
JTC1 AD Hoc Terminology, August 2005 1

c:\r5\standard\sc22 – 2005 terminology.doc 2005-08-17

JTC1 and SC22 - Terminology

Background
Following my offer to collect together the definitions from SC22 standards, SC22
accepted my offer and appointed me as its terminology representative (I was later
also asked to represent UK and BSI) on the JTC1 ad hoc group on terminology.

These notes summarise the results of collecting the SC22 definitions, and my
impressions of the JTC1 ad hoc group.

 Roger Scowen
August 2005

A collection of definitions from SC22 standards
SC22 asked me to prepare a collected terminology for SC22 containing the
definitions from standards for which SC22 is responsible, and asked the project
editors to send me the definitions in text form. Many, but not all, project editors
did so. However there are sufficient for SC22 to judge whether to complete the
list or abandon it as an interesting but unprofitable exercise.

Adding definitions to the database
The project editor of a standard typically sends the definitions from the standard
as a Word file, but it may be plain text or in Latex or nroff format.

These definitions are transformed into a uniform format by a series of global ‘find
& replace’ operations to produce a Word file where each definition is represented
as a row of a table with three columns: the term, its definition, and any notes
and/or examples. It is often easier to check this has been accomplished by
copying and pasting successive attempts into Excel than examining the Word file
itself.

Sometimes there are special cases such as exotic characters (for example Greek
or mathematical characters), special fonts, illustrations, diagrams, or tables.
There may also be cross references to other clauses in the standard, or URLs. It
may be necessary to simplify or even remove these exceptions, but to note all
these cases so that they can be restored in a published terminology.

When the definitions have been converted into a table, it is copied to an Excel
worksheet. The clause numbers are now restored as two initial columns: one
right-justified column for the constant element of the clause (for example ‘’3.’,
using Edit, Fill, Down), and a second left justified column for the varying clause
number (using Edit, Fill, Series, increment 1). Another column is added to
contain a mnemonic identifying the standard from which the definition is taken.

The next stage is to add the definitions for the standard to a worksheet containing
all the definitions that have been collected, and to sort all the columns using the
term as the key (Select all columns, Data, Sort, Sort by Column D).

JTC1 AD Hoc Terminology, August 2005 2

c:\r5\standard\sc22 – 2005 terminology.doc 2005-08-17

Note that cross references in a definition (for example, indicated by words in
italics in Prolog definitions) naturally refer to terms defined in the source
standard.

The 2005 database
The 2005 database contains 1187 definitions collected from 12 standards and
Technical Reports, in particular from Ada, Cobol, Extended BNF, ISLisp, Posix,
Prolog, and WG11 (Language binding).

Sources

LISS ISO/IEC TR 14369:1999 Language
Independent Service Specifications

Prolog ISO/IEC 13211-1:1995 Prolog: Part 1 -
General core

Posix ISO/IEC 9945-1:2003 POSIX: Part 1 -
Base definitions

ISLisp ISO/IEC 13816:1996 ISLisp

Cobol ISO/IEC 1989:2002 Cobol

Extended BNF ISO/IEC 14977:1996 Extended BNF

Ada ISO/IEC 8652:1995/Cor.1:2000

ASIS ISO/IEC FDIS 15291 Ada Semantic
Interface Specification

ACATS ISO/IEC 18009:1999 Ada Conformity
Assessment Test Suite

Notes

ISO/IEC TR 14369 Language
Independent Service Specifications

The definitions are copied from four
other standards: TR 10182 (Guidelines
for language bindings), 10967-1
(Language-independent arithmetic),
11404 (Language-independent
datatypes), 13886 (Language-
Independent Procedure Calling)

ISO/IEC TR 15942:2000 has no definitions clause.

ISO/IEC 18009 The definitions are mostly quoted from
other sources, primarily ISO vocabulary
guides and TR 9547. Only the
definitions in clause 4.15.x are original
to ACATS

Confession
The contents of the database have not been checked against the original
standards, and I feel sure some errors have been introduced.

Files
The database has been provided as two Excel files, each with a single worksheet:

 (1) collected sc22 definitions 2005.xls, and

JTC1 AD Hoc Terminology, August 2005 3

c:\r5\standard\sc22 – 2005 terminology.doc 2005-08-17

 (2) sorted sc22 definitions 2005.xls

Report of JTC1 ad hoc group on terminology meeting,
2005-05-02 to 04, Gatineau, Canada
JTC1 set up this ad hoc group following an offer by Canada to fill the gap in IT
vocabulary standardization that has arisen since SC1, the relevant subcommittee,
was closed about five years ago. The standard it produced and revised, ISO/IEC
2382, is now obsolete and there are no means to revise it.

Canada set up this meeting of the Ad Hoc Group partly to demonstrate the
facilities and expertise of the Canada Translation Bureau (CTB) to the SC
representatives on the Ad Hoc Group, and also to explain how they envisage the
project proceeding.

The minutes and presentations made during the meeting are to be published by
JTC1; what follows are my personal impressions and views.

Attenders
Only six SCs (subcommittees) and two NBs (National bodies) were present. The
vast majority were Canadian Nationals: two from Europe, none from Asia. The
convener claimed this indicates that most SCs have no problems or queries about
the proposal. I believe it indicates apathy or lack of manpower.

Report
Requirement - An English and French database of specialist terminology is an
essential resource in Canada where official (and many other) documents need to
be published in both languages. Thus Canada needs ISO 2382 with its bilingual
terminology of information technology - or something comparable with official
status. Canada demonstrated the Termium system and software that the CTB uses
to produce and maintain its database.

Canada’s proposal - Canada envisages the JTC1 subcommittees updating the
relevant (English) parts of ISO 2382, and providing the CTB with the results so
that the CTB and SC together can produce and check the French equivalent
terms. In each SC, there will be one representative who will liaise with the CTB
and the rest of the SC.

Producing a subject terminology - Staff at the CTB currently use software
called Termicom to develop and maintain a subject terminology, and offer to
provide this to each SC representative. This is an interactive system for
developing, examining and updating one term at a time, and thus loading a set of
terms from a newly agreed standard will require batch input provided by the
CTB. The approach planned by the CTB could thus require a great deal of work
for the SC terminology representative, especially if liaison turns out to be back
and forth with each of the WGs: this would onerous in many of the SCs.

A terminology tutorial - The CTB have produced an online training package,
The Pavel Terminology Tutorial, to familiarize subject experts with the
fundamental concepts of producing a terminology for a subject. English and
French versions are currently available. I recommend project editors to look at

JTC1 AD Hoc Terminology, August 2005 4

c:\r5\standard\sc22 – 2005 terminology.doc 2005-08-17

The Pavel Terminology Tutorial when they come to draft the definitions in their
standard. It is accessible at www.termium.com.

Authority without control - ISO, JTC1, NBs, SCs, WGs, and Project editors all
have different powers and responsibilities. Theoretically, there is a clear line of
authority, control and management, but ultimately work on standardization is
paid for by the employers of the WG members, and if they are unwilling to
support work, then it is done slowly or not at all.

SC22 and ISO 2382 - JTC1 N6397 (2001-03-28) assigned responsibility to SC22
for maintenance of several parts of ISO 2382:

Part Subject
2 Arithmetic and logic operations
7 Computer programming

15 Programming languages
16 Information theory

SC22 has so far ignored this responsibility.

SC22 and TCB experiment - I offered to provide a specimen of definitions from
SC22 standards, work I have already volunteered to produce for SC22, in order to
give CTB some idea of the scale of the project, and to see whether they can add
value by identifying poor definitions and synonyms, and providing French
translations. This project is under way with CTB examining the first 100
definitions from Prolog, Posix and LISS, i.e. terms starting with ‘a’ and ‘b’. A
verbal report will be given at the plenary.

Query - How does the European Commission cope with its even greater
translation needs?

Conclusions
(1) The Pavel Terminology Tutorial, freely accessible at www.termium.com, is a
useful tool when starting to produce a terminology for a subject.

(2) SC22 should review its responsibilities concerning ISO 2382.

(3) SC22 and BSI should cautiously welcome the Canadian proposal even though
several problems remain, because if they can be overcome, we will not have to
behave like Humpty Dumpty, ‘When I use a word, it means just what I choose it
to mean—neither more nor less’.

(4) What next? - Is it worth extending the 2005 list of definitions by including
more SC22 standards? What have you learnt from the 2005 list? What use will it
be? Should it be published as a Technical Report?

JTC1 AD Hoc Terminology, August 2005 5

c:\r5\standard\sc22 – 2005 terminology.doc 2005-08-17

Document history
2005 May 13-30: File started and stored as c:\r5\standard\st82.doc.

2005-06-01: Emailed to SC22 and BSI.

2005-08-15: Extended into a report to SC22 plenary and stored in c:\my
briefcase\sc22 – 2005 terminology.com.

Definitions 1

Clause Source Term Definition Notes
B LISS abstract service

interface
(ISO/IEC TR 10182) - An interface having an abstract
definition that defines the format and the semantics of the
function invoked independently of the concrete syntax (actual
representation) of the values and the invocation mechanism.

B LISS actual parameter (ISO/IEC 13886) - A value that is bound to a formal parameter
during the execution of a procedure.

B LISS actual parametric
datatype

(ISO/IEC 11404) - A datatype appearing as a parametric
datatype in a use of a datatype generator, as opposed to the
formal- parametric-types appearing in the definition of the
datatype generator.

B LISS actual parametric value (ISO/IEC 11404) - A value appearing as a parametric value in
a reference to a datatype family or datatype generator, as
opposed to the formal-parametric-values appearing in the
corresponding definitions.

B LISS aggregate datatype (ISO/IEC 11404) - A generated datatype each of whose values
is made up of values of the component datatypes, in the sense
that operations on all component values are meaningful.

B LISS alien syntax (ISO/IEC TR 10182) - Syntax of a language other than the
host language.

B LISS annotation (ISO/IEC 11404) - A descriptive information unit attached to a
datatype, or a component of a datatype, or a procedure (value),
to characterize some aspect of the representations, variables, or
operations associated with values of the datatype which goes
beyond the scope of this International Standard.

B LISS approximate (ISO/IEC 11404) - A property of a datatype indicating that
there is not a 1-to-1 relationship between values of the
conceptual datatype and the values of a valid computational
model of the datatype.

c:\... sc22 defs.xls 8/16/2005

Definitions 2

Clause Source Term Definition Notes
B LISS arithmetic datatype (ISO/IEC 10967-1) - A datatype whose values are members of

Z, R, or C.
Note (original) - This standard specifies
requirements for integer and floating point
datatypes. Complex numbers are not covered by
this standard, but will be included in a
subsequent part of this standard.

B LISS association (ISO/IEC 13886) - Any mapping from a set of symbols to
values.

B LISS axiom (ISO/IEC 10967-1) - A general rule satisfied by an operation
and all values of the datatype to which the operation belongs.
As used in the specifications of operations, axioms are
requirements.

B LISS bounded (ISO/IEC 11404) - A property of a datatype, meaning both
bounded above and bounded below.

B LISS bounded above (ISO/IEC 11404) - A property of a datatype indicating that
there is a value U in the value space such that, for all values s
in the value space, s<=U.

B LISS bounded below (ISO/IEC 11404) - A property of a datatype indicating that
there is a value L in the value space such that, for all values s
in the value space, L<=s.

B LISS box (ISO/IEC 13886) - A model of a variable or container that
holds a value of a particular type.

B LISS characterizing
operations

(ISO/IEC 11404) - (of a datatype) A collection of operations
on, or yielding, values of the datatype, which distinguish this
datatype from other datatypes with identical value spaces; (of a
datatype generator) A collection of operations on, or yielding,
values of any datatype resulting from an application of the
datatype generator, which distinguish this datatype generator
from other datatype generators which produce identical value
spaces from identical parametric datatypes.

B LISS client interface binding (ISO/IEC 13886) - The possession by the client procedure of
an interface reference.

B LISS client procedure (ISO/IEC 13886) - A sequence of instructions which invokes
another procedure.

c:\... sc22 defs.xls 8/16/2005

Definitions 3

Clause Source Term Definition Notes
B LISS complete procedure

closure
(ISO/IEC 13886) - A procedure closure, all of whose global
symbols are mapped.

B LISS component datatype (ISO/IEC 11404) - A datatype which is a parametric datatype
to a datatype generator, i.e. a datatype on which the datatype
generator operates.

B LISS configuration (ISO/IEC 13886) - Host and target computers, any operating
system(s) and software used to operate a processor.

B LISS continuation value (ISO/IEC 10967-1) - A computational value used as the result
of an arithmetic operation when an exception occurs.
Continuation values are intended to be used in subsequent
arithmetic processing. (Contrast with exceptional value).

Note (original) - The infinities and NaNs
produced by an IEC 559 system are examples of
continuation values. [CRLF] Note (additional) -
Here "IEC 559 system" means a system
conforming to IEC 559:1989 (IEEE 754:1985)
Standard for binary floating-point arithmetic.

B LISS datatype (ISO/IEC 10967-1) - A set of values and a set of operations
that manipulate those values.

Notes (additional) [CLRF] 1. The purpose of the
LIA-1 standard is to provide rigorous definitions
of the basic arithmetic operations on integer and
floating point datatype values. Hence, in the
context of usage in that standard, the term
"datatype" naturally includes the operations.
[CLRF] 2. In the LIA standard, the first to be
published, "datatype" is spelled with a space, i.e.
"data type". (The same is true for the GLB
Technical Report.) For consistency in this
(LISS) Technical Report, "datatype" is
substituted throughout.

B LISS datatype (ISO/IEC 11404) - A set of distinct values, characterized by
properties of those values and by operations on those values.

Note (additional) - This definition is essentially
identical to that in this Technical Report, though
emphasizing the "characterizing" role of
operations in helping to identify corresponding
LID datatypes to those in a particular language.

c:\... sc22 defs.xls 8/16/2005

Definitions 4

Clause Source Term Definition Notes
B LISS datatype (ISO/IEC TR 14369) - A set of values, usually accompanied

by a set of operations on those values.
B LISS datatype declaration (ISO/IEC 11404) - (1) The means provided by this

International Standard for the definition of a language-
independent datatype which is not itself defined by this
International Standard; [CLRF] (2) An instance of use of this
means.

B LISS datatype family (ISO/IEC 11404) - A collection of datatypes which have
equivalent characterizing operations and relationships, but
value spaces which differ in the number and identification of
the individual values.

B LISS datatype generator (ISO/IEC 11404) - An operation on datatypes, as objects
distinct from their values, which generates new datatypes.

B LISS defined datatype (ISO/IEC 11404) - A datatype defined by a type-declaration.

B LISS defined generator (ISO/IEC 11404) - A datatype generator defined by a type-
declaration.

B LISS denormalization loss (ISO/IEC 10967-1) - A larger than normal rounding error
caused by the fact that denormalized values has less than full
precision. (See float-rounding for a full definition.)

B LISS denormalized (ISO/IEC 10967-1) - Those values of a floating point type F
that provide less than the full precision allowed by that type.

B LISS embedded alien syntax (ISO/IEC TR 10182) - Statements in a special language for
access to a system facility, included in a source program
written in a standard programming language.

B LISS error (ISO/IEC 10967-1) - (1) The difference between a computed
value and the correct value. (Used in phrases like "rounding
error" or "error bound".) [CLRF] (2) A synonym for exception
in phrases like "error message" or "error output". Error and
exception are not synonyms in any other context.

c:\... sc22 defs.xls 8/16/2005

Definitions 5

Clause Source Term Definition Notes
B LISS exact (ISO/IEC 11404) - A property of a datatype indicating that

every value of the conceptual datatype is distinct from all
others in any valid computational model of the datatype.

B LISS exception (ISO/IEC 10967-1) - The inability of an operation to return a
suitable numeric result. This might arise because no such
result exists mathematically, or because the mathematical
result cannot be represented with sufficient accuracy.

B LISS exceptional value (ISO/IEC 10967-1) - A non-numeric value produced by an
arithmetic operation to indicate the occurrence of an exception.
Exceptional values are not used in subsequent arithmetic
processing.

Notes (original) [CLRF] 1. Exceptional values
are used as part of the defining formalism only.
With respect to this international standard, they
do not represent values of any of the datatypes
described. There is no requirement that they be
represented or stored in the computing system.
[CLRF] 2. Exceptional values are not to be
confused with the NaNs and infinities defined in
IEC 559. Contrast this definition with that of
continuation value above.

B LISS execution sequence (ISO/IEC 13886) - A succession of global states s1, s2, ...
where each state beyond the first is derived from the preceding
one by a single create operation or a single write operation.

B LISS exponent bias (ISO/IEC 10967-1) - A number added to the exponent of a
floating point number, usually to transform the exponent to an
unsigned integer.

B LISS external identifier (ISO/IEC TR 10182) - An identifier that is visible outside of a
program.

B LISS formal parameter (ISO/IEC 13886) - The name symbol of a parameter used in
the definition of a procedure to which a value will be bound
during execution.

c:\... sc22 defs.xls 8/16/2005

Definitions 6

Clause Source Term Definition Notes
B LISS formal-parametric-type (ISO/IEC 11404) - An identifier, appearing in the definition of

a datatype generator, for which a language-independent
datatype will be substituted in any reference to a (defined)
datatype resulting from the generator.

B LISS formal-parametric-
value

(ISO/IEC 11404) - An identifier, appearing in the definition of
a datatype family or datatype generator, for which a value will
be substituted in any reference to a (defined) datatype in the
family or resulting from the generator.

B LISS functional interface (ISO/IEC TR 10182) - The abstract definition of the interface
to a system facility by which system functions are provided.

B LISS functional specification (ISO/IEC TR 10182) - The specification of a system facility.
In the context of this document, the functional specification is
normally a potential or actual standard. For each system
function the specification defines the parameters for
invocation and their effects.

B LISS generated datatype (ISO/IEC 11404) - A datatype defined by the application of a
datatype generator to one or more previously-defined
datatypes.

B LISS generated internal
datatype

(ISO/IEC 11404) - A datatype defined by the application of a
datatype generator defined in a particular programming
language to one or more previously-defined internal datatypes.

B LISS generator declaration (ISO/IEC 11404) - (1) The means provided by this
International Standard for the definition of a datatype
generator which is not itself defined by this International
Standard; [CLRF] (2) An instance of use of this means.

B LISS global state (ISO/IEC 13886) - The set of all existing boxes and their
currently assigned values.

B LISS global symbol (ISO/IEC 13886) - Symbol used to refer to values that are
permanently associated with a procedure.

c:\... sc22 defs.xls 8/16/2005

Definitions 7

Clause Source Term Definition Notes
B LISS helper function (ISO/IEC 10967-1) - A function used solely to aid in the

expression of a requirement. Helper functions are not visible
to the programmer, and are not required to be part of an
implementation. However, some implementation-defined
helper functions are required to be documented.

B LISS host language (ISO/IEC TR 10182) - The programming language for which a
standard language binding is produced; the language in which
a program is written.

B LISS identifier (ISO/IEC TR 10182) - Name of an object in an application
program that uses a system facility.

B LISS implementation (of this
standard)

(ISO/IEC 10967-1) - The total arithmetic environment
presented to a programmer, including hardware, language
processors, exception handling facilities, subroutine libraries,
other software, and all pertinent documentation.

B LISS implementation-defined (ISO/IEC TR 10182) - Possibly differing between different
processors for the same language, but required by the language
standard to be defined and documented by the implementor.

B LISS implementation defined (ISO/IEC 13886) - An implementation defined feature is a
feature that is left implementation dependent by this
International Standard, but any implementation claiming
conformity to this standard shall explicitly specify how this
feature is provided.

B LISS implementation-
dependent

(ISO/IEC TR 10182) - Possibly differing between different
processors for the same language, and not necessarily defined
for any particular processor.

B LISS implementation
dependent

(ISO/IEC 13886) - An implementation dependent feature is a
feature that shall be provided by an implementation claiming
conformity to this standard, but the implementation need not to
specify how the feature is provided.

B LISS implementor (ISO/IEC TR 10182) - The individual or organization that
realizes a system facility through software, providing access to
the system functions by means of the standard language
bindings.

c:\... sc22 defs.xls 8/16/2005

Definitions 8

Clause Source Term Definition Notes
B LISS input parameter (ISO/IEC 13886) - A formal parameter with an attribute

indicating that the corresponding actual parameter is to be
made available to the server procedure on entry from the client
procedure.

B LISS input/output parameter (ISO/IEC 13886) - A formal parameter with an attribute
indicating that the corresponding actual parameters are made
available to the server procedure on entry from the client
procedure and to the client procedure on return from the server
procedure.

B LISS interface (ISO/IEC TR 14369) - The mechanism by which a service user
invokes and makes use of a service.

B LISS interface closure (ISO/IEC 13886) - A collection of names and a collection of
procedure closures, with a mapping between them.

B LISS interface execution
context

(ISO/IEC 13886) - The union of the procedure execution
contexts for a given interface closure.

B LISS interface reference (ISO/IEC 13886) - An identifier that denotes a particular
interface instance.

B LISS interface type (ISO/IEC 13886) - A collection of names and a collection of
procedure types, with a mapping between them.

B LISS interface type identifier (ISO/IEC 13886) - An identifier that denotes an interface type.

B LISS internal datatype (ISO/IEC 11404) - A datatype whose syntax and semantics are
defined by some other standard, language, product, service or
other information processing entity.

B LISS inward mapping (ISO/IEC 11404) - A conceptual association between the
internal datatypes of a language and the language-independent
datatypes which assigns to each in datatype either a single
semantically equivalent internal datatype or no equivalent
internal datatype.

c:\... sc22 defs.xls 8/16/2005

Definitions 9

Clause Source Term Definition Notes
B LISS invocation association (ISO/IEC 13886) - The invocation association of a procedure

closure <Image, Association> applied to a set of actual
parameter values is the association of the closure augmented
by a mapping of all local symbols to values and all formal
parameter symbols to the corresponding actual parameter
values. Thus it is a binding to values of all symbols in the
procedure image for the duration of the invocation.

B LISS invocation context (ISO/IEC 13886) - For a particular procedure call, the instance
of the objects referenced by the procedure, where the lifetime
of the objects is bounded by the lifetime of the call.

B LISS language (ISO/IEC TR 14369) - Unless otherwise qualified, "language"
means "programming language", not "specification language"
or "natural (human) language".

B LISS language binding (ISO/IEC TR 14369) - A specification of the standard
interface to a service, or set of services, for applications
written in a particular programming language.

B LISS language binding of F
to L or L language
binding of F

(ISO/IEC TR 10182) - A specification of the standard
interface to facility F for programs written in language L.

B LISS language committee (ISO/IEC TR 10182) - The ISO technical subcommittee or
working group responsible for the definition of a programming
language standard.

B LISS language-dependent (ISO/IEC TR 14369) - Making use of the concepts, features or
assumptions of a particular programming language.

B LISS language-independent (ISO/IEC TR 14369) - Not making use of the concepts,
features or assumptions of any particular programming
language or style of language.

B LISS language-independent
datatype

(ISO/IEC 11404) - (1) A datatype defined by this International
Standard, or [CLRF] (2) A datatype defined by the means of
datatype definition provided by this International Standard.

Note (additional) - The LID standard abbreviates
this term to "LI datatype"

c:\... sc22 defs.xls 8/16/2005

Definitions 10

Clause Source Term Definition Notes
B LISS language processor (ISO/IEC TR 14369) - The entire computing system which

enables a programming language user to translate and execute
programs written in the language, in general consisting both of
hardware and of the relevant associated software.

B LISS lower bound (ISO/IEC 11404) - In a datatype which is bounded below, the
value L such that, for all values s in the value space, L<=s.

B LISS mapping (ISO/IEC 11404) - (of datatypes) A formal specification of the
relationship between the (internal) datatypes which are notions
of, and specifiable in, a particular programming language and
the (language-independent) datatypes specified in this
International Standard; [CLRF] (of values) A corresponding
specification of the relationships between values of the internal
datatypes and values of the language-independent datatypes.

B LISS mapping (in general) (noun) - A defined association between elements (such as
concepts, features or facilities) of one entity (such as a
programming language, or a specification, or a standard) with
corresponding elements of another entity. Mappings are
usually defined as being from one entity into another. A
language binding of a language L into a standard S usually
incorporates both a mapping from L into S and a mapping
from S into L. [CRLF] (verb) The process of determining or
utilizing a mapping.

Note (additional) - This is essentially the same
definition as for the LID standard, though
necessarily made more general.

B LISS marshalling (ISO/IEC 13886) - A process of collecting actual parameters,
possibly converting them, and assembling them for transfer.

Note (additional) - The definition in this
Technical Report is essentially identical, though
spelled out more in the absence of the full
context of the LIPC standard, and extended (in a
Note) to preparing input values for a service.

c:\... sc22 defs.xls 8/16/2005

Definitions 11

Clause Source Term Definition Notes
B LISS marshalling (ISO/IEC TR 14369) - The process of collecting the actual

parameters used in a procedure call, converting them if
necessary, and assembling them for transfer to the called
procedure. This process is also carried out by the called
procedure when preparing to return the results of the call to the
caller.

B LISS normalized (ISO/IEC 10967-1) - Those values of a floating point type F
that provide the full precision allowed by that type.

B LISS notification (ISO/IEC 10967-1) - The process by which a program (or that
program's user) is informed that an arithmetic exception has
occurred. For example, dividing 2 by 0 results in a
notification.

B LISS operation (ISO/IEC 10967-1) - A function directly available to the user,
as opposed to helper functions or theoretical mathematical
functions.

B LISS order (ISO/IEC 11404) - A mathematical relationship among values. Note (additional) - The LID standard also makes
a cross-reference to its subclause 6.3.2.

B LISS ordered (ISO/IEC 11404) - A property of a datatype which is
determined by the existence and specification of an order
relationship on its value space.

B LISS output parameter (ISO/IEC 13886) - A formal parameter with an attribute
indicating that the corresponding actual parameter is to be
made available to the client procedure on return from the
server procedure.

B LISS outward mapping (ISO/IEC 11404) - A conceptual association between the
internal datatypes of a language and the language-independent
datatypes which identifies each internal datatype with a single
semantically equivalent language- independent datatype.

B LISS parameter (ISO/IEC 13886) - A parameter is used to communicate a
value from a client to a server procedure. The value supplied
by the client is the actual parameter, the formal parameter is
used to identify the received value in the server procedure.

c:\... sc22 defs.xls 8/16/2005

Definitions 12

Clause Source Term Definition Notes
B LISS parametric datatype (ISO/IEC 11404) - A datatype on which a datatype generator

operates to produce a generated datatype.
B LISS parametric value (ISO/IEC 11404) - (1) A value which distinguishes one

member of a datatype family from another, or [CLRF] (2) A
value which is a parameter of a datatype or datatype generator
defined by a type-declaration.

Note (additional) - In relation to type-declaration
the LID standard also makes a cross-reference to
its subclause 9.1.

B LISS partial procedure
closure

(ISO/IEC 13886) - A procedure closure, some of whose global
symbols are not mapped. Procedure closures may be complete,
with all global symbols mapped, or partial with one or more
global symbols not mapped.

B LISS precision (ISO/IEC 10967-1) - The number of digits in the fraction of a
floating point number.

B LISS primitive datatype (ISO/IEC 11404) - An identifiable datatype that cannot be
decomposed into other identifiable datatypes without loss of
all semantics associated with the datatype.

B LISS primitive internal
datatype

(ISO/IEC 11404) - A datatype in a particular programming
language whose values are not viewed as being constructed in
any way from values of other datatypes in the language.

B LISS procedural binding (ISO/IEC TR 10182) - The definition of the interface to a
system facility available to users of a standard programming
language through procedure calls.

B LISS procedural interface
definition language

(ISO/IEC TR 10182) - A language for defining specific
procedures for interfacing to a system facility as used, for
example, in IS 8907 Database Language NDL.

