, 783
back_insert_iterator, 689
back_insert_iterator, 689
back_inserter, 690
backslash character, 21
bad
basic_ios, 846
bad_alloc, 95, 411, 415
bad_alloc, 414
bad_alloc::what implementation-defined, 414
bad_cast, 84,416
bad_cast, 416, 417
bad_cast::what
implementation-defined, 417
bad_exception, 360, 419
bad_exception, 419
bad_exception: :what
implementation-defined, 419
bad_function_call, 469
bad_function_call, 470
bad_typeid, 85,417
bad_typeid, 417
bad_typeid::what
implementation-defined, 417
bad_weak_ptr, 483
bad_weak_ptr, 483
what, 483
base-specifier, 193
base-specifier-list, 193
base class, 193, 194
direct, 193
indirect, 193
private, 210
protected, 210
public, 210
base class virtual, see virtual base class
basic_filebuf, 825,895
basic_filebuf, 896
basic_filebuf<char>, 894
basic_filebuf<wchar_t>, 894
basic_fstream, 825, 904
basic_fstream, 905
basic_ifstream, 825, 901
basic_ifstream, 901
basic_ifstream<char>, 894
basic_ifstream<wchar_t>, 894
basic_ios, 825,841
basic_ios, 843
basic_ios<char>, 831
basic_ios<wchar_t>, 831
basic_iostream, 872
basic_iostream, 872

Draft
basic_istream, 825, 860
basic_istream, 862
basic_istream<char>, 859
basic_istream<wchar_t>, 859
basic_istreambuf_iterator, 825
basic_istringstream, 825, 890 basic_istringstream, 891
basic_istringstream<char>, 885
basic_istringstream<wchar_t>, 885
basic_ofstream, 825, 902
basic_ofstream, 903
basic_ofstream<char>, 894
basic_ofstream<wchar_t>, 894
basic_ostream, 825, 934
basic_ostream, 875
basic_ostream<char>, 860
basic_ostream<wchar_t>, 860
basic_ostreambuf_iterator, 825
basic_ostringstream, 825, 891
basic_ostringstream, 892
basic_ostringstream<char>, 885
basic_ostringstream<wchar_t>, 885
basic_regex, 910, 923, 949
assign, 927
basic_regex, 925, 926
constants, 925
operator=, 926
swap, 928
basic_streambuf, 825, 850
basic_streambuf, 852
basic_streambuf<char>, 849
basic_streambuf<wchar_t>, 849
basic_string, 504, 525, 885
basic_stringbuf, 825,886
basic_stringbuf, 887
basic_stringbuf<char>, 885
basic_stringbuf<wchar_t>, 885
basic_stringstream, 825, 893
basic_stringstream, 893
before
type_info, 416
begin
basic_string, 512
array, 609
match_results, 937
unordered associative containers, 604
behavior
conditionally-supported, 2,5
default, 378, 383
implementation-defined, 2, 575
locale-specific, 3
required, 379,383
undefined, 3
unspecified, 4
Ben, 252
Bernoulli distributions, 775-779
bernoulli_distribution, 775
constructor, 776
discrete probability function, 775
p(), 776
beta()
gamma_distribution<>, 782
bidirectional_iterator_tag, 681
binary function, 459, 460, 469
binary_function, 458
binary_negate, 464
binary_search, 727
binary operator
interpretation of, 273
overloaded, 273
bind, 465-466
bind1st, 1006
bind2nd, 1007
binder1st, 1006
binder2nd, 1007
binding
reference, 174
binomial_distribution<>, 776
constructor, 777
discrete probability function, 776
p(), 777
t(), 777
bit-field, 189
address of, 189
alignment of, 189
implementation-defined sign of, 189
implementation defined alignment of, 189
type of, 189
unnamed, 189
zero width of, 189
<bitset>, 650
bitset, 650

Draft
bitset, 652
block
initialization in, 115
block scope; see local scope, 31
block structure, 115
body
function, 166
bool()
basic_istream operator, 863
basic_ostream operator, 876
boolalpha, 846
Boolean, 189
Boolean literal, 23
boolean-literal, 23
Boolean type, 63
bound arguments, 465
bound, of array, 159
bucket
unordered associative containers, 604
bucket_count
unordered associative containers, 603
bucket_size
unordered associative containers, 604
buckets, 600
built-in type; see fundamental type, 62
byte, 91
C
linkage to, 148
c-char, 20
c-char-sequence, 20
c_str
basic_string, 520
cabs
complex, 746
cacos
complex, 747
cacosh
complex, 747
call, see also function call, member function call, overloaded function call, virtual function call
operator function, 272
pseudo destructor, 81
call signature, 457
call wrapper, 457, 458
forwarding, 458
simple, 458
call wrapper type, 457
callable object, 457, 471
callable type, 457
calloc, 495, 991
capacity
basic_string, 513
vector, 630
carry
subtract_with_carry_engine<>, 762
casin
complex, 747
casinh
complex, 747
<cassert>, 389
cast
base class, 86
const, 88
derived class, 86
dynamic, 83, 416
integer to pointer, 87
lvalue, 85,87
pointer to function, 87
pointer to integer, 87
pointer to member, 87,88
reference, 85,88
reinterpret, 87
reinterpret_cast
lvalue, 87
reference, 88
static, 85
static_cast
lvalue, 85
reference, 85
undefined pointer to function, 87
cast-expression, 97
casting, 81, 97
catan
complex, 747
catanh
complex, 747
catch, 351
category
locale, 538
cauchy_distribution<>, 787
a(), 788

Draft
b(), 788
constructor, 788
probability density function, 787
cbrt, 820
<ccomplex>, 749
cerr, 829
<cerrno>, 390
<cfenv>, 738
char
implementation-defined sign of, 63
char-like object, 497
char-like type, 497
char_class_type
regex_traits, 921
Regular Expression Traits, 908
character, 378
decimal-point, 385
multibyte, 3
set
basic execution, 6
basic source, 12
signed, 63
underscore, 390
in identifier, 17
character-literal, 20
character string, 22
checking
point of error, 307
syntax, 307
chi_squared_distribution<>, 786
constructor, 787
n(), 787
probability density function, 786
cin, 829
<ciso646>, 990
class, 64, 177
abstract, 204
base, 391, 394
cast to incomplete, 98
constructor and abstract, 205
definition, 27
derived, 394
linkage of, 49
linkage specification, 149
pointer to abstract, 205
polymorphic, 200
scope of enumerator, 133
template, 652
unnamed, 125
class-key, 177
class-name, 177
class-specifier, 177
classes
narrow-oriented iostream, 379
wide-oriented iostream, 380
classic
locale, 544
classic_table
ctype<char>, 552
class base, see base class
class derived, see derived class
class local, see local class
class member, see also member
class name, 152
elaborated, 129, 179
point of declaration, 180
scope of, 178
typedef, 125, 180
class nested, see nested class
class object
assignment to, 106
const, 65
member, 181
operations on, 177
sizeof, 92
class object copy, see also copy constructor class object initialization, see also constructor clear
basic_ios, 845
basic_string, 513
unordered associative containers, 603
<climits>, 998
<clocale>, 990
<clocale>, 385
clog, 829
close
basic_filebuf, 897, 905
basic_ifstream, 902
basic_ofstream, 903
messages, 583
codecvt, 552
codecvt_byname, 556

Draft
collate, 569
collate_byname, 570
collating element, 907
combine
locale, 542
comment, 14
/**/, 15
//, 15
compare
basic_string, 524
collate, 570
sub_match, 929
comparison
pointer, 102, 103
pointer to function, 102, 103
undefined pointer, 100, 102
unspecified pointer, 102
void* pointer, 102
compilation
separate, 11
compiler control line, see preprocessing directive
completely defined, 180
<complex>, 739
complex, 741
complex, 743
<complex.h>, 749
component, 378
compound-statement, 110
concatenation
string, 22
undefined string literal, 22
condition, 110
conditions
rules for, 110
conditional-expression
throw-expression in, 105
conj, 748
complex, 746
consistency
linkage, 122
linkage specification, 149
type declaration, 51
const, 65
constructor and, 185, 222
destructor and, 185, 228
linkage of, 49, 122
overloading and, 251
const_local_iterator, 600
unordered associative containers, 600
const_mem_fun1_ref_t, 468
const_mem_fun1_t, 468
const_mem_fun_ref_t, 468
const_mem_fun_t, 468
const_pointer_cast
shared_ptr, 490
constant, 18, 77
enumeration, 131
null pointer, 73
constant-expression, 107
constant-initializer, 180
constructor, 221
address of, 222
array of class objects and, 234
conversion by, 226
copy, 222, 224, 242, 386
exception handling, 354
inheritance of, 222
non-trivial, 222
random number engine requirement, 751
type of, 222
union, 188
unspecified argument to, 96
constructor call
explicit, 222
constructor conversion by, see also user-defined conversion
constructor default, see default constructor
context
non-deduced, 343
control line, see preprocessing directive
convention, 383
conversion
argument, 160
array pointer, 70
array-to-pointer, 70
Boolean, 74
class, 225
derived-to-base, 264
floating point, 72
floating-integral, 73
function-to-pointer, 70
implementation-defined floating point, 73
implementation defined pointer integer, 87
implicit, 69, 225
implicit user-defined, 225
inheritance of user-defined, 228
integer, 72
integer rank, 74
lvalue-to-rvalue, 70, 980
overload resolution and, 261
overload resolution and pointer, 271
pointer, 73
pointer to function, 70
pointer to member, 73
void*, 74
return type, 115
reverse_iterator, 685
signed unsigned integer, 72
standard, 69
static user-defined, 228
type of, 227
user-defined, 225-227
virtual user-defined, 228
conversion operator, see conversion function
conversion rank, 265
conversion-function-id, 227
conversions
qualification, 70
usual arithmetic, 76
conversion explicit type, see casting
conversion function, see also user-defined conversion
copy
class object, 242
copy, 715
basic_string, 519
copy_backward, 715
copyfmt
basic_ios, 844
copysign, 820
copy assignment operator
implicitly-declared, 244
copy constructor
implicitly-declared, 243
cos, 806,820
complex, 747
cosh, 806,820
complex, 747
count, 713
bitset, 655
unordered associative containers, 603
count_if, 713
cout, 829
cref
reference_wrapper, 461
<csetjmp>, 390
cshift
valarray, 803
<cstdarg>, 161
<cstdarg>, 390
<cstddef>, 92, 100, 990, 991
<cstdint>, 408
<cstdio>, 829, 830, 895, 897, 990
<cstdio>, 897
<cstdlib>, 52, 54, 388, 990, 994
<cstring>, 385, 990
<cstring>, 385, 998, 1004
<ctgmath>
<ctime>, 990
<ctime>, 536
ctor-initializer, 234
ctype, 545
ctype<char>
ctype<char>, 550
ctype_byname, 549
cv-qualifier, 65
cv-qualifier, 152
<cwchar>, 386, 390, 990
<cwctype>, 390
DAG
multiple inheritance, 195, 196
non-virtual base class, 196
virtual base class, 195, 196
data
basic_string, 520
vector, 631
array, 610
data member, see member
static, 186
date_order
time_get, 572
deallocation, see delete
dec, 848
dec, 878

Draft
decimal-literal, 18
decimal_point
numpunct, 568
decl-specifier, 120
declaration, 25, 119
extern reference, 174
typedef as type, 124
access, 212
array, 159
asm, 147
bit-field, 189
class member, 180
class name, 26
constant pointer, 155
default argument, 163
definition versus, 25
ellipsis in function, 80, 160
enumerator point of, 31
extern, 26
forward, 123
forward class, 179
function, 26, 160
member, 180
multiple, 51
name, 25
overloaded, 249
overloaded name and friend, 215
parameter, 160
parentheses in, 153, 155
pointer, 155
reference, 157
register, 121
static member, 26
storage class, 121
type, 154
typedef, 26
declaration, 119
declaration-statement, 115
declaration hiding, see name hiding
declaration matching
overloaded function, 252
declarator, 120, 151
meaning of, 154
multidimensional array, 159
declarator, 151
declarator-id, 152
decrement operator
overloaded, 274
default
access control, 207
default-initialization, 168
defaultfloat, 849
default argument
overload resolution and, 261
default constructor, 222
default initializers
overloading and, 251
definition, 26, 377
static member, 187
altermate, 391
class, 177, 180
class name as type, 178
constructor, 167
declaration as, 120
empty class, 177
enumerator point of, 131
function, 166
local class, 191
member function, 182
namespace, 133
nested class, 190
pure virtual function, 204
scope of class, 178
virtual function, 202
delete, 55, 96, 97, 231
operator, 495
destructor and, 97, 229
operator, 391, 412, 413
overloading and, 56
type of, 232
undefined, 97
delete-expression, 96
densitities()
piecewise_constant_distribution<>, 793
deprecated features, 83, 91
<deque>, 606
deque, 611
dereferencing, see also indirection
derivation, see inheritance
derived class, 193
most, 6
overloading and, 252
derived object
most, 6
destructor, 228, 386
default, 228
exception handling, 354
non-trivial, 228
program termination and, 229
pure virtual, 229
union, 188
virtual, 229
destructor call
explicit, 229
implicit, 229
digit, 16
digit-sequence, 22
digraph, 14
direct-abstract-declarator, 152
direct-declarator, 151
direct-new-declarator, 92
directed acyclic graph, see DAG
directive
error, 373
null, 374
pragma, 374
preprocessing, 363
discard()
random number engine requirement, 752
discard_block_engine<>, 763
constructor, 764
generation algorithm, 763
state, 763
template parameters, 764
textual representation, 764
transition algorithm, 763
discrete probability function, 754
bernoulli_distribution, 775
binomial_distribution<>, 776
discrete_distribution<>, 790
geometric_distribution<>, 777
negative_binomial_distribution<>, 778
poisson_distribution<>, 779
uniform_int_distribution<>, 773
discrete_distribution<>, 790
constructor, 791
discrete probability function, 790
discrete_distribution<>, 791
probabilities(), 791
weights, 791
distance, 682
distribution, see random number distribution
div, 820
divides, 462
division
implementation defined, 100
do_always_noconv codecvt, 556
do_close
messages, 584
do_compare
collate, 570
do_curr_symbol
moneypunct, 581
do_date_order
time_get, 572
do_decimal_point
moneypunct, 581
numpunct, 568
do_encoding
codecvt, 555
do_falsename
numpunct, 568
do_frac_digits
moneypunct, 582
do_get
messages, 583
money_get, 577
num_get, 559
do_get_date
time_get, 573
do_get_monthname
time_get, 573
do_get_time
time_get, 573
do_get_weekday
time_get, 573
do_get_year
time_get, 573
do_grouping
moneypunct, 581
numpunct, 568
do_hash
collate, 570

Draft
do_in
codecvt, 554
do_is ctype, 547
do_length codecvt, 556
do_max_length codecvt, 556
do_narrow, 551 ctype, 548
do_neg_format moneypunct, 582
do_negative_sign moneypunct, 581
do_open messages, 583
do_out codecvt, 554
do_pos_format moneypunct, 582
do_positive_sign moneypunct, 581
do_put
money_put, 578
num_put, 563 time_put, 575
do_scan_is ctype, 547
do_scan_not ctype, 548
do_thousands_sep moneypunct, 581 numpunct, 568
do_tolower ctype, 548
do_toupper ctype, 548
do_transform collate, 570
do_truename numpunct, 568
do_unshift codecvt, 555
do_widen, 551 ctype, 548
domain_error, 424
domain_error, 424
dominance
virtual base class, 198
dot operator, see class member access operator
dynamic binding, see virtual function
dynamic_pointer_cast
shared_ptr, 489
eback
basic_streambuf, 854
ECMAScript, 918, 949
egptr
basic_streambuf, 854
egrep, 918
elaborated-type-specifier, 129
elaborated type specifier, see elaborated class name
elision
copy constructor, 246
ellipsis
overload resolution and, 261
else, 110
empty, 681
basic_string, 513
match_results, 936
enable_shared_from_this, 493
~enable_shared_from_this, 494
enable_shared_from_this, 494
operator=, 494
shared_from_this, 494
encoding
multibyte, 23
encoding codecvt, 554
end
basic_string, 512
array, 609
match_results, 937
unordered associative containers, 604
end-of-file, 656
endl, 881
endl, 878
ends, 881
engine, see random number engine
engine adaptor, see random number engine adaptor engines with predefined parameters
knuth_b, 769

Draft
minstd_rand, 768
minstd_rand0, 768
mt19937, 769
ranlux24, 769
ranlux24_base, 769
ranlux48, 769
ranlux48_base, 769
entity, 25
entropy()
random_device, 770
enum, 64
overloading and, 250
type of, 131, 132
enumeration, 131
linkage of, 49
enumeration type
conversion to, 86
static_cast
conversion to, 86
enumerator
definition, 27
value of, 131
enumerator, 131
enum name
typedef, 125
environment
program, 51
eof
basic_ios, 845
epptr
basic_streambuf, 855
eq
char_traits, 520-523
equal, 713
istreambuf_iterator, 699
equal_range, 726
unordered associative containers, 603
equal_to, 462
equality-expression, 103
equivalence
template type, 291
type, 124, 178
equivalent parameter declarations, 250
overloading and, 250
erase
basic_string, 517
deque, 615
list, 619
vector, 631
unordered associative containers, 603
erf, 820
erfc, 820
error_type, 919, 920
escape-sequence, 20
escape character, see backslash
escape sequence
undefined, 21
evaluation
order of argument, 81
unspecified order of, 53, 75
unspecified order of argument, 81
unspecified order of function call, 81
example
*const, 155
static member, 187
array, 159
class definition, 181
const, 155
constant pointer, 155
constructor, 222
constructor and initialization, 233
declaration, 26, 162
declarator, 152
definition, 26
delete, 232
derived class, 193
destructor and delete, 232
ellipsis, 160
enumeration, 132
explicit destructor call, 230
explicit qualification, 197
friend, 179
friend function, 214
function declaration, 161
function definition, 166
linkage consistency, 122
local class, 191
member function, 184, 214
member name access, 213
nested type name, 192
nested class, 190
nested class definition, 190, 219
nested class forward declaration, 191
pointer to member, 158
pure virtual function, 204
scope of delete, 232
scope resolution operator, 197
subscripting, 159
typedef, 124
type name, 152
unnamed parameter, 167
variable parameter list, 160
virtual function, 201, 202
exception
allowing an, 358
arithmetic, 75
bad_function_call, 469
bad_weak_ptr, 483
handling, 351
object, 353
undefined arithmetic, 75
<exception>, 418
exception
exception, 418
exception-declaration, 351
exception-specification, 357
exceptions
basic_ios, 846
exit, 52, 53, 114, 388, 409, 415
exp, 806, 820
complex, 747
exp2, 820
expired
weak_ptr, 492
explanation
subscripting, 159
explicit-specialization, 327
explicit type conversion, see casting
expm1, 820
exponent-part, 22
exponential_distribution<>, 780
constructor, 781
lambda(), 781
probability density function, 780
export, 279
expression, 75
arithmetic constant, 107
constant, 107
order of evaluation of, 8
parenthesized, 77
pointer to member constant, 90
postfix, 78
primary, 77
reference, 75
rvalue reference, 76
unary, 90
expression, 107
expression-list, 79
expression-statement, 109
extended integer type, 63
extended signed integer type, 63
extended unsigned integer type, 63
extern, 121
linkage of, 122
extern "C", 389, 390
extern "C++", 389, 390
extreme_value_distribution<>, 783
a(), 784
b(), 784
constructor, 784
probability density function, 783
fabs
complex, 746
facet
locale, 539
fail
basic_ios, 845
failed
ostreambuf_iterator, 700
failure
ios_base: :failure, 834
falsename
numpunct, 568
fclose, 897
fclose, 897
fdim, 820
FE_ALL_EXCEPT, 739
FE_DFL_ENV, 739
FE_DIVBYZERO, 739
FE_DOWNWARD, 739
FE_INEXACT, 739
FE_INVALID, 739
FE_OVERFLOW, 739

Draft

FE_TONEAREST, 739
FE_TOWARDZERO, 739
FE_UNDERFLOW, 739
FE_UPWARD, 739
feclearexcept, 739
fegetenv, 739
fegetexceptflag, 739
fegetround, 739
feholdexcept, 739
<fenv.h>, 739
fenv_t, 739
feraiseexcept, 739
fesetenv, 739
fesetexceptflag, 739
fesetround, 739
fetestexcept, 739
feupdateenv, 739
fexcept_t, 739
file, 11
source, 11, 389, 391
filebuf, 825, 894
implementation-defined, 900
fill, 717
basic_ios, 844
gslice_array, 812
indirect_array, 815
mask_array, 813
slice_array, 809
fill_n, 717
find, 711
basic_string, 520
unordered associative containers, 603
find_end, 711
find_first_not_of
basic_string, 523
find_first_of, 712
basic_string, 521
find_if, 711
find_last_not_of
basic_string, 523
find_last_of
basic_string, 522
finite state machine, 907
fisher_f_distribution<>, 788
constructor, 789
m(), 789
n(), 789
probability density function, 788
fixed, 848
flags
ios_base, 545, 837
flip
bitset, 654
float_round_style, 404
floating-literal, 21
floating-suffix, 22
floating point type, 64
implementation-defined, 64
floor, 820
flush, 837, 863, 876, 881
basic_ostream, 881
fma, 820
fmax, 820
fmin, 820
fmtflags
ios_base, 834
ios, 882
fopen, 897
fopen, 897
for
scope of declaration in, 114
for_each, 711
formal argument, see parameter
format
match_results, 937, 938
format specifier, 907
format_default, 917, 919
format_first_only, 917, 919, 942
format_no_copy, 917, 919, 942
format_sed, 917, 919
forward_iterator_tag, 681
forwarding call wrapper, 458
fpclassify, 823
fpos, 831, 840, 841
fractional-constant, 21
free, 495
freeze
ostrstream, 1004
strstreambuf, 999
strstream, 1006
free store, see also new, delete
frexp, 820

Draft
friend
virtual and, 202
access specifier and, 216
class access and, 214
inheritance and, 216
local class and, 216
template and, 296
friend function
access and, 214
inline, 216
linkage of, 215
member function and, 214
front_insert_iterator, 690
front_insert_iterator, 691
front_inserter, 691
fseek, 897
<fstream>, 894
fstream, 825
full-expression, 8
function, see also friend function, member function, inline function, virtual function, 161
allocation, 55, 94
comparison, 378
conversion, 227
deallocation, 56, 97, 231
definition, 27
global, 390, 393, 394
handler, 378
linkage specification overloaded, 149
modifier, 379
observer, 379
operator, 271
plain old, 422
pointer to member, 99
replacement, 379
reserved, 380
viable, 253
virtual member, 391, 394
function, 470
~function, 472
bool conversion, 473
function, 471
invocation, 473
operator! $=, 473$
operator(), 473
operator=, 472
operator==, 473
swap, 472, 474
target, 473
target_type, 473
function objects
binders, 464-466
mem_fn, 469
reference_wrapper, 459
return type, 458-459
wrapper, 469-474
function-body, 166
function-definition, 166
function-specifier, 123
function-try-block, 351
<functional>, 453
functions
candidate, 318
function argument, see argument
function call, 80
recursive, 81
undefined, 87
function call operator
overloaded, 274
function overloaded, see overloading
function parameter, see parameter
xmax (), 794
xmin(), 794
generate, 718
generate_canonical<>(), 772, 773
generate_n, 718
generated destructor, see default destructor
generation algorithm
discard_block_engine<>, 763
independent_bits_engine<>, 765
linear_congruential_engine<>, 759
mersenne_twister_engine<>, 760
random number engine, 751
shuffle_order_engine<>, 766
subtract_with_carry_engine<>, 762
xor_combine_engine<>, 767
geometric_distribution<>, 777
constructor, 778
discrete probability function, 777
p(), 778
get
auto_ptr, 482
basic_istream, 867
money_get, 576
num_get, 558
array, 611
pair, 436
reference_wrapper, 460
shared_ptr, 487
tuple, 441
get_date
time_get, 572
get_deleter
shared_ptr, 490
get_money, 884
get_monthname
time_get, 572
get_seeds()
seed_seq, 772
get_temporary_buffer, 479
get_time
time_get, 572
get_weekday
time_get, 572
get_year
time_get, 572
getline
basic_istream, 868, 869
basic_string, 528
getloc
basic_streambuf, 852
ios_base, 838
global
locale, 543
good
basic_ios, 845
goto
initialization and, 115
gptr
basic_streambuf, 854
grammar, 957
regular expression, 949
greater, 462
greater_equal, 462
grep, 918
grouping
numpunct, 568
gslice
gslice, 810
class, 809
gslice_array, 811
gslice_array, 811
handler
exception, 355, 395
incomplete type in exception, 355
handler, 351
handler-seq, 351
has_facet
locale, 544
hash, 474
collate, 570
instantiation restrictions, 474
operator (), 474
hash code, 600
hash function, 599
hash tables, see unordered associative containers
hash_function
unordered associative containers, 602
hasher
unordered associative containers, 600
header
C, 389, 390, 393, 993

Draft
header-name, 15
headers
C++ , 387
hex, 848
hex-quad, 13
hexadecimal-digit, 18
hexadecimal-escape-sequence, 20
hexadecimal-literal, 18
hexfloat, 848
hiding; see name hiding, 34
hypot, 820
id
qualified, 78
id
locale, 541
id-expression, 77
id-expression, 77
identifier, 16, 77, 120
identifier, 16
identifier-nondigit, 16
ifstream, 825, 894
ignore
basic_istream, 869
ilogb, 820
imag, 748
complex, 746
imbue
basic_filebuf, 900
basic_ios, 844
basic_streambuf, 855
ios_base, 838
immolation
self, 329
implementation
freestanding, 388
hosted, 388
implementation-defined, $72,388,391,394,398,410,414$, 417-419, 838, 890, 899, 990
implementation-dependent, 863, 876
implementation-generated, 26
implicitly-declared default constructor, 222, see also default constructor
implicit object argument, 254
implied object parameter, 254
implicit conversion sequences, 254
in
codecvt, 554
in_avail
basic_streambuf, 853
includes, 728
inclusion
conditional, 365
source file, 366
incomplete, 100
increment
bool, 83, 91
increment operator
overloaded, 274
independent_bits_engine<>, 764
generation algorithm, 765
state, 764
template parameters, 765
textual representation, 765
transition algorithm, 764
indirect_array, 814
indirect_array, 814
indirection, 90
inheritance, 193, see also multiple inheritance
Init
ios_base::Init, 837
init
basic_ios, 862, 875
init-declarator, 151
init-declarator-list, 151
initialization, 167
static member, 187
static object, 168
array, 170
array of class objects, 173, 234
auto, 116
auto object, 167
automatic, 115, 116
base class, 234, 235
character array, 173
class member, 169
class object, 170, 233
const, 126, 170
const member, 236
constant, 52
constructor and, 233
copy, 169
default, 168
default constructor and, 233
definition and, 120
direct, 169
dynamic, 52
jump past, 112, 115
local static, 116
member, 234
member object, 235
order of, 52, 194
order of base class, 236
order of member, 236
order of virtual base class, 236
overloaded assignment and, 234
parameter, 80
reference, 157, 174
reference member, 236
run-time, 52
static object, 52,167
struct, 170
union, 173, 188
virtual base class, 237, 244
initialization class object, see also constructor
initializer
base class, 167
constant, 180
member, 167
scope of member, 237
temporary and declarator, 224
initializer, 167
initializer-clause, 167
initializer-list, 167
injected-class-name, 177
inline, 393
inline
linkage of, 49
inline function, 123
inner_product, 817
inplace_merge, 727
input_iterator_tag, 681
insert
basic_string, 516
deque, 615
list, 619
vector, 631
unordered associative containers, 602
insert_iterator, 691
insert_iterator, 692
inserter, 693
instantiation
explicit, 324
point of, 318
template implicit, 320
int
bool promotion to, 72
int16_t, 408
int32_t, 408
int64_t, 408
int8_t, 408
int_fast16_t, 408
int_fast32_t, 408
int_fast64_t, 408
int_fast8_t, 408
int_least16_t, 408
int_least32_t, 408
int_least64_t, 408
int_least8_t, 408
integer-literal, 18
integer-suffix, 19
integer type, 63
integral type, 63
sizeof, 63
internal, 847
interval boundaries
piecewise_constant_distribution<>, 791
intervals()
piecewise_constant_distribution<>, 792
intmax_t, 408
intptr_t, 408
invalid_argument, 424, 652
invalid_argument, 424
invocation
macro, 368
INVOKE, 457
<iomanip>, 860
<ios>, 830
ios, 825,831
ios_base, 831
ios_base, 840
ios_base::failure, 834
ios_base::Init, 836
<iosfwd>, 825

Draft

```
iostate
```

 ios_base, 834
 <iostream>, 828
is
ctype<char>, 551
ctype, 546
is_bind_expression, 464
value, 464
is_open
basic_filebuf, 896, 905
basic_ifstream, 902
basic_ofstream, 903
is_placeholder, 464
value, 465
isalnum, 544
isalpha, 544
iscntrl, 544
isctype
regex_traits, 922
Regular Expression Traits, 909, 950
isdigit, 544
isfinite, 823
isgraph, 544
isgreater, 823
isgreaterequal, 823
isinf, 823
isless, 823
islessequal, 823
islessgreater, 823
islower, 544
isnan, 823
isnormal, 823
<iso646.h>, 990
isprint, 544
ispunct, 544
isspace, 544
<istream>, 859
istream, 825, 859
istream_iterator, 693
operator!=, 695
operator==,695
istreambuf_iterator, 696
istreambuf_iterator, 698
istringstream, 825, 885
istrstream, 1002
istrstream, 1003
isunordered, 823
isupper, 544
isxdigit, 544
iter_swap, 716
iteration-statement, 112, 114
<iterator>, 676
iword
ios_base, 839
Jessie, 226
jump-statement, 114
key_eq
unordered associative containers, 602
key_equal
unordered associative containers, 600
key_type
unordered associative containers, 600
keyword, 957
knuth_b, 769
label, 115
case, $109,111,112$
default, 109, 111, 112
scope of, 32, 109
lambda()
exponential_distribution<>, 781
lattice; see DAG
subobject, 194
layout
access specifier and object, 209
bit-field, 189
class object, 181, 194
layout-compatible type, 62
left, 847
left shift
undefined, 101
left shift operator, 101
length
char_traits, 511, 512, 514-516, 518, 521-527
codecvt, 554
sub_match, 929
valarray, 802
length_error, 425, 505
length_error, 425
less, 462