B LISS procedure (ISO/IEC TR 10182) - A general term used in this document to
cover a programming language concept which has different
names in different programming languages - subroutine and
function in Fortran, procedure and function in Pascal, etc. A
procedure is a programming language dependent method for
accessing one or more system functions from a program. A
procedure has a name and a set of formal parameters with
defined datatypes. Invoking a procedure transfers control to
that procedure.

c:\... sc22 defs.xls 8/16/2005

Definitions 13

Clause Source Term Definition Notes
B LISS procedure (ISO/IEC 13886) - The procedure value.
B LISS procedure (ISO/IEC TR 14369) - In this Technical Report, the term

"procedure" is used in the generic sense to cover both those
(sometimes called subroutines) which do not return a value
associated with the procedure name, and those (sometimes
called functions) which do, and hence can be called from
within expressions.

B LISS procedure call (ISO/IEC 13886) - The act of invoking a procedure.
B LISS procedure closure (ISO/IEC 13886) - A pair <procedure image, association>

where the association defines the mapping for the image's
global symbols and no others.

Note (original) - Procedure closures are the
values of procedure type referred to in ISO/IEC
11404 - Language Independent Datatypes.

B LISS procedure execution
context

(ISO/IEC 13886) - For a particular procedure, an instance of
the objects satisfying the external references necessary to allow
the procedure to operate, where these objects have a lifetime
longer than a single call of that procedure.

B LISS procedure image (ISO/IEC 13886) - A representation of a value of a particular
procedure type, which embodies a particular sequence of
instructions to be performed when the procedure is called.

B LISS procedure invocation (ISO/IEC 13886) - The object which represents the triple:
procedure image, execution context, and invocation context.

B LISS procedure name (ISO/IEC 13886) - The name of a procedure within an
interface type definition.

B LISS procedure return (ISO/IEC 13886) - The act of return from the server procedure
with a specific termination.

B LISS procedure type (ISO/IEC 13886) - The family of datatypes each of whose
members is a collection of operations on values of other
datatypes. Note, this is a different definition from procedure
value.

B LISS procedure value (ISO/IEC 13886) - A closed sequence of instructions that is
entered from, and returns control to, an external source.

c:\... sc22 defs.xls 8/16/2005

Definitions 14

Clause Source Term Definition Notes
B LISS processor (ISO/IEC TR 10182) - A system or mechanism that accepts a

program as input, prepares it for execution, and executes the
process so defined with data to produce results.

B LISS processor (ISO/IEC 13886) - A compiler or interpreter working in
combination with a configuration.

B LISS programming language
extensions with native
syntax or native syntax
binding

(ISO/IEC TR 10182) - The functionality of the system
facilities is incorporated into the host programming language
so that the system functions appear as natural parts of the
language. The compiler processes the language extensions and
generates the appropriate calls to the system facility functions.

B LISS representation (ISO/IEC 11404) - (of a language-independent datatype) The
mapping from the value space of the language-independent
datatype to the value space of some internal datatype of a
computer system, file system or communications environment;
(of a value) The image of that value in the representation of
the datatype.

B LISS rounding (ISO/IEC 10967-1) - The act of computing a representable
final result for an operation that is close to the exact (but
unrepresentable) result for that operation. Note that a suitable
representable result may not exist.

B LISS rounding function (ISO/IEC 10967-1) - Any function rnd: R -> X (where X is a
discrete subset of R) that maps each element of X to itself, and
is monotonic non-decreasing. Formally, if x and y are in R, x
in X => rnd(x) = x and x < y => rnd(x) <= rnd(y) Note that if u
in R is between two adjacent values in X, rnd(u) selects one of
those adjacent values.

B LISS round to nearest (ISO/IEC 10967-1) - The property of a rounding function rnd
that when u in R is between two adjacent values in X, rnd(u)
selects the one nearest u. If the adjacent values are equidistant
from u, either may be chosen.

B LISS round toward minus
infinity

(ISO/IEC 10967-1) - The property of a rounding function rnd
that when u in R is between two adjacent values in X, rnd(u)
selects the one less than u.

c:\... sc22 defs.xls 8/16/2005

Definitions 15

Clause Source Term Definition Notes
B LISS round toward zero (ISO/IEC 10967-1) - The property of a rounding function rnd

that when u in R is between two adjacent values in X, rnd(u)
selects the one nearest 0.

B LISS server procedure (ISO/IEC 13886) - The procedure which is invoked by a
procedure call.

B LISS service (ISO/IEC TR 14369) - A facility or set of facilities made
available to service users through an interface.

B LISS service provider (ISO/IEC TR 14369) - A computer system or set of computer
systems that implements a service and makes it available to
service users.

B LISS service user (ISO/IEC TR 14369) - An application (typically a program in
some language) which makes use of a service.

B LISS shall (ISO/IEC 10967-1) - A verbal form used to indicate
requirements strictly to be followed in order to conform to the
standard and from which no deviation is permitted.

B LISS should (ISO/IEC 10967-1) - A verbal form used to indicate that
among several possibilities one is recommended as particularly
suitable, without mentioning or excluding others; or that (in
the negative form) a certain possibility is deprecated but not
prohibited.

c:\... sc22 defs.xls 8/16/2005

Definitions 16

Clause Source Term Definition Notes
B LISS signature (of a function

or operation)
(ISO/IEC 10967-1) - A summary of information about an
operation or function. A signature includes the operation
name, the minimum set of inputs to the operation, and the
maximum set of outputs from the operation (including
exceptional values if any). The signature add_I: I x I -> I U
{integer_overflow} states that the operation named add_I shall
accept any pair of I values as input, and (when given such
input) shall return either a single I value as its output or the
exceptional value integer_overflow. A signature for an
operation or function does not forbid the operation from
accepting a wider range of inputs, nor does it guarantee that
every value in the output range will actually be returned for
some input. An operation given inputs outside the stipulated
input range may produce results outside the stipulated output
range.

B LISS specification language (ISO/IEC TR 14369) - A formal language for defining the
semantics of a service or an interface precisely and without
ambiguity.

B LISS subtype (ISO/IEC 11404) - A datatype derived from another datatype
by restricting the value space to a subset whilst maintaining all
characterizing operations.

B LISS symbol (ISO/IEC 13886) - A program entity used to refer to a value.

B LISS system facility (ISO/IEC TR 10182) - A coherent collection of services to be
made available in some way to an application program. The
system facility may be defined as a set of discrete system
functions with an abstract service interface.

B LISS system facility
committee

(ISO/IEC TR 10182) - The ISO technical subcommittee or
working group responsible for the development of the
functional specification of a system facility.

c:\... sc22 defs.xls 8/16/2005

Definitions 17

Clause Source Term Definition Notes
B LISS system function (ISO/IEC TR 10182) - An individual component of a system

facility, which normally has an identifying title and possibly
some parameters. A system function's actions are defined by
its relationships to other system functions in the same system
facility.

B LISS termination (ISO/IEC 13886) - A predefined status related to the
completion of a procedure call.

B LISS unmarshalling (ISO/IEC 13886) - The process of disassembling the
transferred parameters, possibly converting them, for use by
the server procedure on invocation or by the client procedure
upon procedure return.

Note (additional) - The definition in this
Technical Report is essentially identical, though
spelled out more in the absence of the full
context of the LIPC standard, and extended (in a
Note) to receipt of input values by a service.

B LISS unmarshalling (ISO/IEC TR 14369) - The process of receiving and
disassembling transferred parameters, and converting them if
necessary, to prepare the values for further use. This process
is carried out by the called procedure on receipt of the actual
parameters for the call, and by the caller on receipt of the
returned results of the call.

B LISS upper bound (ISO/IEC 11404) - In a datatype which is bounded above, the
value U such that, for all values s in the value space, s<=U.

B LISS value (ISO/IEC 13886) - The set Value contains all the values that
might arise in a program execution.

B LISS value space (ISO/IEC 11404) - The set of values for a given datatype.
B LISS variable (ISO/IEC 11404) - A computational object to which a value of

a particular datatype is associated at any given time; and to
which different values of the same datatype may be associated
at different times.

B LISS Z (ISO/IEC TR 14369) - (1) (mathematics, e.g. ISO/IEC 10967-
1:1993) the complex numbers [CLRF] (2) (pronounced "zed")
a formal specification language, see ISO/IEC WD 13568.

3. 1 Prolog A: The set of atoms (see 6.1.2b, 7.1.4).
3. 2 Prolog activation: The process of executing an activator .

c:\... sc22 defs.xls 8/16/2005

Definitions 18

Clause Source Term Definition Notes
3. 3 Prolog activator: The result of preparing a goal for execution (see 7.7.3).
3. 4 Prolog algorithm, Herbrand: See 3.85 --- Herbrand algorithm.

3. 5 Prolog alias: An atom associated with an open stream (see 7.10.2.2). The
standard input stream has the alias user_input, and the
standard output stream has the alias user_output(see
7.10.2.3).

NOTE – A stream can have many aliases, but an
atom can be the alias of at most one stream .

3. 6 Prolog anonymous variable: A variable (represented in a term or Prolog text by _ which
differs from every other variable (and anonymous variable
(see 6.1.2,6.4.3).

3. 7 Prolog argument: A term which is associated with a predication or compound
term .

3. 8 Prolog arithmetic data type: A data type whose values are members of ZZ or RR.
3. 9 Prolog arity: The number of arguments of a compound term . Syntactically,

a non-negative integer associated with a functor or predicate .

3. 10 Prolog assert, to: To assert a clause is to add it to the user-defined procedure in
the database defined by the predicate of that clause .

NOTE – It is unnecessary for the user-defined
procedure to already exist.

3. 11 Prolog associativity (of an
operator):

Property of being non-associative, right-associative, or left-
associative (see 6.3.4, table 4).

3. 12 Prolog atom: A basic object, denoted by an identifier (see 6.1.2b, 7.1.4).

3. 13 Prolog atom, null: See 3.117 --- null atom.
3. 14 Prolog atom, one-char: See 3.119 --- one-char atom.
3. 15 Prolog atomic term: An atom or a number .
3. 16 Prolog axiom: A rule satisfied by an operation and all values of the data type

to which the operation belongs.
3. 17 Prolog backtrack, to: To return to the choicepoint of the current goal in order to

attempt to re-execute it (see 7.7.8).
3. 18 Prolog bias, exponent: See 3.68 --- exponent bias.
3. 19 Prolog body: A goal , distinguished by its context as part of a rule (see

3.154).
3. 20 Prolog bootstrapped (built-in

predicate):
Defined as a special case of a more general built-in predicate
(see 8.1.5).

c:\... sc22 defs.xls 8/16/2005

Definitions 19

Clause Source Term Definition Notes
3. 21 Prolog built-in predicate: A procedure whose execution is implemented by the

processor (see 8).
3. 22 Prolog byte: An integer in the range [0 .. 255] (see 7.1.2.1).
3. 23 Prolog C: The set of characters (see 7.1.4.1).
3. 24 Prolog callable term: An atom or a compound term .
3. 25 Prolog CC: The set of character codes (see 7.1.2.2).
3. 26 Prolog character: A member of C --- an implementation defined character set

(see 6.5, 7.1.4.1).
3. 27 Prolog character, quoted: See 3.144 --- quoted character.
3. 28 Prolog character, unquoted: See 3.194 --- unquoted character.
3. 29 Prolog character-conversion

mapping:
A mapping on the set of characters , C , which specifies that,
in some Prolog text units and sources , some characters are
intended to be equivalent to other characters , and converted
to those characters (see 3.46, 7.4.2.5, 8.14.5).

3. 30 Prolog choicepoint: A state during execution from which a goal can be executed
in more than one way.

3. 31 Prolog class (of an operator): The class of an operator defines whether it is a prefix, infix,
or postfix operator (see 6.3.4).

3. 32 Prolog clause: A fact or a rule . It has two parts: a head , and a body . NOTE – In ISO/IEC International Standards “clause”
has the meaning: one of the numbered paragraphs of a
standard. In this part of ISO/IEC 13211, the context
distinguishes the two meanings.

3. 33 Prolog clause-term: A read-term T. in Prolog text where T does not have principal
functor (:-)/1 (see 6.2.1.2).

3. 34 Prolog collating sequence: An implementation defined ordering defined on the set C of
characters (see 6.6).

3. 35 Prolog complete database: The set of procedures with respect to which execution is
performed (see 7.5).

3. 36 Prolog composition (of two
substitutions:

The mapping resulting from the application of the first
substitution followed by the application of the second.
Composition of the substitutions §1 and §2 is denoted §1 ° §2.
When the composition acts on a term t , it is denoted by t §1 °
§2, with the meaning ((t §1) §2).

c:\... sc22 defs.xls 8/16/2005

Definitions 20

Clause Source Term Definition Notes
3. 37 Prolog compound term: A functor of arity N, N positive, together with a sequence of

N arguments (see 6.1.2e, 7.1.5)
3. 38 Prolog configuration: Host and target computers, any operating system(s) and

software used to operate a processor .
3. 39 Prolog conforming

processor:
A processor which conforms to all the compliance clauses
(see 5.1) for processors in this part of ISO/IEC 13211.

3. 40 Prolog conforming Prolog
data:

Sequences of characters and bytes that conform to all the
compliance clauses for Prolog data in this part of ISO/IEC
13211 (see 5, 6.2.2).

3. 41 Prolog conforming Prolog
text:

A sequence of characters that conforms to all the compliance
clauses for Prolog text in this part of ISO/IEC 13211 (see 5,
6.2).

3. 42 Prolog construct, control: See 3.45 --- control construct.
3. 43 Prolog constructor, list: See 3.100 --- list constructor.
3. 44 Prolog contain, to: A term T1 contains another term T2 if either T1 and T2 are

identical terms , or T1 is a compound term , one of whose
arguments contains T2.

3. 45 Prolog control construct: A procedure whose definition is part of the Prolog processor
(see7.8).

c:\... sc22 defs.xls 8/16/2005

Definitions 21

Clause Source Term Definition Notes
3. 46 Prolog ConvC:: The character-conversion mapping on C (the set of

characters) which specifies that, in some Prolog text units
and sources , some characters are converted to other
characters (see 3.29, 7.4.2.5, 8.14.5). The initial value of
Conv C shall be identity_mapping C .

NOTES [CRLF] 1 A directive or goal
char_conversion(In, Out) (7.4.2.5, 8.14.5)
replaces Conv C by update_mapping C (In, Out,
Conv C). [CRLF] 2 Any unquoted character C that is
part of a read-term which is input by read_term/3
(8.14.1) or as Prolog text is replaced by
apply_mapping C (C, Conv C). [CRLF] 3 Conv C can
be inspected by calling
current_char_conversion/2 (8.14.6). [CRLF] 4
The rationale for providing this facility is because
some extended character sets (for example, Japanese
JIS charactersets) are used with the basic character set
and contain the characters equivalent to those in the
basic character set with different encoding. In such
cases, users will often wish the meaning of characters
in Prolog data and Prolog text to be the same
regardless of the encoding.

3. 47 Prolog convert (from type A
to type B):

An operation whose signature is [CRLF] convert A→B :A→
B ∪ {error} [CRLF] which value of type A to typeB . It shall
be an error if the conversion cannot be made. For example, see
converting a term to a clause and vice versa (7.6), character-
conversion (3.29, 7.4.2.5, 8.14.5), and converting a floating
point value to an integer value and vice versa (9.1.6).

3. 48 Prolog copy, renamed (of a
term):

See 3.150 --- renamed copy (of a term).

3. 49 Prolog CT: The set of compound terms (see 6.1.2e, 7.1.5).
3. 50 Prolog cut: A control construct whose effect is to remove all choicepoints

back to a deeper execution state defined by its cutparent (see
7.7.2, 7.8.4).

3. 51 Prolog data, conforming
Prolog:

See 3.40 --- conforming Prolog data.

3. 52 Prolog database: The set of user-defined procedures which currently exist
during execution (see 7.5).

3. 53 Prolog database, complete: See 3.35 --- complete database.

c:\... sc22 defs.xls 8/16/2005

Definitions 22

Clause Source Term Definition Notes
3. 54 Prolog data type: A set of values and a set of operations that manipulate those

values.
3. 55 Prolog data type, arithmetic: See 3.8 --- arithmetic data type.
3. 56 Prolog denormalized value: A floating point value of type F providing less than the full

precision allowed by F (see F D , 7.1.3).
3. 57 Prolog directive: A term D which affects the meaning of Prolog text (see

7.4.2), and is denoted in that Prolog text by a directive-term :-
(D).

3. 58 Prolog directive-term: A read-term T. in Prolog text where T has principal functor
(:-)/1 (see 6.2.1.1).

3. 59 Prolog dynamic (of a
procedure):

A dynamic procedure is one whose clauses can be inspected
or altered during execution, for example by asserting or
retracting * clauses (see 7.5.2).

3. 60 Prolog effect, side: 3.157 --- side effect.
3. 61 Prolog element (of a list): An element of a non-empty list is either the head of the list or

an element of the tail of the list . The empty list has no
elements.

3. 62 Prolog empty list: The atom [] (nil).
3. 63 Prolog error: A special circumstance which causes the normal process of

execution to be interrupted (see 7.12).
3. 64 Prolog evaluable functor: The principal functor of an expression (see 7.9, 9).
3. 65 Prolog evaluate: To reduce an expression to its value. (see 7.9, 8.6.1. 9).
3. 66 Prolog exceptional value: A non-numeric value of an expression : float_overflow,

int_overflow, underflow, zero_divisor, or undefined (see
7.9).

NOTE – It is an evaluation_error(E) when the
value of an expression is an exceptional value.

3. 67 Prolog execution (verb: to
execute):

The process by which a Prolog processor tries to satisfy a
goal (see 7.7).

3. 68 Prolog exponent bias: A number added to the exponent of a floating point number,
usually to convert the exponent to an unsigned integer.

3. 69 Prolog expression: An atomic term or a compound term which may be evaluated
to produce a value (see 8.6.1, 9).

c:\... sc22 defs.xls 8/16/2005

Definitions 23

Clause Source Term Definition Notes
3. 70 Prolog extension: A facility provided by the processor that is not specified in

this part of ISO/IEC 13211 but that would not cause any
ambiguity or contradiction if added to this part of ISO/IEC
13211.

3. 71 Prolog F: The set of floating point values (see 6.1.2d, 7.1.3).
3. 72 Prolog fact: A clause whose body is the goal true. NOTE – A fact can be represented in Prolog text by a

term whose principal functor is neither (:-)/1 nor (:-
)/2.

3. 73 Prolog fail, to: Execution of a goal fails if it is not satisfied .
3. 74 Prolog file name: An implementation defined * ground term which identifies to

the processor a file which will be used for input/output during
the execution of the Prolog text .

3. 75 Prolog flag: An atom which is associated with an implementation defined
or user-defined value (see 7.11).

3. 76 Prolog floating point value: A member of the set F (see 6.1.2d, 7.1.3).
3. 77 Prolog functor: An identifier together with an arity .
3. 78 Prolog functor name: The identifier of a functor .
3. 79 Prolog function, rounding: See 3.153 --- rounding function.
3. 80 Prolog functor, principal: See 3.134 --- principal functor.
3. 81 Prolog goal: A predication which is to be executed (see body , query , and

7.7.3).
3. 82 Prolog ground term: An atomic term or a compound term whose arguments are all

ground. A term is ground with respect to a substitution if
application of the substitution yields a ground term.

3. 83 Prolog head (of a list): The first argument of a non-empty list .
3. 84 Prolog head (of a rule): A predication , distinguished by its context.
3. 85 Prolog Herbrand algorithm: An algorithm which computes the most general unifier MGU

of a set of equations (see 7.3.2).
3. 86 Prolog I: The set of integers (see 6.1.2c, 7.1.2).
3. 87 Prolog identical terms: Two terms are identical if they have the same abstract syntax

(see 6.1.2).
3. 88 Prolog identifier: A basic unstructured object used to denote an atom , functor

name or predicate name .
3. 89 Prolog iff: If and only if.

c:\... sc22 defs.xls 8/16/2005

Definitions 24

Clause Source Term Definition Notes
3. 90 Prolog implementation

defined:
Defined partly by this part of ISO/IEC 13211, and partly by
the documentation accompanying a processor (see 5).

3. 91 Prolog implementation
dependent:

An implementation dependent feature is dependent on the
processor .

NOTE – This part of ISO/IEC 13211 does not require
an implementation dependent feature to be defined in
the accompanying processor documentation.

3. 92 Prolog implementation
specific:

Undefined by this part of ISO/IEC 13211 but supported by a
conforming processor .

NOTE – This part of ISO/IEC 13211 does not require
an implementation specific feature to be supported by
a conforming processor, but it preserves the syntax and
semantics of a strictly conforming Prolog text which
does not use it, for example, defining a term order on
variables, or defining unification for terms which are
STO (3.165).

3. 93 Prolog indicator, predicate: See 3.131 --- { predicate indicator.
3. 94 Prolog input/output mode: An atom which represents an attribute of a stream . A

processor shall support the input/output modes : read, write,
append (see 8.11.5, 7.10.1.1).

3. 95 Prolog instance (of a term): The result of applying a substitution to the term . If t is a term
and § a substitution , the instance of t by § is denoted t §.

3. 96 Prolog instantiated: A variable is instantiated with respect to a substitution if
application of the substitution yields an atomic term or a
compound term . A term is instantiated if any of its variables
are instantiated.

3. 97 Prolog integer value: A member of the set I (see 6.1.2c, 7.1.2).
3. 98 Prolog level, top: See 3.185 --- top level.
3. 99 Prolog list: Either the empty list or a non-empty list . NOTE – Examples: [], [a, X], [1, 2, _], [a |

[b]]

3. 100 Prolog list constructor: The principal functor '.'/2 used for constructing lists .
3. 101 Prolog list, empty: See 3.62 --- empty list.
3. 102 Prolog list, non-empty: See 3.114 --- non-empty list.
3. 103 Prolog list, partial: See 3.125 --- partial list.
3. 104 Prolog list, read-options: See 3.147 --- read-options list.
3. 105 Prolog list, write-options: See 3.207 --- write-options list.

c:\... sc22 defs.xls 8/16/2005

Definitions 25

Clause Source Term Definition Notes
3. 106 Prolog mapping: A data type M T where T is a data type (see 4.3).
3. 107 Prolog mode, input/output: See 3.94 --- input/output mode.
3. 108 Prolog most general unifier

(MGU):
The most general unifier (MGU) of terms is a minimal
substitution which acts on the terms to make them identical .
Any unifier is an instance of some MGU .

NOTE – It is defined up to a renaming of the
variables . If idempotent no variable of its domain
appears in the resulting terms . An idempotent MGU
can be computed by the Herbrand algorithm (see
7.3.2).

3. 109 Prolog name (of atom): A sequence of characters which distinguishes an atom from
any different atom (see 6.1.2b).

3. 110 Prolog name, file: See 3.74 --- file name.
3. 111 Prolog name, functor: See 3.78 --- functor name.
3. 112 Prolog name, predicate: See 3.132 --- predicate name.
3. 113 Prolog named variable: A variable which is not an anonymous variable (see 6.1.2a,

6.4.3).
3. 114 Prolog non-empty list: A compound term whose principal functor is the list

constructor and whose second argument is a list .
3. 115 Prolog normalized value: A floating point value of type F providing the full precision

allowed by F (see 7.1.3).
3. 116 Prolog NSTO: Not subject to occurs-check (see 7.3.3).
3. 117 Prolog null atom: The atom ''.
3. 118 Prolog number: An integer value or floating point value .
3. 119 Prolog one-char atom: An atom whose name is a single character .
3. 120 Prolog operand (of a

compound term or
predication):

An argument of a compound term (predication) whose
functor name (predicate name) is an operator .

3. 121 Prolog operand (of an
operation):

A value supplied to an operation defined by a signature and
one or more axioms .

3. 122 Prolog operator: A functor name or predicate name which allows compound
terms or predications respectively, to be expressed in prefix,
infix or postfix form (see 6.3.4).

3. 123 Prolog operator, predefined: See 3.128 --- predefined operator.
3. 124 Prolog options, stream: See 3.167 --- stream-options.
3. 125 Prolog partial list: A variable , or a compound term whose principal functor is

the list constructor and whose second argument is a partial
list.

NOTE – The concept of a partial list is used in 8.5.3.
Examples: A , [a | X], [1, 2 | B]

c:\... sc22 defs.xls 8/16/2005

Definitions 26

Clause Source Term Definition Notes
3. 126 Prolog position, stream: See 3.168 --- stream position.
3. 127 Prolog precision: The number of digits in the fraction of a floating point value

(see 7.1.3).
3. 128 Prolog predefined operator: An operator which is initially provided by the processor .

3. 129 Prolog predicate: An identifier together with an arity .
3. 130 Prolog predicate, built-in: See 3.21 --- built-in predicate.
3. 131 Prolog predicate indicator: A compound term A/N, where A is an atom and N is a non-

negative integer, denoting one particular procedure (see
7.1.6.6).

3. 132 Prolog predicate name: The identifier of a predicate .
3. 133 Prolog predication: A predicate with arity N and a sequence of N arguments .

3. 134 Prolog principal functor: The principal functor of a compound term is F/N if the
functor of the compound term is F and its arity is N. The
principal functor of an atomic term is C/0 if the atomic term
is C.

3. 135 Prolog private (of a
procedure):

A private procedure is one whose clauses cannot be inspected
during execution . (see 7.5.3).

3. 136 Prolog procedure: A control construct , a built-in predicate , or a user-defined
procedure . A procedure is either static or dynamic . A
procedure is either pr ivate or public (see 7.5).

3. 137 Prolog procedure, user-
defined:

See 3.195 --- user-defined procedure.

3. 138 Prolog processor: A compiler or interpreter working in combination with a
configuration .

3. 139 Prolog processor,
conforming:

See 3.39 --- conforming processor.

3. 140 Prolog Prolog data: A sequence of read-terms (see 6.2.2).
3. 141 Prolog Prolog text: A sequence of read-terms denoting directives and clauses

(see 6.2, 7.4).
3. 142 Prolog public (of a

procedure):
A public procedure is one whose clauses can be inspected
during execution , for example by calling the built-in
predicate : clause/2 (see 7.5.3, 8.8.1).

c:\... sc22 defs.xls 8/16/2005

Definitions 27

Clause Source Term Definition Notes
3. 143 Prolog query: A goal given as interactive input to the top level . NOTE – This part of ISO/IEC 13211 does not define

or require a processor to support the concept of top
level .

3. 144 Prolog quoted character: A character in Prolog text or Prolog data which is a single
quoted character or a double quoted character or a back
quoted character (see 6.4.2.1).

NOTE – For example, 'a''b\'c' contains 5 quoted
characters (1) a, (2) ', (3) b, (4) ' (a meta escape
sequence), (5) c.

3. 145 Prolog R: The set of real numbers (see 4.1.1).
3. 146 Prolog read-option: A compound term with uninstantiated * arguments which

amplifies the results produced by the built-in predicate
read_term/3 (8.14.1) and the bootstrapped * built-in
predicates based on it (see 7.10.3).

3. 147 Prolog read-options list: A list of read-options .
3. 148 Prolog read-term: A term followed by an end token (see 6.2.2, 6.4.8).
3. 149 Prolog re-execute, to: To re-execute a goal is to attempt to satisfy it again (see 7.7.6,

7.7.8).
3. 150 Prolog renamed copy (of a

term)
A special variant of a term (see 7.1.6.2).

3. 151 Prolog retract, to: To retract a clause is to remove it from the user-defined
procedure in the database defined by the predicate of that
clause .

3. 152 Prolog rounding: Computing a representable final value (for an operation) which
is close to the exact (but unrepresentable) value for that
operation (see 9.1.3.1, 9.1.4.1).