Draft
less_equal, 463
lexical conventions, 11
lexicographical_compare, 733
lgamma, 820
library
C++ Standard, 377, 391, 392, 394, 395
Standard C, 377, 385, 387, 389, 987, 990, 993
limits
implementation, 3
<limits>, 398
linear_congruential_engine<>, 759
constructor, 760
generation algorithm, 759
state, 759
template parameters, 759
textual representation, 760
transition algorithm, 759
linkage, 25, 48
external, 48, 389, 390
implementation-defined object, 150
internal, 48
linkage-specification, 147
linkage specification, 147
extern, 147
implementation-defined, 148
list
operator, 17, 271
<list>, 606
list, 615
literal, 18, 77
base of integer, 19
character, 20
decimal, 19
double, 22
float, 22
floating point, 22
hexadecimal, 19
char, 21
implementation-defined value of multicharacter, 20
integer, 19
long, 19
long double, 22
multicharacter, 20
narrow-character, 20
octal, 19
type of character, 20
type of floating point, 22
type of integer, 19
unsigned, 19
literal, 18
llrint, 820
llround, 820
load_factor
unordered associative containers, 604
local_iterator, 600
unordered associative containers, 600
locale, 907-909, 918, 923, 928, 949
<locale>, 535
locale
locale, 541
local class
friend, 216
member function in, 183
scope of, 191
local variable
destruction of, 114, 115
lock
weak_ptr, 492
log, 806, 820
complex, 747
$\log 10,806,820$
complex, 747
$\log 1 \mathrm{p}, 820$
log2, 820
logb, 820
logic_error, 423
logic_error, 424
logical_and, 463
logical_not, 463
logical_or, 463
lognormal_distribution<>, 785
constructor, 786
m(), 786
probability density function, 785
s(), 786
long
typedef and, 121
long-long-suffix, 19
long-suffix, 19
longjmp, 422
lookup
argument-dependent, 39
member name, 196
name, 25, 34
template name, 306
lookup_classname
regex_traits, 922
Regular Expression Traits, 909, 950, 951
lookup_collatename
regex_traits, 922
Regular Expression Traits, 909, 950
lower_bound, 725
lowercase, 385
lrint, 820
lround, 820
lvalue, 66, 980
modifiable, 66
lvalue reference, 64, 157
m()
fisher_f_distribution<>, 789
lognormal_distribution<>, 786
macro
function-like, 367
masking, 393
object-like, 367
main(), 51
implementation-defined linkage of, 52
implementation-defined parameters to, 51
parameters to, 51
return from, 52, 53
make_heap, 732
make_pair, 436
make_tuple, 440
malloc, 495, 991
<map>, 634
map, 636
operator<, 639
operator==, 639
mask_array, 812
mask_array, 813
match_any, 917, 919
match_continuous, $917,919,945$
match_default, 917
match_flag_type, 917, 950
match_not_bol, 917, 919
match_not_bow, 917, 919
match_not_eol, 917, 919

```
match_not_eow, 917,919
match_not_null, 917, 919,945
match_prev_avail, 917, 919, 945
match_results, 934, 943,946
    as Sequence, }93
    begin,937
    empty,936
    end,937
    format, 937, }93
    match_results,936
    matched,934
    max_size, }93
    operator=,936
    operator [],937
    prefix,937
    size,936
    str,937
    suffix,937
    swap, }93
matched, }90
max,732
    random_device, 770
    uniform random number generator requirement, 750
    valarray, }80
    xor_combine_engine<>, 768
max_bucket_count
    unordered associative containers, }60
max_element,733
max_length
    codecvt,554
max_load_factor
    unordered associative containers, 604
max_size
    basic_string, 512
    array,609
    match_results,936
mean
    normal_distribution<>, 784
    poisson_distribution<>,779
mean()
    normal_distribution<>, 785
    poisson_distribution<>, 780
    student_t_distribution<>,790
mem-initializer, 235
mem-initializer-id, 234
mem_fn,469
```

Draft
mem_fun, 467, 468
mem_fun1_ref_t, 467
mem_fun1_t, 467
mem_fun_ref, 468, 469
mem_fun_ref_t, 467
mem_fun_t, 467
member, see also base class member
class static, 54
enumerator, 133
static, 186
template and static, 294
static, 90
member-declaration, 180
member-declarator, 180
member-specification, 180
member access operator
overloaded, 274
member function
class, 182
const, 185
constructor and, 223
destructor and, 229
friend, 215
inline, 182
local class, 192
nested class, 219
overload resolution and, 254
static, 186, 187
union, 188
volatile, 185
member function call
undefined, 183
member pointer to; see pointer to member, 64
member use
static, 186
memchr, 532
<memory>, 474
memory model, 6
memory management, see also new, delete
merge, 727
list, 621
mersenne_twister_engine<>, 760
constructor, 761
generation algorithm, 760
state, 760
template parameters, 761
textual representation, 761
transition algorithm, 760
message
diagnostic, 2
messages, 582
messages_byname, 584
min, 732
random_device, 770
uniform random number generator requirement, 750
valarray, 803
min_element, 733
minmax, 733
minmax_element, 733
minstd_rand, 768
minstd_rand0, 768
minus, 461
mismatch, 713
mod, 820
modf, 820
modulus
implementation defined, 100
modulus, 462
money_get, 576
money_put, 578
moneypunct, 579
moneypunct_byname, 582
mt19937, 769
multimap, 640
operator<, 643
operator==, 643
multiple inheritance, 193, 194
virtual and, 202
multiplicative-expression, 99
multiplies, 462
multiset, 647
operator<, 649
operator==, 649
mutable, 121
n()
chi_squared_distribution<>, 787
fisher_f_distribution<>, 789
name, 16, 25, 77
address of cv-qualified, 90
dependent, 312, 317
elaborated enum, 129
global, 33
length of, 16
macro, 368
overloaded function, 249
overloaded member, 181
point of declaration, 30
predefined macro, 374
qualified, 40
reserved, 389
scope of, 29
unqualified, 35
name
locale, 543
type_info, 416
namespace, 387, 994
global, 390
unnamed, 135
namespaces, 133
placeholders, 466
regex_constants, 917
name class, see class name
name hiding, 30, 34, 77, 78, 115
class definition, 178
function, 252
overloading versus, 252
user-defined conversion and, 226
name space
label,
nounitbuf, 847
nouppercase, 847
NTBS, 385, 897, 1003, 1004
static, 385
NTCTS, 379
nth_element, 725
NTMBS, 385, 386
static, 386
NTWCS, 386
static, 386
NULL, 398
num_get, 557
num_put, 562
number
hex, 21
octal, 21
<numeric>, 815
numeric_limits, 399
numeric_limits, 64
numpunct, 567
numpunct_byname, 569
object, 6, 25, 66
complete, 6
definition, 27
delete, 96
static, 53
destructor and placement of, 230
linkage specification, 150
local static, 54
undefined deleted, 57
unnamed, 222
object-expression, 76
object class, see also class object
object lifetime, 57
object temporary, see temporary
object type, 62
oct, 848
octal-digit, 18
octal-escape-sequence, 20
octal-literal, 18
offsetof, 991
ofstream, 825, 894
open
basic_filebuf, 896, 897, 905
basic_ifstream, 902
basic_ofstream, 903, 904
messages, 583
openmode
ios_base, 836
operator, 272, 803, 805
*=, 106
+=, 91, 106
$-=, 106$
/=, 106
operator==()
random number engine requirement, 752
$\%=, 106$
\& =, 106
" =, 106
<<=, 106
>>=, 106
I=, 106
additive, 100
address-of, 90
assignment, 106, 386
bitwise, 103
bitwise AND, 103
bitwise exclusive OR, 104
bitwise inclusive OR, 104
cast, 90, 97, 152
class member access, 81
comma, 106
conditional expression, 104
copy assignment, 242
decrement, 83, 90, 91
division, 99
equality, 103
function call, 79, 272
greater than, 101
greater than or equal to, 101
increment, 83, 90, 91
indirection, 90
inequality, 103
less than, 101
less than or equal to, 101
logical AND, 104
logical negation, 90, 91
logical OR, 104
modulus, 99
multiplication, 99
multiplicative, 99
one's complement, 90, 91
overloaded, 75
pointer to member, 98
pragma, 375
precedence of, 8
relational, 101
scope resolution, 77, 78, 94, 183, 193, 204
side effects and comma, 107
side effects and logical AND, 104
side effects and logical OR, 104
sizeof, 90, 91
subscripting, 79, 272
unary, 90
unary minus, 90,91
unary plus, 90, 91
operator
overloaded, 271
operator, 272
operator delete, 94, see also delete, 97, 231
operator new, see also new, 94
operator!
basic_ios, 845
valarray, 801
operator! $=, 435$
basic_string, 526
complex, 745
istreambuf_iterator, 699
locale, 543
reverse_iterator, 687
type_info, 416
bitset, 655
function, 473
queue, 623
regex_iterator, 944
regex_token_iterator, 948
shared_ptr, 488
stack, 626
sub_match, 929-933
tuple, 442
valarray, 805
operator()
locale, 543
function, 473
hash, 474
reference_wrapper, 461
operator()()
random number engine requirement, 752
random_device, 770
uniform random number generator requirement, 750
operator*
auto_ptr, 482
back_insert_iterator, 690
complex, 745
front_insert_iterator, 691
insert_iterator, 692
istreambuf_iterator, 698
ostreambuf_iterator, 700
reverse_iterator, 685
regex_iterator, 944
regex_token_iterator, 948
shared_ptr, 487
valarray, 803
operator*=
complex, 744
gslice_array, 812
indirect_array, 815
mask_array, 813
slice_array, 808
valarray, 801
operator+
basic_string, 525
complex, 744
reverse_iterator, 686,688
valarray, 801
valarray, 803
operator++
back_insert_iterator, 690
front_insert_iterator, 691
insert_iterator, 692
istreambuf_iterator, 698
ostreambuf_iterator, 700
reverse_iterator, 686
regex_iterator, 945
regex_token_iterator, 948, 949
operator+=
basic_string, 514
complex, 743, 744
gslice_array, 812
indirect_array, 815
mask_array, 813
reverse_iterator, 686
slice_array, 808

Draft
valarray, 801
operator-
complex, 744
reverse_iterator, 687,688
valarray, 801
valarray, 803
operator-=
complex, 743, 744
gslice_array, 812
indirect_array, 815
mask_array, 813
reverse_iterator, 687
slice_array, 808
valarray, 801
operator->
auto_ptr, 482
reverse_iterator, 685
shared_ptr, 488
operator-function-id, 271
operator/
valarray, 803
operator/=
complex, 744
gslice_array, 812
indirect_array, 815
mask_array, 813
slice_array, 808
valarray, 801
operator<
basic_string, 527
pair, 436
reverse_iterator, 687
queue, 623
shared_ptr, 489
stack, 626
sub_match, 929, 930, 932-934
tuple, 442
valarray, 805
weak_ptr, 493
operator<<
basic_ostream, 877, 878
basic_string, 528
complex, 746
bitset, 655, 656
valarray, 803
operator<<
shared_ptr, 489
sub_match, 934
operator<<=
gslice_array, 812
indirect_array, 815
mask_array, 813
slice_array, 808
bitset, 653
valarray, 801
operator<=, 435
basic_string, 527
reverse_iterator, 688
queue, 623
stack, 626
sub_match, 929, 930, 932-934
tuple, 442
valarray, 805
operator=
auto_ptr, 481
back_insert_iterator, 690
bad_alloc, 414
bad_cast, 417
bad_exception, 419
bad_typeid, 417
basic_string, 511
exception, 418
front_insert_iterator, 691
gslice_array, 811
indirect_array, 814
insert_iterator, 692
mask_array, 813
ostreambuf_iterator, 700
reverse_iterator, 685
slice_array, 808
type_info, 416
valarray, 800
basic_regex, 926
enable_shared_from_this, 494
function, 472
match_results, 936
shared_ptr, 487
tuple, 439
weak_ptr, 492
operator==
basic_string, 526
complex, 745
istreambuf_iterator, 699
locale, 543
pair, 436
reverse_iterator, 687
type_info, 416
bitset, 655
function, 473
queue, 623
regex_iterator, 944
regex_token_iterator, 946, 948
shared_ptr, 488
stack, 626
sub_match, 929-933
tuple, 441
valarray, 805
operator==()
random number engine requirement, 752
operator>, 435
basic_string, 527
reverse_iterator, 688
queue, 623
stack, 627
sub_match, 930, 932-934
tuple, 442
valarray, 805
operator>=, 435
basic_string, 528
reverse_iterator, 688
queue, 623
stack, 627
sub_match, 930, 932-934
tuple, 442
valarray, 805
operator>>
basic_istream, 865
basic_string, 528
complex, 745
istream, 864
bitset, 655, 656
valarray, 803
operator>>=
gslice_array, 812
indirect_array, 815
mask_array, 813
slice_array, 808
bitset, 653
valarray, 801
operator []
basic_string, 513
map, 639
match_results, 937
reverse_iterator, 687
unordered_map, 661
valarray, 800, 801
operator\%
valarray, 803
operator\%=
gslice_array, 812
indirect_array, 815
mask_array, 813
slice_array, 808
valarray, 801
operator\&
bitset, 656
valarray, 803
operator\&=
gslice_array, 812
indirect_array, 815
mask_array, 813
slice_array, 808
bitset, 653
valarray, 801
operator\&\&
valarray, 803, 805
operator ${ }^{\wedge}$
bitset, 656
valarray, 803
operator^=
gslice_array, 812
indirect_array, 815
mask_array, 813
slice_array, 808
bitset, 653
valarray, 801
operator--
reverse_iterator, 686
operator<<()
random number engine requirement, 752
operator>>()
random number engine requirement, 752
operator~
valarray, 801

Draft

```
    bitset,654
operator|
    bitset,656
    valarray, }80
operatorl=
    gslice_array,812
    indirect_array,815
    mask_array, }81
    slice_array,808
    bitset,653
    valarray, }80
```

operator left shift, see left shift operator
operator overloading, see also overloaded operator
operator right shift; right shift operator, 101
operator shift, see left shift operator, right shift operator
operator use
scope resolution, 187
optimization of temporary, see elimination of temporary
ordering
function template partial, 304
order of execution
base class constructor, 222
base class destructor, 229
constructor and static objects, 234
constructor and array, 233
destructor, 229
destructor and array, 229
member constructor, 222
member destructor, 229
<ostream>, 859
ostream, 825, 860
ostream_iterator, 695
ostreambuf_iterator, 699
ostreambuf_iterator, 700
ostringstream, 825,885
ostrstream, 1003
ostrstream, 1004
out
codecvt, 553
out_of_range, 425, 505, 652-655
out_of_range, 425
output_iterator_tag, 681
overflow, 75
undefined, 75
overflow
basic_filebuf, 899
basic_streambuf, 858
basic_stringbuf, 888
strstreambuf, 999
overflow_error, 426, 652, 654
overflow_error, 426
overloaded function
address of, 91, 270
overloaded operator, 271
inheritance of, 272
overloading, 161, 178, 249, 303
example of, 249
overloads
floating point, 748
overload resolution contexts, 253
overrider
final, 200
p()
bernoulli_distribution, 776
binomial_distribution<>, 777
geometric_distribution<>, 778
negative_binomial_distribution<>, 779
pair, 435, 439
get, 436
tuple interface to, 435
parameter, 3
reference, 157
scope of, 31
void, 160
parameter-declaration, 160
parameterized type, see template
parameters
macro, 368
random number distribution, 754
parameter list
variable, 80, 160
parameter type list, 161
partial_sort, 724
partial_sort_copy, 724
partial_sum, 817
partition, 722
pbackfail
basic_filebuf, 898
basic_streambuf, 858
basic_stringbuf, 888
strstreambuf, 1000
pbase
basic_streambuf, 855
pbump
basic_streambuf, 855
pcount
ostrstream, 1004
strstreambuf, 999
strstream, 1006
peek
basic_istream, 870
period, 385
phases translation, 11
piecewise_constant_distribution<>, 791
constructor, 792
densitities(), 793
interval boundaries, 791
intervals(), 792
probability density function, 791
weights, 792
placeholders, 466
placement syntax
new, 94
plus, 461
pm-expression, 98
POD-struct, 177
POD class type, 95
POD type, 95
POF, 422
pointer
zero, 73
void*, 65
pointer_to_binary_function, 466
pointer_to_unary_function, 466
pointer to member, 64, 98
Poisson distributions, 779-784
poisson_distribution<>, 779
constructor, 780
discrete probability function, 779
mean, 779
mean(), 780
polar, 748
complex, 746
pop
priority_queue, 625
pop_heap, 731

POSIX

extended regular expressions, 918
regular expressions, 918
postfix ++ and --
overloading, 274
postfix ++ and --, 83
pow, 748, 806, 820
complex, 747
pp-number, 16
pptr
basic_streambuf, 855
precision
ios_base, 545, 837
prefix
L, 20, 22
prefix
match_results, 937
prefix ++ and --
overloading, 274
prefix ++ and dcr, 91
preprocessing, 363
preprocessing-op-or-punc, 18
preprocessing-token, 14
preprocessor
macro, 363
prev_permutation, 734
primary equivalence class, 907
priority_queue, 624
priority_queue, 624
private, 207
probabilities()
discrete_distribution<>, 791
probability density function, 754
cauchy_distribution<>, 787
chi_squared_distribution<>, 786
exponential_distribution<>, 780
extreme_value_distribution<>, 783
fisher_f_distribution<>, 788
gamma_distribution<>, 781
general_pdf_distribution<>, 793
lognormal_distribution<>, 785
normal_distribution<>, 784
piecewise_constant_distribution<>, 791
student_t_distribution<>, 789
uniform_real_distribution<>, 774
weibull_distribution<>, 782
program, 48
ill-formed, 2
well-formed, 4
promotion
floating point, 72
integral, 72
protected, 207
protection, see access control, 394
proxy
istreambuf_iterator, 697
pseudo-destructor-name, 81
pseudo-destructor-name, 79
ptr-operator, 152
ptr_fun, 466
ptrdiff_t, 100
implementation defined type of, 100
pubimbue
basic_streambuf, 852
public, 207
pubseekoff
basic_streambuf, 853
pubseekpos
basic_streambuf, 853
pubsetbuf
basic_streambuf, 853
pubsync
basic_streambuf, 853
punctuators, 17
pure-specifier, 180
pure specifier, 180
push
priority_queue, 625
push_heap, 731
put
basic_ostream, 880
money_put, 578
num_put, 563
time_put, 574
put_money, 884
putback
basic_istream, 870
pword
ios_base, 839
qualification
explicit, 40
qualified-id, 78
<queue>, 607
queue, 622
<random>, 756-759
random number distribution
bernoulli_distribution, 775
binomial_distribution<>, 776
chi_squared_distribution<>, 786
discrete probability function, 754
discrete_distribution<>, 790
exponential_distribution<>, 780
extreme_value_distribution<>, 783
fisher_f_distribution<>, 788
gamma_distribution<>, 781
general_pdf_distribution<>, 793
geometric_distribution<>, 777
lognormal_distribution<>, 785
negative_binomial_distribution<>, 778
normal_distribution<>, 784
parameters, 754
piecewise_constant_distribution<>, 791
poisson_distribution<>, 779
probability density function, 754
requirements, 754-756
student_t_distribution<>, 789
uniform_int_distribution<>, 773
uniform_real_distribution<>, 774
random number distributions
Bernoulli, 775-779
normal, 784-790
Poisson, 779-784
sampling, 790-794
uniform, 773-775
random number engine
generation algorithm, 751
linear_congruential_engine<>, 759
mersenne_twister_engine<>, 760
requirements, 750-753
state, 751
subtract_with_carry_engine<>, 762
successor state, 751
transition algorithm, 751
with predefined parameters, 768-769
random number engine adaptor
discard_block_engine<>, 763
independent_bits_engine<>, 764
requirements, 753-754
shuffle_order_engine<>, 766
with predefined parameters, 768-769
xor_combine_engine<>, 767
random number generation, 749-794
random number generator, see uniform random number generator
random_access_iterator_tag, 681
random_device, 769
constructor, 770
entropy (), 770
implementation leeway, 769
$\max , 770$
min, 770
operator()(), 770
random_shuffle, 721
randomize()
seed_seq, 772
range_error, 426
range_error, 426
ranlux 24,769
ranlux24_base, 769
ranlux48, 769
ranlux48_base, 769
rbegin
basic_string, 512
rdbuf
basic_filebuf, 905
basic_ifstream, 902
basic_ios, 844
basic_istringstream, 891
basic_ofstream, 903
basic_ostringstream, 892
basic_stringstream, 894
istrstream, 1003
ostrstream, 1004
strstream, 1005
rdstate
basic_ios, 845
read
basic_istream, 870
readsome
basic_istream, 870
real, 748
complex, 746
realloc, 495
redefinition
enumerator, 131
typedef, 124
reentrancy, 394
ref
reference_wrapper, 461
reference, 64
assignment to, 106
call by, 80
const, 175
direct binding of, 175
lvalue, 64
null, 158
rvalue, 64
sizeof, 92
reference-compatible, 174
reference-related, 174
reference_wrapper, 459
cref, 461
get, 460
operator(), 461
ref, 461
reference_wrapper, 460
<regex>, 910
regex, 910
regex_constants, 917
error_type, 919, 920
match_flag_type, 917
syntax_option_type, 917
regex_error, 920, 923, 950
regex_iterator, 943
end-of-sequence, 944
increment, 945
operator! $=, 944$
operator*, 944
operator++, 945
operator==, 944
regex_iterator, 944
regex_match, 938-940
regex_replace, 942, 943
regex_search, 940-942
regex_token_iterator, 945
end-of-sequence, 946
operator! $=, 948$
operator*, 948
operator++, 948, 949
operator==, 946, 948
regex_token_iterator, 947
regex_traits, 921
char_class_type, 921
isctype, 922
lookup_classname, 922
lookup_collatename, 922
specializations, 921
transform, 922
transform_primary, 922
translate, 921
translate_nocase, 921
region
declarative, 25, 29
register, 121
register_callback
ios_base, 840
regular expression, 907-951
grammar, 949
matched, 907
requirements, 908
Regular Expression Traits, 949
char_class_type, 908
isctype, 909, 950
lookup_classname, 909, 950, 951
lookup_collatename, 909, 950
requirements, 908, 921
transform, 909, 951
transform_primary, 909, 950, 951
translate, 908, 951
translate_nocase, 908, 951
rehash
unordered associative containers, 604
rel_ops, 434
relational-expression, 101
release
auto_ptr, 482
remainder, 820
remainder operator, see modulus operator
remove, 718
list, 621
remove_copy, 718
remove_copy_if, 718
remove_if, 718
remquo, 820
rend
basic_string, 512
replace, 717
basic_string, 518
replace_copy, 717
replace_copy_if, 717
replace_if, 717
replacement
macro, 367
representation
object, 61
value, 61
requirements, 381
Allocator, 431
Container, 600, 609, 610, 934
not required for unordered associated containers, 599
not supported by unordered associated containers, 604
container, 589
CopyConstructible, 431
EqualityComparable, 431
iterator, 671
LessThanComparable, 431
numeric type, 737
random number distribution, 754-756
random number engine, 750-753
random number engine adaptor, 753-754
Regular Expression Traits, 908, 921
Sequence, 934
Swappable, 431
uniform random number generator, 750
Unordered Associative Container, 600
reraise, 354
rescanning and replacement, 370
reserve
basic_string, 513
vector, 630
reserved identifier, 17
reset
auto_ptr, 482
bitset, 654
shared_ptr, 487
weak_ptr, 492
resetiosflags, 882
resize

Draft
basic_string, 513
deque, 614
list, 619
vector, 630
valarray, 803
resolution
argument matching, see overload
function template overload, 348
overload, 253
overloaded function call resolution, see also argument matching, overload
resolution overloading, see overload
scoping ambiguity, 197
template name, 306
template overload, 304
restriction, 392, 393, 395
static member local class, 187
address of bit-field, 189
anonymous union, 188
bit-field, 189
constructor, 222
copy assignment operator, 245
copy constructor, 244
destructor, 228, 229
enumerator, 131
extern, 122
local class, 192
overloading, 272
pointer to bit-field, 189
reference, 157
register, 121
static, 121
union, 188, 222
restrictions
operator overloading, 272
result_of, 458
type, 458
result_type
entity characterization based on, 749
uniform random number generator requirement, 750
xor_combine_engine<>, 768
rethrow, 354
return, 114,115
constructor and, 115
reference and, 174
return statement, see also return
return type, 161
overloading and, 249
reverse, 720
list, 621
reverse_copy, 720
reverse_iterator, 682
reverse_iterator, 684
rfind
basic_string, 521
right, 848
right shift
implementation defined, 101
right shift operator, 101
rint, 820
rotate, 720
rotate_copy, 721
round, 820
rounding, 73
rule
as-if, 7
one-definition, 27
runtime_error, 425
runtime_error, 425
rvalue, 66
lvalue conversion to, 70
lvalue conversion to, 980
rvalue reference, 64, 157

```
s()
```

lognormal_distribution<>, 786
s-char, 22
s-char-sequence, 22
sampling distributions, 790-794
sbumpc
basic_streambuf, 853
scalar type, 62
scalbln, 820
scalbn, 820
scan_is
ctype<char>, 551
ctype, 547
scan_not
ctype<char>, 551
ctype, 547
scientific, 848
scope, 25, 29
anonymous union at namespace, 188
class, 33
destructor and exit from, 114
exception declaration, 31
function, 32
global, 33
global namespace, 33
iteration-statement, 112
local, 31
macro definition, 370
namespace, 32
overloading and, 252
potential, 29
selection-statement, 110
scope resolution operator, 41
search, 714
seed()
random number engine requirement, 751
seed_seq
constructor, 771
get_seeds(), 772
overview, 771
randomize(), 772
size(), 772
seekdir
ios_base, 836
seekg
basic_istream, 871
seekoff
basic_filebuf, 899
basic_streambuf, 855
basic_stringbuf, 888
strstreambuf, 1000
seekp
basic_ostream, 876
seekpos
basic_filebuf, 900
basic_streambuf, 856
basic_stringbuf, 889
strstreambuf, 1002
selection-statement, 110
semantics
class member, 81
sentry
basic_istream, 862
basic_ostream, 875
sequence
ambiguous conversion, 264
implicit conversion, 263
standard conversion, 69
statement, 109
sequence point, 7
sequence point, 75
sequencing operator, see comma operator
<set>, 635
set, 644
operator<, 646
operator==, 646
bitset, 653
set_difference, 730
set_intersection, 729
set_new_handler, 392, 415
set_symmetric_difference, 730
set_terminate, 392, 420
set_unexpected, 392, 420
set_union, 728
setbase, 882
setbuf
basic_filebuf, 899
basic_streambuf, 855
streambuf, 1002
strstreambuf, 1002
setf
ios_base, 837
setfill, 883
setg
basic_streambuf, 854
setiosflags, 882
setjmp, 390
setlocale, 385
setp
basic_streambuf, 855
setprecision, 883
setstate
basic_ios, 845
setw, 883
sgetc
basic_streambuf, 853
sgetn
basic_streambuf, 853
shared_from_this
enable_shared_from_this, 494

Draft
shared_ptr, 483, 494
~shared_ptr, 486
const_pointer_cast, 490
dynamic_pointer_cast, 489
get, 487
get_deleter, 490
operator!=, 488
operator*, 487
operator->, 488
operator<, 489
operator<<, 489
operator=, 487
operator==, 488
reset, 487
shared_ptr, 485
static_pointer_cast, 489
swap, 487, 489
unique, 488
use_count, 488
shift
valarray, 803
shift-expression, 101
shift operator, see left shift operator, right shift operator short
typedef and, 121
showbase, 846
showmanyc
basic_filebuf, 898
basic_streambuf, 856, 898
showpoint, 846
showpos, 846
shuffle_order_engine<>, 766
constructor, 767
generation algorithm, 766
state, 766
template parameters, 766
textual representation, 767
transition algorithm, 766
side, 7
side effects, 75
sign, 22
signature, 3
signbit, 823
signed
typedef and, 121
signed integer type, 63
simple call wrapper, 458
simple-escape-sequence, 20
template-id, 284
simple-type-specifier, 128
$\sin , 806,820$
complex, 748
sinh, 806,820
complex, 748
size
basic_string, 512
gslice, 810
slice, 807
array, 609, 610
bitset, 655
match_results, 936
size()
seed_seq, 772
size_t, 92
sizeof
empty class, 177
skipws, 847
slice, 806
slice, 807
slice_array, 807
slice_array, 808
smanip
implementation-defined, 882
smart pointers, 483-495
snextc
basic_streambuf, 853
sort, 723
list, 621
sort_heap, 732
space
white, 14
specialization
class template, 285
class template partial, 298
template, 319
template explicit, 326
special member function, see constructor, destructor, inline function, user-defined conversion, virtual function
specification
template argument, 333
specifications

Draft

C++ Standard Library exception, 395
implementation-defined exception, 395
Standard C library exception, 395
specifier
declaration, 120
explicit, 124
friend, 394
friend, 126
function, 123
inline, 123
missing storage class, 122
static, 121
storage class, 121
typedef, 124
virtual, 124
specifier access, see access specifier
specifier type, see type specifier
splice
list, 620
sputbackc
basic_streambuf, 854
sputc
basic_streambuf, 854
sputn
basic_streambuf, 854
sqrt, 806, 820
complex, 748
<sstream>, 885
stable algorithm, 380
stable_partition, 722
stable_sort, 723
<stack>, 607
stack, 625
standard
structure of, 5
standard deviation
normal_distribution<>, 784
standard integer type, 63
standard signed integer type, 63
standard unsigned integer type, 63
start
program, 51, 52
start
gslice, 810
slice, 807
startup
program, 389, 391
state
discard_block_engine<>, 763
independent_bits_engine<>, 764
linear_congruential_engine<>, 759
mersenne_twister_engine<>, 760
object, 379
random number engine, 751
shuffle_order_engine<>, 766
subtract_with_carry_engine<>, 762
xor_combine_engine<>, 767
state
fpos, 840
statement, 109
continue in for, 113
break, 114
compound, 110
continue, 114
declaration, 115
declaration in for, 114
declaration in switch, 112
do, 112, 113
empty, 109
expression, 109
for, 112, 113
goto, 109, 114, 115
if, 110, 111
iteration, 112
jump, 114
labeled, 109
null, 109
selection, 110
switch, 110, 111, 114
while, 112
statement, 109
static, 121
destruction of local, 116
linkage of, 49, 122
overloading and, 249
static_assert, 119, 120
static_pointer_cast
shared_ptr, 489
<stddef.h>, 20, 22
stddev()
normal_distribution<>, 785
<stdexcept>, 423