3. 153 Prolog rounding function: A function with signature : rnd : R ® X [CRLF] (where X is
a discrete subset of R) which maps each member of X to itself,
and is monotonic non-decreasing. Formally, if x and y are in
R , [CRLF] x Î X Þ rnd(x) =x [CRLF] x < y Þ rnd(x) < rnd(y)

NOTE – If u ∈ R is between two adjacent values in X ,
rnd(u) selects one of those adjacent values.

3. 154 Prolog rule: A clause whose body is not the goal true. During execution ,
if the body is true for some substitution , then the head is also
true for that substitution . A rule is represented in Prolog text
by a term whose principal functor is (:-)/2 where the first
argument is converted to the head , and the second argument
is converted to the body .

c:\... sc22 defs.xls 8/16/2005

Definitions 28

Clause Source Term Definition Notes
3. 155 Prolog satisfy, to: To satisfy a goal is to execute it successfully.
3. 156 Prolog sequence, collating: See 3.34 --- collating sequence.
3. 157 Prolog side effect: A non-logical effect of an activator during execution (see

7.7.9).
3. 158 Prolog signature: A specification of an operation which defines its name, and

the type of its operands(s) and value.
NOTE – The operation is further defined by one or
more axioms . For example, the signature: [CRLF]
add I : I × I → I ∪ {int_overflow} [CRLF]
defines the operation add I which takes two integer
operands I × I and produces either a single integer
value (I) or the exceptional value int_overflow.

3. 159 Prolog sink: A physical object to which a processor outputs results, for
example a file, terminal, or interprocess communication
channel (see 7.10.1).

3. 160 Prolog source: A physical object from which a processor inputs data, for
example a file, terminal, or interprocess communication
channel (see 7.10.1).

3. 161 Prolog source/sink: A source or a sink .
3. 162 Prolog specifier (of an

operator):
One of the atoms fx, fy, xfx, xfy, yfx, xf or yf. A specifier
denotes the class and associativity of an operator (see 6.3.4).

3. 163 Prolog stack: A data type S_D where D is a data type (see 4.2).
3. 164 Prolog static (of a

procedure):
A static procedure is one whose clauses cannot be altered
(see 7.5.2).

3. 165 Prolog STO: Subject to occurs-check (see 7.3.3).
3. 166 Prolog stream: A connection to a source or sink (see 7.10.2).
3. 167 Prolog stream-options: A list of zero or more terms which specify additional

characteristics over and above those given by the mode of a
stream (see 7.10.2.11).

3. 168 Prolog stream position: An absolute position in a source /sink to which the stream is
connected (see 7.10.2.8).

3. 169 Prolog stream, target: See 7.10.2.5 --- Target stream.
3. 170 Prolog stream-term: An implementation dependent * ground term which

identifies a stream inside Prolog text (see 7.10.2.1).

c:\... sc22 defs.xls 8/16/2005

Definitions 29

Clause Source Term Definition Notes
3. 171 Prolog substitution: A mapping from variables to terms . By extension a

substitution acts on a term by acting on each variable in the
term .

NOTE – A substitution is represented by a Greek letter
(for example Σ, σ, µ) acting as a postfix operator , for
example:

3. 172 Prolog succeed, to: Execution of a goal succeeds if it is satisfied .
3. 173 Prolog tail: The second argument of a non-empty list .
3. 174 Prolog target stream: See 7.10.2.5 --- Target stream.
3. 175 Prolog term: An atomic term , a compound term or a variable (see 7.1).

3. 176 Prolog term, atomic: See 3.15 --- atomic term.
3. 177 Prolog term, callable: See 3.24 --- callable term.
3. 178 Prolog term, compound: See 3.37 --- compound term.
3. 179 Prolog term, ground: See 3.82 --- ground term.
3. 180 Prolog terms, identical: See 3.87 --- identical terms.
3. 181 Prolog term-precedes: A binary relation on the set of terms which defines a total

ordering of terms (see 7.2).
3. 182 Prolog term, stream: See 3.170 --- stream-term.
3. 183 Prolog text, conforming

Prolog:
See 3.41 --- conforming Prolog text.

3. 184 Prolog text, Prolog: See 3.141 --- Prolog text.
3. 185 Prolog top level: A process whereby a Prolog processor repeatedly inputs and

executes * queries .
NOTE – This part of ISO/IEC 13211 does not define
or require a processor to support the concept of top
level.

3. 186 Prolog type: The type of a term is a property of the term depending on its
syntax and is one of: atom, integer, floating point, variable or
compound term (see 7.1).

3. 187 Prolog type, data: See 3.54 --- data type.
3. 188 Prolog undefined: A feature is undefined if this part of ISO/IEC 13211 (1) states

it is undefined, or (2) makes no requirements concerning its
execution .

3. 189 Prolog unifiable: Two or more terms are unifiable iff there exists a unifier for
them.

3. 190 Prolog unifier (of two or
more terms):

A substitution such that applying this substitution to each
term results in identical terms.

3. 191 Prolog unifier, most general: See 3.108 --- most general unifier.

c:\... sc22 defs.xls 8/16/2005

Definitions 30

Clause Source Term Definition Notes
3. 192 Prolog unify, to: To find and apply a most general unifier of two terms by

successfully executing (explicitly or implicitly) the built-in
predicate (=)/2 (unify) (see 8.2.1).

3. 193 Prolog uninstantiated: A var iable is uninstantiated when it is not instantiated .
3. 194 Prolog unquoted character: A character in Prolog text or Prolog data which is not a

quoted character (see 6.4.2.1).
3. 195 Prolog user-defined

procedure:
A procedure which is defined by a sequence of clauses where
the head of each clause has the same predicate indicator , and
each clause is expressed by Prolog text or has been asserted
during execution (see 8.9).

3. 196 Prolog V: The set of variables , (see 6.1.2a, 7.1.1).
3. 197 Prolog value, denormalized: See 3.56 --- denormalized value.
3. 198 Prolog value, exceptional: See 3.66 --- exceptional value.
3. 199 Prolog value, normalized: See 3.115 --- normalized value.
3. 200 Prolog variable: An object which may become instantiated to a term during

execution . (see 6.1.2a, 7.1.1).
3. 201 Prolog variable, anonymous: See 3.6 – anonymous variable.
3. 202 Prolog variable, named: See 3.113 --- named variable.
3. 203 Prolog variable set (of a

term):
See 7.1.1.1 --- Variable set of a term.

3. 204 Prolog variant (of a term): See 7.1.6.1 --- Variants of a term.
3. 205 Prolog witness (of a set of

variables):
See 7.1.1.2 --- Witness of a variable set.

3. 206 Prolog write-option: A ground term that controls the output produced by the built-
in predicate write_term/3 (8.14.2) and its bootstrapped *
built-in predicates (see 7.10.4, 7.1.4.2).

3. 207 Prolog write-options list: A list of write-options .
3. 208 Prolog Z: The set of mathematical integers (see 4.1.1).
3. POSIX Definitions For the purposes of IEEE Std 1003.1-2001, the terms

and definitions given in Definitions apply.
Note: No shading to denote
extensions or options occurs in this
chapter. Where the terms and
definitions given in this chapter are
used elsewhere in text related to
extensions and options, they are
shaded as appropriate.

c:\... sc22 defs.xls 8/16/2005

Definitions 31

Clause Source Term Definition Notes
3. 1 POSIX Abortive Release An abrupt termination of a network connection

that may result in the loss of data.

3. 2 POSIX Absolute Pathname A pathname beginning with a single or more than two
slashes; see also Pathname.

Note: Pathname Resolution is defined in
detail in Pathname Resolution.

3. 3 POSIX Access Mode A particular form of access permitted to a file.

3. 4 POSIX Additional File
Access Control
Mechanism

An implementation-defined mechanism that is
layered upon the access control mechanisms
defined here, but which do not grant permissions
beyond those defined herein, although they may
further restrict them.

Note: File Access Permissions are defined
in detail in File Access Permissions.

3. 5 POSIX Address Space The memory locations that can be referenced by
a process or the threads of a process.

3. 6 POSIX Advisory
Information

An interface that advises the implementation on
(portable) application behavior so that it can
optimize the system.

3. 7 POSIX Affirmative
Response

An input string that matches one of the
responses acceptable to the LC_MESSAGES
category keyword yesexpr, matching an
extended regular expression in the current locale.

Note: The LC_MESSAGES category is
defined in detail in LC_MESSAGES.

3. 8 POSIX Alert To cause the user's terminal to give some audible
or visual indication that an error or some other
event has occurred. When the standard output is
directed to a terminal device, the method for
alerting the terminal user is unspecified. When
the standard output is not directed to a terminal
device, the alert is accomplished by writing the
<alert> to standard output (unless the utility
description indicates that the use of standard
output produces undefined results in this case).

c:\... sc22 defs.xls 8/16/2005

Definitions 32

Clause Source Term Definition Notes
3. 9 POSIX Alert Character

(<alert>)
A character that in the output stream should
cause a terminal to alert its user via a visual or
audible notification. It is the character designated
by '\a' in the C language. It is unspecified
whether this character is the exact sequence
transmitted to an output device by the system to
accomplish the alert function.

3. 10 POSIX Alias Name In the shell command language, a word
consisting solely of underscores, digits, and
alphabetics from the portable character set and
any of the following characters: '!', '%', ',',
'@'. Implementations may allow other characters
within alias names as an extension.

Note: The Portable Character Set is defined
in detail in Portable Character Set.

3. 11 POSIX Alignment A requirement that objects of a particular type be
located on storage boundaries with addresses
that are particular multiples of a byte address.

Note: See also the ISO C standard,
Section B3.

3. 12 POSIX Alternate File
Access Control
Mechanism

An implementation-defined mechanism that is
independent of the access control mechanisms
defined herein, and which if enabled on a file
may either restrict or extend the permissions of a
given user. IEEE Std 1003.1-2001 defines when
such mechanisms can be enabled and when they
are disabled.

Note: File Access Permissions are defined
in detail in File Access Permissions.

3. 13 POSIX Alternate Signal
Stack

Memory associated with a thread, established
upon request by the implementation for a thread,
separate from the thread signal stack, in which
signal handlers responding to signals sent to that
thread may be executed.

c:\... sc22 defs.xls 8/16/2005

Definitions 33

Clause Source Term Definition Notes
3. 14 POSIX Ancillary Data Protocol-specific, local system-specific, or

optional information. The information can be both
local or end-to-end significant, header
information, part of a data portion, protocol-
specific, and implementation or system-specific.

3. 15 POSIX Angle Brackets The characters '<' (left-angle-bracket) and '>'
(right-angle-bracket). When used in the phrase
"enclosed in angle brackets", the symbol '<'
immediately precedes the object to be enclosed,
and '>' immediately follows it. When describing
these characters in the portable character set,
the names <less-than-sign> and <greater-than-
sign> are used.

3. 16 POSIX Application A computer program that performs some desired
function.

3. 17 POSIX Application
Address

Endpoint address of a specific application.

3. 18 POSIX Application
Program Interface
(API)

The definition of syntax and semantics for
providing computer system services.

3. 19 POSIX Appropriate
Privileges

An implementation-defined means of associating
privileges with a process with regard to the
function calls, function call options, and the
commands that need special privileges. There
may be zero or more such means. These means
(or lack thereof) are described in the
conformance document.

Note: Function calls are defined in the
System Interfaces volume of
IEEE Std 1003.1-2001, and
commands are defined in the Shell
and Utilities volume of
IEEE Std 1003.1-2001.

c:\... sc22 defs.xls 8/16/2005

Definitions 34

Clause Source Term Definition Notes
3. 20 POSIX Argument In the shell command language, a parameter

passed to a utility as the equivalent of a single
string in the argv array created by one of the
exec functions. An argument is one of the
options, option-arguments, or operands following
the command name.

Note: The Utility Argument Syntax is
defined in detail in Utility Argument
Syntax and the Shell and Utilities
volume of IEEE Std 1003.1-2001,
Section 2.9.1.1, Command Search and
Execution. In the C language, an
expression in a function call
expression or a sequence of
preprocessing tokens in a function-like
macro invocation.

3. 21 POSIX Arm (a Timer) To start a timer measuring the passage of time,
enabling notifying a process when the specified
time or time interval has passed.

3. 22 POSIX Asterisk The character '*'.
3. 23 POSIX Async-Cancel-Safe

Function
A function that may be safely invoked by an
application while the asynchronous form of
cancellation is enabled. No function is async-
cancel-safe unless explicitly described as such.

3. 24 POSIX Asynchronous
Events

Events that occur independently of the execution
of the application.

3. 25 POSIX Asynchronous
Input and Output

A functionality enhancement to allow an
application process to queue data input and
output commands with asynchronous notification
of completion.

3. 26 POSIX Async-Signal-Safe
Function

A function that may be invoked, without
restriction, from signal-catching functions. No
function is async-signal-safe unless explicitly
described as such.

c:\... sc22 defs.xls 8/16/2005

Definitions 35

Clause Source Term Definition Notes
3. 27 POSIX Asynchronously-

Generated Signal
A signal that is not attributable to a specific thread.
Examples are signals sent via kill(), signals sent from the
keyboard, and signals delivered to process groups.
Being asynchronous is a property of how the signal was
generated and not a property of the signal number. All
signals may be generated asynchronously.

Note: The kill() function is defined in detail in
the System Interfaces volume of
IEEE Std 1003.1-2001.

3. 28 POSIX Asynchronous I/O
Completion

For an asynchronous read or write operation,
when a corresponding synchronous read or write
would have completed and when any associated
status fields have been updated.

3. 29 POSIX Asynchronous I/O
Operation

An I/O operation that does not of itself cause the
thread requesting the I/O to be blocked from
further use of the processor. This implies that the
process and the I/O operation may be running
concurrently.

3. 30 POSIX Authentication The process of validating a user or process to
verify that the user or process is not a
counterfeit.

3. 31 POSIX Authorization The process of verifying that a user or process
has permission to use a resource in the manner
requested. To ensure security, the user or
process would also need to be authenticated
before granting access.

3. 32 POSIX Background Job See Background Process Group in Background Process
Group (or Background Job).

3. 33 POSIX Background
Process

A process that is a member of a background
process group.

3. 34 POSIX Background
Process Group (or
Background Job)

Any process group, other than a foreground
process group, that is a member of a session that
has established a connection with a controlling
terminal.

3. 35 POSIX Backquote The character '`', also known as a grave accent.

c:\... sc22 defs.xls 8/16/2005

Definitions 36

Clause Source Term Definition Notes
3. 36 POSIX Backslash The character '\', also known as a reverse

solidus.
3. 37 POSIX Backspace

Character
(<backspace>)

A character that, in the output stream, should
cause printing (or displaying) to occur one
column position previous to the position about to
be printed. If the position about to be printed is
at the beginning of the current line, the behavior
is unspecified. It is the character designated by
'\b' in the C language. It is unspecified whether
this character is the exact sequence transmitted
to an output device by the system to accomplish
the backspace function. The <backspace>
defined here is not necessarily the ERASE special
character.

Note: Special Characters are defined in
detail in Special Characters.

3. 38 POSIX Barrier A synchronization object that allows multiple
threads to synchronize at a particular point in
their execution.

3. 39 POSIX Base Character One of the set of characters defined in the Latin
alphabet. In Western European languages other
than English, these characters are commonly
used with diacritical marks (accents, cedilla, and
so on) to extend the range of characters in an
alphabet.

3. 40 POSIX Basename The final, or only, filename in a pathname.
3. 41 POSIX Basic Regular

Expression (BRE)
A regular expression (see Regular Expression) used by
the majority of utilities that select strings from a set of
character strings.

Note: Basic Regular Expressions are
described in detail in Basic Regular
Expressions .

3. 42 POSIX Batch Access List A list of user IDs and group IDs of those users
and groups authorized to place batch jobs in a
batch queue. A batch access list is associated
with a batch queue. A batch server uses the
batch access list of a batch queue as one of the
criteria in deciding to put a batch job in a batch
queue.

c:\... sc22 defs.xls 8/16/2005

Definitions 37

Clause Source Term Definition Notes
3. 43 POSIX Batch

Administrator
A user that is authorized to modify all the
attributes of queues and jobs and to change the
status of a batch server.

3. 44 POSIX Batch Client A computational entity that utilizes batch services
by making requests of batch servers. Batch
clients often provide the means by which users
access batch services, although a batch server
may act as a batch client by virtue of making
requests of another batch server.

3. 45 POSIX Batch Destination The batch server in a batch system to which a
batch job should be sent for processing.
Acceptance of a batch job at a batch destination
is the responsibility of a receiving batch server. A
batch destination may consist of a batch server-
specific portion, a network-wide portion, or both.
The batch server-specific portion is referred to as
the "batch queue". The network-wide portion is
referred to as a "batch server name".

3. 46 POSIX Batch Destination
Identifier

A string that identifies a specific batch
destination. A string of characters in the portable
character set used to specify a particular batch
destination.

Note: The Portable Character Set is defined
in detail in Portable Character Set.

3. 47 POSIX Batch Directive A line from a file that is interpreted by the batch server.
The line is usually in the form of a comment and is an
additional means of passing options to the qsub utility.

Note: The qsub utility is defined in detail in
the Shell and Utilities volume of
IEEE Std 1003.1-2001.

3. 48 POSIX Batch Job A set of computational tasks for a computing
system. Batch jobs are managed by batch
servers. Once created, a batch job may be
executing or pending execution. A batch job that
is executing has an associated session leader (a
process) that initiates and monitors the
computational tasks of the batch job.

c:\... sc22 defs.xls 8/16/2005

Definitions 38

Clause Source Term Definition Notes
3. 49 POSIX Batch Job Attribute A named data type whose value affects the

processing of a batch job. The values of the
attributes of a batch job affect the processing of
that job by the batch server that manages the
batch job.

3. 50 POSIX Batch Job Identifier A unique name for a batch job. A name that is
unique among all other batch job identifiers in a
batch system and that identifies the batch server
to which the batch job was originally submitted.

3. 51 POSIX Batch Job Name A label that is an attribute of a batch job. The
batch job name is not necessarily unique.

3. 52 POSIX Batch Job Owner The username@ hostname of the user submitting the
batch job, where username is a user name (see also
User Name) and hostname is a network host name.

3. 53 POSIX Batch Job Priority A value specified by the user that may be used
by an implementation to determine the order in
which batch jobs are selected to be executed. Job
priority has a numeric value in the range -1024
to 1023.

Note: The batch job priority is not the
execution priority (nice value) of the
batch job.

3. 54 POSIX Batch Job State An attribute of a batch job which determines the
types of requests that the batch server that
manages the batch job can accept for the batch
job. Valid states include QUEUED, RUNNING,
HELD, WAITING, EXITING, and TRANSITING.

3. 55 POSIX Batch Name
Service

A service that assigns batch names that are
unique within the batch name space, and that
can translate a unique batch name into the
location of the named batch entity.

3. 56 POSIX Batch Name Space The environment within which a batch name is
known to be unique.

c:\... sc22 defs.xls 8/16/2005

Definitions 39

Clause Source Term Definition Notes
3. 57 POSIX Batch Node A host containing part or all of a batch system. A

batch node is a host meeting at least one of the
following conditions: (1) Capable of executing a
batch client, (2) Contains a routing batch queue,
(3) Contains an execution batch queue

3. 58 POSIX Batch Operator A user that is authorized to modify some, but not
all, of the attributes of jobs and queues, and may
change the status of the batch server.

3. 59 POSIX Batch Queue A manageable object that represents a set of
batch jobs and is managed by a single batch
server.

Note: A set of batch jobs is called a batch
queue largely for historical reasons. Jobs
are selected from the batch queue for
execution based on attributes such as
priority, resource requirements, and hold
conditions. See also the Shell and Utilities
volume of IEEE Std 1003.1-2001, Section
3.1.2, Batch Queues.

3. 60 POSIX Batch Queue
Attribute

A named data type whose value affects the
processing of all batch jobs that are members of
the batch queue. A batch queue has attributes
that affect the processing of batch jobs that are
members of the batch queue.

3. 61 POSIX Batch Queue
Position

The place, relative to other jobs in the batch queue,
occupied by a particular job in a batch queue. This is
defined in part by submission time and priority; see also
Batch Queue Priority.

3. 62 POSIX Batch Queue
Priority

The maximum job priority allowed for any batch
job in a given batch queue. The batch queue
priority is set and may be changed by users with
appropriate privilege. The priority is bounded in
an implementation-defined manner.

c:\... sc22 defs.xls 8/16/2005

Definitions 40

Clause Source Term Definition Notes
3. 63 POSIX Batch Rerunability An attribute of a batch job indicating that it may

be rerun after an abnormal termination from the
beginning without affecting the validity of the
results.

3. 64 POSIX Batch Restart The action of resuming the processing of a batch
job from the point of the last checkpoint.
Typically, this is done if the batch job has been
interrupted because of a system failure.

3. 65 POSIX Batch Server A computational entity that provides batch
services.

3. 66 POSIX Batch Server Name A string of characters in the portable character
set used to specify a particular server in a
network.

Note: The Portable Character Set is defined
in detail in Portable Character Set.

3. 67 POSIX Batch Service Computational and organizational services
performed by a batch system on behalf of batch
jobs. Batch services are of two types: requested
and deferred.

Note: Batch Services are listed in the
Shell and Utilities volume of
IEEE Std 1003.1-2001, Table 3-5,
Batch Services Summary.

3. 68 POSIX Batch Service
Request

A solicitation of services from a batch client to a
batch server. A batch service request may entail
the exchange of any number of messages
between the batch client and the batch server.
When naming specific types of service requests,
the term "request" is qualified by the type of
request, as in Queue Batch Job Request and
Delete Batch Job Request .

3. 69 POSIX Batch Submission The process by which a batch client requests that
a batch server create a batch job via a Queue
Job Request to perform a specified computational
task.

3. 70 POSIX Batch System A collection of one or more batch servers.

c:\... sc22 defs.xls 8/16/2005

Definitions 41

Clause Source Term Definition Notes
3. 71 POSIX Batch Target User The name of a user on the batch destination

batch server. The target user is the user name
under whose account the batch job is to execute
on the destination batch server.

3. 72 POSIX Batch User A user who is authorized to make use of batch
services.

3. 73 POSIX Bind The process of assigning a network address to an
endpoint.

3. 74 POSIX Blank Character
(<blank>)

One of the characters that belong to the blank
character class as defined via the LC_CTYPE
category in the current locale. In the POSIX
locale, a <blank> is either a <tab> or a
<space>.

3. 75 POSIX Blank Line A line consisting solely of zero or more <blank>s
terminated by a <newline>; see also Empty Line.

3. 76 POSIX Blocked Process
(or Thread)

A process (or thread) that is waiting for some
condition (other than the availability of a
processor) to be satisfied before it can continue
execution.

3. 77 POSIX Blocking A property of an open file description that causes
function calls associated with it to wait for the
requested action to be performed before
returning.

3. 78 POSIX Block-Mode
Terminal

A terminal device operating in a mode incapable
of the character-at-a-time input and output
operations described by some of the standard
utilities.

Note: Output Devices and Terminal Types
are defined in detail in Output Devices and
Terminal Types.

3. 79 POSIX Block Special File A file that refers to a device. A block special file is
normally distinguished from a character special
file by providing access to the device in a manner
such that the hardware characteristics of the
device are not visible.

c:\... sc22 defs.xls 8/16/2005

Definitions 42

Clause Source Term Definition Notes
3. 80 POSIX Braces The characters '{' (left brace) and '}' (right

brace), also known as curly braces. When used in
the phrase "enclosed in (curly) braces" the
symbol '{' immediately precedes the object to
be enclosed, and '}' immediately follows it.
When describing these characters in the portable
character set, the names <left-brace> and <right-
brace> are used.

3. 81 POSIX Brackets The characters '[' (left-bracket) and ']' (right-
bracket), also known as square brackets. When
used in the phrase "enclosed in (square)
brackets" the symbol '[' immediately precedes
the object to be enclosed, and ']' immediately
follows it. When describing these characters in
the portable character set, the names <left-
square-bracket> and <right-square-bracket> are
used.

3. 82 POSIX Broadcast The transfer of data from one endpoint to several
endpoints, as described in RFC 919 and RFC 922.

3. 83 POSIX Built-In Utility (or
Built-In)

A utility implemented within a shell. The utilities
referred to as special built-ins have special
qualities. Unless qualified, the term "built-in"
includes the special built-in utilities. Regular built-
ins are not required to be actually built into the
shell on the implementation, but they do have
special command-search qualities.

Note: Special Built-In Utilities are
defined in detail in the Shell and
Utilities volume of IEEE Std 1003.1-
2001, Section 2.14, Special Built-In
Utilities. Regular Built-In Utilities are
defined in detail in the Shell and
Utilities volume of IEEE Std 1003.1-
2001, Section 2.9.1.1, Command
Search and Execution.

c:\... sc22 defs.xls 8/16/2005

Definitions 43

Clause Source Term Definition Notes
3. 84 POSIX Byte An individually addressable unit of data storage that is

exactly an octet, used to store a character or a portion of
a character; see also Character. A byte is composed of a
contiguous sequence of 8 bits. The least significant bit is
called the "low-order" bit; the most significant is called
the "high-order" bit.

Note: The definition of byte from the
ISO C standard is broader than the
above and might accommodate
hardware architectures with different
sized addressable units than octets.

3. 85 POSIX Byte Input/Output
Functions

The functions that perform byte-oriented input
from streams or byte-oriented output to streams:
fgetc (), fgets (), fprintf (), fputc (), fputs (),
fread (), fscanf (), fwrite (), getc (), getchar (),
gets (), printf (), putc (), putchar (), puts (),
scanf (), ungetc (), vfprintf (), and vprintf ().

Note: Functions are defined in detail
in the System Interfaces volume of
IEEE Std 1003.1-2001.

3. 86 POSIX Carriage-Return
Character
(<carriage-return>)

A character that in the output stream indicates
that printing should start at the beginning of the
same physical line in which the <carriage-
return> occurred. It is the character designated
by '\r' in the C language. It is unspecified
whether this character is the exact sequence
transmitted to an output device by the system to
accomplish the movement to the beginning of the
line.

c:\... sc22 defs.xls 8/16/2005

Definitions 44

Clause Source Term Definition Notes
3. 87 POSIX Character A sequence of one or more bytes representing a

single graphic symbol or control code.
Note: This term corresponds to the ISO C
standard term multi-byte character, where a
single-byte character is a special case of a
multi-byte character. Unlike the usage in the
ISO C standard, character here has no
necessary relationship with storage space,
and byte is used when storage space is
discussed. See the definition of the portable
character set in Portable Character Set for a
further explanation of the graphical
representations of (abstract) characters, as
opposed to character encodings.

3. 88 POSIX Character Array An array of elements of type char.
3. 89 POSIX Character Class A named set of characters sharing an attribute

associated with the name of the class. The
classes and the characters that they contain are
dependent on the value of the LC_CTYPE
category in the current locale.

Note: The LC_CTYPE category is defined in
detail in LC_CTYPE.

3. 90 POSIX Character Set A finite set of different characters used for the
representation, organization, or control of data.

3. 91 POSIX Character Special
File

A file that refers to a device. One specific type of
character special file is a terminal device file.

Note: The General Terminal Interface is
defined in detail in General Terminal
Interface .

3. 92 POSIX Character String A contiguous sequence of characters terminated
by and including the first null byte.

3. 93 POSIX Child Process A new process created (by fork (),
posix_spawn (), posix_spawnp (), or vfork ()) by
a given process. A child process remains the child
of the creating process as long as both processes
continue to exist.

Note: The fork (), posix_spawn (),
posix_spawnp (), and vfork ()
functions are defined in detail in the
System Interfaces volume of
IEEE Std 1003.1-2001.