Draft
<stdint.h>, 409
<stdlib.h>, 994
storage class, 25
storage duration, 54
auto, 55
class member, 57
dynamic, 55, 92
local object, 55
storage management, see new, delete
str
basic_istringstream, 891
basic_ostringstream, 892
basic_stringbuf, 887
basic_stringstream, 894
istrstream, 1003
ostrstream, 1004
strstreambuf, 999
strstream, 1006
match_results, 937
sub_match, 929
strchr, 530
stream
arbitrary-positional, 378
repositional, 379
<streambuf>, 849
streambuf, 825, 849
implementation-defined, 825
streamoff, 831, 841, 994
implementation-defined, 831, 994
streampos
implementation-defined, 994
streamsize, 831
strftime, 575
stride
gslice, 810
slice, 807
string
distinct, 22
null-terminated byte, 385
null-terminated character type, 379
null-terminated multibyte, 385
null-terminated wide-character, 386
sizeof, 23
type of, 22
<string>, 502
string-literal, 22
stringbuf, 825,885
stringstream, 825
string literal, 22
implementation-defined, 22
narrow, 22
type of, 22
undefined change to, 22
wide, 22
strlen, 998
strlen, 998, 1004
strpbrk, 532
strrchr, 532
strstr, 532
strstream, 1004
strstream, 1005
strstreambuf, 996
strstreambuf, 997
struct
class versus, 177
structure, 177
structure tag, see class name
student_t_distribution<>, 789
constructor, 790
mean(), 790
probability density function, 789
sub-expression, 908
sub_match, 928
compare, 929
length, 929
operator! =, 929-933
operator<, 929, 930, 932-934
operator<<, 934
operator<=, 929, 930, 932-934
operator==, 929-933
operator>, 930, 932-934
operator>=, 930, 932-934
str, 929
subobject, 6
subscripting operator
overloaded, 274
subsequence rule
overloading, 267
substr
basic_string, 524
subtract_with_carry_engine<>, 762
carry, 762

Draft
constructor, 762, 763
generation algorithm, 762
state, 762
template parameters, 762
textual representation, 762
transition algorithm, 762
subtraction
implementation defined pointer, 100
subtraction operator, 100
successor state
random number engine, 751
suffix
E, 22
F, 22
f, 22
L, 19, 22
1, 19, 22
U, 19
u, 19
suffix
match_results, 937
sum
valarray, 802
summary
compatibility with ISO C, 977
scope rules, 34
summary, syntax, 957
sungetc
basic_streambuf, 854
swap, 715
basic_string, 520, 528
vector, 630
array, 610
basic_regex, 928
function, 472, 474
match_results, 938
shared_ptr, 487, 489
unordered_map, 661
unordered_multimap, 664
unordered_multiset, 670
unordered_set, 667
weak_ptr, 492, 493
swap_ranges, 715
sync
basic_filebuf, 900
basic_istream, 871
basic_streambuf, 856
sync_with_stdio
ios_base, 838
synonym, 137
type name as, 124
syntax
class member, 81
syntax_option_type, 917
awk, 917, 918
basic, 917, 918
collate, 917, 918, 951
ECMAScript, 917, 918
egrep, 917, 918
extended, 917, 918
grep, 917, 918
icase, 917, 918
nosubs, 917, 918
optimize, 917, 918
t()
binomial_distribution<>, 777
negative_binomial_distribution<>, 779
table
ctype<char>, 552
tan, 806, 820
complex, 748
tanh, 806, 820
complex, 748
target
function, 473
target object, 457
target_type
function, 473
tellg
basic_istream, 871
tellp
basic_ostream, 876
template, 279
definition of, 279
function, 332
member function, 293
primary, 298
template, 279
template-argument, 284
template-argument-list, 284
template-declaration, 279

Draft
template-id, 284
template-name, 284
template-parameter, 280
template-parameter-list, 279
template name
linkage of, 279
temporary, 223
constructor for, 224
destruction of, 224
destructor for, 224
elimination of, 223, 246
implementation-defined generation of, 223
order of destruction of, 224
terminate, 53, 409, 419, 420
terminate(), 360
terminate_handler, 392, 420
termination
program, 52-54
terminology
pointer, 64
test
bitset, 655
textual representation
discard_block_engine<>, 764
independent_bits_engine<>, 765
shuffle_order_engine<>, 767
subtract_with_carry_engine<>, 762
xor_combine_engine<>, 768
tgamma, 820
<tgmath.h>, 819
this, 77
type of, 185
this pointer, see this
thousands_sep
numpunct, 568
throw, 351
throw-expression, 351
throwing
exception, 352
tie, 440
basic_ios, 843
time_get, 571
time_get_byname, 573
time_put, 574
time_put_byname, 575
to_string
bitset, 654
to_ulong
bitset, 654
token, 15, 18
token, 15
tolower, 545
ctype<char>, 551
ctype, 547
toupper, 544
ctype<char>, 551
ctype, 547
traits, 380
transform, 716
collate, 570
regex_traits, 922
Regular Expression Traits, 909, 951
transform_primaryl
Regular Expression Traits, 909, 950, 951
transform_primary
regex_traits, 922
transition algorithm
discard_block_engine<>, 763
independent_bits_engine<>, 764
linear_congruential_engine<>, 759
mersenne_twister_engine<>, 760
random number engine, 751
shuffle_order_engine<>, 766
subtract_with_carry_engine<>, 762
xor_combine_engine<>, 767
translate
regex_traits, 921
Regular Expression Traits, 908, 951
translate_nocase
regex_traits, 921
Regular Expression Traits, 908, 951
translation
separate, 11
translation unit, 11, 48
name and, 25
trigraph, 11
truename
numpunct, 568
trunc, 820
truncation, 73
try, 351
try-block, 351

Draft
<tuple>, 437
tuple, 437, 438, 611
and array, 611
and pair, 435
get, 441
make_tuple, 440
operator! $=, 442$
operator<, 442
operator<=, 442
operator=, 439
operator==,441
operator>, 442
operator>=, 442
tie, 440
tuple, 438, 439
tuple_element, 436, 441, 611
tuple_size, 436, 441, 611
type, 25
arithmetic, 64
array, 64, 161
bitmask, 384
Boolean, 62
char, 62
character, 62
character container, 378
class and, 177
compound, 64
const, 126
destination, 169
double, 64
dynamic, 2
enumerated, 64, 383, 384
enumeration underlying, 132
example of incomplete, 62
extended integer, 63
extended signed integer, 63
extended unsigned integer, 63
float, 64
floating point, 62
function, 64, 160, 161
fundamental, 62
sizeof, 62
incomplete, 27, 31, 61, 70, 79-83, 85, 90-92, 97, 106,
193
int, 63
integral, 62
long, 63
long double, 64
long long, 63
multi-level mixed pointer and pointer to member, 71
multi-level pointer to member, 71
object, 6
POD, 62
pointer, 64
polymorphic, 200
short, 63
signed char, 63
signed integer, 63
standard integer, 63
standard signed integer, 63
standard unsigned integer, 63
static, 3
underlying wchar_t, 63
unsigned, 63
unsigned char, 63
unsigned int, 63
unsigned long, 63
unsigned long long, 63
unsigned short, 63
unsigned integer, 63
void, 64
volatile, 126
wchar_t, 63
type
result_of, 458
type-id, 152
type-id-list, 357
type-name, 128
type-parameter, 280
type-specifier
bool, 128
wchar_t, 128
type-specifier, 126
type_info, 85, 415
type_info, 416
type_info:: name
implementation-defined, 416
typedef
function, 162
typedef
overloading and, 250
typedef-name, 124

Draft
typeid, 85
<typeinfo>, 415
typename, 129
types
implementation-defined, 383
implementation-defined exception, 395
type checking
argument, 80
type conversion, explicit, see casting
type generator, see template
type name, 152
nested, 192
scope of nested, 192
type pun, 88
type specifier
char, 128
class, 177
double, 128
enum, 129
float, 128
int, 128
long, 128
short, 128
struct, 177
union, 177
unsigned, 128
void, 128
volatile, 128
uflow
basic_filebuf, 898
basic_streambuf, 857
uint16_t, 408
uint32_t, 408
uint64_t, 408
uint8_t, 408
uint_fast16_t, 408
uint_fast32_t, 408
uint_fast64_t, 408
uint_fast8_t, 408
uint_least16_t, 408
uint_least32_t, 408
uint_least64_t, 408
uint_least8_t, 408
uintmax_t, 408
uintptr_t, 408
unary function, 459, 469
unary-expression, 90
unary-operator, 90
unary_function, 458, 474
unary_negate, 463
unary operator
interpretation of, 273
overloaded, 273
uncaught_exception, 421
undefined, $73,379,380,390-392,514,799,801-805,810$, 815, 841
undefined behavior, 697
underflow
basic_filebuf, 898
basic_streambuf, 856
basic_stringbuf, 888
strstreambuf, 1000
underflow_error
underflow_error, 426
unexpected, 420
unexpected(), 360
unexpected_handler, 391, 419
unget
basic_istream, 871
uniform distributions, 773-775
uniform random number generator
requirements, 750
uniform_int_distribution<>, 773
a(), 774
b(), 774
constructor, 774
discrete probability function, 773
uniform_real_distribution<>, 774
a(), 775
b(), 775
constructor, 775
probability density function, 774
uninitialized_copy, 479
uninitialized_fill, 480
uninitialized_fill_n, 480
union, 64, 188
class versus, 177
anonymous, 188
global anonymous, 188
unique, 719
list, 621

Draft
shared_ptr, 488
unique_copy, 719
unit
instantiation, 12
translation, 389, 390
unitbuf, 847
universal-character-name, 13
unordered associative containers, 599-670
begin, 604
bucket, 604
bucket_count, 603
bucket_size, 604
clear, 603
complexity, 599
const_local_iterator, 600
count, 603
end, 604
equal_range, 603
equality function, 599
equivalent keys, 599, 600, 661, 667
erase, 603
exception safety, 605
find, 603
hash function, 599
hash_function, 602
hasher, 600
insert, 602
iterator invalidation, 604, 605
iterators, 604
key_eq, 602
key_equal, 600
key_type, 600
lack of comparison operators, 599, 604
load_factor, 604
local_iterator, 600
max_bucket_count, 603
max_load_factor, 604
rehash, 604
requirements, 599, 600, 604, 605
unique keys, 599, 600, 658, 664
<unordered_map>, 657
unordered_map, 657, 658
element access, 661
operator [], 661
swap, 661
unique keys, 658
unordered_map, 660
unordered_multimap, 657, 661
equivalent keys, 661
swap, 664
unordered_multimap, 663
unordered_multiset, 657, 667
equivalent keys, 667
swap, 670
unordered_multiset, 669
<unordered_set>, 657
unordered_set, 657, 664
swap, 667
unique keys, 664
unordered_set, 666
unqualified-id, 77
unsetf
ios_base, 837
unshift
codecvt, 553
unsigned
typedef and, 121
unsigned-suffix, 19
unsigned integer type, 63
unspecified, 411, 412, 416, 509, 724, 888, 998-1000
unspecified behavior, 803
unwinding
stack, 355
upper_bound, 726
uppercase, 385, 390
uppercase, 847
use_count
shared_ptr, 488
weak_ptr, 492
use_facet
locale, 544
using-declaration, 137
using-directive, 144
<utility>, 434
va_end, 390
va_list, 390
<valarray>, 794
valarray, 797, 811
valarray, 799
value
call by, 80

Draft
null member pointer, 73
null pointer, 73
undefined unrepresentable integral, 73
value
is_bind_expression, 464
is_placeholder, 465
value-initialization, 168
variable
indeterminate uninitialized, 168
<vector>, 608
vector, 627
operator<, 629
operator==, 629
vector, 629
vector<bool>, 631
operator<, 634
operator==, 634
virtual base class, 195
virtual function, 200
pure, 204, 205
virtual function call, 204
constructor and, 240
destructor and, 240
undefined pure, 205
visibility, 34
void*
type, 65
void\&, 157
volatile, 65
constructor and, 185, 222
destructor and, 185, 228
implementation-defined, 128
overloading and, 251
wcerr, 830
wchar_t, 20, 22, 386, 530
implementation-defined, 63
wcin, 829
wclog, 830
wcout, 829
wcschr, 532
wcspbrk, 532
wcsrchr, 532
wcsstr, 532
weak result type, 457
weak_ptr, 486, 490
~weak_ptr, 492
expired, 492
lock, 492
operator<, 493
operator=,492
reset, 492
swap, 492, 493
use_count, 492
weak_ptr, 491
weibull_distribution<>, 782
a(), 783
b(), 783
constructor, 783
probability density function, 782
weibull_distribution<>, 782
weights
discrete_distribution<>, 791
piecewise_constant_distribution<>, 792
wfilebuf, 825, 894
wfstream, 825
what
bad_alloc, 414
bad_cast, 417
bad_exception, 419
bad_typeid, 417
exception, 418
ios_base::failure, 834
bad_weak_ptr, 483
white space, 15
wide-character, 20
widen
basic_ios, 844
ctype<char>, 551
ctype, 547
width
ios_base, 545, 837
wifstream, 825,894
wios, 831
wistream, 825,859
wistringstream, 825, 885
wmemchr, 533
wofstream, 825, 894
wostream, 825, 860
wostringstream, 825,885
wregex, 910
write

Draft

```
    basic_ostream, }88
ws, }87
ws, }86
wstreambuf, 825, }84
wstringbuf, 825,885
wstringstream, }82
X(X&), see copy constructor
xalloc
    ios_base, 839
xmax()
        general_pdf_distribution<>, 794
xmin()
        general_pdf_distribution<>, 794
xor_combine_engine<>, 767
    generation algorithm,767
    max,768
    result_type, 768
    state,767
    template parameters, }76
    textual representation,768
    transition algorithm,767
xsgetn
    basic_streambuf, }85
xsputn
    basic_streambuf, }85
zero
    undefined division by, 75,99
    undefined modulus, }7
zero-initialization, }16
```


[^0]: ${ }^{1)}$ With the qualifications noted in clauses 17 through 27, and in C.2, the Standard C library is a subset of the Standard C++ library.

[^1]: ${ }^{2)}$ Function signatures do not include return type, because that does not participate in overload resolution.

[^2]: 3) "Correct execution" can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.
[^3]: ${ }^{4)}$ This documentation also defines implementation-defined behavior; see 1.9.

[^4]: ${ }^{5)}$ The acronym POD stands for "plain old data."

[^5]: ${ }^{6)}$ This provision is sometimes called the "as-if" rule, because an implementation is free to disregard any requirement of this International Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the observable behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can deduce that its value is not used and that no side effects affecting the observable behavior of the program are produced.
 ${ }^{7}$) This documentation also includes conditonally-supported constructs and locale-specific behavior. See 1.4.
 ${ }^{8)}$ An implementation can offer additional library I/O functions as an extension. Implementations that do so should treat calls to those functions as "observable behavior" as well.
 ${ }^{9)}$ Note that some aspects of sequencing in the abstract machine are unspecified; the preceding restriction upon side effects applies to that particular execution sequence in which the actual code is generated. Also note that when a call to a library I/O function returns, the side effect is considered complete, even though some external actions implied by the call (such as the I/O itself) may not have completed yet.
 ${ }^{10)}$ In other words, function executions do not "interleave" with each other.

[^6]: ${ }^{11)}$ Overloaded operators are never assumed to be associative or commutative.

[^7]: ${ }^{12)}$ As specified in 12.2, after the "end-of-full-expression" sequence point, a sequence of zero or more invocations of destructor functions for temporary objects takes place, usually in reverse order of the construction of each temporary object.
 ${ }^{13)}$ The sequence point at the function return is not explicitly specified in ISO C, and can be considered redundant with sequence points at fullexpressions, but the extra clarity is important in $\mathrm{C}++$. In $\mathrm{C}++$, there are more ways in which a called function can terminate its execution, such as the throw of an exception.

[^8]: ${ }^{14)}$ The operators indicated in this paragraph are the built-in operators, as described in clause 5 . When one of these operators is overloaded (clause 13) in a valid context, thus designating a user-defined operator function, the expression designates a function invocation, and the operands form an argument list, without an implied sequence point between them.

[^9]: ${ }^{15)}$ Implementations must behave as if these separate phases occur, although in practice different phases might be folded together.
 ${ }^{16)}$ A partial preprocessing token would arise from a source file ending in the first portion of a multi-character token that requires a terminating sequence of characters, such as a header-name that is missing the closing " or $>$. A partial comment would arise from a source file ending with an unclosed / * comment.

[^10]: ${ }^{17)}$ An implementation need not convert all non-corresponding source characters to the same execution character.
 ${ }^{18)}$ The glyphs for the members of the basic source character set are intended to identify characters from the subset of ISO/IEC 10646 which corresponds to the ASCII character set. However, because the mapping from source file characters to the source character set (described in translation phase 1) is specified as implementation-defined, an implementation is required to document how the basic source characters are represented in source files.

[^11]: ${ }^{19)}$ These include "digraphs" and additional reserved words. The term "digraph" (token consisting of two characters) is not perfectly descriptive, since one of the alternative preprocessing-tokens is $\% \%$ and of course several primary tokens contain two characters. Nonetheless, those alternative tokens that aren't lexical keywords are colloquially known as "digraphs".

[^12]: ${ }^{20)}$ Thus the "stringized" values (16.3.2) of [and $<$ will be different, maintaining the source spelling, but the tokens can otherwise be freely interchanged.
 ${ }^{21)}$ Literals include strings and character and numeric literals.

[^13]: ${ }^{22)}$ Thus, sequences of characters that resemble escape sequences cause undefined behavior.

[^14]: ${ }^{23)}$ On systems in which linkers cannot accept extended characters, an encoding of the universal-character-name may be used in forming valid external identifiers. For example, some otherwise unused character or sequence of characters may be used to encode the $\backslash u$ in a universal-charactername. Extended characters may produce a long external identifier, but $\mathrm{C}++$ does not place a translation limit on significant characters for external identifiers. In C++, upper- and lower-case letters are considered different for all identifiers, including external identifiers.

[^15]: ${ }^{24)}$ The term "literal" generally designates, in this International Standard, those tokens that are called "constants" in ISO C.

[^16]: ${ }^{26)}$ They are intended for character sets where a character does not fit into a single byte.

[^17]: "\xA" "B"

[^18]: ${ }^{28)}$ An implementation is not required to call allocation and deallocation functions from constructors or destructors; however, this is a permissible implementation technique.

[^19]: ${ }^{29)}$ 8.3.6 describes how default argument names are looked up.

[^20]: ${ }^{30)}$ This refers to unqualified names that occur, for instance, in a type or default argument expression in the parameter-declaration-clause or used in the function body.

[^21]: ${ }^{31)}$ This refers to unqualified names following the class name; such a name may be used in the base-clause or may be used in the class definition.
 ${ }^{32)}$ This lookup applies whether the definition of X is nested within Y 's definition or whether X 's definition appears in a namespace scope enclosing Y 's definition (9.7).

[^22]: ${ }^{33)}$ That is, an unqualified name that occurs, for instance, in a type or default argument expression in the parameter-declaration-clause, in the function body, or in an expression of a mem-initializer in a constructor definition.
 ${ }^{34)}$ This lookup applies whether the member function is defined within the definition of class X or whether the member function is defined in a namespace scope enclosing X's definition.

[^23]: ${ }^{35)}$ A class template always has external linkage, and the requirements of 14.3 .1 and 14.3.2 ensure that the template arguments will also have appropriate linkage.

[^24]: ${ }^{36)}$ An object defined in namespace scope having initialization with side-effects must be initialized even if it is not used (3.7.1).

[^25]: ${ }^{37)}$ The intent is to have oper at or new() implementable by calling st d : $\mathrm{mal\mid l} \mathrm{OC}()$ or std : : calloc(), so the rules are substantially the same. $\mathrm{C}++$ differs from C in requiring a zero request to return a non-null pointer.

[^26]: ${ }^{38)}$ On some implementations, it causes a system-generated runtime fault.

[^27]: ${ }^{39)}$ For example, before the construction of a global object of non-POD class type (12.7).

[^28]: ${ }^{40)}$ that is, an object for which a destructor will be called implicitly—either either upon exit from the block for an object with automatic storage duration or upon exit from the program for an object with static storage duration.

[^29]: ${ }^{41)}$ By using, for example, the library functions (17.4.1.2) st d: : nen๙py or st d: : nenm@ve.
 ${ }^{42)}$ The intent is that the memory model of C++ is compatible with that of ISO/IEC 9899 Programming Language C.
 ${ }^{43)}$ The size and layout of an instance of an incompletely-defined object type is unknown.

[^30]: ${ }^{44)}$ that is, large enough to contain any value in the range of I NT_M Nand INT_MAX, as defined in the header $\langle<l$ i mits \rangle.
 ${ }^{45)}$ See 7.1.5.2 regarding the correspondence between types and the sequences of type-specifiers that designate them.
 ${ }^{46)}$ This implies that unsigned arithmetic does not overflow because a result that cannot be represented by the resulting unsigned integer type is reduced modulo the number that is one greater than the largest value that can be represented by the resulting unsigned integer type.
 ${ }^{47)}$ Using a bool value in ways described by this International Standard as "undefined," such as by examining the value of an uninitialized automatic variable, might cause it to behave as if it is neither true nor f al se.
 ${ }^{48)}$ Therefore, enumerations (7.2) are not integral; however, enumerations can be promoted to integral types as specified in 4.5 .
 ${ }^{49)}$ A positional representation for integers that uses the binary digits 0 and 1 , in which the values represented by successive bits are additive, begin with 1 , and are multiplied by successive integral power of 2, except perhaps for the bit with the highest position. (Adapted from the American National

[^31]: Dictionary for Information Processing Systems.)
 ${ }^{50)}$ Static class members are objects or functions, and pointers to them are ordinary pointers to objects or functions.

[^32]: ${ }^{51)}$ The same representation and alignment requirements are meant to imply interchangeability as arguments to functions, return values from functions, and members of unions.

[^33]: ${ }^{52)}$ Expressions such as invocations of constructors and of functions that return a class type refer to objects, and the implementation can invoke a member function upon such objects, but the expressions are not lvalues.

[^34]: ${ }^{53)}$ The intent of this list is to specify those circumstances in which an object may or may not be aliased.

[^35]: ${ }^{54)}$ In C++ class rvalues can have cv-qualified types (because they are objects). This differs from ISO C, in which non-lvalues never have cv-qualified types.
 ${ }^{55)}$ This conversion never applies to non-static member functions because an lvalue that refers to a non-static member function cannot be obtained.

[^36]: ${ }^{56)}$ These rules ensure that const-safety is preserved by the conversion.

[^37]: ${ }^{57)}$ The rule for conversion of pointers to members (from pointer to member of base to pointer to member of derived) appears inverted compared to the rule for pointers to objects (from pointer to derived to pointer to base) (4.10, clause 10). This inversion is necessary to ensure type safety. Note that a pointer to member is not a pointer to object or a pointer to function and the rules for conversions of such pointers do not apply to pointers to members. In particular, a pointer to member cannot be converted to a voi d^{*}.

[^38]: ${ }^{58)}$ The precedence of operators is not directly specified, but it can be derived from the syntax.

[^39]: ${ }^{59)}$ As a consequence, operands of type bool, wchar_t, or an enumerated type are converted to some integral type.

[^40]: ${ }^{60)}$ The cast and assignment operators must still perform their specific conversions as described in 5.4, 5.2.9 and 5.17.

[^41]: ${ }^{61)}$ This is true even if the subscript operator is used in the following common idiom: $\delta \mathbb{X}[0]$.
 ${ }^{62)}$ A static member function (9.4) is an ordinary function.

[^42]: ${ }^{63)}$ This evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the $i d$-expression denotes a static member.

[^43]: ${ }^{64)}$ Note that if E1 has the type "pointer to class X" then ($*(E 1)$) is an lvalue.

[^44]: ${ }^{65)}$ The most derived object (1.8) pointed or referred to by V can contain other B objects as base classes, but these are ignored.

[^45]: ${ }^{66)}$ The recommended name for such a class is ext ended_type i nf o.
 ${ }^{67)}$ If p is an expression of pointer type, then $\left.{ }^{*} p,\left({ }^{*} p\right),{ }^{*}(p),\left({ }^{*} p\right)\right), *((p))$, and so on all meet this requirement.

[^46]: ${ }^{68)}$ Function types (including those used in pointer to member function types) are never cv-qualified; see 8.3.5.

[^47]: ${ }^{69)}$ The types may have different cv-qualifiers, subject to the overall restriction that a rei nt er pr et cast cannot cast away constness.
 ${ }^{70)}$ T1 and T 2 may have different cv-qualifiers, subject to the overall restriction that a rei nt er pr et_cast cannot cast away constness.
 ${ }^{71)}$ This is sometimes referred to as a type pun.

[^48]: ${ }^{72)}$ const_cast is not limited to conversions that cast away a const-qualifier.

[^49]: ${ }^{73)}$ si zeof (bool) is not required to be 1 .
 ${ }^{74)}$ The actual size of a base class subobject may be less than the result of applying si zeof to the subobject, due to virtual base classes and less strict padding requirements on base class subobjects.

[^50]: ${ }^{75)}$ This may include evaluating a new-initializer and/or calling a constructor.

[^51]: ${ }^{76)}$ For non-zero-length arrays, this is the same as a pointer to the first element of the array created by that new-expression. Zero-length arrays do not have a first element.

[^52]: ${ }^{77)}$ This implies that an object cannot be deleted using a pointer of type voi d^{*} because there are no objects of type voi d.

[^53]: ${ }^{78)}$ According to work underway toward the revision of ISO C, the preferred algorithm for integer division follows the rules defined in the ISO Fortran standard, ISO/IEC 1539:1991, in which the quotient is always rounded toward zero.

[^54]: ${ }^{79)}$ Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme the integral value of the expression added to or subtracted from the converted pointer is first multiplied by the size of the object originally pointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of the difference between the character pointers is similarly divided by the size of the object originally pointed to.

 When viewed in this way, an implementation need only provide one extra byte (which might overlap another object in the program) just after the end of the object in order to satisfy the "one past the last element" requirements.

[^55]: ${ }^{80)}$ In other words, the el se is associated with the nearest un-elsed if.

[^56]: ${ }^{81)}$ The transfer from the condition of a switch statement to a case label is considered a jump in this respect.

[^57]: ${ }^{82)}$ The "implicit int" rule of C is no longer supported.

[^58]: ${ }^{83)}$ The inline keyword has no effect on the linkage of a function.

[^59]: ${ }^{84)}$ There is no special provision for a decl-specifier-seq that lacks a type-specifier or that has a type-specifier that only specifies cv-qualifiers. The "implicit int" rule of C is no longer supported.

[^60]: ${ }^{85)}$ Although entities in an unnamed namespace might have external linkage, they are effectively qualified by a name unique to their translation unit and therefore can never be seen from any other translation unit.

[^61]: ${ }^{86)}$ this implies that the name of the class or function is unqualified.

[^62]: ${ }^{87)}$ During name lookup in a class hierarchy, some ambiguities may be resolved by considering whether one member hides the other along some paths (10.2). There is no such disambiguation when considering the set of names found as a result of following using-directives.

[^63]: ${ }^{88)}$ A declaration with several declarators is usually equivalent to the corresponding sequence of declarations each with a single declarator. That is
 T D1, D2, ... Dn;
 is usually equvalent to
 T D1; T D2; ... T Dn;
 where T is a decl-specifier-seq and each D is an init-declarator. The exception occurs when a name introduced by one of the declarators hides a type name used by the dcl-specifiers, so that when the same dcl-specifiers are used in a subsequent declaration, they do not have the same meaning, as in struct $\mathrm{S}\{\ldots \mathrm{F}$;
 S S, T; // declare two instances of struct S
 which is not equivalent to
 struct S \{ ... \};
 S S;
 S T; // error

[^64]: ${ }^{89)}$ As indicated by the syntax, cv-qualifiers are a significant component in function return types.

[^65]: ${ }^{90)}$ This excludes parameters of type "ptr-arr-seq T2" where T2 is "pointer to array of unknown bound of T" and where ptr-arr-seq means any sequence of "pointer to" and "array of" derived declarator types. This exclusion applies to the parameters of the function, and if a parameter is a pointer to function or pointer to member function then to its parameters also, etc.

[^66]: ${ }^{91)}$ This means that default arguments cannot appear, for example, in declarations of pointers to functions, references to functions, or typedef declarations.

[^67]: ${ }^{92)}$ As specified in 4.10 , converting an integral constant expression whose value is 0 to a pointer type results in a null pointer value.
 ${ }^{93)}$ This member must not be st at i c, by virtue of the requirements in 9.5 .
 ${ }^{94)}$ Value-initialization for such a class object may be implemented by zero-initializing the object and then calling the default constructor.

[^68]: ${ }^{95)}$ This does not apply to aggregate objects with automatic storage duration initialized with an incomplete brace-enclosed initializer-list; see 8.5.1.

[^69]: ${ }^{96)}$ The syntax provides for empty initializer-lists, but nonetheless $\mathrm{C}++$ does not have zero length arrays.

[^70]: ${ }^{97)}$ This requires a conversion function (12.3.2) returning a reference type.

[^71]: ${ }^{98)}$ Base class subobjects are not so constrained.

[^72]: ${ }^{99)}$ See, for example, <cstri ng>(21.4).

[^73]: ${ }^{100)}$ A function with the same name but a different parameter list (clause 13) as a virtual function is not necessarily virtual and does not override. The use of the vi rt ual specifier in the declaration of an overriding function is legal but redundant (has empty semantics). Access control (clause 11) is not considered in determining overriding.