3. 94 POSIX Circumflex The character '^'.

c:\... sc22 defs.xls 8/16/2005

Definitions 45

Clause Source Term Definition Notes
3. 95 POSIX Clock A software or hardware object that can be used

to measure the apparent or actual passage of
time. The current value of the time measured by
a clock can be queried and, possibly, set to a
value within the legal range of the clock.

3. 96 POSIX Clock Jump The difference between two successive distinct
values of a clock, as observed from the
application via one of the "get time'' operations.

3. 97 POSIX Clock Tick An interval of time; an implementation-defined
number of these occur each second. Clock ticks
are one of the units that may be used to express
a value found in type clock_t.

3. 98 POSIX Coded Character
Set

A set of unambiguous rules that establishes a
character set and the one-to-one relationship
between each character of the set and its bit
representation.

3. 99 POSIX Codeset The result of applying rules that map a numeric
code value to each element of a character set. An
element of a character set may be related to
more than one numeric code value but the
reverse is not true. However, for state-dependent
encodings the relationship between numeric code
values and elements of a character set may be
further controlled by state information. The
character set may contain fewer elements than
the total number of possible numeric code
values; that is, some code values may be
unassigned.

Note: Character Encoding is defined in
detail in Character Encoding.

c:\... sc22 defs.xls 8/16/2005

Definitions 46

Clause Source Term Definition Notes
3. 100 POSIX Collating Element The smallest entity used to determine the logical

ordering of character or wide-character strings; see also
Collation Sequence. A collating element consists of
either a single character, or two or more characters
collating as a single entity. The value of the
LC_COLLATE category in the current locale determines
the current set of collating elements.

3. 101 POSIX Collation The logical ordering of character or wide-
character strings according to defined precedence
rules. These rules identify a collation sequence
between the collating elements, and such
additional rules that can be used to order strings
consisting of multiple collating elements.

3. 102 POSIX Collation Sequence The relative order of collating elements as determined by
the setting of the LC_COLLATE category in the current
locale. The collation sequence is used for sorting and is
determined from the collating weights assigned to each
collating element. In the absence of weights, the
collation sequence is the order in which collating
elements are specified between order_start and
order_end keywords in the LC_COLLATE category. Multi-
level sorting is accomplished by assigning elements one
or more collation weights, up to the limit
{COLL_WEIGHTS_MAX}. On each level, elements may
be given the same weight (at the primary level, called an
equivalence class; see also Equivalence Class) or be
omitted from the sequence. Strings that collate equally
using the first assigned weight (primary ordering) are
then compared using the next assigned weight
(secondary ordering), and so on.

Note: {COLL_WEIGHTS_MAX} is defined in
detail in <limits.h>.

c:\... sc22 defs.xls 8/16/2005

Definitions 47

Clause Source Term Definition Notes
3. 103 POSIX Column Position A unit of horizontal measure related to characters

in a line. It is assumed that each character in a
character set has an intrinsic column width
independent of any output device. Each printable
character in the portable character set has a
column width of one. The standard utilities, when
used as described in IEEE Std 1003.1-2001,
assume that all characters have integral column
widths. The column width of a character is not
necessarily related to the internal representation
of the character (numbers of bits or bytes). The
column position of a character in a line is defined
as one plus the sum of the column widths of the
preceding characters in the line. Column
positions are numbered starting from 1.

3. 104 POSIX Command A directive to the shell to perform a particular
task.

Note: Shell Commands are defined in detail
in the Shell and Utilities volume of
IEEE Std 1003.1-2001, Section 2.9, Shell
Commands.

3. 105 POSIX Command
Language
Interpreter

An interface that interprets sequences of text
input as commands. It may operate on an input
stream or it may interactively prompt and read
commands from a terminal. It is possible for
applications to invoke utilities through a number
of interfaces, which are collectively considered to
act as command interpreters. The most obvious
of these are the sh utility and the system ()
function, although popen () and the various forms
of exec may also be considered to behave as
interpreters.

Note: The sh utility is defined in
detail in the Shell and Utilities volume
of IEEE Std 1003.1-2001. The
system (), popen (), and exec
functions are defined in detail in the
System Interfaces volume of
IEEE Std 1003.1-2001.

c:\... sc22 defs.xls 8/16/2005

Definitions 48

Clause Source Term Definition Notes
3. 106 POSIX Composite Graphic

Symbol
A graphic symbol consisting of a combination of
two or more other graphic symbols in a single
character position, such as a diacritical mark and
a base character.

3. 107 POSIX Condition Variable A synchronization object which allows a thread to
suspend execution, repeatedly, until some
associated predicate becomes true. A thread
whose execution is suspended on a condition
variable is said to be blocked on the condition
variable.

3. 108 POSIX Connection An association established between two or more
endpoints for the transfer of data

3. 109 POSIX Connection Mode The transfer of data in the context of a connection; see
also Connectionless Mode.

3. 110 POSIX Connectionless
Mode

The transfer of data other than in the context of
a connection; see also Connection Mode and
Datagram.

3. 111 POSIX Control Character A character, other than a graphic character, that
affects the recording, processing, transmission,
or interpretation of text.

3. 112 POSIX Control Operator In the shell command language, a token that
performs a control function. It is one of the
following symbols: && () ; ;;
newline | || The end-of-input indicator
used internally by the shell is also considered a
control operator.

Note: Token Recognition is defined in detail
in the Shell and Utilities volume of
IEEE Std 1003.1-2001, Section 2.3, Token
Recognition.

3. 113 POSIX Controlling Process The session leader that established the
connection to the controlling terminal. If the
terminal subsequently ceases to be a controlling
terminal for this session, the session leader
ceases to be the controlling process.

c:\... sc22 defs.xls 8/16/2005

Definitions 49

Clause Source Term Definition Notes
3. 114 POSIX Controlling

Terminal
A terminal that is associated with a session. Each
session may have at most one controlling
terminal associated with it, and a controlling
terminal is associated with exactly one session.
Certain input sequences from the controlling
terminal cause signals to be sent to all processes
in the process group associated with the
controlling terminal.

Note: The General Terminal Interface is
defined in detail in General Terminal
Interface .

3. 115 POSIX Conversion
Descriptor

A per-process unique value used to identify an
open codeset conversion.

3. 116 POSIX Core File A file of unspecified format that may be
generated when a process terminates
abnormally.

3. 117 POSIX CPU Time
(Execution Time)

The time spent executing a process or thread,
including the time spent executing system
services on behalf of that process or thread. If
the Threads option is supported, then the value
of the CPU-time clock for a process is
implementation-defined. With this definition the
sum of all the execution times of all the threads
in a process might not equal the process
execution time, even in a single-threaded
process, because implementations may differ in
how they account for time during context
switches or for other reasons.

3. 118 POSIX CPU-Time Clock A clock that measures the execution time of a
particular process or thread.

3. 119 POSIX CPU-Time Timer A timer attached to a CPU-time clock.
3. 120 POSIX Current Job In the context of job control, the job that will be

used as the default for the fg or bg utilities.
There is at most one current job; see also Job
Control Job ID.

c:\... sc22 defs.xls 8/16/2005

Definitions 50

Clause Source Term Definition Notes
3. 121 POSIX Current Working

Directory
See Working Directory in Working Directory (or Current
Working Directory).

3. 122 POSIX Cursor Position The line and column position on the screen
denoted by the terminal's cursor.

3. 123 POSIX Datagram A unit of data transferred from one endpoint to
another in connectionless mode service.

3. 124 POSIX Data Segment Memory associated with a process, that can
contain dynamically allocated data.

3. 125 POSIX Deferred Batch
Service

A service that is performed as a result of events
that are asynchronous with respect to requests.

Note: Once a batch job has been
created, it is subject to deferred
services.

3. 126 POSIX Device A computer peripheral or an object that appears
to the application as such.

3. 127 POSIX Device ID A non-negative integer used to identify a device.

3. 128 POSIX Directory A file that contains directory entries. No two
directory entries in the same directory have the
same name.

3. 129 POSIX Directory Entry (or
Link)

An object that associates a filename with a file.
Several directory entries can associate names
with the same file.

3. 130 POSIX Directory Stream A sequence of all the directory entries in a
particular directory. An open directory stream
may be implemented using a file descriptor.

3. 131 POSIX Disarm (a Timer) To stop a timer from measuring the passage of
time, disabling any future process notifications
(until the timer is armed again).

3. 132 POSIX Display To output to the user's terminal. If the output is
not directed to a terminal, the results are
undefined.

3. 133 POSIX Display Line A line of text on a physical device or an
emulation thereof. Such a line will have a
maximum number of characters which can be
presented.

Note: This may also be written as
"line on the display".

c:\... sc22 defs.xls 8/16/2005

Definitions 51

Clause Source Term Definition Notes
3. 134 POSIX Dollar Sign The character '$'.
3. 135 POSIX Dot In the context of naming files, the filename

consisting of a single dot character ('.').
Note: In the context of shell special
built-in utilities, see dot in the Shell
and Utilities volume of
IEEE Std 1003.1-2001, Section 2.14,
Special Built-In Utilities. Pathname
Resolution is defined in detail in
Pathname Resolution .

3. 136 POSIX Dot-Dot The filename consisting solely of two dot
characters ("..").

Note: Pathname Resolution is defined in
detail in Pathname Resolution.

3. 137 POSIX Double-Quote The character '"', also known as quotation-
mark.

Note: The "double" adjective in this
term refers to the two strokes in the
character glyph. IEEE Std 1003.1-
2001 never uses the term "double-
quote" to refer to two apostrophes or
quotation marks.

3. 138 POSIX Downshifting The conversion of an uppercase character that
has a single-character lowercase representation
into this lowercase representation.

3. 139 POSIX Driver A module that controls data transferred to and
received from devices.

Note: Drivers are traditionally written
to be a part of the system
implementation, although they are
frequently written separately from the
writing of the implementation. A
driver may contain processor-specific
code, and therefore be non-portable.

3. 140 POSIX Effective Group ID An attribute of a process that is used in determining
various permissions, including file access permissions;
see also Group ID.

3. 141 POSIX Effective User ID An attribute of a process that is used in determining
various permissions, including file access permissions;
see also User ID.

c:\... sc22 defs.xls 8/16/2005

Definitions 52

Clause Source Term Definition Notes
3. 142 POSIX Eight-Bit

Transparency
The ability of a software component to process 8-
bit characters without modifying or utilizing any
part of the character in a way that is inconsistent
with the rules of the current coded character set.

3. 143 POSIX Empty Directory A directory that contains, at most, directory
entries for dot and dot-dot, and has exactly one
link to it, in dot-dot. No other links to the
directory may exist. It is unspecified whether an
implementation can ever consider the root
directory to be empty.

3. 144 POSIX Empty Line A line consisting of only a <newline>; see also Blank
Line.

3. 145 POSIX Empty String (or
Null String)

A string whose first byte is a null byte.

3. 146 POSIX Empty Wide-
Character String

A wide-character string whose first element is a
null wide-character code.

3. 147 POSIX Encoding Rule The rules used to convert between wide-
character codes and multi-byte character codes.

Note: Stream Orientation and Encoding
Rules are defined in detail in the System
Interfaces volume of IEEE Std 1003.1-2001,
Section 2.5.2, Stream Orientation and
Encoding Rules.

3. 148 POSIX Entire Regular
Expression

The concatenated set of one or more basic
regular expressions or extended regular
expressions that make up the pattern specified
for string selection.

Note: Regular Expressions are defined in
detail in Regular Expressions.

3. 149 POSIX Epoch The time zero hours, zero minutes, zero seconds,
on January 1, 1970 Coordinated Universal Time
(UTC).

Note: See also Seconds Since the Epoch
defined in Seconds Since the Epoch.

c:\... sc22 defs.xls 8/16/2005

Definitions 53

Clause Source Term Definition Notes
3. 150 POSIX Equivalence Class A set of collating elements with the same primary

collation weight. Elements in an equivalence class
are typically elements that naturally group
together, such as all accented letters based on
the same base letter. The collation order of
elements within an equivalence class is
determined by the weights assigned on any
subsequent levels after the primary weight.

3. 151 POSIX Era A locale-specific method for counting and
displaying years.

Note: The LC_TIME category is defined in
detail in LC_TIME.

3. 152 POSIX Event Management The mechanism that enables applications to
register for and be made aware of external
events such as data becoming available for
reading.

3. 153 POSIX Executable File A regular file acceptable as a new process image
file by the equivalent of the exec family of
functions, and thus usable as one form of a
utility. The standard utilities described as
compilers can produce executable files, but other
unspecified methods of producing executable files
may also be provided. The internal format of an
executable file is unspecified, but a conforming
application cannot assume an executable file is a
text file.

3. 154 POSIX Execute To perform command search and execution actions, as
defined in the Shell and Utilities volume of
IEEE Std 1003.1-2001; see also Invoke.

Note: Command Search and Execution is
defined in detail in the Shell and Utilities
volume of IEEE Std 1003.1-2001, Section
2.9.1.1, Command Search and Execution.

3. 155 POSIX Execution Time See CPU Time in CPU Time (Execution Time).
3. 156 POSIX Execution Time

Monitoring
A set of execution time monitoring primitives that
allow online measuring of thread and process
execution times.

c:\... sc22 defs.xls 8/16/2005

Definitions 54

Clause Source Term Definition Notes
3. 157 POSIX Expand In the shell command language, when not

qualified, the act of applying word expansions.
Note: Word Expansions are defined in detail
in the Shell and Utilities volume of
IEEE Std 1003.1-2001, Section 2.6, Word
Expansions.

3. 158 POSIX Extended Regular
Expression (ERE)

A regular expression (see also Regular Expression) that
is an alternative to the Basic Regular Expression using a
more extensive syntax, occasionally used by some
utilities.

Note: Extended Regular Expressions are
described in detail in Extended Regular
Expressions.

3. 159 POSIX Extended Security
Controls

Implementation-defined security controls allowed by the
file access permission and appropriate privilege (see
also Appropriate Privileges) mechanisms, through which
an implementation can support different security policies
from those described in IEEE Std 1003.1-2001.

Note: See also Extended Security
Controls defined in Extended Security
Controls . File Access Permissions are
defined in detail in File Access
Permissions .

3. 160 POSIX Feature Test Macro A macro used to determine whether a particular
set of features is included from a header.

Note: See also the System Interfaces
volume of IEEE Std 1003.1-2001, Section
2.2, The Compilation Environment.

c:\... sc22 defs.xls 8/16/2005

Definitions 55

Clause Source Term Definition Notes
3. 161 POSIX Field In the shell command language, a unit of text

that is the result of parameter expansion,
arithmetic expansion, command substitution, or
field splitting. During command processing, the
resulting fields are used as the command name
and its arguments.

Note: Parameter Expansion is defined
in detail in the Shell and Utilities
volume of IEEE Std 1003.1-2001,
Section 2.6.2, Parameter Expansion.
Arithmetic Expansion is defined in
detail in the Shell and Utilities volume
of IEEE Std 1003.1-2001, Section
2.6.4, Arithmetic Expansion.
Command Substitution is defined in
detail in the Shell and Utilities volume
of IEEE Std 1003.1-2001, Section
2.6.3, Command Substitution. Field
Splitting is defined in detail in the
Shell and Utilities volume of
IEEE Std 1003.1-2001, Section 2.6.5,
Field Splitting. For further information
on command processing, see the Shell
and Utilities volume of
IEEE Std 1003.1-2001, Section 2.9.1,
Simple Commands.

3. 162 POSIX FIFO Special File
(or FIFO)

A type of file with the property that data written
to such a file is read on a first-in-first-out basis.

Note: Other characteristics of FIFOs
are described in the System Interfaces
volume of IEEE Std 1003.1-2001,
lseek (), open (), read (), and write ().

3. 163 POSIX File An object that can be written to, or read from, or
both. A file has certain attributes, including
access permissions and type. File types include
regular file, character special file, block special
file, FIFO special file, symbolic link, socket, and
directory. Other types of files may be supported
by the implementation.

3. 164 POSIX File Description See Open File Description in Open File Description.

c:\... sc22 defs.xls 8/16/2005

Definitions 56

Clause Source Term Definition Notes
3. 165 POSIX File Descriptor A per-process unique, non-negative integer used to

identify an open file for the purpose of file access. The
value of a file descriptor is from zero to {OPEN_MAX}. A
process can have no more than {OPEN_MAX} file
descriptors open simultaneously. File descriptors may
also be used to implement message catalog descriptors
and directory streams; see also Open File Description.

Note: {OPEN_MAX} is defined in detail in
<limits.h>.

3. 166 POSIX File Group Class The property of a file indicating access
permissions for a process related to the group
identification of a process. A process is in the file
group class of a file if the process is not in the file
owner class and if the effective group ID or one
of the supplementary group IDs of the process
matches the group ID associated with the file.
Other members of the class may be
implementation-defined.

3. 167 POSIX File Mode An object containing the file mode bits and file
type of a file.

Note: File mode bits and file types are
defined in detail in <sys/stat.h>.

3. 168 POSIX File Mode Bits A file's file permission bits: set-user-ID-on-
execution bit (S_ISUID), set-group-ID-on-
execution bit (S_ISGID), and, on directories, the
restricted deletion flag bit (S_ISVTX).

Note: File Mode Bits are defined in detail in
<sys/stat.h>.

3. 169 POSIX Filename A name consisting of 1 to {NAME_MAX} bytes
used to name a file. The characters composing
the name may be selected from the set of all
character values excluding the slash character
and the null byte. The filenames dot and dot-dot
have special meaning. A filename is sometimes
referred to as a "pathname component".

Note: Pathname Resolution is defined in
detail in Pathname Resolution.

c:\... sc22 defs.xls 8/16/2005

Definitions 57

Clause Source Term Definition Notes
3. 170 POSIX Filename

Portability
Filenames should be constructed from the
portable filename character set because the use
of other characters can be confusing or
ambiguous in certain contexts. (For example, the
use of a colon (':') in a pathname could cause
ambiguity if that pathname were included in a
PATH definition.)

3. 171 POSIX File Offset The byte position in the file where the next I/O
operation begins. Each open file description
associated with a regular file, block special file, or
directory has a file offset. A character special file
that does not refer to a terminal device may have
a file offset. There is no file offset specified for a
pipe or FIFO.

3. 172 POSIX File Other Class The property of a file indicating access
permissions for a process related to the user and
group identification of a process. A process is in
the file other class of a file if the process is not in
the file owner class or file group class.

3. 173 POSIX File Owner Class The property of a file indicating access
permissions for a process related to the user
identification of a process. A process is in the file
owner class of a file if the effective user ID of the
process matches the user ID of the file.

3. 174 POSIX File Permission
Bits

Information about a file that is used, along with
other information, to determine whether a
process has read, write, or execute/search
permission to a file. The bits are divided into
three parts: owner, group, and other. Each part
is used with the corresponding file class of
processes. These bits are contained in the file
mode.

Note: File modes are defined in detail
in <sys/stat.h> . File Access
Permissions are defined in detail in
File Access Permissions .

c:\... sc22 defs.xls 8/16/2005

Definitions 58

Clause Source Term Definition Notes
3. 175 POSIX File Serial Number A per-file system unique identifier for a file.
3. 176 POSIX File System A collection of files and certain of their attributes.

It provides a name space for file serial numbers
referring to those files.

3. 177 POSIX File Type See File in File.
3. 178 POSIX Filter A command whose operation consists of reading

data from standard input or a list of input files
and writing data to standard output. Typically, its
function is to perform some transformation on
the data stream.

3. 179 POSIX First Open (of a
File)

When a process opens a file that is not currently
an open file within any process.

3. 180 POSIX Flow Control The mechanism employed by a communications
provider that constrains a sending entity to wait
until the receiving entities can safely receive
additional data without loss.

3. 181 POSIX Foreground Job See Foreground Process Group in Foreground Process
Group (or Foreground Job).

3. 182 POSIX Foreground Process A process that is a member of a foreground
process group.

3. 183 POSIX Foreground Process
Group (or
Foreground Job)

A process group whose member processes have
certain privileges, denied to processes in
background process groups, when accessing their
controlling terminal. Each session that has
established a connection with a controlling
terminal has at most one process group of the
session as the foreground process group of that
controlling terminal.

Note: The General Terminal Interface is
defined in detail in General Terminal
Interface .

3. 184 POSIX Foreground Process
Group ID

The process group ID of the foreground process
group.

c:\... sc22 defs.xls 8/16/2005

Definitions 59

Clause Source Term Definition Notes
3. 185 POSIX Form-Feed

Character (<form-
feed>)

A character that in the output stream indicates
that printing should start on the next page of an
output device. It is the character designated by
'\f' in the C language. If the <form-feed> is not
the first character of an output line, the result is
unspecified. It is unspecified whether this
character is the exact sequence transmitted to an
output device by the system to accomplish the
movement to the next page.

3. 186 POSIX Graphic Character A member of the graph character class of the
current locale.

Note: The graph character class is defined
in detail in LC_CTYPE.

3. 187 POSIX Group Database A system database that contains at least the following
information for each group ID: (1) Group name, (2)
Numerical group ID, (3) List of users allowed in the
group. The list of users allowed in the group is used by
the newgrp utility.

Note: The newgrp utility is defined in detail
in the Shell and Utilities volume of
IEEE Std 1003.1-2001.

3. 188 POSIX Group ID A non-negative integer, which can be contained
in an object of type gid_t, that is used to identify
a group of system users. Each system user is a
member of at least one group. When the identity
of a group is associated with a process, a group
ID value is referred to as a real group ID, an
effective group ID, one of the supplementary
group IDs, or a saved set-group-ID.

3. 189 POSIX Group Name A string that is used to identify a group; see also Group
Database. To be portable across conforming systems,
the value is composed of characters from the portable
filename character set. The hyphen should not be used
as the first character of a portable group name.

c:\... sc22 defs.xls 8/16/2005

Definitions 60

Clause Source Term Definition Notes
3. 190 POSIX Hard Limit A system resource limitation that may be reset to

a lesser or greater limit by a privileged process. A
non-privileged process is restricted to only
lowering its hard limit.

3. 191 POSIX Hard Link The relationship between two directory entries
that represent the same file; see also Directory
Entry (or Link). The result of an execution of the
ln utility (without the -s option) or the link ()
function. This term is contrasted against symbolic
link; see also Symbolic Link.

3. 192 POSIX Home Directory The directory specified by the HOME
environment variable.

3. 193 POSIX Host Byte Order The arrangement of bytes in any integer type
when using a specific machine architecture.

Note: Two common methods of byte
ordering are big-endian and little-endian.
Big-endian is a format for storage of binary
data in which the most significant byte is
placed first, with the rest in descending
order. Little-endian is a format for storage or
transmission of binary data in which the
least significant byte is placed first, with the
rest in ascending order. See also Host and
Network Byte Orders.

3. 194 POSIX Incomplete Line A sequence of one or more non- <newline>s at
the end of the file.

3. 195 POSIX Inf A value representing +infinity or a value
representing -infinity that can be stored in a
floating type. Not all systems support the Inf
values.

c:\... sc22 defs.xls 8/16/2005

Definitions 61

Clause Source Term Definition Notes
3. 196 POSIX Instrumented

Application
An application that contains at least one call to the trace
point function posix_trace_event(). Each process of an
instrumented application has a mapping of trace event
names to trace event type identifiers. This mapping is
used by the trace stream that is created for that process.

3. 197 POSIX Interactive Shell A processing mode of the shell that is suitable for
direct user interaction.

3. 198 POSIX Internationalization The provision within a computer program of the
capability of making itself adaptable to the
requirements of different native languages, local
customs, and coded character sets.

3. 199 POSIX Interprocess
Communication

A functionality enhancement to add a high-
performance, deterministic interprocess
communication facility for local communication.

3. 200 POSIX Invoke To perform command search and execution actions,
except that searching for shell functions and special built-
in utilities is suppressed; see also Execute.

Note: Command Search and Execution is
defined in detail in the Shell and Utilities
volume of IEEE Std 1003.1-2001, Section
2.9.1.1, Command Search and Execution.

3. 201 POSIX Job A set of processes, comprising a shell pipeline,
and any processes descended from it, that are all
in the same process group.

Note: See also the Shell and Utilities
volume of IEEE Std 1003.1-2001, Section
2.9.2, Pipelines.

3. 202 POSIX Job Control A facility that allows users selectively to stop
(suspend) the execution of processes and
continue (resume) their execution at a later
point. The user typically employs this facility via
the interactive interface jointly supplied by the
terminal I/O driver and a command interpreter.

3. 203 POSIX Job Control Job ID A handle that is used to refer to a job. The job
control job ID can be any of the forms shown in
table Posix table 203.

c:\... sc22 defs.xls 8/16/2005

Definitions 62

Clause Source Term Definition Notes
3. 204 POSIX Last Close (of a

File)
When a process closes a file, resulting in the file
not being an open file within any process.

3. 205 POSIX Line A sequence of zero or more non- <newline>s
plus a terminating <newline>.

3. 206 POSIX Linger A period of time before terminating a connection,
to allow outstanding data to be transferred.

3. 207 POSIX Link See Directory Entry in Directory Entry (or Link).
3. 208 POSIX Link Count The number of directory entries that refer to a

particular file.
3. 209 POSIX Local Customs The conventions of a geographical area or

territory for such things as date, time, and
currency formats.

3. 210 POSIX Local Interprocess
Communication
(Local IPC)

The transfer of data between processes in the
same system.

3. 211 POSIX Locale The definition of the subset of a user's
environment that depends on language and
cultural conventions.

Note: Locales are defined in detail in
Locale.

3. 212 POSIX Localization The process of establishing information within a
computer system specific to the operation of
particular native languages, local customs, and
coded character sets.

3. 213 POSIX Login The unspecified activity by which a user gains
access to the system. Each login is associated
with exactly one login name.

3. 214 POSIX Login Name A user name that is associated with a login.

c:\... sc22 defs.xls 8/16/2005

Definitions 63

Clause Source Term Definition Notes
3. 215 POSIX Map To create an association between a page-aligned

range of the address space of a process and
some memory object, such that a reference to an
address in that range of the address space
results in a reference to the associated memory
object. The mapped memory object is not
necessarily memory-resident.

3. 216 POSIX Marked Message A STREAMs message on which a certain flag is set.
Marking a message gives the application protocol-
specific information. An application can use ioctl() to
determine whether a given message is marked.

Note: The ioctl() function is defined in detail
in the System Interfaces volume of
IEEE Std 1003.1-2001.

3. 217 POSIX Matched A state applying to a sequence of zero or more
characters when the characters in the sequence
correspond to a sequence of characters defined
by a basic regular expression or extended regular
expression pattern.

Note: Regular Expressions are defined in
detail in Regular Expressions.

3. 218 POSIX Memory Mapped
Files

A facility to allow applications to access files as
part of the address space.

3. 219 POSIX Memory Object One of: (1) A file (see File), (2) A shared
memory object (see Shared Memory Object), (3)
A typed memory object (see Typed Memory
Object). When used in conjunction with mmap (),
a memory object appears in the address space of
the calling process.

Note: The mmap() function is defined in
detail in the System Interfaces volume of
IEEE Std 1003.1-2001.

3. 220 POSIX Memory-Resident The process of managing the implementation in
such a way as to provide an upper bound on
memory access times.

3. 221 POSIX Message In the context of programmatic message passing,
information that can be transferred between
processes or threads by being added to and
removed from a message queue. A message
consists of a fixed-size message buffer.

c:\... sc22 defs.xls 8/16/2005

Definitions 64

Clause Source Term Definition Notes
3. 222 POSIX Message Catalog In the context of providing natural language

messages to the user, a file or storage area
containing program messages, command
prompts, and responses to prompts for a
particular native language, territory, and codeset.

3. 223 POSIX Message Catalog
Descriptor

In the context of providing natural language
messages to the user, a per-process unique
value used to identify an open message catalog.
A message catalog descriptor may be
implemented using a file descriptor.

3. 224 POSIX Message Queue In the context of programmatic message passing,
an object to which messages can be added and
removed. Messages may be removed in the order
in which they were added or in priority order.