[^74]: ${ }^{101)}$ Multi-level pointers to classes or references to multi-level pointers to classes are not allowed.

[^75]: ${ }^{102)}$ Access permissions are thus transitive and cumulative to nested and local classes.

[^76]: ${ }^{103)}$ As specified previously in clause 11 , private members of a base class remain inaccessible even to derived classes unless fri end declarations within the base class definition are used to grant access explicitly.

[^77]: ${ }^{104)}$ Access declarations are deprecated; member using-declarations (7.3.3) provide a better means of doing the same things. In earlier versions of the $\mathrm{C}++$ language, access declarations were more limited; they were generalized and made equivalent to using-declarations in the interest of simplicity. Programmers are encouraged to use using-declarations, rather than the new capabilities of access declarations, in new code.

[^78]: ${ }^{105)}$ This additional check does not apply to other members, e.g. static data members or enumerator member constants.

[^79]: ${ }^{106)}$ Even though never directly called to perform a conversion, such conversion functions can be declared and can potentially be reached through a call to a virtual conversion function in a base class

[^80]: ${ }^{107)}$ A similar provision is not needed for the array version of oper at or del et e because 5.3 .5 requires that in this situation, the static type of the delete-expression's operand be the same as its dynamic type.

[^81]: ${ }^{108)}$ If the static type in the delete-expression is different from the dynamic type and the destructor is not virtual the size might be incorrect, but that case is already undefined; see 5.3.5.

[^82]: ${ }^{109)}$ Because a template constructor or a constructor whose first parameter is an rvalue reference is never a copy constructor, the presence of such a constructor does not suppress the implicit declaration of a copy constructor. Such constructors participate in overload resolution with other constructors, including copy constructors, and, if selected, will be used to copy an object.

[^83]: ${ }^{110)}$ This implies that the reference parameter of the implicitly-declared copy constructor cannot bind to a vol at i I e lvalue; see C.1.8.

[^84]: ${ }^{111)}$ See 8.5 for more details on direct and copy initialization.
 ${ }^{112)}$ Because a template assignment operator or an assignment operator taking an rvalue reference parameter is never a copy assignment operator, the presence of such an assignment operator does not suppress the implicit declaration of a copy assignment operator. Such assignment operators participate in overload resolution with other assignment operators, including copy assignment operators, and, if selected, will be used to assign an object.

[^85]: ${ }^{113)}$ This implies that the reference parameter of the implicitly-declared copy assignment operator cannot bind to a vol at i I e lvalue; see C.1.8.

[^86]: ${ }^{114)}$ Because only one object is destroyed instead of two, and one copy constructor is not executed, there is still one object destroyed for each one constructed.

[^87]: ${ }^{115)}$ When a parameter type includes a function type, such as in the case of a parameter type that is a pointer to function, the const and vol atile type-specifiers at the outermost level of the parameter type specifications for the inner function type are also ignored.

[^88]: ${ }^{116)}$ The process of argument deduction fully determines the parameter types of the function template specializations, i.e., the parameters of function template specializations contain no template parameter types. Therefore the function template specializations can be treated as normal (non-template) functions for the remainder of overload resolution.
 ${ }^{117)}$ When F is a non-static member function, a reference of the form $\delta A:: f$ is a pointer-to-member, which cannot be used with the function-call syntax, and a reference of the form $\& F$ is an invalid use of the " $\&$ " operator on a non-static member function.

[^89]: ${ }^{118)}$ Note that cv-qualifiers on the type of objects are significant in overload resolution for both lvalue and class rvalue objects.
 ${ }^{119)}$ An implied object argument must be contrived to correspond to the implicit object parameter attributed to member functions during overload resolution. It is not used in the call to the selected function. Since the member functions all have the same implicit object parameter, the contrived object will not be the cause to select or reject a function.

[^90]: ${ }^{120)}$ Note that this construction can yield candidate call functions that cannot be differentiated one from the other by overload resolution because they have identical declarations or differ only in their return type. The call will be ambiguous if overload resolution cannot select a match to the call that is uniquely better than such undifferentiable functions.

[^91]: ${ }^{121)}$ If the set of candidate functions is empty, overload resolution is unsuccessful.
 ${ }^{122)}$ If the value returned by the oper at or $->$ function has class type, this may result in selecting and calling another oper at or $->$ function. The process repeats until an oper at or $->$ function returns a value of non-class type.

[^92]: ${ }^{123)}$ According to 8.3.6, parameters following the $(m+1)$-st parameter must also have default arguments.
 ${ }^{124)}$ If a function is a static member function, this definition means that the first argument, the implied object parameter, has no effect in the determination of whether the function is better or worse than any other function.

[^93]: ${ }^{125)}$ The algorithm for selecting the best viable function is linear in the number of viable functions. Run a simple tournament to find a function What is not worse than any opponent it faced. Although another function F that Wdid not face might be at least as good as WF cannot be the best function because at some point in the tournament F encountered another function G such that F was not better than G Hence, Wis either the best function or there is no best function. So, make a second pass over the viable functions to verify that Wis better than all other functions.

[^94]: ${ }^{126)}$ The ambiguous conversion sequence is ranked with user-defined conversion sequences because multiple conversion sequences for an argument can exist only if they involve different user-defined conversions. The ambiguous conversion sequence is indistinguishable from any other user-defined conversion sequence because it represents at least two user-defined conversion sequences, each with a different user-defined conversion, and any other user-defined conversion sequence must be indistinguishable from at least one of them.

 This rule prevents a function from becoming non-viable because of an ambiguous conversion sequence for one of its parameters. Consider this example,
 cl ass B;
 cl ass A \{ A (B\&) ; \};
 class B \{ operat or A (); \};
 cl ass C \{ C (B\&); \};
 void $f(A)\}$
 voi df(C) $\}$
 B b;
 f(b);
 // ambiguous because $\mathrm{b} \rightarrow \mathrm{C}$ via constructor and
 $/ / \mathrm{b} \rightarrow$ Avia constructor or conversion function.

[^95]: ${ }^{127)}$ Calling oper at or + explicitly, as in expressions like a. oper at or $++(2)$, has no special properties: The argument to oper at or ++ is 2 .

[^96]: ${ }^{128)}$ Since template template-parameters and template template-arguments are treated as types for descriptive purposes, the terms non-type parameter and non-type argument are used to refer to non-type, non-template parameters and arguments.

[^97]: ${ }^{129)} \mathrm{A}>$ that encloses the type-id of a dynamic_cast, stat i c_cast, rei nterpret_cast or const_cast, or which encloses the templatearguments of a subsequent template-id, is considered nested for the purpose of this description

[^98]: ${ }^{130)}$ There is no such ambiguity in a default template-argument because the form of the template-parameter determines the allowable forms of the template-argument.

[^99]: ${ }^{131)}$ There is no way in which they could be used.

[^100]: ${ }^{132)}$ That is, declarations of non-template functions do not merely guide overload resolution of function template specializations with the same name. If such a non-template function is used in a program, it must be defined; it will not be implicitly instantiated using the function template definition.

[^101]: ${ }^{133)}$ Friend declarations do not introduce new names into any scope, either when the template is declared or when it is instantiated.

[^102]: ${ }^{135)}$ The parameters of function template specializations contain no template parameter types. The set of conversions allowed on deduced arguments is limited, because the argument deduction process produces function templates with parameters that either match the call arguments exactly or differ only in ways that can be bridged by the allowed limited conversions. Non-deduced arguments allow the full range of conversions. Note also that 13.3.3 specifies that a non-template function will be given preference over a template specialization if the two functions are otherwise equally good candidates for an overload match.

[^103]: ${ }^{136)}$ For example, if the object being thrown is of a class with a copy constructor, st d: : ter min nat e() will be called if that copy constructor exits with an exception during a throw

[^104]: ${ }^{137)}$ Thus, preprocessing directives are commonly called "lines." These "lines" have no other syntactic significance, as all white space is equivalent except in certain situations during preprocessing (see the \#character string literal creation operator in 16.3.2, for example).

[^105]: ${ }^{138)}$ Because the controlling constant expression is evaluated during translation phase 4, all identifiers either are or are not macro names - there simply are no keywords, enumeration constants, and so on.
 ${ }^{139)}$ An alternative token (2.5) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore it is not subject to this replacement.
 ${ }^{140)}$ Thus, the constant expression in the following \#f directive and if statement is not guaranteed to evaluate to the same value in these two contexts.

 $$
 \begin{aligned}
 & \text { \#f ' }{ }^{\prime \prime} z^{\prime}-\quad a^{\prime}=25 \\
 & \text { if ('z' - 'a' }=25 \text {) }
 \end{aligned}
 $$

[^106]: ${ }^{141)}$ As indicated by the syntax, a preprocessing token shall not follow a \#el se or \#endi f directive before the terminating new-line character. However, comments may appear anywhere in a source file, including within a preprocessing directive.
 ${ }^{142)}$ Note that adjacent string literals are not concatenated into a single string literal (see the translation phases in 2.1); thus, an expansion that results in two string literals is an invalid directive.

[^107]: ${ }^{143)}$ Since, by macro-replacement time, all character literals and string literals are preprocessing tokens, not sequences possibly containing identifierlike subsequences (see 2.1.1.2, translation phases), they are never scanned for macro names or parameters.
 ${ }^{144)}$ An alternative token (2.5) is not an identifier, even when its spelling consists entirely of letters and underscores. Therefore it is not possible to define a macro whose name is the same as that of an alternative token.

[^108]: ${ }^{145)}$ Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that exist only within translation phase 4.

[^109]: ${ }^{146)}$ It is intended that future versions of this standard will replace the value of this macro with a greater value. Non-conforming compilers should use a value with at most five decimal digits.

[^110]: ${ }^{147)}$ To save space, items that do not apply to a clause are omitted. For example, if a clause does not specify any requirements, there will be no "Requirements" subclause.

[^111]: ${ }^{148)}$ Although in some cases the code given is unambiguously the optimum implementation.
 ${ }^{149)}$ The form of these specifications was designed to follow the conventions established by existing C++ library vendors.
 ${ }^{150)}$ To save space, items that do not apply to a class are omitted. For example, if a class does not specify any comparison functions, there will be no "Comparison functions" subclause.
 ${ }^{151)}$ To save space, items that do not apply to a function are omitted. For example, if a function does not specify any further preconditions, there will be no "Requires" paragraph.

[^112]: ${ }^{152)}$ Examples from 20.1 include: Equal i tyConpar abl e, LessThanCompar abl e, CopyConst ruct abl e, etc. Examples from 24.1 include: I nput I ter at or, For war dl ter at or, Functi on, Predi cate, etc.
 ${ }^{153)}$ Such as an integer type, with constant integer values (3.9.1).

[^113]: ${ }^{159)}$ Many of the objects manipulated by function signatures declared in < Whchar>are wide-character sequences or NTWCSs.
 ${ }^{160)}$ A wide string literal, such as L"abc" is a static NTWCS.

[^114]: ${ }^{161)}$ A header is not necessarily a source file, nor are the sequences delimited by <and >in header names necessarily valid source file names (16.2).

[^115]: ${ }^{162)}$ This disallows the practice, allowed in C , of providing a "masking macro" in addition to the function prototype. The only way to achieve equivalent "inline" behavior in C++ is to provide a definition as an extern inline function.
 ${ }^{163)}$ In particular, including the standard header \langle s0646. $\mathrm{h}>$ or $\langle\mathrm{ci}$ so646>has no effect.
 ${ }^{164)}$ The ". h " headers dump all their names into the global namespace, whereas the newer forms keep their names in namespace st d . Therefore, the newer forms are the preferred forms for all uses except for $\mathrm{C}++$ programs which are intended to be strictly compatible with C .

[^116]: ${ }^{165)}$ This is the same as the Standard C library.
 ${ }^{166)}$ The only reliable way to declare an object or function signature from the Standard C library is by including the header that declares it, notwithstanding the latitude granted in subclause 7.1.7 of the C Standard.
 ${ }^{167)}$ Any library code that instantiates other library templates must be prepared to work adequately with any user-supplied specialization that meets the minimum requirements of the Standard.

[^117]: ${ }^{168)}$ Such names are also reserved in namespace: : std (17.4.3.1).
 ${ }^{169)}$ The list of such reserved names includes errno, declared or defined in <cerrno>.
 ${ }^{170)}$ The list of such reserved function signatures with external linkage includes set j $n p\left(j n p _b u f\right)$, declared or defined in $\langle\tau \operatorname{set} j n p>$, and va_end(va_list), declared or defined in <cst darg>.
 ${ }^{171)}$ The function signatures declared in <uchar>and <uct ype>are always reserved, notwithstanding the restrictions imposed in subclause 4.5 .1 of Amendment 1 to the C Standard for these headers.

[^118]: ${ }^{172)}$ These types are cl ock_t, di v_t, FI LE, f pos_t, I conv, I di v_t, nbst ate_t, ptrdiff_t, si g_at oninc_t, si ze_t, ti ne_t, tm, va_l i st, uct rans_t, wctype_t, and wint_t.

[^119]: ${ }^{173)} \mathrm{C}++$ headers must include a $\mathrm{C}++$ header that contains any needed definition (3.2).
 ${ }^{174)}$ A valid C++ program always calls the expected library global or non-member function. An implementation may also define additional global or non-member functions that would otherwise not be called by a valid $\mathrm{C}++$ program.

[^120]: ${ }^{175)}$ Hence, taking the address of a member function has an unspecified type.
 ${ }^{176)}$ A valid C++ program always calls the expected library member function, or one with equivalent behavior. An implementation may also define additional member functions that would otherwise not be called by a valid $\mathrm{C}++$ program
 ${ }^{177)}$ An implicit exception to this rule are types described as synonyms for basic integral types, such as si ze_t (18.1) and streanøff (27.4.1).

[^121]: ${ }^{178)}$ That is, an implementation of the function will have an explicit exception-specification that lists fewer exceptions than those specified in this International Standard. It may not, however, change the types of exceptions listed in the exception-specification from those specified, nor add others. ${ }^{179)}$ That is, the C library functions all have a throw() exception-specification. This allows implementations to make performance optimizations based on the absence of exceptions at runtime.
 ${ }^{180)}$ The functions qsort () and bsearch() (25.4) meet this condition.
 ${ }^{181)}$ In particular, they can report a failure to allocate storage by throwing an exception of type bad_alloc, or a class derived from bad_alloc (18.5.2.1). Library implementations are encouraged (but not required) to report errors by throwing exceptions from (or derived from) the standard exception classes (18.5.2.1, 18.7, 19.1).
 ${ }^{182)}$ That is, an implementation may provide an explicit exception-specification that defines the subset of "any" exceptions thrown by that function. This implies that the implementation may list implementation-defined types in such an exception-specification.