3. 225 POSIX Mode A collection of attributes that specifies a file's
type and its access permissions.

Note: File Access Permissions are defined
in detail in File Access Permissions.

3. 226 POSIX Monotonic Clock A clock whose value cannot be set via clock_settime()
and which cannot have negative clock jumps.

3. 227 POSIX Mount Point Either the system root directory or a directory for
which the st_dev field of structure stat differs
from that of its parent directory.

Note: The stat structure is defined in detail
in <sys/stat.h>.

3. 228 POSIX Multi-Character
Collating Element

A sequence of two or more characters that collate
as an entity. For example, in some coded
character sets, an accented character is
represented by a non-spacing accent, followed by
the letter. Other examples are the Spanish
elements ch and ll .

c:\... sc22 defs.xls 8/16/2005

Definitions 65

Clause Source Term Definition Notes
3. 229 POSIX Mutex A synchronization object used to allow multiple

threads to serialize their access to shared data.
The name derives from the capability it provides;
namely, mutual-exclusion. The thread that has
locked a mutex becomes its owner and remains
the owner until that same thread unlocks the
mutex.

3. 230 POSIX Name In the shell command language, a word
consisting solely of underscores, digits, and
alphabetics from the portable character set. The
first character of a name is not a digit.

Note: The Portable Character Set is defined
in detail in Portable Character Set.

3. 231 POSIX Named STREAM A STREAMS-based file descriptor that is attached
to a name in the file system name space. All
subsequent operations on the named STREAM act
on the STREAM that was associated with the file
descriptor until the name is disassociated from
the STREAM.

3. 232 POSIX NaN (Not a
Number)

A set of values that may be stored in a floating
type but that are neither Inf nor valid floating-
point numbers. Not all systems support NaN
values.

3. 233 POSIX Native Language A computer user's spoken or written language,
such as American English, British English, Danish,
Dutch, French, German, Italian, Japanese,
Norwegian, or Swedish.

3. 234 POSIX Negative Response An input string that matches one of the
responses acceptable to the LC_MESSAGES
category keyword noexpr, matching an
extended regular expression in the current locale.

Note: The LC_MESSAGES category is
defined in detail in LC_MESSAGES.

c:\... sc22 defs.xls 8/16/2005

Definitions 66

Clause Source Term Definition Notes
3. 235 POSIX Network A collection of interconnected hosts. Note: The term "network" in

IEEE Std 1003.1-2001 is used to refer
to the network of hosts. The term
"batch system" is used to refer to the
network of batch servers.

3. 236 POSIX Network Address A network-visible identifier used to designate
specific endpoints in a network. Specific
endpoints on host systems have addresses, and
host systems may also have addresses.

3. 237 POSIX Network Byte
Order

The way of representing any integer type such
that, when transmitted over a network via a
network endpoint, the int type is transmitted as
an appropriate number of octets with the most
significant octet first, followed by any other
octets in descending order of significance.

Note: This order is more commonly known
as big-endian ordering. See also Host and
Network Byte Orders.

3. 238 POSIX Newline Character
(<newline>)

A character that in the output stream indicates
that printing should start at the beginning of the
next line. It is the character designated by '\n'
in the C language. It is unspecified whether this
character is the exact sequence transmitted to an
output device by the system to accomplish the
movement to the next line.

c:\... sc22 defs.xls 8/16/2005

Definitions 67

Clause Source Term Definition Notes
3. 239 POSIX Nice Value A number used as advice to the system to alter

process scheduling. Numerically smaller values
give a process additional preference when
scheduling a process to run. Numerically larger
values reduce the preference and make a process
less likely to run. Typically, a process with a
smaller nice value runs to completion more
quickly than an equivalent process with a higher
nice value. The symbol {NZERO} specifies the
default nice value of the system.

3. 240 POSIX Non-Blocking A property of an open file description that causes
function calls involving it to return without delay
when it is detected that the requested action
associated with the function call cannot be
completed without unknown delay.

Note: The exact semantics are dependent
on the type of file associated with the open
file description. For data reads from devices
such as ttys and FIFOs, this property
causes the read to return immediately when
no data was available. Similarly, for writes, it
causes the call to return immediately when
the thread would otherwise be delayed in
the write operation; for example, because
no space was available. For networking, it
causes functions not to await protocol
events (for example, acknowledgements) to
occur. See also the System Interfaces
volume of IEEE Std 1003.1-2001, Section
2.10.7, Socket I/O Mode.

3. 241 POSIX Non-Spacing
Characters

A character, such as a character representing a
diacritical mark in the ISO/IEC 6937:2001
standard coded character set, which is used in
combination with other characters to form
composite graphic symbols.

3. 242 POSIX NUL A character with all bits set to zero.
3. 243 POSIX Null Byte A byte with all bits set to zero.

c:\... sc22 defs.xls 8/16/2005

Definitions 68

Clause Source Term Definition Notes
3. 244 POSIX Null Pointer The value that is obtained by converting the

number 0 into a pointer; for example, (void *) 0.
The C language guarantees that this value does
not match that of any legitimate pointer, so it is
used by many functions that return pointers to
indicate an error.

3. 245 POSIX Null String See Empty String in Empty String (or Null String).
3. 246 POSIX Null Wide-

Character Code
A wide-character code with all bits set to zero.

3. 247 POSIX Number Sign The character '#', also known as hash sign.
3. 248 POSIX Object File A regular file containing the output of a compiler,

formatted as input to a linkage editor for linking
with other object files into an executable form.
The methods of linking are unspecified and may
involve the dynamic linking of objects at runtime.
The internal format of an object file is
unspecified, but a conforming application cannot
assume an object file is a text file.

3. 249 POSIX Octet Unit of data representation that consists of eight
contiguous bits.

3. 250 POSIX Offset Maximum An attribute of an open file description
representing the largest value that can be used
as a file offset.

3. 251 POSIX Opaque Address An address such that the entity making use of it
requires no details about its contents or format.

3. 252 POSIX Open File A file that is currently associated with a file
descriptor.

c:\... sc22 defs.xls 8/16/2005

Definitions 69

Clause Source Term Definition Notes
3. 253 POSIX Open File

Description
A record of how a process or group of processes
is accessing a file. Each file descriptor refers to
exactly one open file description, but an open file
description can be referred to by more than one
file descriptor. The file offset, file status, and file
access modes are attributes of an open file
description.

3. 254 POSIX Operand An argument to a command that is generally
used as an object supplying information to a
utility necessary to complete its processing.
Operands generally follow the options in a
command line.

Note: Utility Argument Syntax is defined in
detail in Utility Argument Syntax.

3. 255 POSIX Operator In the shell command language, either a control
operator or a redirection operator.

3. 256 POSIX Option An argument to a command that is generally
used to specify changes in the utility's default
behavior.

Note: Utility Argument Syntax is defined in
detail in Utility Argument Syntax.

3. 257 POSIX Option-Argument A parameter that follows certain options. In some
cases an option-argument is included within the
same argument string as the option-in most
cases it is the next argument.

Note: Utility Argument Syntax is defined in
detail in Utility Argument Syntax.

3. 258 POSIX Orientation A stream has one of three orientations:
unoriented, byte-oriented, or wide-oriented.

Note: For further information, see the
System Interfaces volume of
IEEE Std 1003.1-2001, Section 2.5.2,
Stream Orientation and Encoding Rules.

3. 259 POSIX Orphaned Process
Group

A process group in which the parent of every
member is either itself a member of the group or
is not a member of the group's session.

c:\... sc22 defs.xls 8/16/2005

Definitions 70

Clause Source Term Definition Notes
3. 260 POSIX Page The granularity of process memory mapping or

locking. Physical memory and memory objects
can be mapped into the address space of a
process on page boundaries and in integral
multiples of pages. Process address space can be
locked into memory (made memory-resident) on
page boundaries and in integral multiples of
pages.

3. 261 POSIX Page Size The size, in bytes, of the system unit of memory
allocation, protection, and mapping. On systems
that have segment rather than page-based
memory architectures, the term "page" means a
segment.

3. 262 POSIX Parameter In the shell command language, an entity that
stores values. There are three types of
parameters: variables (named parameters),
positional parameters, and special parameters.
Parameter expansion is accomplished by
introducing a parameter with the '$' character.

Note: See also the Shell and Utilities
volume of IEEE Std 1003.1-2001, Section
2.5, Parameters and Variables. In the C
language, an object declared as part of a
function declaration or definition that
acquires a value on entry to the function, or
an identifier following the macro name in a
function-like macro definition.

3. 263 POSIX Parent Directory When discussing a given directory, the directory
that both contains a directory entry for the given
directory and is represented by the pathname dot-
dot in the given directory. When discussing other
types of files, a directory containing a directory
entry for the file under discussion. This concept
does not apply to dot and dot-dot.

3. 264 POSIX Parent Process The process which created (or inherited) the
process under discussion.

c:\... sc22 defs.xls 8/16/2005

Definitions 71

Clause Source Term Definition Notes
3. 265 POSIX Parent Process ID An attribute of a new process identifying the

parent of the process. The parent process ID of a
process is the process ID of its creator, for the
lifetime of the creator. After the creator's lifetime
has ended, the parent process ID is the process
ID of an implementation-defined system process.

3. 266 POSIX Pathname A character string that is used to identify a file.
In the context of IEEE Std 1003.1-2001, a
pathname consists of, at most, {PATH_MAX}
bytes, including the terminating null byte. It has
an optional beginning slash, followed by zero or
more filenames separated by slashes. A
pathname may optionally contain one or more
trailing slashes. Multiple successive slashes are
considered to be the same as one slash.

Note: Pathname Resolution is defined in
detail in Pathname Resolution.

3. 267 POSIX Pathname
Component

See Filename in Filename.

3. 268 POSIX Path Prefix A pathname, with an optional ending slash, that
refers to a directory.

3. 269 POSIX Pattern A sequence of characters used either with regular
expression notation or for pathname expansion,
as a means of selecting various character strings
or pathnames, respectively.

Note: Regular Expressions are
defined in detail in Regular
Expressions . See also the Shell and
Utilities volume of IEEE Std 1003.1-
2001, Section 2.6.6, Pathname
Expansion. The syntaxes of the two
types of patterns are similar, but not
identical; IEEE Std 1003.1-2001
always indicates the type of pattern
being referred to in the immediate
context of the use of the term.

c:\... sc22 defs.xls 8/16/2005

Definitions 72

Clause Source Term Definition Notes
3. 270 POSIX Period The character '.'. The term "period" is contrasted with dot

(see also Dot), which is used to describe a specific
directory entry.

3. 271 POSIX Permissions Attributes of an object that determine the
privilege necessary to access or manipulate the
object.

Note: File Access Permissions are defined
in detail in File Access Permissions.

3. 272 POSIX Persistence A mode for semaphores, shared memory, and
message queues requiring that the object and its
state (including data, if any) are preserved after
the object is no longer referenced by any
process. Persistence of an object does not imply
that the state of the object is maintained across a
system crash or a system reboot.

3. 273 POSIX Pipe An object accessed by one of the pair of file descriptors
created by the pipe() function. Once created, the file
descriptors can be used to manipulate it, and it behaves
identically to a FIFO special file when accessed in this
way. It has no name in the file hierarchy.

Note: The pipe() function is defined in detail
in the System Interfaces volume of
IEEE Std 1003.1-2001.

3. 274 POSIX Polling A scheduling scheme whereby the local process
periodically checks until the pre-specified events
(for example, read, write) have occurred.

3. 275 POSIX Portable Character
Set

The collection of characters that are required to
be present in all locales supported by conforming
systems.

Note: The Portable Character Set is
defined in detail in Portable Character
Set . This term is contrasted against
the smaller portable filename
character set; see also Portable
Filename Character Set.

c:\... sc22 defs.xls 8/16/2005

Definitions 73

Clause Source Term Definition Notes
3. 276 POSIX Portable Filename

Character Set
The set of characters from which portable
filenames are constructed. {A B C D E F G H I
J K L M N O P Q R S T U V W X Y Z a b c d
e f g h i j k l m n o p q r s t u v w x y
z 0 1 2 3 4 5 6 7 8 9 . _ -} The last three
characters are the period, underscore, and
hyphen characters, respectively.

3. 277 POSIX Positional
Parameter

In the shell command language, a parameter
denoted by a single digit or one or more digits in
curly braces.

Note: For further information, see the Shell
and Utilities volume of IEEE Std 1003.1-
2001, Section 2.5.1, Positional Parameters.

3. 278 POSIX Preallocation The reservation of resources in a system for a
particular use. Preallocation does not imply that
the resources are immediately allocated to that
use, but merely indicates that they are
guaranteed to be available in bounded time when
needed.

3. 279 POSIX Preempted Process
(or Thread)

A running thread whose execution is suspended
due to another thread becoming runnable at a
higher priority.

3. 280 POSIX Previous Job In the context of job control, the job that will be
used as the default for the fg or bg utilities if the
current job exits. There is at most one previous
job; see also Job Control Job ID.

3. 281 POSIX Printable Character One of the characters included in the print
character classification of the LC_CTYPE category
in the current locale.

Note: The LC_CTYPE category is defined in
detail in LC_CTYPE.

3. 282 POSIX Printable File A text file consisting only of the characters
included in the print and space character
classifications of the LC_CTYPE category and the
<backspace>, all in the current locale.

Note: The LC_CTYPE category is defined in
detail in LC_CTYPE.

c:\... sc22 defs.xls 8/16/2005

Definitions 74

Clause Source Term Definition Notes
3. 283 POSIX Priority A non-negative integer associated with processes

or threads whose value is constrained to a range
defined by the applicable scheduling policy.
Numerically higher values represent higher
priorities.

3. 284 POSIX Priority Band The queuing order applied to normal priority
STREAMS messages. High priority STREAMS
messages are not grouped by priority bands. The
only differentiation made by the STREAMS
mechanism is between zero and non-zero bands,
but specific protocol modules may differentiate
between priority bands.

3. 285 POSIX Priority Inversion A condition in which a thread that is not
voluntarily suspended (waiting for an event or
time delay) is not running while a lower priority
thread is running. Such blocking of the higher
priority thread is often caused by contention for a
shared resource.

3. 286 POSIX Priority Scheduling A performance and determinism improvement
facility to allow applications to determine the
order in which threads that are ready to run are
granted access to processor resources.

3. 287 POSIX Priority-Based
Scheduling

Scheduling in which the selection of a running
thread is determined by the priorities of the
runnable processes or threads.

3. 288 POSIX Privilege See Appropriate Privileges in Appropriate Privileges.

c:\... sc22 defs.xls 8/16/2005

Definitions 75

Clause Source Term Definition Notes
3. 289 POSIX Process An address space with one or more threads

executing within that address space, and the
required system resources for those threads.

Note: Many of the system resources
defined by IEEE Std 1003.1-2001 are
shared among all of the threads within
a process. These include the process
ID, the parent process ID, process
group ID, session membership, real,
effective, and saved set-user-ID, real,
effective, and saved set-group-ID,
supplementary group IDs, current
working directory, root directory, file
mode creation mask, and file
descriptors.

3. 290 POSIX Process Group A collection of processes that permits the
signaling of related processes. Each process in
the system is a member of a process group that
is identified by a process group ID. A newly
created process joins the process group of its
creator.

3. 291 POSIX Process Group ID The unique positive integer identifier
representing a process group during its lifetime.

Note: See also Process Group ID Reuse
defined in Process ID Reuse.

3. 292 POSIX Process Group
Leader

A process whose process ID is the same as its
process group ID.

3. 293 POSIX Process Group
Lifetime

A period of time that begins when a process
group is created and ends when the last
remaining process in the group leaves the group,
due either to the end of the last process' lifetime
or to the last remaining process calling the
setsid () or setpgid () functions.

Note: The setsid () and setpgid ()
functions are defined in detail in the
System Interfaces volume of
IEEE Std 1003.1-2001.

3. 294 POSIX Process ID The unique positive integer identifier
representing a process during its lifetime.

Note: See also Process ID Reuse defined in
Process ID Reuse.

c:\... sc22 defs.xls 8/16/2005

Definitions 76

Clause Source Term Definition Notes
3. 295 POSIX Process Lifetime The period of time that begins when a process is

created and ends when its process ID is returned
to the system. After a process is created by
fork (), posix_spawn (), posix_spawnp (), or
vfork (), it is considered active. At least one
thread of control and address space exist until it
terminates. It then enters an inactive state where
certain resources may be returned to the system,
although some resources, such as the process ID,
are still in use. When another process executes a
wait (), waitid (), or waitpid () function for an
inactive process, the remaining resources are
returned to the system. The last resource to be
returned to the system is the process ID. At this
time, the lifetime of the process ends.

Note: The fork (), posix_spawn (),
posix_spawnp (), vfork (), wait (),
waitid (), and waitpid () functions are
defined in detail in the System
Interfaces volume of IEEE Std 1003.1-
2001.

3. 296 POSIX Process Memory
Locking

A performance improvement facility to bind
application programs into the high-performance
random access memory of a computer system.
This avoids potential latencies introduced by the
operating system in storing parts of a program
that were not recently referenced on secondary
memory devices.

3. 297 POSIX Process
Termination

There are two kinds of process termination: (1)
Normal termination occurs by a return from
main (), when requested with the exit (), _exit (),
or _Exit () functions; or when the last thread in
the process terminates by returning from its start
function, by calling the pthread_exit () function,
or through cancellation. (2) Abnormal
termination occurs when requested by the
abort () function or when some signals are
received.

Note: The _exit (), _Exit (), abort (),
and exit () functions are defined in
detail in the System Interfaces volume
of IEEE Std 1003.1-2001.

c:\... sc22 defs.xls 8/16/2005

Definitions 77

Clause Source Term Definition Notes
3. 298 POSIX Process-To-Process

Communication
The transfer of data between processes.

3. 299 POSIX Process Virtual
Time

The measurement of time in units elapsed by the
system clock while a process is executing.

3. 300 POSIX Program A prepared sequence of instructions to the
system to accomplish a defined task. The term
"program" in IEEE Std 1003.1-2001 encompasses
applications written in the Shell Command
Language, complex utility input languages (for
example, awk , lex , sed , and so on), and high-
level languages.

3. 301 POSIX Protocol A set of semantic and syntactic rules for
exchanging information.

3. 302 POSIX Pseudo-Terminal A facility that provides an interface that is
identical to the terminal subsystem. A pseudo-
terminal is composed of two devices: the "master
device" and a "slave device". The slave device
provides processes with an interface that is
identical to the terminal interface, although there
need not be hardware behind that interface.
Anything written on the master device is
presented to the slave as an input and anything
written on the slave device is presented as an
input on the master side.

3. 303 POSIX Radix Character The character that separates the integer part of a
number from the fractional part.

3. 304 POSIX Read-Only File
System

A file system that has implementation-defined
characteristics restricting modifications.

Note: File Times Update is described in
detail in File Times Update.

c:\... sc22 defs.xls 8/16/2005

Definitions 78

Clause Source Term Definition Notes
3. 305 POSIX Read-Write Lock Multiple readers, single writer (read-write) locks

allow many threads to have simultaneous read-
only access to data while allowing only one
thread to have write access at any given time.
They are typically used to protect data that is
read-only more frequently than it is changed.
Read-write locks can be used to synchronize
threads in the current process and other
processes if they are allocated in memory that is
writable and shared among the cooperating
processes and have been initialized for this
behavior.

3. 306 POSIX Real Group ID The attribute of a process that, at the time of process
creation, identifies the group of the user who created the
process; see also Group ID.

3. 307 POSIX Real Time Time measured as total units elapsed by the
system clock without regard to which thread is
executing.

3. 308 POSIX Realtime Signal
Extension

A determinism improvement facility to enable
asynchronous signal notifications to an
application to be queued without impacting
compatibility with the existing signal functions.

3. 309 POSIX Real User ID The attribute of a process that, at the time of process
creation, identifies the user who created the process;
see also User ID.

3. 310 POSIX Record A collection of related data units or words which
is treated as a unit.

3. 311 POSIX Redirection In the shell command language, a method of
associating files with the input or output of
commands.

Note: For further information, see the Shell
and Utilities volume of IEEE Std 1003.1-
2001, Section 2.7, Redirection.

c:\... sc22 defs.xls 8/16/2005

Definitions 79

Clause Source Term Definition Notes
3. 312 POSIX Redirection

Operator
In the shell command language, a token that
performs a redirection function. It is one of the
following symbols: < > >| <<
>> <& >& <<- <>

3. 313 POSIX Reentrant Function A function whose effect, when called by two or
more threads, is guaranteed to be as if the
threads each executed the function one after
another in an undefined order, even if the actual
execution is interleaved.

3. 314 POSIX Referenced Shared
Memory Object

A shared memory object that is open or has one
or more mappings defined on it.

3. 315 POSIX Refresh To ensure that the information on the user's
terminal screen is up-to-date.

3. 316 POSIX Regular Expression A pattern that selects specific strings from a set
of character strings.

Note: Regular Expressions are described in
detail in Regular Expressions.

3. 317 POSIX Region In the context of the address space of a process,
a sequence of addresses. In the context of a file,
a sequence of offsets.

3. 318 POSIX Regular File A file that is a randomly accessible sequence of
bytes, with no further structure imposed by the
system.

3. 319 POSIX Relative Pathname A pathname not beginning with a slash. Note: Pathname Resolution is defined in
detail in Pathname Resolution.

3. 320 POSIX Relocatable File A file holding code or data suitable for linking
with other object files to create an executable or
a shared object file.

3. 321 POSIX Relocation The process of connecting symbolic references
with symbolic definitions. For example, when a
program calls a function, the associated call
instruction transfers control to the proper
destination address at execution.

c:\... sc22 defs.xls 8/16/2005

Definitions 80

Clause Source Term Definition Notes
3. 322 POSIX Requested Batch

Service
A service that is either rejected or performed
prior to a response from the service to the
requester.

3. 323 POSIX Resolution (of
time)

The minimum time interval that a clock can
measure or whose passage a timer can detect.

3. 324 POSIX Root Directory A directory, associated with a process, that is
used in pathname resolution for pathnames that
begin with a slash.

3. 325 POSIX Runnable Process
(or Thread)

A thread that is capable of being a running
thread, but for which no processor is available.

3. 326 POSIX Running Process
(or Thread)

A thread currently executing on a processor. On
multi-processor systems there may be more than
one such thread in a system at a time.

3. 327 POSIX Saved Resource
Limits

An attribute of a process that provides some flexibility in
the handling of unrepresentable resource limits, as
described in the exec family of functions and setrlimit().

Note: The exec and setrlimit() functions are
defined in detail in the System Interfaces
volume of IEEE Std 1003.1-2001.

3. 328 POSIX Saved Set-Group-
ID

An attribute of a process that allows some flexibility in
the assignment of the effective group ID attribute, as
described in the exec family of functions and setgid().

Note: The exec and setgid() functions are
defined in detail in the System Interfaces
volume of IEEE Std 1003.1-2001.

3. 329 POSIX Saved Set-User-ID An attribute of a process that allows some flexibility in
the assignment of the effective user ID attribute, as
described in the exec family of functions and setuid().

Note: The exec and setuid() functions are
defined in detail in the System Interfaces
volume of IEEE Std 1003.1-2001.

3. 330 POSIX Scheduling The application of a policy to select a runnable
process or thread to become a running process or
thread, or to alter one or more of the thread lists.

3. 331 POSIX Scheduling
Allocation Domain

The set of processors on which an individual
thread can be scheduled at any given time.

c:\... sc22 defs.xls 8/16/2005

Definitions 81

Clause Source Term Definition Notes
3. 332 POSIX Scheduling

Contention Scope
A property of a thread that defines the set of
threads against which that thread competes for
resources. For example, in a scheduling decision,
threads sharing scheduling contention scope
compete for processor resources. In
IEEE Std 1003.1-2001, a thread has scheduling
contention scope of either
PTHREAD_SCOPE_SYSTEM or
PTHREAD SCOPE PROCESS.

3. 333 POSIX Scheduling Policy A set of rules that is used to determine the order
of execution of processes or threads to achieve
some goal.

Note: Scheduling Policy is defined in detail
in Scheduling Policy.

3. 334 POSIX Screen A rectangular region of columns and lines on a
terminal display. A screen may be a portion of a
physical display device or may occupy the entire
physical area of the display device.

3. 335 POSIX Scroll To move the representation of data vertically or
horizontally relative to the terminal screen. There
are two types of scrolling: (1) The cursor moves
with the data, (2) The cursor remains stationary
while the data moves.

3. 336 POSIX Semaphore A minimum synchronization primitive to serve as
a basis for more complex synchronization
mechanisms to be defined by the application
program.

Note: Semaphores are defined in detail in
Semaphore.

3. 337 POSIX Session A collection of process groups established for job control
purposes. Each process group is a member of a
session. A process is considered to be a member of the
session of which its process group is a member. A newly
created process joins the session of its creator. A
process can alter its session membership; see setsid().
There can be multiple process groups in the same
session.

Note: The setsid() function is defined in
detail in the System Interfaces volume of
IEEE Std 1003.1-2001.

c:\... sc22 defs.xls 8/16/2005

Definitions 82

Clause Source Term Definition Notes
3. 338 POSIX Session Leader A process that has created a session. Note: For further information, see the

setsid() function defined in the System
Interfaces volume of IEEE Std 1003.1-2001.

3. 339 POSIX Session Lifetime The period between when a session is created
and the end of the lifetime of all the process
groups that remain as members of the session.

3. 340 POSIX Shared Memory
Object

An object that represents memory that can be
mapped concurrently into the address space of
more than one process.

3. 341 POSIX Shell A program that interprets sequences of text input
as commands. It may operate on an input stream
or it may interactively prompt and read
commands from a terminal.

3. 342 POSIX Shell, the The Shell Command Language Interpreter; a
specific instance of a shell.

Note: For further information, see the sh
utility defined in the Shell and Utilities
volume of IEEE Std 1003.1-2001.

3. 343 POSIX Shell Script A file containing shell commands. If the file is made
executable, it can be executed by specifying its name as
a simple command. Execution of a shell script causes a
shell to execute the commands within the script.
Alternatively, a shell can be requested to execute the
commands in a shell script by specifying the name of the
shell script as the operand to the sh utility.

Note: Simple Commands are defined
in detail in the Shell and Utilities
volume of IEEE Std 1003.1-2001,
Section 2.9.1, Simple Commands.
The sh utility is defined in detail in the
Shell and Utilities volume of
IEEE Std 1003.1-2001.

3. 344 POSIX Signal A mechanism by which a process or thread may
be notified of, or affected by, an event occurring
in the system. Examples of such events include
hardware exceptions and specific actions by
processes. The term signal is also used to refer to
the event itself.

3. 345 POSIX Signal Stack Memory established for a thread, in which signal
handlers catching signals sent to that thread are
executed.

c:\... sc22 defs.xls 8/16/2005

Definitions 83

Clause Source Term Definition Notes
3. 346 POSIX Single-Quote The character ''', also known as apostrophe.

3. 347 POSIX Slash The character '/', also known as solidus.
3. 348 POSIX Socket A file of a particular type that is used as a

communications endpoint for process-to-process
communication as described in the System
Interfaces volume of IEEE Std 1003.1-2001.

3. 349 POSIX Socket Address An address associated with a socket or remote
endpoint, including an address family identifier
and addressing information specific to that
address family. The address may include multiple
parts, such as a network address associated with
a host system and an identifier for a specific
endpoint.

3. 350 POSIX Soft Limit A resource limitation established for each process
that the process may set to any value less than
or equal to the hard limit.

3. 351 POSIX Source Code When dealing with the Shell Command Language,
input to the command language interpreter. The
term "shell script" is synonymous with this
meaning. When dealing with an ISO/IEC-
conforming programming language, source code
is input to a compiler conforming to that ISO/IEC
standard. Source code also refers to the input
statements prepared for the following standard
utilities: awk , bc , ed , lex , localedef , make ,
sed , and yacc . Source code can also refer to a
collection of sources meeting any or all of these
meanings.

Note: The awk , bc , ed , lex ,
localedef , make , sed , and yacc
utilities are defined in detail in the
Shell and Utilities volume of
IEEE Std 1003.1-2001.

c:\... sc22 defs.xls 8/16/2005

Definitions 84

Clause Source Term Definition Notes
3. 352 POSIX Space Character

(<space>)
The character defined in the portable character set as
<space>. The <space> is a member of the space
character class of the current locale, but represents the
single character, and not all of the possible members of
the class; see also White Space.

3. 353 POSIX Spawn A process creation primitive useful for systems
that have difficulty with fork () and as an efficient
replacement for fork ()/ exec .

3. 354 POSIX Special Built-In See Built-In Utility in Built-In Utility (or Built-In).
3. 355 POSIX Special Parameter In the shell command language, a parameter

named by a single character from the following
list: * @ # ? ! - $ 0

Note: For further information, see the Shell
and Utilities volume of IEEE Std 1003.1-
2001, Section 2.5.2, Special Parameters.

3. 356 POSIX Spin Lock A synchronization object used to allow multiple
threads to serialize their access to shared data.

3. 357 POSIX Sporadic Server A scheduling policy for threads and processes
that reserves a certain amount of execution
capacity for processing aperiodic events at a
given priority level.

3. 358 POSIX Standard Error An output stream usually intended to be used for
diagnostic messages.

3. 359 POSIX Standard Input An input stream usually intended to be used for
primary data input.

3. 360 POSIX Standard Output An output stream usually intended to be used for
primary data output.

3. 361 POSIX Standard Utilities The utilities described in the Shell and Utilities
volume of IEEE Std 1003.1-2001.

c:\... sc22 defs.xls 8/16/2005

Definitions 85

Clause Source Term Definition Notes
3. 362 POSIX Stream Appearing in lowercase, a stream is a file access

object that allows access to an ordered sequence
of characters, as described by the ISO C
standard. Such objects can be created by the
fdopen (), fopen (), or popen () functions, and are
associated with a file descriptor. A stream
provides the additional services of user-selectable
buffering and formatted input and output; see
also STREAM.

Note: For further information, see the
System Interfaces volume of
IEEE Std 1003.1-2001, Section 2.5,
Standard I/O Streams. The fdopen (),
fopen (), or popen () functions are
defined in detail in the System
Interfaces volume of IEEE Std 1003.1-
2001.

3. 363 POSIX STREAM Appearing in uppercase, STREAM refers to a full-duplex
connection between a process and an open device or
pseudo-device. It optionally includes one or more
intermediate processing modules that are interposed
between the process end of the STREAM and the device
driver (or pseudo-device driver) end of the STREAM;
see also Stream.

Note: For further information, see the
System Interfaces volume of
IEEE Std 1003.1-2001, Section 2.6,
STREAMS.

3. 364 POSIX STREAM End The STREAM end is the driver end of the STREAM
and is also known as the downstream end of the
STREAM.

3. 365 POSIX STREAM Head The STREAM head is the beginning of the
STREAM and is at the boundary between the
system and the application process. This is also
known as the upstream end of the STREAM.

3. 366 POSIX STREAMS
Multiplexor

A driver with multiple STREAMS connected to it.
Multiplexing with STREAMS connected above is
referred to as N-to-1, or "upper multiplexing".
Multiplexing with STREAMS connected below is
referred to as 1-to-N or "lower multiplexing".

3. 367 POSIX String A contiguous sequence of bytes terminated by
and including the first null byte.

c:\... sc22 defs.xls 8/16/2005

Definitions 86

Clause Source Term Definition Notes
3. 368 POSIX Subshell A shell execution environment, distinguished

from the main or current shell execution
environment.

Note: For further information, see the Shell
and Utilities volume of IEEE Std 1003.1-
2001, Section 2.12, Shell Execution
Environment.

3. 369 POSIX Successfully
Transferred

For a write operation to a regular file, when the
system ensures that all data written is readable
on any subsequent open of the file (even one
that follows a system or power failure) in the
absence of a failure of the physical storage
medium. For a read operation, when an image of
the data on the physical storage medium is
available to the requesting process.

3. 370 POSIX Supplementary
Group ID

An attribute of a process used in determining file
access permissions. A process has up to
{NGROUPS_MAX} supplementary group IDs in
addition to the effective group ID. The
supplementary group IDs of a process are set to
the supplementary group IDs of the parent
process when the process is created.

3. 371 POSIX Suspended Job A job that has received a SIGSTOP, SIGTSTP,
SIGTTIN, or SIGTTOU signal that caused the
process group to stop. A suspended job is a
background job, but a background job is not
necessarily a suspended job.

3. 372 POSIX Symbolic Link A type of file with the property that when the file
is encountered during pathname resolution, a
string stored by the file is used to modify the
pathname resolution. The stored string has a
length of {SYMLINK_MAX} bytes or fewer.

Note: Pathname Resolution is defined in
detail in Pathname Resolution.

c:\... sc22 defs.xls 8/16/2005

Definitions 87

Clause Source Term Definition Notes
3. 373 POSIX Synchronized Input

and Output
A determinism and robustness improvement
mechanism to enhance the data input and output
mechanisms, so that an application can ensure
that the data being manipulated is physically
present on secondary mass storage devices.

3. 374 POSIX Synchronized I/O
Completion

The state of an I/O operation that has either
been successfully transferred or diagnosed as
unsuccessful.

3. 375 POSIX Synchronized I/O
Data Integrity
Completion

For read, when the operation has been completed
or diagnosed if unsuccessful. The read is
complete only when an image of the data has
been successfully transferred to the requesting
process. If there were any pending write requests
affecting the data to be read at the time that the
synchronized read operation was requested,
these write requests are successfully transferred
prior to reading the data. For write, when the
operation has been completed or diagnosed if
unsuccessful. The write is complete only when
the data specified in the write request is
successfully transferred and all file system
information required to retrieve the data is
successfully transferred. File attributes that are
not necessary for data retrieval (access time,
modification time, status change time) need not
be successfully transferred prior to returning to
the calling process.

c:\... sc22 defs.xls 8/16/2005

Definitions 88

Clause Source Term Definition Notes
3. 376 POSIX Synchronized I/O

File Integrity
Completion

Identical to a synchronized I/O data integrity
completion with the addition that all file
attributes relative to the I/O operation (including
access time, modification time, status change
time) are successfully transferred prior to
returning to the calling process.

3. 377 POSIX Synchronized I/O
Operation

An I/O operation performed on a file that
provides the application assurance of the
integrity of its data and files.

3. 378 POSIX Synchronous I/O
Operation

An I/O operation that causes the thread
requesting the I/O to be blocked from further use
of the processor until that I/O operation
completes.

Note: A synchronous I/O operation
does not imply synchronized I/O data
integrity completion or synchronized
I/O file integrity completion.

3. 379 POSIX Synchronously-
Generated Signal

A signal that is attributable to a specific thread. For example, a thread executing an
illegal instruction or touching invalid
memory causes a synchronously-
generated signal. Being synchronous
is a property of how the signal was
generated and not a property of the
signal number.

3. 380 POSIX System An implementation of IEEE Std 1003.1-2001.
3. 381 POSIX System Crash An interval initiated by an unspecified

circumstance that causes all processes (possibly
other than special system processes) to be
terminated in an undefined manner, after which
any changes to the state and contents of files
created or written to by an application prior to
the interval are undefined, except as required
elsewhere in IEEE Std 1003.1-2001.

c:\... sc22 defs.xls 8/16/2005

Definitions 89

Clause Source Term Definition Notes
3. 382 POSIX System Console A device that receives messages sent by the

syslog () function, and the fmtmsg () function
when the MM_CONSOLE flag is set.

Note: The syslog () and fmtmsg ()
functions are defined in detail in the
System Interfaces volume of
IEEE Std 1003.1-2001.

3. 383 POSIX System Databases An implementation provides two system
databases: the "group database" (see also Group
Database) and the "user database" (see also User
Database).

3. 384 POSIX System
Documentation

All documentation provided with an
implementation except for the conformance
document. Electronically distributed documents
for an implementation are considered part of the
system documentation.

3. 385 POSIX System Process An object other than a process executing an
application, that is provided by the system and
has a process ID.

3. 386 POSIX System Reboot An unspecified sequence of events that may
result in the loss of transitory data; that is, data
that is not saved in permanent storage. For
example, message queues, shared memory,
semaphores, and processes.

3. 387 POSIX System Trace
Event

A trace event that is generated by the implementation, in
response either to a system-initiated action or to an
application-requested action, except for a call to
posix_trace_event(). When supported by the
implementation, a system-initiated action generates a
process-independent system trace event and an
application-requested action generates a process-
dependent system trace event. For a system trace event
not defined by IEEE Std 1003.1-2001, the associated
trace event type identifier is derived from the
implementation-defined name for this trace event, and
the associated data is of implementation-defined content
and length.

c:\... sc22 defs.xls 8/16/2005

Definitions 90

Clause Source Term Definition Notes
3. 388 POSIX System-Wide Pertaining to events occurring in all processes

existing in an implementation at a given point in
time.

3. 389 POSIX Tab Character
(<tab>)

A character that in the output stream indicates
that printing or displaying should start at the
next horizontal tabulation position on the current
line. It is the character designated by '\t' in the
C language. If the current position is at or past
the last defined horizontal tabulation position, the
behavior is unspecified. It is unspecified whether
this character is the exact sequence transmitted
to an output device by the system to accomplish
the tabulation.

3. 390 POSIX Terminal (or
Terminal Device)

A character special file that obeys the
specifications of the general terminal interface.

Note: The General Terminal Interface is
defined in detail in General Terminal
Interface .

3. 391 POSIX Text Column A roughly rectangular block of characters capable
of being laid out side-by-side next to other text
columns on an output page or terminal screen.
The widths of text columns are measured in
column positions.

3. 392 POSIX Text File A file that contains characters organized into one
or more lines. The lines do not contain NUL
characters and none can exceed {LINE_MAX}
bytes in length, including the <newline>.
Although IEEE Std 1003.1-2001 does not
distinguish between text files and binary files
(see the ISO C standard), many utilities only
produce predictable or meaningful output when
operating on text files. The standard utilities that
have such restrictions always specify "text files"
in their STDIN or INPUT FILES sections.

c:\... sc22 defs.xls 8/16/2005

Definitions 91

Clause Source Term Definition Notes
3. 393 POSIX Thread A single flow of control within a process. Each thread

has its own thread ID, scheduling priority and policy,
errno value, thread-specific key/value bindings, and the
required system resources to support a flow of control.
Anything whose address may be determined by a
thread, including but not limited to static variables,
storage obtained via malloc(), directly addressable
storage obtained through implementation-defined
functions, and automatic variables, are accessible to all
threads in the same process.

Note: The malloc() function is defined in
detail in the System Interfaces volume of
IEEE Std 1003.1-2001.

3. 394 POSIX Thread ID Each thread in a process is uniquely identified
during its lifetime by a value of type pthread_t
called a thread ID.

3. 395 POSIX Thread List An ordered set of runnable threads that all have
the same ordinal value for their priority. The
ordering of threads on the list is determined by a
scheduling policy or policies. The set of thread
lists includes all runnable threads in the system.

3. 396 POSIX Thread-Safe A function that may be safely invoked
concurrently by multiple threads. Each function
defined in the System Interfaces volume of
IEEE Std 1003.1-2001 is thread-safe unless
explicitly stated otherwise. Examples are any
"pure" function, a function which holds a mutex
locked while it is accessing static storage, or
objects shared among threads.

c:\... sc22 defs.xls 8/16/2005

Definitions 92

Clause Source Term Definition Notes
3. 397 POSIX Thread-Specific

Data Key
A process global handle of type pthread_key_t
which is used for naming thread-specific data.
Although the same key value may be used by
different threads, the values bound to the key by
pthread_setspecific () and accessed by
pthread_getspecific () are maintained on a per-
thread basis and persist for the life of the calling
thread.

Note: The pthread_getspecific () and
pthread_setspecific () functions are
defined in detail in the System
Interfaces volume of IEEE Std 1003.1-
2001.

3. 398 POSIX Tilde The character '˜'.
3. 399 POSIX Timeouts A method of limiting the length of time an interface will

block; see also Blocked Process (or Thread) .
3. 400 POSIX Timer A mechanism that can notify a thread when the

time as measured by a particular clock has
reached or passed a specified value, or when a
specified amount of time has passed.

3. 401 POSIX Timer Overrun A condition that occurs each time a timer, for
which there is already an expiration signal
queued to the process, expires.

3. 402 POSIX Token In the shell command language, a sequence of
characters that the shell considers as a single
unit when reading input. A token is either an
operator or a word.

Note: The rules for reading input are
defined in detail in the Shell and Utilities
volume of IEEE Std 1003.1-2001, Section
2.3, Token Recognition.

3. 403 POSIX Trace Analyzer
Process

A process that extracts trace events from a trace
stream to retrieve information about the behavior
of an application.

3. 404 POSIX Trace Controller
Process

A process that creates a trace stream for tracing
a process.

3. 405 POSIX Trace Event A data object that represents an action executed
by the system, and that is recorded in a trace
stream.

3. 406 POSIX Trace Event Type A data object type that defines a class of trace
event.

c:\... sc22 defs.xls 8/16/2005

Definitions 93

Clause Source Term Definition Notes
3. 407 POSIX Trace Event Type

Mapping
A one-to-one mapping between trace event types
and trace event names.

3. 408 POSIX Trace Filter A filter that allows the trace controller process to
specify those trace event types that are to be
ignored; that is, not generated.

3. 409 POSIX Trace Generation
Version

A data object that is an implementation-defined
character string, generated by the trace system
and describing the origin and version of the trace
system.

3. 410 POSIX Trace Log The flushed image of a trace stream, if the trace
stream is created with a trace log.

3. 411 POSIX Trace Point An action that may cause a trace event to be
generated.

3. 412 POSIX Trace Stream An opaque object that contains trace events plus
internal data needed to interpret those trace
events.

3. 413 POSIX Trace Stream
Identifier

A handle to manage tracing operations in a trace
stream.

3. 414 POSIX Trace System A system that allows both system and user trace
events to be generated into a trace stream.
These trace events can be retrieved later.

3. 415 POSIX Traced Process A process for which at least one trace stream has
been created. A traced process is also called a
target process.

3. 416 POSIX Tracing Status of a
Trace Stream

A status that describes the state of an active
trace stream. The tracing status of a trace stream
can be retrieved from the trace stream
attributes. An active trace stream can be in one
of two states: running or suspended.

c:\... sc22 defs.xls 8/16/2005

Definitions 94

Clause Source Term Definition Notes
3. 417 POSIX Typed Memory

Name Space
A system-wide name space that contains the
names of the typed memory objects present in
the system. It is configurable for a given
implementation.

3. 418 POSIX Typed Memory
Object

A combination of a typed memory pool and a
typed memory port. The entire contents of the
pool are accessible from the port. The typed
memory object is identified through a name that
belongs to the typed memory name space.

3. 419 POSIX Typed Memory
Pool

An extent of memory with the same operational
characteristics. Typed memory pools may be
contained within each other.

3. 420 POSIX Typed Memory
Port

A hardware access path to one or more typed
memory pools.

3. 421 POSIX Unbind Remove the association between a network
address and an endpoint.

3. 422 POSIX Unit Data See Datagram in Datagram.
3. 423 POSIX Upshifting The conversion of a lowercase character that has

a single-character uppercase representation into
this uppercase representation.

3. 424 POSIX User Database A system database that contains at least the following
information for each user ID: (1) User name, (2)
Numerical user ID, (3) Initial numerical group ID, (4)
Initial working directory, (5) Initial user program. The
initial numerical group ID is used by the newgrp utility.
Any other circumstances under which the initial values
are operative are implementation-defined. If the initial
user program field is null, an implementation-defined
program is used. If the initial working directory field is
null, the interpretation of that field is implementation-
defined.

Note: The newgrp utility is defined in detail
in the Shell and Utilities volume of
IEEE Std 1003.1-2001.

c:\... sc22 defs.xls 8/16/2005

Definitions 95

Clause Source Term Definition Notes
3. 425 POSIX User ID A non-negative integer that is used to identify a

system user. When the identity of a user is
associated with a process, a user ID value is
referred to as a real user ID, an effective user ID,
or a saved set-user-ID.

3. 426 POSIX User Name A string that is used to identify a user; see also User
Database. To be portable across systems conforming to
IEEE Std 1003.1-2001, the value is composed of
characters from the portable filename character set. The
hyphen should not be used as the first character of a
portable user name.

3. 427 POSIX User Trace Event A trace event that is generated explicitly by the
application as a result of a call to posix_trace_event().

3. 428 POSIX Utility A program, excluding special built-in utilities
provided as part of the Shell Command
Language, that can be called by name from a
shell to perform a specific task, or related set of
tasks.

Note: For further information on special built-
in utilities, see the Shell and Utilities volume
of IEEE Std 1003.1-2001, Section 2.14,
Special Built-In Utilities.

3. 429 POSIX Variable In the shell command language, a named
parameter.

Note: For further information, see the Shell
and Utilities volume of IEEE Std 1003.1-
2001, Section 2.5, Parameters and
Variables.

3. 430 POSIX Vertical-Tab
Character
(<vertical-tab>)

A character that in the output stream indicates
that printing should start at the next vertical
tabulation position. It is the character designated
by '\v' in the C language. If the current position
is at or past the last defined vertical tabulation
position, the behavior is unspecified. It is
unspecified whether this character is the exact
sequence transmitted to an output device by the
system to accomplish the tabulation.

c:\... sc22 defs.xls 8/16/2005

Definitions 96

Clause Source Term Definition Notes
3. 431 POSIX White Space A sequence of one or more characters that

belong to the space character class as defined
via the LC_CTYPE category in the current locale.
In the POSIX locale, white space consists of one
or more <blank>s (<space>s and <tab>s),
<newline>s, <carriage-return>s, <form-feed>s,
and <vertical-tab>s.

3. 432 POSIX Wide-Character
Code (C Language)

An integer value corresponding to a single
graphic symbol or control code.

Note: C Language Wide-Character Codes
are defined in detail in C Language Wide-
Character Codes.

3. 433 POSIX Wide-Character
Input/Output
Functions

The functions that perform wide-oriented input
from streams or wide-oriented output to
streams: fgetwc (), fgetws (), fputwc (), fputws (),
fwprintf (), fwscanf (), getwc (), getwchar (),
putwc (), putwchar (), ungetwc (), vfwprintf (),
vfwscanf (), vwprintf (), vwscanf (), wprintf (), and
wscanf ().

Note: These functions are defined in
detail in the System Interfaces volume
of IEEE Std 1003.1-2001.

3. 434 POSIX Wide-Character
String

A contiguous sequence of wide-character codes
terminated by and including the first null wide-
character code.

3. 435 POSIX Word In the shell command language, a token other
than an operator. In some cases a word is also a
portion of a word token: in the various forms of
parameter expansion, such as ${name -word },
and variable assignment, such as name =word ,
the word is the portion of the token depicted by
word . The concept of a word is no longer
applicable following word expansions-only fields
remain.

Note: For further information, see the
Shell and Utilities volume of
IEEE Std 1003.1-2001, Section 2.6.2,
Parameter Expansion and the Shell
and Utilities volume of
IEEE Std 1003.1-2001, Section 2.6,
Word Expansions.

c:\... sc22 defs.xls 8/16/2005

Definitions 97

Clause Source Term Definition Notes
3. 436 POSIX Working Directory

(or Current
Working Directory)

A directory, associated with a process, that is
used in pathname resolution for pathnames that
do not begin with a slash.

3. 437 POSIX Worldwide
Portability
Interface

Functions for handling characters in a codeset-
independent manner.

3. 438 POSIX Write To output characters to a file, such as standard output or
standard error. Unless otherwise stated, standard output
is the default output destination for all uses of the term
"write''; see the distinction between display and write in
Display.

3. 439 POSIX XSI The X/Open System Interface is the core application
programming interface for C and sh programming for
systems conforming to the Single UNIX Specification.
This is a superset of the mandatory requirements for
conformance to IEEE Std 1003.1-2001.

3. 440 POSIX XSI-Conformant A system which allows an application to be built
using a set of services that are consistent across
all systems that conform to IEEE Std 1003.1-
2001 and that support the XSI extension.

Note: See also Conformance.

3. 441 POSIX Zombie Process A process that has terminated and that is deleted
when its exit status has been reported to another
process which is waiting for that process to
terminate.

3. 442 POSIX ±0 The algebraic sign provides additional information
about any variable that has the value zero when
the representation allows the sign to be
determined.

1.7. 1 ISLisp abstract class A class that by definition has no direct instances.

c:\... sc22 defs.xls 8/16/2005

Definitions 98

Clause Source Term Definition Notes
1.7. 2 ISLisp activation Computation of a function. Every activation has an activation

point, an activation period, and an activation end. The
activator, which is a function application form prepared for
execution, starts the activation at the activation point.

1.7. 3 ISLisp accessor Association of a reader and a writer for a slot of an instance.

1.7. 4 ISLisp binding Binding has both a syntactic and a semantic aspect. xxx
Syntactically, ``binding'' describes the relation between an
identifier and a binding ISLisp form. The property of being
bound can be checked textually by relating defining and
applied identifier occurrences. xxx Semantically, ``binding''
describes the relation between a variable, its denoting
identifier, and an object (or, the relation between a variable
and a location). This relation might be imagined to be
materialized in some entity, the binding. Such a binding entity
is constructed at run time and destroyed later, or might have
indefinite extent.

1.7. 5 ISLisp class Object, that determines the structure and behavior of a set of
other objects, called its instances. The behavior is the set of
operations that can be performed on an instance.

1.7. 6 ISLisp condition An object that represents a situation that has been (or might
be) detected by a running program.

1.7. 7 ISLisp definition point An identifier represents an ISLisp object starting with its
definition point, which is a textual point of an ISLisp text.

1.7. 8 ISLisp direct instance Every ISLisp object is direct instance of exactly one class,
which is called ``its class''. The set of all direct instances
together with their behavior constitute a class.

1.7. 9 ISLisp dynamic Having an effect that is determined only through program
execution and that cannot, in general, be determined statically.

c:\... sc22 defs.xls 8/16/2005

Definitions 99

Clause Source Term Definition Notes
1.7. 10 ISLisp dynamic variable A variable whose associated binding is determined by the most

recently executed active block that established it, rather than
statically by a lexically apparent block according to the lexical
principle.

1.7. 11 ISLisp evaluation Computation of a form prepared for execution which results in
a value and/or a side effect.

1.7. 12 ISLisp execution A sequence of (sometimes nested) activations.
1.7. 13 ISLisp extension An implementation defined modification to the requirements

of this International Standard that does not invalidate any
ISLisp text complying with this International Standard (except
by prohibiting the use of one or more particular spellings of
identifiers), does not alter the set of actions which are required
to signal errors, and does not alter the status of any feature
designated as implementation dependent.

1.7. 14 ISLisp form A single, syntactically valid unit of program text, capable of
being prepared for execution.

1.7. 15 ISLisp function An ISLisp object that is called with arguments, performs a
computation (possibly having side-effects), and returns a
value.

1.7. 16 ISLisp generic function Function whose application behavior is determined by the
classes of the values of its arguments and which consists -- in
general -- of several methods.

1.7. 17 ISLisp identifier A lexical element (lexeme) which designates an ISLisp object.
In the data structure representation of ISLisp texts, identifiers
are denoted by symbols.

1.7. 18 ISLisp immutable binding A binding is immutable if the relation between an identifier
and the object represented by this identifier cannot be changed.
It is a violation if there is attempt to change an immutable
binding (error-id. immutable-binding .

c:\... sc22 defs.xls 8/16/2005

Definitions 100

Clause Source Term Definition Notes
1.7. 19 ISLisp immutable object An object is immutable if it is not subject to change, either

because no operator is provided that is capable of effecting
such change, or because some constraint exists which prohibits
the use of an operator that might otherwise be capable of
effecting such a change. Except as explicitly indicated
otherwise, a conforming processor is not required to detect
attempts to modify immutable objects; the consequences are
undefined if an attempt is made to modify an immutable
object.

1.7. 20 ISLisp implementation defined A feature, possibly differing between different ISLisp
processors, but completely defined for every processor.

1.7. 21 ISLisp implementation
dependent

A feature, possibly differing between different ISLisp
processors, but not necessarily defined for any particular
processor.

Note - A conforming ISLisp text must not
depend upon implementation dependent
features.

1.7. 22 ISLisp inheritance Relation between a class and its superclass which maps
structure and behavior of the superclass onto the class. ISLisp
supports a restricted form of multiple inheritance; i.e ., a class
may have several direct superclasses at once.

1.7. 23 ISLisp instance (of a class) Either a direct instance of a class or an instance of one of its
subclasses.

1.7. 24 ISLisp literal An object whose representation occurs directly in a program as
a constant value.

1.7. 25 ISLisp metaclass A class whose instances are themselves classes.
1.7. 26 ISLisp method Case of a generic function for a particular parameter profile,

which defines the class-specific behavior and operations of the
generic function.

1.7. 27 ISLisp object An object is anything that can be created, destroyed,
manipulated, compared, stored, input, or output by the ISLisp
processor. In particular, functions are ISLisp objects. Objects
that can be passed as arguments to functions, can be returned
as values, can be bound to variables, and can be part of
structures, are called first-class objects .

c:\... sc22 defs.xls 8/16/2005

Definitions 101

Clause Source Term Definition Notes
1.7. 28 ISLisp operator The first element of a compound form, which is either a

reserved name that identifies the form as a special form, or the
name of a macro, or a lambda expression, or else an identifier
in the function namespace.

1.7. 29 ISLisp parameter profile Parameter list of a method, where each formal parameter is
accompanied by its class name. If a parameter is not
accompanied by a class name, it belongs to the most general
class.

1.7. 30 ISLisp place Objects can be stored in places and retrieved later. Places are
designated by forms which are permitted as the first argument
of setf. If used this way an object is stored in the place. If the
form is not used as first argument of setf the stored object is
retrieved. The cases are listed in the description of setf.

1.7. 31 ISLisp position (a) argument position: Occurrence of a text unit as an element
in a form excluding the first one. xxx(b) operator position:
Occurrence of a text unit as the first element in a form.

1.7. 32 ISLisp process The execution of an ISLisp text prepared for execution.
1.7. 33 ISLisp processor A system or mechanism, that accepts an ISLisp text (or an

equivalent data structure) as input, prepares it for execution,
and executes the result to produce values and side effects.

1.7. 34 ISLisp program An aggregation of expressions to be evaluated, the specific
nature of which depends on context. Within this International
Standard, the term ``program'' is used only in an abstract way;
there is no specific syntactic construct that delineates a
program.

1.7. 35 ISLisp scope The scope of an identifier is that textual part of a program
where the meaning of that identifier is defined; i.e ., there
exists an ISLisp object designated by this identifier.

1.7. 36 ISLisp slot A named component of an instance which can be accessed
using the slot accessors. The structure of an instance is defined
by the set of its slots.

c:\... sc22 defs.xls 8/16/2005

Definitions 102

Clause Source Term Definition Notes
1.7. 37 ISLisp text A text that complies with the requirements of this International

Standard (i.e ., with the syntax and static semantics of ISLisp).
An ISLisp text consists of a sequence of toplevel forms.

1.7. 38 ISLisp toplevel form Any form that either is not nested in any other form or is
nested only in progn forms.

1.7. 39 ISLisp toplevel scope The scope in which a complete ISLisp text unit is processed.