[^122]: ${ }^{185)}$ Equivalent to CHAR_M N SHRT_M N FLT_M N DBL_M N etc.
 186) Equivalent to CHAR_MAX, SHRT_MAX, FLT_-MAX, DBL_MAX, etc.
 ${ }^{187)}$ Equivalent to FLT_MANT_D G DBL_MANT_D G LDBL_MANT_D G
 ${ }^{188)}$ Equivalent to FLT_D G DBL_D G LDBL_D

[^123]: ${ }^{189)}$ Equivalent to FLT_RAD X
 ${ }^{190)}$ Distinguishes types with bases other than 2 (e.g. BCD).
 ${ }^{191)}$ Equivalent to FLT_EPSI LON DBL_EPSI LON LDBL_EPSI LON
 ${ }^{192)}$ Rounding error is described in ISO/IEC 10967-1 Language independent arithmetic - Part 1 Section 5.2.8 and Annex A Rationale Section A.5.2.8 Rounding constants.
 ${ }^{193)}$ Equivalent to FLT_M N EXP, DBL_M N EXP, LDBL_M N_EXP.

[^124]: ${ }^{195)}$ Equivalent to FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP.
 196) Equivalent to FLT_MAX_10_EXP, DBL_MAX_10_EXP, LDBL_MAX_10_EXP.
 ${ }^{197)}$ Required by LIA-1.
 ${ }^{198)}$ Required by LIA-1.
 ${ }^{199)}$ Required by LIA-1.
 ${ }^{200)}$ See IEC 559.

[^125]: ${ }^{201)}$ Required by LIA-1.
 ${ }^{202)}$ Required by LIA-1.
 ${ }^{203)}$ Required by LIA-1.
 ${ }^{204)}$ Required by LIA-1.
 ${ }^{205)}$ International Electrotechnical Commission standard 559 is the same as IEEE 754.
 ${ }^{206)}$ Required by LIA-1.
 ${ }^{207)}$ Required by LIA-1.

[^126]: ${ }^{208)}$ Required by LIA-1.
 ${ }^{209)}$ Refer to IEC 559. Required by LIA-1.
 ${ }^{210)}$ Equivalent to FLT_RONDS. Required by LIA-1.

[^127]: ${ }^{211)}$ LLONG MAX, LLONG M N and ULLONG MAX added by TR1
 ${ }^{212)}$ DEC $\overline{M A} L_{-}$D Gand $\bar{F} L T _E V A L _M E T H O \bar{D}$ added by TR1.

[^128]: ${ }^{213)}$ Objects with automatic storage duration are all destroyed in a program whose function nai $n()$ contains no automatic objects and executes the call to exi $t()$. Control can be transferred directly to such a nai $n()$ by throwing an exception that is caught in nai $n()$.

[^129]: ${ }^{214)}$ A function is called for every time it is registered.
 ${ }^{215)}$ Any C streams associated with ci n, cout, etc (27.3) are flushed and closed when static objects are destroyed in the previous phase. The function tnpf il e() is declared in \ll st di $0>$.
 ${ }^{216)}$ The macros EXI T_FAI LURE and EXI T_SUCCESS are defined in $\langle<$ st dl $i b\rangle$.

[^130]: ${ }^{217)}$ It is not the direct responsibility of oper at or new[] (st d: : si ze_t) or oper at or del et e[] (voi d^{*}) to note the repetition count or element size of the array. Those operations are performed elsewhere in the array new and del et e expressions. The array newexpression, may, however, increase the size argument to oper at or new [](std: : si ze_t) to obtain space to store supplemental information.

[^131]: ${ }^{218)}$ Note that va_st art is required to work as specified even if unary oper at or \&is overloaded for the type of par nN
 ${ }^{219)}$ In particular, a signal handler using exception handling is very likely to have problems

[^132]: ${ }^{220)}$ It is intended that a. al I ocat e be an efficient means of allocating a single object of type T, even when si zeof (T) is small. That is, there is no need for a container to maintain its own "free list".

[^133]: ${ }^{221)}$ According to (12.8), an implementation is permitted to not perform a copy of an argument, thus avoiding unnecessary copies.

[^134]: ${ }^{222)}$ In a container member function, the address of an adjacent element is often a good choice to pass for this argument.

[^135]: ${ }^{227)}$ i sbl ank added by TR1.
 ${ }^{228)}$ wcst of, wcst ol d, wcst ol I, wcst oul I, vf uscanf, vsuscanf, and vuscanf added by TR1.
 ${ }^{229}$) at ol I, strtol I, strtoul I, strtof, and strtol dadded by TR1.

[^136]: ${ }^{230)}$ In this subclause, the type name struct tmis an incomplete type that is defined in $\langle\mathrm{cti} \mathrm{n} 巴\rangle$.

[^137]: ${ }^{231)}$ Notice that, in the call to put, the stream is implicitly converted to an ostreanbuf _i ter at or <charT, trai ts>.

[^138]: ${ }^{232)}$ When used in a loop, it is faster to cache the ctype>facet and use it directly, or use the vector form of ctype $>:$ i is .

[^139]: ${ }^{233)}$ The char argument of do_w den is intended to accept values derived from character literals for conversion to the locale's encoding.
 ${ }^{234)}$ In other words, the transformed character is not a member of any character classification that c is not also a member of.

[^140]: ${ }^{235)}$ Only the char (not unsi gned char and si gned char) form is provided. The specialization is specified in the standard, and not left as an implementation detail, because it affects the derivation interface for ct ype<char >.

[^141]: ${ }^{236)}$ Informally, this means that basi c_fil ebuf assumes that the mappings from internal to external characters is 1 to N : a codecvt facet that is used by basi c_filebuf must be able to translate characters one internal character at a time.
 ${ }^{237)}$ Typically these will be characters to return the state to stateT()

[^142]: ${ }^{238)}$ If encoding() yields -1 , then more than max_length () externT elements may be consumed when producing a single internT character, and additional externT elements may appear at the end of a sequence after those that yield the final internT character.

[^143]: ${ }^{239)}$ Parsing " - 1" correctly into (e.g.) an unsi gned short requires that the corresponding member get () at least extract the sign before delegating.

[^144]: ${ }^{240)}$ The conversion specification \#0 generates a leading 0 which is not a padding character.

[^145]: ${ }^{241)}$ Thus, the string " $\backslash 003$ " specifies groups of 3 digits each, and " 3 " probably indicates groups of 51 (!) digits each, because 51 is the ASCII value of " 3 ".

[^146]: ${ }^{245)}$ Although the C programming language defines no modifiers, most vendors do.
 ${ }^{246)}$ Interpretation of the modifier argument is implementation-defined, but should follow POSIX conventions.
 ${ }^{247)}$ Implementations are encouraged to refer to other standards (such as POSIX) for these definitions.

[^147]: ${ }^{248)}$ The semantics here are different from ct. nar row

[^148]: ${ }^{249)}$ An array of char, rather than an array of part, is specified for pattern: : fi el d purely for efficiency.

[^149]: ${ }^{250)}$ In common U.S. locales this is ' .'.
 ${ }^{251)}$ In common U.S. locales this is ' ${ }^{\prime}$,'
 ${ }^{252)}$ To specify grouping by 3 s , the value is " $\backslash 003$ " not " 3 ").
 ${ }^{253)}$ For international specializations (second template parameter true) this is always four characters long, usually three letters and a space.

[^150]: ${ }^{254)}$ This is usually the empty string.
 ${ }^{255)}$ In common U.S. locales, this is 2.
 ${ }^{256)}$ Note that the international symbol returned by do_curr_synt() usually contains a space, itself; for example, "USD ".

[^151]: ${ }^{257)}$ As specified in 20.1.6, paragraphs 4-5, the semantics described in this clause applies only to the case where allocators compare equal.

[^152]: ${ }^{258)}$ This footnote is intentionally empty.

[^153]: ${ }^{259)}$ These member functions are only provided by containers whose iterators are random access iterators.
 ${ }^{260)}$ Implementors are permitted but not required to take advantage of T's Assignable properties for these methods.

[^154]: ${ }^{261)}$ As specified in 20.1.6, the requirements in this clause apply only to lists whose allocators compare equal.

[^155]: ${ }^{262)}$ reserve() uses A I ocat or: : al I ocat e() which may throw an appropriate exception.

[^156]: ${ }^{269)}$ This constructor (as well as the corresponding seed() function below) may be particularly useful to applications requiring a large number of independent random sequences.

[^157]: ${ }^{270)}$ This operation is common in user code, and can often be implemented in an engine-specific manner so as to provide significant performance improvements over an equivalent naive loop that makes Z consecutive calls to $u()$.

[^158]: ${ }^{272)}$ The parameter is intended to allow an implementation to differentiate between different sources of randomness.
 ${ }^{273)}$ If a device has n states whose respective probabilities are P_{0}, \ldots, P_{n-1}, the device entropy S is defined as $S=-\sum_{i=0}^{n-1} P_{i} \cdot \log P_{i}$.

[^159]: ${ }^{274)} b$ is introduced to avoid any attempt to produce more bits of randomness than can be held in Real Type.

[^160]: ${ }^{276)}$ Clause 18.2.1 recommends a minimum number of recursively nested template instantiations. This requirement thus indirectly suggests a minimum allowable complexity for valarray expressions.

[^161]: ${ }^{277)}$ The intent is to specify an array template that has the minimum functionality necessary to address aliasing ambiguities and the proliferation of temporaries. Thus, the val array template is neither a matrix class nor a field class. However, it is a very useful building block for designing such classes.
 ${ }^{278)}$ For convenience, such objects are referred to as "arrays" throughout the remainder of 26.5 .
 ${ }^{279)}$ This default constructor is essential, since arrays of val ar ray are likely to prove useful. There shall also be a way to change the size of an array after initialization; this is supplied by the semantics of the resi ze member function.
 ${ }^{280)}$ This constructor is the preferred method for converting a C array to a val array object.

[^162]: ${ }^{281)}$ This copy constructor creates a distinct array rather than an alias. Implementations in which arrays share storage are permitted, but they shall implement a copy-on-reference mechanism to ensure that arrays are conceptually distinct.

[^163]: ${ }^{282)}$ Compilers may take advantage of inlining, constant propagation, loop fusion, tracking of pointers obtained from oper at or new and other techniques to generate efficient val arrays.

[^164]: ${ }^{283)}$ BLAS stands for Basic Linear Algebra Subprograms. C++ programs may instantiate this class. See, for example, Dongarra, Du Croz, Duff, and Hammerling: A set of Level 3 Basic Linear Algebra Subprograms; Technical Report MCS-P1-0888, Argonne National Laboratory (USA), Mathematics and Computer Science Division, August, 1988.

[^165]: ${ }^{284)}$ accunol ate is similar to the APL reduction operator and Common Lisp reduce function, but it avoids the difficulty of defining the result of reduction on an empty sequence by always requiring an initial value.
 ${ }^{285)}$ The use of fully closed ranges is intentional
 ${ }^{286)}$ The use of fully closed ranges is intentional

[^166]: ${ }^{287)}$ The use of fully closed ranges is intentional.
 ${ }^{288)}$ The use of fully closed rangs is intentional.

[^167]: ${ }^{289)}$ all macros except HUE_VAL, both types, many functions, and all templates added by TR1.

[^168]: ${ }^{290)}$ It is the implementation's responsibility to implement headers so that including \langle osf $u d>$ and other headers does not violate the rules about multiple occurences of default arguments.

[^169]: ${ }^{291)}$ If it is possible for them to do so, implementations are encouraged to initialize the objects earlier than required.
 ${ }^{292)}$ Constructors and destructors for static objects can access these objects to read input from st di n or write output to st dout or st der r.

[^170]: ${ }^{293)}$ streansi ze is used in most places where ISO C would use si ze_t. Most of the uses of streansi ze could use si ze_t, except for the strstreanbuf constructors, which require negative values. It should probably be the signed type corresponding to si ze_t (which is what Posix. 2 calls ssi ze_t).

[^171]: ${ }^{294)}$ This implies that operations on a standard iostream object can be mixed arbitrarily with operations on the corresponding stdio stream. In practical terms, synchronization usually means that a standard iostream object and a standard stio object share a buffer.
 ${ }^{295)}$ An implementation is free to implement both the integer array pointed at by iarray and the pointer array pointed at by parray as sparse data structures, possibly with a one-element cache for each.
 ${ }^{296)}$ for example, because it cannot allocate space.
 ${ }^{297)}$ for example, because it cannot allocate space.

[^172]: ${ }^{298)}$ This suggests an infinite amount of copying, but the implementation can keep track of the maximum element of the arrays that is non-zero.

[^173]: ${ }^{299)}$ Checking badbi t also for fail() is historical practice

[^174]: ${ }^{301)}$ The default constructor is protected for class basi C_st r eanbuf to assure that only objects for classes derived from this class may be constructed.

[^175]: ${ }^{302)}$ The morphemes of shownanyc are "es-how-many-see", not "show-manic".
 ${ }^{303)}$ underfl owor uf I owmight fail by throwing an exception prematurely. The intention is not only that the calls will not return eof () but that they will return "immediately."
 ${ }^{304)}$ Classes derived from basi c_st reanbuf can provide more efficient ways to implement Xsget n() and Xsput n() by overriding these definitions from the base class.

[^176]: ${ }^{305)}$ That is, for each class derived from an instance of basi c_streanbuf in this clause (27.7.1, 27.8.1.1), a specification of how consuming a character effects the associated output sequence is given. There is no requirement on a program-defined class.
 ${ }^{306)}$ Typically, overfl owreturns c to indicate success, except when traits: : eqi nt_type(c, trai ts: : eof ()) returns true, in which case it returns traits: : not_eof (c).

[^177]: ${ }^{307)}$ This will be possible only in functions that are part of the library. The semantics of the constructor used in user code is as specified.
 ${ }^{308)}$ The sentry constructor and destructor can also perform additional implementation-dependent operations.

[^178]: ${ }^{309)}$ This is done without causing an i os: : f ai I ure to be thrown.

[^179]: ${ }^{310)}$ See, for example, the function signature us(basi C_i st r ean\&) (27.6.1.4).
 ${ }^{311)}$ See, for example, the function signature dec(i Os_base\&) (27.4.5.3)

[^180]: ${ }^{312)}$ This is done without causing an i os: : fail ure to be thrown.
 ${ }^{313)}$ Note that this function is not overloaded on types si gned char and unsi gned char.

[^181]: ${ }^{314)}$ Note that this function is not overloaded on types si gned char and unsi gned char.
 ${ }^{315)}$ Note that this function is not overloaded on types si gned char and unsi gned char.

[^182]: ${ }^{316)}$ Since the final input character is "extracted," it is counted in the gcount (), even though it is not stored.
 ${ }^{317)}$ This allows an input line which exactly fills the buffer, without setting fai I bi t. This is different behavior than the historical AT\&T implementation.
 ${ }^{318)}$ This implies an empty input line will not cause fai I bi t to be set

[^183]: ${ }^{319)}$ Note that this function is not overloaded on types si gned char and unsi gned char.

[^184]: ${ }^{320)}$ The call os.ti e()- $\boldsymbol{>} \boldsymbol{f l}$ ush() does not necessarily occur if the function can determine that no synchronization is necessary. ${ }^{321)}$ The sent $r y$ constructor and destructor can also perform additional implementation-dependent operations.
 ${ }^{322}$ without causing an i os: : fai I ure to be thrown.

[^185]: 28.13 Modified ECMAScript regular expression grammar

[^186]:

[^187]: ${ }^{337)}$ An implementation should consider alsize in making this decision.

[^188]: ${ }^{338)}$ The function signature $s t r l$ en(const char*) is declared in \langle cstring>(21.4).