1.7. 40 ISLisp writer A method associated with a slot of a class, whose task is to
bind a value with a slot of an instance of that class.

4. 1 Cobol absolute item An item in a report that has a fixed
position on a page.

4. 2 Cobol activated
runtime element

A function, method, or program placed into
the active state.

4. 3 Cobol activating
statement

A statement that causes the execution of a
function, method, or program.

4. 4 Cobol activating
runtime element

The function, method, or program that
executed a given activating statement.

4. 5 Cobol active state The state of a function, method, or
program that has been activated but has
not yet returned control to the activating
runtime element.

4. 6 Cobol alphabetic
character (in
the COBOL
character
repertoire)

A basic letter or a space character.

4. 7 Cobol alphanumeric
character

Any coded character in an alphanumeric
coded character set, whether or not there
is an assigned graphic symbol for that
coded character.

c:\... sc22 defs.xls 8/16/2005

Definitions 103

Clause Source Term Definition Notes
4. 8 Cobol alphanumeric

character
position

The amount of physical storage required to
store, or presentation space required to
print or display, a single character of an
alphanumeric character set.

4. 9 Cobol alphanumeric
character set;
alphanumeric
coded character
set

See alphanumeric coded character set.

4. 10 Cobol alphanumeric
coded character
set;
alphanumeric
character set

A coded character set that the implementor
has designated for representation of data
items of usage display and alphanumeric
literals.

4. 11 Cobol alphanumeric
group item

Any group item except for: (1) a strongly-
typed group item, (2) a bit group item,
(3) a national group item.

4. 12 Cobol argument An operand specified in an activating
statement that specifies the data to be
passed.

4. 13 Cobol assumed decimal
point

A decimal point position that does not
involve the existence of an actual
character in a data item. An assumed
decimal point has logical meaning with no
physical representation.

4. 14 Cobol based data item A data item established by association of
a based entry with an actual data item or
allocated storage.

4. 15 Cobol based entry A data description entry that serves as a
template that is dynamically associated
with data items or allocated storage.

c:\... sc22 defs.xls 8/16/2005

Definitions 104

Clause Source Term Definition Notes
4. 16 Cobol basic letter One of the uppercase letters 'A' through

'Z' and the lowercase letters 'a' through
'z' in the COBOL character repertoire.

4. 17 Cobol bit The smallest unit in a computer's storage
structure capable of representing two
distinct alternatives.

4. 18 Cobol bit data item An elementary data item of category
boolean and usage bit or a bit group item.

4. 19 Cobol block; physical
record

A physical unit of data that is normally
composed of one or more logical records.

4. 20 Cobol boolean
character

A unit of information that consists of the
value zero or one. Each boolean character
may be represented in storage as a bit, an
alphanumeric character, or a national
character.

4. 21 Cobol boolean data
item

A data item capable of containing a
boolean value.

4. 22 Cobol boolean
expression

One or more boolean operands separated by
boolean operators.

4. 23 Cobol boolean position The amount of physical storage required to
store, or presentation space required to
print or display, a single boolean
character.

4. 24 Cobol boolean value A value consisting of a sequence of one or
more boolean characters.

4. 25 Cobol byte A sequence of bits representing the
smallest addressable character unit in the
memory of a given computer.

c:\... sc22 defs.xls 8/16/2005

Definitions 105

Clause Source Term Definition Notes
4. 26 Cobol character (in a

coded character
set)

A code value that constitutes the coded
representation of a letter, digit, symbol,
control function, or other member of a set
of elements used for the organization,
control, or representation of data.

NOTE COBOL processes each code
value in a coded character set
as though it were a character.

4. 27 Cobol character (in a
screen item)

A graphic character.

4. 28 Cobol character (in
COBOL character
repertoire);
COBOL character

A letter, digit, or special character,
independent of its coded representation,
that is used in formation of the words and
separators of COBOL.

4. 29 Cobol character (in
computer
storage)

A single code value of a coded character
set.

4. 30 Cobol character
boundary

The leftmost bit of an addressing boundary
in the storage of the computer.

4. 31 Cobol character
position

The amount of physical storage required to
store, or presentation space required to
print or display, a single character --
either an alphanumeric character or a
national character. One element of a coded
character set occupies one character
position.

NOTE As an example, each element
of a combining sequence in the
UCS occupies one character
position. For a UTF-16
surrogate value, the left
surrogate occupies one character
position and the right surrogate
occupies another character
position.

4. 32 Cobol character-string A sequence of contiguous characters that
form a COBOL word, a literal, or a picture
character-string.

c:\... sc22 defs.xls 8/16/2005

Definitions 106

Clause Source Term Definition Notes
4. 33 Cobol class (in object

orientation)
The entity that defines common behavior
and implementation for zero, one, or more
objects.

4. 34 Cobol class (of a data
item)

A designation for a set of data items
having common attributes or a common range
of values, defined by the PICTURE clause,
the USAGE clause, or the PICTURE and USAGE
clauses in a data description entry; by
the definition of a predefined identifier;
or by the definition of an intrinsic
function.

4. 35 Cobol class (of data
values)

A designation for a set of data values
that are permissible in the content of a
data item.

4. 36 Cobol class definition
(in object
orientation)

A compilation unit that defines a class of
objects.

4. 37 Cobol clause An ordered set of consecutive COBOL
character-strings whose purpose is to
specify an attribute of an entry.

4. 38 Cobol COBOL character;
character (in
COBOL character
repertoire)

See character (in COBOL character
repertoire).

4. 39 Cobol COBOL character
repertoire

The repertoire of characters used in
writing the syntax of a COBOL compilation
group, except for comments and the content
of non-hexadecimal alphanumeric and
national literals.

c:\... sc22 defs.xls 8/16/2005

Definitions 107

Clause Source Term Definition Notes
4. 40 Cobol coded character

set
A set of unambiguous rules that
establishes a character set and the
relationship between the characters of the
set and their coded representation.
[ISO/IEC 10646-1]

4. 41 Cobol combining
character

A UCS member that is intended for
combination with the preceding non-
combining graphic character or with a
sequence of combining characters preceded
by a non-combining character.

4. 42 Cobol common program A program that, despite being directly
contained within another program, may be
called from any program directly or
indirectly contained in that other
program.

4. 43 Cobol compilation
group

A sequence of one or more compilation
units submitted together for compilation.

4. 44 Cobol compilation unit A source unit that is not nested within
another source unit.

4. 45 Cobol composite
sequence

A sequence of graphic characters
consisting of a non-combining character
followed by one or more combining
characters. [ISO/IEC 10646-1].

4. 46 Cobol conditional
statement

A statement for which the truth value of a
specified condition is evaluated and used
to determine subsequent flow of control.

4. 47 Cobol conformance (for
object
orientation)

A unidirectional relation that allows an
object to be used according to an
interface other than the interface of its
own class.

c:\... sc22 defs.xls 8/16/2005

Definitions 108

Clause Source Term Definition Notes
4. 48 Cobol conformance (for

parameters)
The requirements for the relationship
between arguments and formal parameters
and between returning items in activating
and activated runtime elements.

4. 49 Cobol control function An action that affects the recording,
processing, transmission, or
interpretation of data, and that has a
coded representation consisting of one or
more bytes.

NOTE This definition is the same
as that in ISO/IEC 10646-1
except that "octets" is replaced
by "bytes" because the term
"octet" is not used in the COBOL
specification.

4. 50 Cobol cultural element An element of data for computer use that
may vary dependent on language,
geographical territory, or other cultural
circumstances.

4. 51 Cobol currency sign The COBOL character '$', used as the
default currency symbol in a picture
character-string and as the default
currency string that appears in the edited
format of data items.

NOTE Features exist for
selection of other currency
strings and currency symbols.

4. 52 Cobol currency string The set of characters to be placed into
numeric-edited data items as a result of
editing operations when the item includes
a currency symbol in its picture character
string.

4. 53 Cobol currency symbol The character used in a picture character-
string to represent the presence of a
currency string.

4. 54 Cobol current record The record that is available in the record
area associated with a file.

4. 55 Cobol current volume
pointer

A conceptual entity that points to the
current volume of a sequential file.

c:\... sc22 defs.xls 8/16/2005

Definitions 109

Clause Source Term Definition Notes
4. 56 Cobol data item A unit of data defined by a data

description entry or resulting from the
evaluation of an identifier.

4. 57 Cobol debugging line A source line that is optionally compiled,
depending on the setting of a debugging
mode switch.

4. 58 Cobol decimal point;
decimal
separator

The character used to represent the radix
point. The default is the character
period.

4. 59 Cobol decimal
separator;
decimal point

See decimal point.

4. 60 Cobol declarative
statement

A USE statement, which defines the
conditions under which the procedures that
follow the statement will be executed.

4. 61 Cobol de-editing The logical removal of all editing
characters from a numeric-edited data item
in order to determine that item's unedited
numeric value.

4. 62 Cobol delimited scope
statement

Any statement that is terminated by its
explicit scope terminator.

4. 63 Cobol digit position The amount of physical storage required to
store, or presentation space required to
print or display, a single digit.

4. 64 Cobol dynamic access An access mode in which specific logical
records may be obtained from or placed
into a mass storage file in a
nonsequential manner and obtained from a
file in a sequential manner.

c:\... sc22 defs.xls 8/16/2005

Definitions 110

Clause Source Term Definition Notes
4. 65 Cobol dynamic storage Storage that is allocated and released on

request during runtime.

4. 66 Cobol end marker A marker for the end of a source unit.

4. 67 Cobol entry A descriptive set of consecutive clauses
terminated by a separator period.

4. 68 Cobol entry convention The information required to interact
successfully with a function, method, or
program.

4. 69 Cobol exception
condition

A condition detected at runtime that
indicates that an error or exception to
normal processing has occurred.

4. 70 Cobol exception object An object that acts as an exception
condition.

4. 71 Cobol exception status
indicator

A conceptual entity that exists for each
exception-name.

4. 72 Cobol EXIT FUNCTION
statement

an abbreviation for 'EXIT statement with
the FUNCTION phrase'.

4. 73 Cobol EXIT METHOD
statement

an abbreviation for 'EXIT statement with
the METHOD phrase'.

4. 74 Cobol EXIT PARAGRAPH
statement

an abbreviation for 'EXIT statement with
the PARAGRAPH phrase'.

4. 75 Cobol EXIT PERFORM
statement

an abbreviation for 'EXIT statement with
the PERFORM phrase'.

4. 76 Cobol EXIT PROGRAM
statement

an abbreviation for 'EXIT statement with
the PROGRAM phrase'.

4. 77 Cobol EXIT SECTION
statement

an abbreviation for 'EXIT statement with
the SECTION phrase'.

4. 78 Cobol explicit scope
terminator

A statement-dependent word that by its
presence terminates the scope of that
statement.

c:\... sc22 defs.xls 8/16/2005

Definitions 111

Clause Source Term Definition Notes
4. 79 Cobol extend mode A mode of file processing in which records

may be added at the end of a sequential
file, but no records may be deleted, read,
or updated.

4. 80 Cobol extended letter A letter, other than the basic letters, in
the set of characters defined for the
COBOL character repertoire.

4. 81 Cobol external data Data that belongs to the run unit and may
be accessed by any runtime element in
which it is described.

4. 82 Cobol external media
format

A form of data suitable for presentation
or printing, including any control
functions necessary for representation as
readable text.

4. 83 Cobol external switch A hardware or software device, defined and
named by the implementor, that is used to
indicate that one of two alternate states
exists.

4. 84 Cobol factory object The single object associated with a class,
defined by the factory definition of that
class, typically used to create the
instance objects of the class.

4. 85 Cobol file A logical entity that represents a
collection of logical records. There is
one logical file associated with one file
connector and there may be several logical
files associated with one physical file.

c:\... sc22 defs.xls 8/16/2005

Definitions 112

Clause Source Term Definition Notes
4. 86 Cobol file connector A storage area that contains information

about a file and is used as the linkage
between a file-name and a physical file
and between a file-name and its associated
record area.

4. 87 Cobol file
organization

The permanent logical file structure
established at the time that a file is
created.

4. 88 Cobol file position
indicator

A conceptual entity that either is used to
facilitate exact specification of the next
record to be accessed, or indicates why
such a reference cannot be established.

4. 89 Cobol file sharing A cooperative environment that controls
concurrent access to the same physical
file.

4. 90 Cobol fixed file
attribute

An attribute of a physical file that is
established when the physical file is
created and is never changed during the
existence of the physical file.

4. 91 Cobol formal parameter A data-name specified in the USING phrase
of the procedure division header that
gives the name used in the function,
method, or program for a parameter.

4. 92 Cobol function An intrinsic or user-defined procedural
entity that returns a value based upon the
arguments.

c:\... sc22 defs.xls 8/16/2005

Definitions 113

Clause Source Term Definition Notes
4. 93 Cobol function

prototype
definition

A definition that specifies the rules
governing the arguments needed for the
evaluation of a particular function, the
data item resulting from the evaluation of
the function, and all other requirements
needed for the evaluation of that
function.

4. 94 Cobol graphic
character

A character, other than a control
function, that has a visual representation
normally handwritten, printed, or
displayed. [ISO/IEC 10646-1].

4. 95 Cobol graphic symbol The visual representation of a graphic
character or of a composite sequence.
[ISO/IEC 10646-1].

4. 96 Cobol grouping (in
locale editing)

The separation of digits into groups in
number and currency formatting.

4. 97 Cobol grouping
separator

The character used to separate digits in
numbers for ease of reading. The default
is the character comma.

4. 98 Cobol high-order end The leftmost position of a string of
characters or a string of bits.

4. 99 Cobol i-o mode A mode of file processing in which records
can be read, updated, added, and deleted.

4. 100 Cobol i-o status A conceptual entity that exists for a
file, that contains a value indicating the
result of the execution of an input-output
operation for that file.

4. 101 Cobol imperative
statement

A statement that specifies an
unconditional action or that is a
delimited scope statement.

c:\... sc22 defs.xls 8/16/2005

Definitions 114

Clause Source Term Definition Notes
4. 102 Cobol index A storage area or a register, the content

of which refers to a particular element in
a table.

4. 103 Cobol indexed
organization

The permanent logical file structure in
which each record is identified by the
value of one or more keys within that
record.

4. 104 Cobol inheritance (for
classes)

A mechanism for using the interface and
implementation of one or more classes as
the basis for another class.

4. 105 Cobol inheritance (for
interfaces)

A mechanism for using the specification of
one or more interfaces as the basis for
another interface.

4. 106 Cobol initial program A program that is placed into the initial
state every time the program is called.

4. 107 Cobol initial state The state of a function, method, or
program when it is first activated in a
run unit.

4. 108 Cobol input mode A mode of file processing in which records
can only be read.

4. 109 Cobol instance object A single instance of an object defined by
a class and created by a factory object.

c:\... sc22 defs.xls 8/16/2005

Definitions 115

Clause Source Term Definition Notes
4. 110 Cobol interface (of an

object)
The names of all the methods defined for
the object, including inherited methods;
for each of the methods: (1) the ordered
list of its formal parameters and the
description and passing technique
associated with each, (2) any returned
value and its description, (3) exceptions
that may be raised.

4. 111 Cobol interface (the
language
construct)

A grouping of method prototypes.

4. 112 Cobol internal data All data described in a source unit except
external data and external file
connectors.

4. 113 Cobol invocation;
method
invocation

See method invocation.

4. 114 Cobol key of reference The key, either prime or alternate,
currently being used to access records
within an indexed file.

4. 115 Cobol letter A basic letter or an extended letter.

4. 116 Cobol locale A facility in the user's information
technology environment that specifies
language and cultural conventions.

4. 117 Cobol lock mode The state of a file for which record
locking is in effect that indicates
whether record locking is manual or
automatic.

4. 118 Cobol low-order end The rightmost position of a string of
characters or a string of bits.

c:\... sc22 defs.xls 8/16/2005

Definitions 116

Clause Source Term Definition Notes
4. 119 Cobol method A procedural entity defined by a method

definition within, or inherited by, a
class definition as an allowable operation
upon objects of that class.

4. 120 Cobol method data Data declared in a method definition.

4. 121 Cobol method
invocation;
invocation

The request to execute a named method on a
given object.

4. 122 Cobol method prototype A source element that specifies the
information needed for invocation of a
method and for conformance checking.

4. 123 Cobol national
character

A character in a national character set.

4. 124 Cobol national
character
position

The amount of physical storage required to
store, or presentation space required to
print or display, a single national
character.

4. 125 Cobol national
character set;
national coded
character set

See national coded character set.

4. 126 Cobol national coded
character set;
national
character set

A coded character set that the implementor
has designated for representation of data
items described as usage national and for
national literals.

4. 127 Cobol national data
item

An elementary data item of class national
or a national group item.

4. 128 Cobol native
alphanumeric
character set

The computer's alphanumeric coded
character set.

c:\... sc22 defs.xls 8/16/2005

Definitions 117

Clause Source Term Definition Notes
4. 129 Cobol native

arithmetic
A mode of arithmetic in which the
techniques used in handling arithmetic are
specified by the implementor.

4. 130 Cobol native character
set

An implementor-defined character set,
either alphanumeric or national or both,
that is used for internal processing of a
COBOL runtime module. The native character
set is that referenced by the keyword
NATIVE in the SPECIAL-NAMES paragraph.

4. 131 Cobol native collating
sequence

An implementor-defined collating sequence,
either an alphanumeric collating sequence
or a national collating sequence, that is
associated with the computer on which a
runtime module is executed.

4. 132 Cobol native national
coded character
set

The computer's national coded character
set.

4. 133 Cobol next record The record that logically follows the
current record of a file.

4. 134 Cobol null The state of a pointer indicating that it
contains no address, or the state of an
object reference indicating that it
contains no reference.

4. 135 Cobol numeric
character (in
the rules of
COBOL)

A character that belongs to the following
set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8,
9.

4. 136 Cobol object A unit consisting of data and the methods
that act upon that data.

c:\... sc22 defs.xls 8/16/2005

Definitions 118

Clause Source Term Definition Notes
4. 137 Cobol object data Data defined: (1) in the factory

definition, except for the data defined in
its methods, (2) in the instance
definition, except for the data defined in
its methods.

4. 138 Cobol object property;
property

A name that may be used to qualify an
object reference to get a value from or
pass a value to an object.

4. 139 Cobol object reference An explicitly- or implicitly-defined data
item that contains a reference to an
object.

4. 140 Cobol open mode The state of a file connector indicating
input-output operations that are permitted
for the associated file.

4. 141 Cobol optional file A file declared as being not necessarily
present each time the runtime module is
executed.

4. 142 Cobol outermost
program

A program, together with its contained
programs, that is not contained in any
other program.

4. 143 Cobol output file A file that is opened in either the output
mode or extend mode.

4. 144 Cobol output mode A mode of file processing in which a file
is created and records can only be added
to the file.

4. 145 Cobol physical file A physical collection of physical records.

4. 146 Cobol physical record;
block

See block.

4. 147 Cobol previous record The record that logically precedes the
current record of a file.

c:\... sc22 defs.xls 8/16/2005

Definitions 119

Clause Source Term Definition Notes
4. 148 Cobol procedure One or more successive paragraphs or

sections in the procedure division.

4. 149 Cobol procedure
branching
statement

A statement that causes the explicit
transfer of control to a statement other
than the next executable statement in the
sequence in which the statements are
written.

4. 150 Cobol processor The computing system, both hardware and
software, used for compilation of source
code or execution of run units, or both.

4. 151 Cobol program
prototype
definition

A definition that specifies the rules
governing the class of the parameters
expected to be received by a particular
subprogram, and any other requirements
needed to transfer control to and get
control and return information from that
subprogram.

4. 152 Cobol property; object
property

See object property.

4. 153 Cobol random access An access mode in which the value of a key
data item identifies the logical record
that is obtained from, deleted from, or
placed into a relative or indexed file.

4. 154 Cobol record key A data item within a record used to
identify that record within an indexed
file.

4. 155 Cobol record lock A conceptual entity that is used to
control concurrent access to a given
record within a shared physical file.

c:\... sc22 defs.xls 8/16/2005

Definitions 120

Clause Source Term Definition Notes
4. 156 Cobol record locking A facility for controlling concurrent

access to records in a shared physical
file.

4. 157 Cobol relative item An item in a report whose position is
specified relative to the previous item.

4. 158 Cobol relative key A data item that contains a relative
record number.

4. 159 Cobol relative
organization

The permanent logical file structure in
which each record's logical position is
uniquely identified by a relative record
number.

4. 160 Cobol relative record
number

The ordinal number of a record in a file
whose organization is relative.

4. 161 Cobol report A printed output described in the report
section and generated from those data
descriptions.

4. 162 Cobol report writer A comprehensive set of data clauses and
statements that enable a print layout to
be described according to its general
appearance rather than through of a series
of procedural steps.

4. 163 Cobol restricted
pointer

A pointer data item that is restricted to
data items of a specified type or to
programs with the same signature as a
specified program.

4. 164 Cobol run unit One or more runtime modules that interact
with one another and that function, at
execution time, as an entity to provide
problem solutions.

4. 165 Cobol runtime element The executable unit resulting from
compiling a source element.

c:\... sc22 defs.xls 8/16/2005

Definitions 121

Clause Source Term Definition Notes
4. 166 Cobol runtime module The result of compiling a compilation

unit.

4. 167 Cobol sequential
access

An access method in which logical records
are either placed into a file in the order
of execution of the statements writing the
records or obtained from a file in the
sequence in which the records were written
to the file.

4. 168 Cobol sequential
organization

The permanent logical file structure in
which a record is identified by a
predecessor-successor relationship
established when the record is placed into
the file.

4. 169 Cobol sharing mode The state of a file that indicates the
mode of file sharing.

4. 170 Cobol source element A source unit excluding any contained
source units.

4. 171 Cobol source unit A sequence of statements beginning with an
identification division and finishing with
an end marker or the end of the
compilation group, including any contained
source units.

4. 172 Cobol standard
arithmetic

A mode of arithmetic in which the
techniques used in handling arithmetic
expressions, arithmetic statements, the
SUM clause, and certain integer and
numeric functions are specified in this
Draft International Standard.

4. 173 Cobol standard
intermediate
data item

A temporary abstract decimal floating-
point data item used to hold arithmetic
operands when standard arithmetic is in
effect.

c:\... sc22 defs.xls 8/16/2005

Definitions 122

Clause Source Term Definition Notes
4. 174 Cobol static data Data that has its last-used state when a

runtime element is re-entered.

4. 175 Cobol subclass A class that inherits from another class.
When two classes in an inheritance
relationship are considered together, the
subclass is the inheritor or inheriting
class; the superclass is the inheritee or
inherited class.

NOTE In the industry literature,
the term derived class is also
often used as an alternative to
the term subclass. These terms
are equivalent.

4. 176 Cobol subject of the
entry

The data item that is being defined by a
data description entry.

4. 177 Cobol subscript A number used to refer to a specific
element of a table, or in the case of the
subscript 'ALL', to all elements of a
table.

4. 178 Cobol superclass A class that is inherited by another
class.

4. 179 Cobol surrogate pair A coded character representation for a
single abstract character of the UTF-16
format of the UCS where the representation
consists of a sequence of two two-octet
values. The first value of the pair is a
high-surrogate and the second is a low-
surrogate.

4. 180 Cobol type (for type
declaration)

A template that contains all the
characteristics of a data item and its
subordinates.

4. 181 Cobol UCS; Universal
Multiple-Octet
Coded Character
set.

See Universal Multiple-Octet Coded Character Set.

c:\... sc22 defs.xls 8/16/2005

Definitions 123

Clause Source Term Definition Notes
4. 182 Cobol Universal

Multiple-Octet
Coded Character
Set; UCS.

 The coded character set defined by ISO/IEC 10646-1
together with ISO/IEC 10646-2. This coded character set
includes the characters used in writing most of the
languages of the modern world.

4. 183 Cobol universal object
reference

An object reference that is not restricted
to a specific class or interface.

4. 184 Cobol unsuccessful
execution

The attempted execution of a statement
that does not result in the execution of
all the operations specified by that
statement.

4. 185 Cobol variable-
occurrence data
item

A table element that is repeated a
variable number of times.

4. 186 Cobol zero-length item An item whose minimum permitted length is zero and
whose length at execution time is zero.

3. 1 Extended
BNF

sequence An ordered list of zero or more items. Note - This definition differs from the one in
ISO 2382:1985.

3. 2 Extended
BNF

subsequence A sequence within a sequence.

3. 3 Extended
BNF

non-terminal symbol A syntactic part of the language being defined.

3. 4 Extended
BNF

meta-identifier The name of a non-terminal symbol.

3. 5 Extended
BNF

start symbol A non-terminal symbol that is defined by one or more
syntax rules but does not occur in any other syntax rule.

3. 6 Extended
BNF

sentence A sequence of symbols that represents the start symbol.

c:\... sc22 defs.xls 8/16/2005

Definitions 124

Clause Source Term Definition Notes
3. 7 Extended

BNF
terminal symbol A sequence of one or more characters forming an

irreducible element of a language.
Note - In this International Standard a
terminal symbol of Extended BNF is called a
terminal-character, and a terminal symbol of
a language being defined by a syntax is
represented by a terminal-string.

An'x N Ada Access type An access type has values that designate aliased
objects. Access types correspond to ``pointer types'' or
``reference types'' in some other languages.

An'x N Ada Aliased An aliased view of an object is one that can be
designated by an access value. Objects allocated by
allocators are aliased. Objects can also be explicitly
declared as aliased with the reserved word aliased. The
Access attribute can be used to create an a

An'x N Ada Array type An array type is a composite type whose components
are all of the same type. Components are selected by
indexing.

An'x N Ada Character type A character type is an enumeration type whose values
include characters.

An'x N Ada Class A class is a set of types that is closed under derivation,
which means that if a given type is in the class, then all
types derived from that type are also in the class. The
set of types of a class share common properties, such
as their primitive operati

An'x N Ada Compilation unit The text of a program can be submitted to the compiler
in one or more compilations. Each compilation is a
succession of compilation_units. A compilation_unit
contains either the declaration, the body, or a renaming
of a program unit.

An'x N Ada Composite type A composite type has components.
An'x N Ada Construct A construct is a piece of text (explicit or implicit) that is

an instance of a syntactic category defined under
``Syntax.''

c:\... sc22 defs.xls 8/16/2005

Definitions 125

Clause Source Term Definition Notes
An'x N Ada Controlled type A controlled type supports user-defined assignment and

finalization. Objects are always finalized before being
destroyed.

An'x N Ada Declaration A declaration is a language construct that associates a
name with (a view of) an entity. A declaration may
appear explicitly in the program text (an explicit
declaration), or may be supposed to occur at a given
place in the text as a consequence of the s

An'x N Ada Definition All declarations contain a definition for a view of an
entity. A view consists of an identification of the entity
(the entity of the view), plus view-specific characteristics
that affect the use of the entity through that view (such
as mode of access to

An'x N Ada Derived type A derived type is a type defined in terms of another
type, which is the parent type of the derived type. Each
class containing the parent type also contains the
derived type. The derived type inherits properties such
as components and primitive operation

An'x N Ada Discrete type A discrete type is either an integer type or an
enumeration type. Discrete types may be used, for
example, in case_statements and as array indices.

An'x N Ada Discriminant A discriminant is a parameter of a composite type. It can
control, for example, the bounds of a component of the
type if that type is an array type. A discriminant of a task
type can be used to pass data to a task of the type upon
creation.

An'x N Ada Elementary type An elementary type does not have components.
An'x N Ada Enumeration type An enumeration type is defined by an enumeration of its

values, which may be named by identifiers or character
literals.

c:\... sc22 defs.xls 8/16/2005

Definitions 126

Clause Source Term Definition Notes
An'x N Ada Exception An exception represents a kind of exceptional situation;

an occurrence of such a situation (at run time) is called
an exception occurrence. To raise an exception is to
abandon normal program execution so as to draw
attention to the fact that the correspo

An'x N Ada Execution The process by which a construct achieves its run-time
effect is called execution. Execution of a declaration is
also called elaboration. Execution of an expression is
also called evaluation.

An'x N Ada Generic unit A generic unit is a template for a (nongeneric) program
unit; the template can be parameterized by objects,
types, subprograms, and packages. An instance of a
generic unit is created by a generic_instantiation. The
rules of the language are enforced when

An'x N Ada Integer type Integer types comprise the signed integer types and the
modular types. A signed integer type has a base range
that includes both positive and negative numbers, and
has operations that may raise an exception when the
result is outside the base range. A mo

An'x N Ada Library unit A library unit is a separately compiled program unit, and
is always a package, subprogram, or generic unit.
Library units may have other (logically nested) library
units as children, and may have other program units
physically nested within them. A root

An'x N Ada Limited type A limited type is (a view of) a type for which the
assignment operation is not allowed. A nonlimited type is
a (view of a) type for which the assignment operation is
allowed.

An'x N Ada Object An object is either a constant or a variable. An object
contains a value. An object is created by an
object_declaration or by an allocator. A formal parameter
is (a view of) an object. A subcomponent of an object is
an object.

c:\... sc22 defs.xls 8/16/2005

Definitions 127

Clause Source Term Definition Notes
An'x N Ada Package Packages are program units that allow the specification

of groups of logically related entities. Typically, a
package contains the declaration of a type (often a
private type or private extension) along with the
declarations of primitive subprograms of t

An'x N Ada Partition A partition is a part of a program. Each partition consists
of a set of library units. Each partition may run in a
separate address space, possibly on a separate
computer. A program may contain just one partition. A
distributed program typically contains

An'x N Ada Pragma A pragma is a compiler directive. There are language-
defined pragmas that give instructions for optimization,
listing control, etc. An implementation may support
additional (implementation-defined) pragmas.

An'x N Ada Primitive operations The primitive operations of a type are the operations
(such as subprograms) declared together with the type
declaration. They are inherited by other types in the
same class of types. For a tagged type, the primitive
subprograms are dispatching subprogram

An'x N Ada Private extension A private extension is like a record extension, except
that the components of the extension part are hidden
from its clients.

An'x N Ada Private type A private type is a partial view of a type whose full view
is hidden from its clients.

An'x N Ada Program A program is a set of partitions, each of which may
execute in a separate address space, possibly on a
separate computer. A partition consists of a set of library
units.

An'x N Ada Program unit A program unit is either a package, a task unit, a
protected unit, a protected entry, a generic unit, or an
explicitly declared subprogram other than an
enumeration literal. Certain kinds of program units can
be separately compiled. Alternatively, they c

c:\... sc22 defs.xls 8/16/2005

Definitions 128

Clause Source Term Definition Notes
An'x N Ada Protected type A protected type is a composite type whose

components are protected from concurrent access by
multiple tasks.

An'x N Ada Real type A real type has values that are approximations of the
real numbers. Floating point and fixed point types are
real types.

An'x N Ada Record extension A record extension is a type that extends another type
by adding additional components.

An'x N Ada Record type A record type is a composite type consisting of zero or
more named components, possibly of different types.

An'x N Ada Scalar type A scalar type is either a discrete type or a real type.
An'x N Ada Subtype A subtype is a type together with a constraint, which

constrains the values of the subtype to satisfy a certain
condition. The values of a subtype are a subset of the
values of its type.

An'x N Ada Tagged type The objects of a tagged type have a run-time type tag,
which indicates the specific type with which the object
was originally created. An operand of a class-wide
tagged type can be used in a dispatching call; the tag
indicates which subprogram body to in

An'x N Ada Task type A task type is a composite type whose values are tasks,
which are active entities that may execute concurrently
with other tasks. The top-level task of a partition is called
the environment task.

An'x N Ada Type Each object has a type. A type has an associated set of
values, and a set of primitive operations which
implement the fundamental aspects of its semantics.
Types are grouped into classes. The types of a given
class share a set of primitive operations. Cl

An'x N Ada View (See Definition.)
An'x A ASIS Ancestor Ancestors of a library unit are itself, its parent, its

parent's parent, and so on. (Standard is an ancestor of
every library unit).

c:\... sc22 defs.xls 8/16/2005

Definitions 129

Clause Source Term Definition Notes
An'x A ASIS ASIS application Any programming system or any set of software

components making use of ASIS queries to obtain
information about any set of Ada components.

An'x A ASIS ASIS implementation All the hardware and software that implement the ASIS
specification for a given Ada implementation and that
provide the functionality required by the ASIS
specification.

An'x A ASIS ASIS queries Those subprogram interfaces (and only those) defined
in the ASIS standard; these are supported by types,
subtypes, and exceptions also defined in the ASIS
standard. Thus, ASIS queries and supporting entities
are together the ASIS interface. The followi

(Note that semantic queries are generally
named "Corresponding_..." or "Implicit_..."
in the ASIS specification.)

An'x A ASIS Closure A term commonly used instead of needed units.
An'x A ASIS Compilation unit “The term compilation unit is used to refer to a

compilation_unit. When the meaning is clear from
context, the term is also used to refer to the library_item
of a compilation_unit or to the proper_body of a subunit”.
[ISO/IEC 8652:1995, 10.1.1(9)]. AS

Note, that the term "compilation unit" can
refer to either syntactical category
"compilation_unit" or to the library_item of a
compilation_unit or to the proper_body of a
subunit (that is, the compilation_unit without
the context_clause and the separate (

An'x A ASIS Compilation_Unit
[type]

An ASIS private type for which values denote an Ada
compilation unit or configuration pragma from the
environment denoted by some open ASIS context. A non-
nil value of the Compilation_Unit type also contains
information about some physical object from the

An'x A ASIS Container Logical collection of ASIS compilation units. For
example, some container can hold compilation units
which include Ada predefined types, another container
can hold implementation-defined packages. Containers
provide the implementation-defined way of gr

c:\... sc22 defs.xls 8/16/2005

Definitions 130

Clause Source Term Definition Notes
An'x A ASIS Container [type] An ASIS private type for which values denote a set of

compilation units being a subset of the set of compilation
units making up a context.

An'x A ASIS Context Defines a set of compilation units and configuration
pragmas processed by an ASIS application. ASIS
provides any information from a context by treating this
set as if its elements make up an environment
declarative part by modeling some view (most likel

An'x A ASIS Context [type] An ASIS private type for which values denote a set of
compilation units considered by ASIS as making up an
Ada environment declarative part from which to provide
information.

An'x A ASIS Dependent Dependents of a compilation unit are all the compilation
units that depend semantically on it, either directly or
indirectly. A is a dependent of B, if B is a supporter of A.

An'x A ASIS Descendants Descendants of a library unit relation are the inverse of
the ancestor relation.

An'x A ASIS Element A common abstraction used by ASIS to denote the
syntax components (both explicit and implicit) of ASIS
compilation units. The term Element is also used as the
synonym for "the value of the ASIS Element type”. See
also "Explicit element" and "Implicit e

An'x A ASIS Element [type] An ASIS private type, whose values represent the
syntax components (both explicit and implicit) of ASIS
compilation units.

An'x A ASIS Environment “Each compilation unit submitted to the compiler is
compiled in the context of an environment
declarative_part (or simply environment), which is a
conceptual declarative_part that forms the outermost
declarative region of the context of any compilation

Note that the mechanisms for creating an
environment and for adding and replacing
compilation units within an environment are
implementation-defined.

An'x A ASIS Explicit element An ASIS Element, representing a language construct
that appears explicitly in the program text for the
compilation unit (e.g., an explicit declaration).

c:\... sc22 defs.xls 8/16/2005

Definitions 131

Clause Source Term Definition Notes
An'x A ASIS Extension Non-standard facilities (other library units, non-standard

children of standard ASIS library units, subprograms,
etc.) which provide additional information from ASIS
types, or modify the behavior of otherwise standard ASIS
facilities to provide alternat

An'x A ASIS Family The family of a given unit is defined as the set of
compilation units that comprise the given unit's
declaration, body, descendants, and subunits (and
subunits of subunits and descendants, etc.).

An'x A ASIS Id A way of identifying a particular element, from a
particular compilation unit, from a particular context.

An'x A ASIS Id [type] An ASIS private type implementing the Id abstraction.
The values of this type can be written to files. These
values can be read back from files and converted into
values of the Element type with the use of a suitable
open context.

An'x A ASIS Implementor A company, institution, or other group (such as a
vendor) who develops an ASIS implementation; thus an
ASIS implementor. There are also Ada implementors,
who provide Ada compilation systems; and there are
ASIS-based tool (or, ASIS Application) implemen

An'x A ASIS Implicit element An ASIS Element, representing a language construct
that does not exist in the program text for the compilation
unit, but could occur at a given place in the program text
as a consequence of the semantics of another construct,
(e.g., an implicit declarat

An'x A ASIS Line The logical representation of a line of text from the
source code of the external representation of a
compilation unit.

c:\... sc22 defs.xls 8/16/2005

Definitions 132

Clause Source Term Definition Notes
An'x A ASIS Line [type] An ASIS private type for the ASIS Line abstraction. The

values of the Line type represent the lines of text from
the source code of the external representation of
compilation units.

An'x A ASIS Needed Units The needed units of a given compilation unit is a set of
compilation units ultimately needed by the given
compilation unit to make up or to be included in a
completed partition.

An'x A ASIS Optional functionality The subset of ASIS facilities that are explicitly identified
in the ASIS standard as optional which may legitimately
be omitted from a Basic Conforming ASIS
implementation, but shall be included in any Fully
Conforming ASIS implementation, unless stated

An'x A ASIS Queries. See ASIS queries.
An'x A ASIS Relation (between

ASIS Compilation
Units)

Semantic relationships between compilation units (as
discussed in chapter 10 of ISO/IEC 8652:1995). The
Relation_Kindstype enumerates the kinds of relations
that can exist between compilation units. See also
Dependent, Extended Family, and Supporter.

An'x A ASIS Required
functionality

 The subset of ASIS facilities which are not explicitly
identified in the ASIS standard as optional which shall be
included in a Basic or Fully Conforming ASIS
implementation, unless stated otherwise in the ASIS
specification.

An'x A ASIS Semantic queries. See ASIS queries.
An'x A ASIS Structural queries. See ASIS queries.
An'x A ASIS Supporter Supporters of a compilation unit are units on which it

semantically depends, either directly or indirectly. B is a
supporter of A, if A is a dependent of B.

c:\... sc22 defs.xls 8/16/2005

Definitions 133

Clause Source Term Definition Notes
4.1. 1 ACATS consensus general agreement, characterized by the absence of

sustained opposition to substantial issues by any
important part of the concerned interests and by a
process that involves seeking to take into account the
views of all parties concerned and to reconcile

NOTE - Consensus need not imply
unanimity. [ISO/IEC Guide 2, 1.7]

4.2. 1 ACATS fitness for purpose ability of a product, process or service to serve a defined
purpose under specific conditions

[ISO/IEC Guide 2, 2.1]

4.3. 1 ACATS document any medium with information recorded on or in it [ISO/IEC Guide 2, 3.1]
4.3. 2 ACATS normative document document that provides rules, guidelines or

characteristics for activities or their results
NOTES -1 - The term “normative document”
is a generic term that covers such
documents as standards, technical
specifications, codes of practice and
regulations.2 - The terms for different kinds
of normative documents are defined
considering the document a

4.3. 3 ACATS standard document, established by consensus and approved by a
recognized body, that provides, for common and
repeated use, rules, guidelines or characteristics for
activities or their results, aimed at the achievement of
the optimum degree of order in a given cont

[ISO/IEC Guide 2, 3.2]

4.3. 4 ACATS International
Standard

standard that is adopted by an international
standardizing/standards organization and made
available to the public

[ISO/IEC Guide 2, 3.2.1.1]

4.3. 5 ACATS technical
specification

document that prescribes technical requirements to be
fulfilled by a product, process or service

NOTES = 1 - A technical specification would
indicate, whenever appropriate, the
procedure(s) by means of which it may be
determined whether the requirements given
are fulfilled.2 - A technical specification may
be a standard, a part of a standard or indep

4.3. 6 ACATS regulation document providing binding legislative rules, that is
adopted by an authority

[ISO/IEC Guide 2, 3.6]

c:\... sc22 defs.xls 8/16/2005

Definitions 134

Clause Source Term Definition Notes
4.4. 1 ACATS body legal or administrative entity that has specific tasks and

composition
NOTE - Examples of bodies are
organizations, authorities, companies and
foundations. [ISO/IEC Guide 2, 4.1]

4.4. 2 ACATS organization body that is based on the membership of other bodies or
individuals and has an established constitution and its
own administration

[ISO/IEC Guide 2, 4.2]

4.4. 3 ACATS international
standardizing
organization

standardizing organization whose membership is open
to the relevant national body from every country

[ISO/IEC Guide 2, 4.3.2]

4.4. 4 ACATS authority body that has legal powers and rights NOTE - An authority can be regional,
national or local. [ISO/IEC Guide 2, 4.5]

4.5. 1 ACATS testing standard standard that is concerned with test methods,
sometimes supplemented with other provisions related
to testing, such as sampling, use of statistical methods,
sequence of tests

[ISO/IEC Guide 2, 5.3]

4.5. 2 ACATS product standard standard that specifies requirements to be fulfilled by a
product or a group of products, to establish its fitness for
purpose

[ISO/IEC Guide 2, 5.4]

4.6. 1 ACATS provision expression in the content of a normative document, that
takes the form of a statement, an instruction, a
recommendation or a requirement

NOTE - These types of provision are
distinguished by the form of wording they
employ; e.g. instructions are expressed in
the imperative mood, recommendations by
the use of the auxiliary “should” and
requirements by the use of the auxiliary
“shall.” [ISO/I

4.6. 2 ACATS statement provision that conveys information [ISO/IEC Guide 2, 7.2]
4.6. 3 ACATS instruction provision that conveys an action to be performed [ISO/IEC Guide 2, 7.3]
4.6. 4 ACATS recommendation provision that conveys advice or guidance [ISO/IEC Guide 2, 7.4]
4.6. 5 ACATS requirement provision that conveys criteria to be fulfilled [ISO/IEC Guide 2, 7.5]
4.6. 6 ACATS exclusive

requirement
requirement of a normative document that must
necessarily be fulfilled in order to comply with that
document

NOTE - The term “mandatory requirement”
should be used to mean only a requirement
made compulsory by law or regulation.
[ISO/IEC Guide 2, 7.5.1]

c:\... sc22 defs.xls 8/16/2005

Definitions 135

Clause Source Term Definition Notes
4.6. 7 ACATS optional requirement requirement of a normative document that must be

fulfilled in order to comply with a particular option
permitted by that document

NOTE - An optional requirement may be
either (a) one of two or more alternative
requirements; or(b) an additional
requirement that must be fulfilled only if
applicable and that may otherwise be
disregarded. [ISO/IEC Guide 2, 7.5.2]

4.6. 8 ACATS deemed-to-satisfy
provision

provision that indicates one or more means of
compliance with a requirement of a normative document

[ISO/IEC Guide 2, 7.6]

4.6. 9 ACATS descriptive provision provision for fitness for purpose that concerns the
characteristics of a product, process or service

NOTE - A descriptive provision usually
conveys design, constructional details, etc.
with dimensions and material composition.
[ISO/IEC Guide 2, 7.7]

4.7. 1 ACATS conformity fulfillment by a product, process or service of specified
requirements

[ISO/IEC Guide 2, 12.1]

4.7. 2 ACATS conformity
assessment

any activity concerned with determining directly or
indirectly that relevant requirements are fulfilled

NOTE - Typical examples of conformity
assessment activities are sampling, testing
and inspection; evaluation, verification and
assurance of conformity (supplier’s
declaration, certification); registration,
accreditation and approval as well as their
combi

4.7. 3 ACATS conformity
assessment body

body that conducts conformity assessment [ISO/IEC Guide 2, 12.3]

4.7. 4 ACATS conformity
assessment system

system that has its own rules of procedure and
management for carrying out conformity assessment

NOTES - 1 - Conformity assessment
systems may be operated at, for example,
national, regional or international level.2 -
Typical examples of conformity assessment
systems are testing systems, inspection
systems, and certification systems.
[ISO/IEC Guide 2

c:\... sc22 defs.xls 8/16/2005

Definitions 136

Clause Source Term Definition Notes
4.7. 5 ACATS conformity

assessment scheme
conformity assessment system as related to specified
products, processes or services to which the same
particular standards and rules, and the same procedure,
apply

NOTE - The term “program” is used in some
countries to cover the same concept as
“scheme.” [ISO/IEC Guide 2, 12.5]

4.7. 6 ACATS access to a
conformity
assessment system

opportunity for an applicant to obtain conformity
assessment under the rules of the system

[ISO/IEC Guide 2, 12.6]

4.7. 7 ACATS participant in a
conformity
assessment system

conformity assessment body that operates under the
rules of the system without having the opportunity to take
part in the management of the system

[ISO/IEC Guide 2, 12.7]

4.7. 8 ACATS member of a
conformity
assessment system

conformity assessment body that operates under the
rules of the system and has the opportunity to take part
in the management of the system

[ISO/IEC Guide 2, 12.8]

4.7. 9 ACATS third party person or body that is recognized as being independent
of the parties involved, as concerns the issue in question

NOTE - Parties involved are usually supplier
(“first party”) and purchaser (“second party”)
interests. [ISO/IEC Guide 2, 12.9]

4.7. 10 ACATS registration procedure by which a body indicates relevant
characteristics of a product, process or service, or
particulars of a body or person, in an appropriate,
publicly available list

[ISO/IEC Guide 2, 12.10]

4.7. 11 ACATS accreditation procedure by which an authoritative body gives formal
recognition that a body or person is competent to carry
out specific tasks

[ISO/IEC Guide 2, 12.11]

4.7. 12 ACATS reciprocity bilateral relationship where both parties have the same
rights and obligations towards each other

[ISO/IEC Guide 2, 12.12]

4.7. 13 ACATS equal treatment treatment accorded to products, processes or services
originating in other countries that is no less favorable
than that accorded to like products, processes or
services of national origin, in a comparable situation

[ISO/IEC Guide 2, 12.13]

c:\... sc22 defs.xls 8/16/2005

Definitions 137

Clause Source Term Definition Notes
4.8. 1 ACATS test technical operation that consists of the determination of

one or more characteristics of a given product, process
or service according to a specified procedure

[ISO/IEC Guide 2, 13.1]

4.8. 2 ACATS testing action of carrying out one or more tests [ISO/IEC Guide 2, 13.1.1]
4.8. 3 ACATS test method specified technical procedure for performing a test [ISO/IEC Guide 2, 13.2]
4.8. 4 ACATS test report document that presents test results and other

information relevant to a test
[ISO/IEC Guide 2, 13.3]

4.8. 5 ACATS laboratory body that calibrates and/or tests [ISO/IEC Guide 25, 3.1]
4.8. 6 ACATS testing laboratory laboratory that performs tests NOTE - The term “testing laboratory” can be

used in the sense of a legal entity, a
technical entity or both. [ISO/IEC Guide 2,
13.4]

4.9. 1 ACATS conformity evaluation systematic examination of the extent to which a product,
process or service fulfills specified requirements

[ISO/IEC Guide 2, 14.1]

4.9. 2 ACATS inspection conformity evaluation by observation and judgment
accompanied as appropriate by measurement, testing or
gauging

[ISO/IEC Guide 2, 14.2]

4.9. 3 ACATS inspection body body that performs inspection [ISO/IEC Guide 2, 14.3]
4.9. 4 ACATS verification confirmation by examination and provision of evidence

that specified requirements have been met
[ISO/IEC Guide 25, 3.8]

4.9. 5 ACATS conformity testing conformity evaluation by means of testing [ISO/IEC Guide 2, 14.4]
4.9. 6 ACATS type testing conformity testing on the basis of one or more

specimens of a product representative of the production
[ISO/IEC Guide 2, 14.5]

4.10. 1 ACATS assurance of
conformity

activity resulting in a statement giving confidence that a
product, process or service fulfills specified
requirements

NOTE - For a product, the statement may
be in the form of a document, a label or
other equivalent means. It may also be
printed in or applied on a communication, a
catalogue, an invoice, a user instructions
manual, etc. relating to the product.
[ISO/IEC

c:\... sc22 defs.xls 8/16/2005

Definitions 138

Clause Source Term Definition Notes
4.10. 2 ACATS supplier’s declaration procedure by which a supplier gives written assurance

that a product, process or service conforms to specified
requirements

NOTE - In order to avoid any confusion, the
expression “self-certification” should not be
used. [ISO/IEC Guide 2, 15.1.1]

4.10. 3 ACATS certification procedure by which a third party gives written assurance
that a product, process or service conforms to specified
requirements

[ISO/IEC Guide 2, 15.1.2]

4.10. 4 ACATS certification body body that conducts certification NOTE - A certification body may operate its
own testing and inspection activities or
oversee these activities carried out on its
behalf by other bodies. [ISO/IEC Guide 2,
15.2]

4.10. 5 ACATS certificate of
conformity

a document issued under the procedures of a third party
certification system and attesting that a product or
service is in conformity with specific standards or other
technical specifications

[ISO/IEC Guide 23, 3.2; ISO/IEC Guide 2,
15.5]

4.10. 6 ACATS mark of conformity a legally registered certification mark applied by or
issued under the procedures of a third party certification
system for a product or service which is in conformity
with specific standards or other technical specifications

[ISO/IEC Guide 23, 3.1; superseding
ISO/IEC Guide 2, 15.6]

4.11. 1 ACATS approval permission for a product, process or service to be
marketed or used for stated purposes or under stated
conditions

[ISO/IEC Guide 2, 16.1]

4.11. 2 ACATS type approval approval based on type testing [ISO/IEC Guide 2, 16.1.1]
4.11. 3 ACATS recognition

arrangement
agreement that is based on the acceptance by one party
of results, presented by another party, from the
implementation of one or more designated functional
elements of a conformity assessment system

NOTES - 1 - Typical examples of
recognition arrangements are testing
arrangements, inspection arrangements
and certification arrangements.2 -
Recognition arrangements may be
established at, for example, national,
regional or international level.3 - An agr

4.11. 4 ACATS multilateral
arrangement

recognition arrangement that covers the acceptance of
each other’s results by more than two parties

[ISO/IEC Guide 2, 16.5]

c:\... sc22 defs.xls 8/16/2005

Definitions 139

Clause Source Term Definition Notes
4.12. 1 ACATS accreditation system system that has its own rules of procedure and

management for carrying out accreditation
NOTE - Accreditation of conformity
assessment bodies is normally awarded
following successful assessment and is
followed by appropriate
surveillance.[ISO/IEC Guide 2, 17.1]

4.12. 2 ACATS accreditation body body that conducts and administers an accreditation
system and grants accreditation

[ISO/IEC Guide 2, 17.2]

4.12. 3 ACATS accredited body body to which accreditation has been granted [ISO/IEC Guide 2, 17.3]
4.12. 4 ACATS accreditation criteria set of requirements that is used by an accreditation

body, to be fulfilled by a conformity assessment body in
order to be accredited

[ISO/IEC Guide 2, 17.4]

4.13. 1 ACATS configuration host and target computers, any operating system(s) and
software used to operate a processor

[ISO TR 9547, 2.1]

4.13. 2 ACATS extension a facility in the implemented language that is not given in
the language standard but that does not cause any
ambiguity or contradiction when added to the language
standard (although, in some languages, it may serve to
lift a restriction)

[ISO TR 9547, 2.2]

4.13. 3 ACATS implementation
defined

dependent on the processor but required by the
language standard to be defined and documented by the
implementer

[ISO TR 9547, 2.3]

4.13. 4 ACATS processor a compiler, translator or interpreter working in
combination with a configuration

[ISO TR 9547, 2.4]

4.13. 5 ACATS test program a sequence of characters intended to be submitted to a
processor in order to determine whether or not this
processor exhibits a specific instance of a certain
property

[ISO TR 9547, 2.7]

4.13. 6 ACATS test suite a reference set of test programs that is designed to
assess conformity of a processor with a language
standard

[ISO TR 9547, 2.9]

4.13. 7 ACATS test tools any additional means that can improve the efficiency, the
reliability and the ease of use of the different phases of
testing (e.g. implementation of the test suite, ensuring
integrity, processing of the test suite, collecting test
results, analysis of tes

[ISO TR 9547, 2.10]

c:\... sc22 defs.xls 8/16/2005

Definitions 140

Clause Source Term Definition Notes
4.13. 8 ACATS required documents the set of documents required by the programming

language standard
[ISO TR 9547, 2.11]

4.13. 9 ACATS subset a subset S of a programming language L is a
programming language such that every program in S is
also a program in L and has the same meaning in S as it
has in L

[ISO TR 9547, 2.12]

4.14. 1 ACATS quality manual a document stating the quality policy, quality system and
quality practices of an organization

NOTES - 1 - The quality manual may call up
other documentation relating to the
organization’s quality arrangements.2 - The
quality manual may be a distinct part of
other documentation. [ISO/IEC Guide 25,
3.10]

4.14. 2 ACATS Core Language the provisions of clauses 1-13 and Annexes A, B, and J
of ISO/IEC 8652

NOTE - Conformity to the Core Language is
required by any Ada language processor.
[ISO/IEC 8652, 1.1.2]

4.14. 3 ACATS Specialized Needs
Annexes

Annexes C through H of ISO/IEC 8652 NOTE - An Ada language processor may
conform to some or none of these Annexes.
[ISO/IEC 8652, 1.1.2]

4.15. 1 ACATS Ada Conformity
Assessment Process

the process by which conformity of Ada language
processors to the language standard, ISO/IEC 8652, is
assessed.

4.15. 2 ACATS Ada Conformity
Assessment
Procedure (ACAP)

detailed provisions, instructions, requirements and
descriptions of processes regarding all aspects of the
Ada Conformity Assessment Process collected in a
document.

4.15. 3 ACATS Ada Conformity
Assessment
Laboratory (ACAL)

an independent testing laboratory conducting conformity
assessment tests in accordance with this International
Standard.

4.15. 4 ACATS Ada Conformity
Assessment
Authority (ACAA)

an organization that ensures world-wide commonality of
the Ada Conformity Assessment Process.

4.15. 5 ACATS Ada Conformity
Assessment Test
Suite (ACATS)

the test suite used in the Ada Conformity Assessment
Process .

c:\... sc22 defs.xls 8/16/2005

Definitions 141

Clause Source Term Definition Notes
4.15. 6 ACATS certification by

derivation
registration of conforming processors obtained by
adaptive and perfective maintenance from a processor
for which conformity of the processor was successfully
assessed by witness-testing on the same or a closely
related configuration.

4.15. 7 ACATS certification by
extension

registration of a conforming processor on configurations
closely related to the configuration on which conformity
of the processor was successfully assessed by witness-
testing.

4.15. 8 ACATS Declaration of
Conformity

a statement, signed by an authorized officer of the
manufacturer of an Ada language processor, asserting
that the manufacturer has no knowledge of an intentional
deviation of the Ada language processor from the Ada
language standard.

4.15. 9 ACATS client an organization that obtains conformity assessment
services from an ACAL .

4.15. 10 ACATS manufacturer an organization responsible for the production and
maintenance of a language processor.

4.15. 11 ACATS self-testing the processing of an appropriately customized version of
the ACATS, but not under the observation of an ACAL.

4.15. 12 ACATS test issue any disagreement between an ACAL and its client over
the conduct of the conformity assessment and, in
particular, any disagreement over the fitness for purpose
of any test in the ACATS.

4.15. 13 ACATS witness testing the processing of an appropriately customized version of
the ACATS under the observation of an ACAL.

c:\... sc22 defs.xls 8/16/2005

